Econ 204 – Problem Set 4

Due Tuesday, August 9

- 1. Let $T \in L(\mathbb{R}^2, \mathbb{R}^2)$ be defined by T(w, z) = (z, w). Find all eigenvalues and eigenvectors of T.
- 2. Give an example of a function $f : \mathbb{R}^2 \to \mathbb{R}$ such that f(av) = af(v) for all $a \in \mathbb{R}$ and all $v \in \mathbb{R}^2$ but f is not linear.
- 3. Prove that if $(v_1, ..., v_n)$ spans V and $T \in L(V, W)$ is onto, then $(Tv_1, ..., Tv_n)$ spans W.
- 4. Let $T : \mathbb{R}^k \to \mathbb{R}^k$ be a linear transformation. Assume that $T^n = 0$ for some integer n > 0, and $T^l \neq 0$ for l < n.
 - (a) Show that T is not invertible.
 - (b) Show that T + I is invertible. *Hint*: the inverse of T + I is a polynomial of T.
- 5. Let U and V be vector spaces. Suppose $T : U \to V$ is a linear transformation and $v \in V$. Prove that, if the preimage $T^{-1}(v)$ is non-empty, and $u \in T^{-1}(v)$, then $T^{-1}(v) = \{u + z | z \in \ker T\} = u + \ker T$.
- 6. Let V be a finite dimensional vector space with dimension n > 1. Let L(V, V) be the set of all linear transformation from V to V, which is a vector space (you don't have to prove this). Consider $C \subset L(V, V)$ the set of all non-invertible linear transformations from V to V. Is C a subspace of L(V, V)? Prove or provide a counterexample.
- 7. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be given by T(x, y) = (4x 2y, x + y). Let V be the standard basis and $W = \{(5, 3), (1, 1)\}$ be another basis of \mathbb{R}^2 .
 - (a) Find $Mtx_V(T)$.
 - (b) Find $Mtx_W(T)$.
 - (c) Compute T(4,3) using the matrix representation of W.