Econ 204 - Problem Set 4

Due Tuesday, August 9

1. Let $T \in L\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ be defined by $T(w, z)=(z, w)$. Find all eigenvalues and eigenvectors of T.
2. Give an example of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f(a v)=a f(v)$ for all $a \in \mathbb{R}$ and all $v \in \mathbb{R}^{2}$ but f is not linear.
3. Prove that if $\left(v_{1}, \ldots, v_{n}\right)$ spans V and $T \in L(V, W)$ is onto, then $\left(T v_{1}, \ldots, T v_{n}\right)$ spans W.
4. Let $T: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ be a linear transformation. Assume that $T^{n}=0$ for some integer $n>0$, and $T^{l} \neq 0$ for $l<n$.
(a) Show that T is not invertible.
(b) Show that $T+I$ is invertible. Hint: the inverse of $T+I$ is a polynomial of T.
5. Let U and V be vector spaces. Suppose $T: U \rightarrow V$ is a linear transformation and $v \in V$. Prove that, if the preimage $T^{-1}(v)$ is non-empty, and $u \in T^{-1}(v)$, then $T^{-1}(v)=\{u+z \mid z \in$ $\operatorname{ker} T\}=u+\operatorname{ker} T$.
6. Let V be a finite dimensional vector space with dimension $n>1$. Let $L(V, V)$ be the set of all linear transformation from V to V, which is a vector space (you don't have to prove this). Consider $C \subset L(V, V)$ the set of all non-invertible linear transformations from V to V. Is C a subspace of $L(V, V)$? Prove or provide a counterexample.
7. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $T(x, y)=(4 x-2 y, x+y)$. Let V be the standard basis and $W=\{(5,3),(1,1)\}$ be another basis of \mathbb{R}^{2}.
(a) Find $M t x_{V}(T)$.
(b) Find $M t x_{W}(T)$.
(c) Compute $T(4,3)$ using the matrix representation of W.
