Econ 204 – Problem Set 5

Due Friday, August 12

- 1. Let C = C([a, b]) be the set of continuous functions from [a, b] to \mathbb{R} equipped with the sup norm.
 - (a) Define, for any $t \in [a, b]$, the function $\mathcal{A}_t : C \to \mathbb{R}$ as

$$\mathcal{A}_t(f) = f(t)$$

Prove that \mathcal{A}_t is 1-Lipschitz, but not L-Lipschitz for any L < 1.¹.

(b) Define $\mathcal{I}: C \to \mathbb{R}$ as

$$\mathbb{I}(f) = \int_{a}^{b} f(t) dt$$

Find the constant K such that \mathcal{I} is K-Lipschitz, but not L-Lipschitz for any L < K.

- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a C^2 (twice continuously differentiable) function. The function and its second derivative are bounded, namely there exist M, N > 0 such that $\sup_{x \in \mathbb{R}} |f(x)| \leq M$ and $\sup_{x \in \mathbb{R}} |f''(x)| \leq N$. Show that $\sup_{x \in \mathbb{R}} |f'(x)| \leq 2\sqrt{MN}$.
- 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. Prove that $f'(\mathbb{R})$, the image of the derivative function, is an interval (possibly a singleton).
- 4. Let $f_n : \mathbb{R} \to \mathbb{R}$ be differentiable for each $n \in \mathbb{N}$ with $|f'_n(x)| \leq 1$ for all n and $x \in \mathbb{R}$. Assume that

$$\lim_{n \to \infty} f_n(x) = g(x),$$

for all $x \in \mathbb{R}$. Prove that $g : \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous.

5. Suppose $\Psi: X \to 2^X$ is a non-empty and compact-valued upper-hemicontinuous correspondence. The metric space X is compact. Show that there exists a non-empty compact set $C \subset X$ such that $\Psi(C) = C$ (you can use the exercises that are proved in the sections).

¹We say that a function $f: X \to Y$ is L-Lipschitz, or Lipschitz with constant L, if $||f(x) - f(y)||_Y \le L||x - y||_X \forall x, y \in X$