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Abstract

This paper presents a principal-agent model in which the agent has imprecise beliefs. We model this
situation formally by assuming the agent’s preferences are incomplete as in Bewley (1986) [2]. In this
setting, incentives must be robust to Knightian uncertainty. We study the implications of robustness for the
form of the resulting optimal contracts. We give conditions under which there is a unique optimal contract,
and show that it must have a simple flat payment plus bonus structure. That is, output levels are divided into
two sets, and the optimal contract pays the same wage for all output levels in each set. We derive this result
for the case in which the agent’s utility function is linear and then show it also holds if this utility function
has some limited curvature.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we study a principal-agent model in which the agent has imprecise beliefs.
Our model is motivated by situations in which the agent is less familiar with the details of the
production process than the principal. For example, imagine an agent about to start a new job.
Output depends on his effort as well as variables beyond his control, such as the work of others.
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Consequently he cannot precisely evaluate the stochastic relation between his effort and output.
In contrast, the principal owns the production technology and can evaluate the relation between
effort and output more precisely. In other words, the principal and the agent have different con-
fidence in their beliefs.

The standard literature neglects this possibility by assuming that both principal and agent
evaluate state-contingent contracts using expected utility, and hence both precisely evaluate the
stochastic consequences of the agent’s action. Asymmetric confidence in beliefs, on the other
hand, is easily described using the Knightian uncertainty theory developed in [2], which provides
foundations for a model in which beliefs are given by sets of probability distributions. Thus both
the possibility of imprecise beliefs and a ranking in which the agent’s beliefs are less precise than
the principal’s can be formalized in this framework.

Our main result characterizes optimal contracts in a principal-agent model with Knightian
uncertainty where the parties have asymmetric confidence in beliefs and linear utility. We give
conditions under which there is a unique optimal contract, and show that it has a simple flat
payment plus bonus structure. In particular, a contract is optimal only if it takes two values across
all states. The unique optimal incentive scheme divides all possible output levels into two groups,
and pays a fixed wage within each group. This result extends to the case in which the agent’s
utility function has a limited amount of curvature. This feature of optimal contracts is striking
because standard moral hazard models that rule out Knightian uncertainty typically generate
complex incentive structures. Optimal contracts often involve as many different payments as
there are possible levels of output.

Some authors have speculated that contracts are simple because they need to be robust. Hart
and Holmstrom [12], for example, argue that real world incentives need to perform well across
a wide range of circumstances. Once this need for robustness is considered, simple optimal
schemes might obtain. Our results can be viewed through this lens since we introduce robustness
to Knightian uncertainty. In our model this robustness, when paired with asymmetric confidence
in beliefs, forces incentive schemes to be simple. Furthermore, these contracts have a shape we
commonly observe since they can be written as a flat payment plus bonus.1

In the spirit of [2], we assume the agent’s preferences are not necessarily complete; he may
be unable to rank all pairs of contracts offered to him. As in the model axiomatized in [2], we
assume that these preferences are represented by a utility function and a set of probability dis-
tributions, and that the agent prefers one contract to another if the former has higher expected
utility for every probability distribution in this set. Bewley [2] argues that this approach formal-
izes the distinction between risk and uncertainty introduced in [16]. In this framework a unique
probability is appropriate only when the decision maker regards all events as risky; the decision
maker uses a set of distributions when he regards some events as uncertain.

With incomplete preferences, choices may be indeterminate and incentive constraints hard
to satisfy.2 Bewley [2] proposes a behavioral assumption, inertia, that sometimes alleviates this
problem. The inertia assumption states that, when faced with incomparable options, an individual

1 Holmstrom and Milgrom [14] provide conditions under which linear incentive schemes are optimal. These conditions
include constant relative risk aversion and a specific dynamic property of stochastic output. Neither of these requirements
is related to the idea of robustness considered here. We allow the agent to consider many stochastic structures of output.
We also adopt a different notion of simplicity. A two-wage scheme is simple because it can be thought of as contingent
on only two events; a linear contract is simple because it is contingent on an intercept and a slope for all events.

2 In a related paper, [17], we study general mechanism design problems. We show that in many standard mechanism
design settings interim incentive compatibility is equivalent to ex post incentive compatibility.
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chooses a status quo or reference point, often interpreted as his current behavior, unless there is
an alternative that is strictly preferred. In the standard moral hazard setting, there is a natural
candidate for the status quo: the agent’s outside option or reservation utility. We consider two
corresponding notions of implementation, depending on whether inertia is incorporated. Without
inertia, an incentive scheme implements a particular action if the agent prefers that action to
his reservation utility and to all other actions. With inertia, an incentive scheme implements an
action if this action is preferred to the reservation utility and is preferred to all other actions that
are comparable to the reservation utility. With inertia, implementing an action is easier because
the desired action may be incomparable to some actions. We show that optimal contracts must
take two values under either notion of implementation. Thus while inertia might change the cost
of implementing an action, it does not change our main result regarding the nature of optimal
contracts.

Our moral hazard model has standard features: the principal cannot observe the agent’s action
and looks for contracts that implement each action at the lowest possible expected cost; each
action has a different disutility to the agent; each action induces different beliefs over output
outcomes. We initially assume that principal and agent have linear utility functions over money,
and then extend the main result to the case in which the agent’s utility function is not necessarily
linear. The agent perceives Knightian uncertainty, and has beliefs described by sets of probability
distributions, one set for each action, while the principal’s beliefs are a unique element of the
relative interior of those sets. This formalizes the idea that the agent’s beliefs are more imprecise
than the principal’s. Thus multiplicity of the agent’s beliefs is the only formal difference between
our model and a linear utility version of [11].

Our model shares important features with standard moral hazard models with both risk-averse
and risk-neutral agents. As in models with risk-neutral agents, the agent is indifferent over purely
objective mean-preserving randomizations that are risky but not uncertain. As in models with
risk-averse agents, however, the agent cares about the distribution of payoffs across subjectively
uncertain states. We show that optimal contracts with Knightian uncertainty can differ from those
without. For example, unlike the standard risk-neutral model, it is no longer possible for the
principal to do away with incentive concerns by selling the firm to the agent. Thus Knightian
uncertainty provides an alternative to limited liability as an explanation for the importance of
incentive provision in many settings where agents are plausibly indifferent to objective mean-
preserving lotteries over money.3 Unlike the standard risk-averse model, optimal incentives have
a coarse structure regardless of other fine details of the model, including agents’ beliefs.

Mukerji [18] and Ghirardato [9] present moral hazard models similar in motivation to the
one presented here. They use a different model of ambiguity, and in contrast show that incen-
tive schemes are similar to those in a standard model. In both cases, ambiguity is modeled by
assuming that the principal and the agent are Choquet expected utility maximizers with con-
vex capacities (see [22]). Neither examines the role of asymmetric confidence, as in each model
the principal and the agent share the same belief set. On the other hand, Mukerji [19] uses this
framework to relate uncertainty to contract incompleteness.

The paper is organized as follows. The next section briefly describes the model of decision
makers with incomplete preferences. Section 3 presents the basic framework and discusses the
implementation rules. Section 4 characterizes optimal incentive schemes. Section 5 introduces a
primitive model and establishes versions of our main results in this setting. Section 6 concludes.

3 We thank a referee for suggesting and stressing the importance of this point.
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2. Incomplete preferences and inertia

von Neumann and Morgenstern were the first to observe that completeness is not a satisfac-
tory axiom for choice under uncertainty.4 This idea was pursued by Aumann [1] who proposes
a preference representation theorem for incomplete preferences and objective probabilities.5 In
a series of papers, [2–4], Bewley develops Knightian decision theory, a model which allows for
subjective probabilities and incompleteness.6

2.1. Incomplete preferences

Under completeness, any pair of alternatives can be ranked. If preferences are not complete,
some alternatives are incomparable. Bewley [2] axiomatizes a model allowing for incomplete-
ness with subjective probabilities. To formalize this discussion, let the state space N be finite,
and index the states by i = 1, . . . ,N . �(N ) := {π ∈ RN : πi � 0 ∀i,

∑
i πi = 1} denotes the set

of probability distributions over N , and x, y ∈ XN are random monetary payoffs where X ⊂ R
is finite. In an Anscombe–Aumann setting, Bewley [2] characterizes incomplete preference re-
lations represented by a unique nonempty, closed, convex set of probability distributions Π and
a continuous, strictly increasing, concave function u :X → R, unique up to positive affine trans-
formations, such that

x � y if and only if
N∑

i=1

πiu(xi) >

N∑
i=1

πiu(yi) for all π ∈ Π

With a small abuse of notation, we can rewrite this as

x � y if and only if Eπ

[
u(x)

]
> Eπ

[
u(y)

]
for all π ∈ Π

where Eπ [·] denotes the expected value with respect to the probability distribution π , and u(x)

denotes the vector (u(x1), . . . , u(xN)).7

The set of probabilities Π reduces to a singleton whenever the preference ordering is com-
plete, in which case the usual expected utility representation obtains. Without completeness,
comparisons between alternatives are carried out “one probability distribution at a time”, with
one bundle preferred to another if and only if it is preferred under every probability distribution
considered by the agent.8 Bewley [2] suggests that this approach formalizes the distinction be-
tween risk and uncertainty originating in [16]. Informally, the size of Π measures how much
uncertainty the individual perceives, and can be thought of as reflecting confidence in beliefs.

Fig. 1 illustrates Bewley’s representation for the special case in which u is linear. The axes
measure utility (or money) in each of the two possible states. Given a probability distribution,

4 They write:

“It is conceivable – and may even in a way be more realistic – to allow for cases where the individual is neither able
to state which of two alternatives he prefers nor that they are equally desirable... How real this possibility is, both for
individuals and for organizations, seems to be an extremely interesting question... It certainly deserves further study.”
[24, Section 3.3.4, p. 19].

5 Aumann’s work has been extended and clarified by [8] and [23].
6 [2] has been published recently as [5].
7 This representation has been extended by Ghirardato et al. [10] in a Savage setting.
8 The natural notion of indifference in this setting says two bundles are indifferent whenever they have the same

expected utility for each probability distribution in Π .
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Fig. 1. Incomplete preferences.

a line through the bundle x represents all the bundles that have the same expected value as x

according to this distribution. As the probability distribution changes, we obtain a family of these
indifference curves representing different expected utilities according to different probabilities.
The thick curves represent the most extreme elements of this family, while thin curves represent
other possible elements.

In Fig. 1, y is preferred to x since it lies above all of the indifference curves corresponding to
some expected utility of x. Also, x is preferred to w since w lies below all of the indifference
curves through x. Finally, z is not comparable to x since it lies above some indifference curves
through x and below others. Incompleteness induces three regions: bundles preferred to x, dom-
inated by x, and incomparable to x. This last area is empty only if there is a unique probability
distribution over the two states and the preferences are complete.

For any bundle x, the better-than-x set has a kink at x. This kink is a direct consequence
of the multiplicity of probability distributions in Π , and vanishes only when Π is a singleton.
As a consequence, the assumption of linear utility generates different behavior with multiple
probabilities than in the standard expected utility model. Under expected utility, a linear utility
index implies a constant marginal rate of substitution and indifference to mixtures of bundles in
a given indifference class. Neither of these obtains when there is Knightian uncertainty. This can
easily be seen in Fig. 1, where convex combination of bundles that are not comparable to x can
give rise to a bundle that is strictly preferred to x.

2.2. The inertia assumption

Revealed preference arguments must take incompleteness into account. If x is chosen when y

is available, one cannot conclude that x is revealed preferred to y, but only that y is not revealed
preferred to x. The concepts of status quo and inertia introduced in [2] can sharpen revealed
preference inferences when preferences are incomplete. Bewley’s inertia assumption posits the
existence of planned behavior that is taken as a reference point, and assumes that this “status quo”
is abandoned only for alternatives preferred to it. In Fig. 1, for example, if x is the status quo and
the inertia assumption holds, alternatives like z will not be chosen since they are incomparable
to x.
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In many economic contexts, there may not be a natural status quo. In the moral hazard model
that follows, however, an obvious candidate for the status quo is the action yielding the agent’s
reservation utility. This corresponds to the payoff the agent receives if he rejects the contract
offered by the principal.

3. The moral hazard setup

The main features of our model are standard and follow the parametrized distribution ap-
proach: the principal owns resources that yield output, but needs the agent’s input for production
to take place; principal and agent observe realized output, but the principal does not observe the
agent’s action; each action imposes a cost on the agent and generates beliefs about output; these
beliefs are common knowledge. The main innovation is that beliefs reflect Knightian uncertainty
about output levels. The crucial assumption is that the agent perceives more uncertainty than
the principal, and we simplify matters by assuming that the principal perceives no Knightian
uncertainty.

Output is an N -vector y = (y1, . . . , yN), with states labeled so that yN > · · · > y1 (throughout,
we use subscripts to denote states). A contract is an N -vector w = (w1, . . . ,wN), where wj is
the payment from the principal to the agent in state j . The agent’s reservation utility is w; we
will interpret it as the status quo when we impose the inertia assumption. The agent chooses an
action a from the finite set A := {1,2, . . . ,M}. The principal’s beliefs are described by a function
πP : A → �, while the agent’s beliefs are described by a correspondence Π : A → 2�, where
Π(a) is nonempty, closed and convex for each a. In the parametrized distribution formulation
of the principal-agent problem pioneered by Holmstrom [13], Π is a function and is identical
to πP .9

We assume that beliefs are consistent, but reflect different degrees of precision. Formally, we
assume that for each a in A, πP (a) ∈ Π(a). Uniqueness of the principal’s beliefs is assumed for
analytical tractability. Most of the analysis carries over if πP is also a set, as long as asymmetric
confidence holds (i.e. πP (a) is a proper subset of Π(a) for each a).

The agent’s disutility of action a is denoted c(a). Actions are ordered such that whenever
a > a′, c(a) > c(a′) and

∑N
i=1 πP

i (a)yi �
∑N

i=1 πP
i (a′)yi . As usual, costlier actions increase

the expected value of output to the principal.
Principal and agent have linear utility over money. The agent evaluates the difference between

the expected value of the contract and the cost of his action for each probability distribution. For
each a and each π ∈ Π(a), this difference is given by

Eπ [w] − c(a) =
N∑

j=1

πjwj − c(a)

Given a contract, the agent chooses an action by computing many expected values (one for each
element of each belief set).

The principal evaluates the expected value of output minus the expected cost of the contract.
For each a, the principal’s expected utility is

EπP (a)[y − w] =
N∑

j=1

πP
j (a)yj −

N∑
j=1

πP
j (a)wj

9 We discuss in Section 5 some undesirable effects of this formulation with Knightian uncertainty.
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In the standard model, the principal is risk-neutral while the agent is either risk-neutral or
risk-averse. Both parties have the same beliefs, and the same attitude toward uncertainty, but
they might evaluate risk in different ways. In our model, both parties have consistent beliefs and
evaluate risk in the same way, but might have different attitudes toward uncertainty. Notice that
even though the agent’s utility function is linear, the agent cares about the distribution of payoffs
across states.

If the agent’s action is observable (and/or verifiable), the contract can depend on it. In keeping
with standard terminology, we denote the cost of this contract by CFB(a), where FB stands for
first-best. One can immediately see that CFB(a) = w + c(a) for each action a. In other words,
the principal can implement a with a contract that pays CFB(a) in every state if action a is taken
and −∞ otherwise. A Pareto efficient contract must be constant across states: contracts that do
not fully insure the agent are dominated by “flatter” contracts that do not make the agent worse
off and lower the principal’s expected costs.10

The principal and the agent do not value the firm equally. Therefore, one cannot appeal to the
standard way of dealing with moral hazard when the parties have linear utility, which would have
the principal sell the firm to the agent. For a given action, the highest price the agent is willing to
pay for the firm is the lowest expected value of output minus the cost of taking that action. The
highest price the agent is willing to pay is thus lower than what the firm is worth to the principal.

3.1. Two implementation rules

A contract implements an action a∗ if it induces the agent to participate and choose that
action. The contract must provide incentives that leave no doubt the agent’s choice is a∗ among
all possible actions.11 How this is done depends on whether or not the inertia assumption holds.

3.1.1. Implementing without inertia
Without inertia, a contract must satisfy the standard participation and incentive compatibility

conditions, modified to allow for Knightian uncertainty. Participation requires that a∗ is preferred
to the reservation utility, while incentive compatibility requires that a∗ is preferred to all other
actions.

Definition 1. An incentive scheme w implements a∗ if:

N∑
j=1

πj

(
a∗)wj − c

(
a∗) � w ∀π

(
a∗) ∈ Π

(
a∗) (P)

and for each a ∈ A with a 
= a∗

N∑
j=1

πj

(
a∗)wj − c

(
a∗) �

N∑
j=1

πj (a)wj − c(a) ∀π
(
a∗) ∈ Π

(
a∗) and ∀π(a) ∈ Π(a) (IC)

10 Rigotti and Shannon [20] give a general characterization of Pareto optimal allocations with incomplete preferences.
11 In [17] we distinguish two notions of incentive compatibility in a general mechanism design framework: optimal and
maximal. A mechanism is optimal incentive compatible if truth telling is preferred to all other reports. A mechanism is
maximal incentive compatible if no report is preferred to truth telling. The notion of incentive compatibility we consider
here corresponds to what we call optimal incentive compatibility in [17].
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For any probability distribution induced by a∗, the expected utility of the contract must be
weakly higher than the reservation utility, and weakly higher than the expected utility calculated
according to all probability distributions induced by any other action.

The implementation requirements imposed by Definition 1 are restrictive. In particular, there
could be many actions that cannot be implemented.

Proposition 1. If Π(a) ∩ Π(a′) 
= ∅ for some actions a 
= a′, then a and a′ cannot both be
implemented.

Proof. Let the two actions be a and a′ and, without loss of generality, assume a > a′. Suppose
by way of contradiction that there exists π ∈ Π(a) ∩ Π(a′), and there exists a contract w that
implements a. Therefore, by (IC),

N∑
j=1

πjwj − c(a) �
N∑

j=1

πjwj − c
(
a′)

This implies c(a) � c(a′), and contradicts a > a′. �
A possible implication of Proposition 1 is that, when the amount of uncertainty is large, few

actions could be implementable because no action for which the belief set intersects the belief set
of a cheaper action can be implemented. For example, as an agent works harder he might gather
valuable information regarding his influence on the productive process. Thus costlier actions
might lead to a smaller set of beliefs. In such cases, the belief set for a cheaper action will always
intersect the belief set of every more expensive action, and only the cheapest action could be
implemented. The addition of inertia, which we discuss next, relaxes incentive constraints and
can enlarge the set of implementable actions.

3.1.2. Implementing with inertia
Under the inertia assumption, an alternative is chosen only if it is preferred to the status quo.

Hence, actions not comparable to the reservation utility are not chosen. If a∗ and a′ are not
comparable, but a∗ is preferred to the status quo while a′ is not comparable to it, then the inertia
assumption implies a′ is not chosen. Therefore, with inertia a contract does not need to make a∗
preferred to all other actions, but just to those that are comparable to the status quo.

Definition 2. An incentive scheme w implements a∗ with inertia in A if

N∑
j=1

πj

(
a∗)wj − c

(
a∗) � w ∀π

(
a∗) ∈ Π

(
a∗) (P)

and for each a ∈ A with a 
= a∗, either

N∑
j=1

πj

(
a∗)wj − c

(
a∗) �

N∑
j=1

πj (a)wj − c(a) ∀π
(
a∗) ∈ Π

(
a∗) and ∀π(a) ∈ Π(a) (IC)

or
N∑

j=1

πj (a)wj − c(a) � w for some π(a) ∈ Π(a) (NC)
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(NC) is a non-comparability constraint. It says there exists at least one probability distribution
induced by a such that the corresponding expected utility of the contract is weakly lower than the
reservation utility. Inertia weakens the incentive constraints since actions that are not comparable
to the outside option are not chosen. Obviously, contracts that satisfy Definition 1 also satisfy
Definition 2. On the other hand, there could be contracts that implement a costlier action with
inertia even if belief sets intersect, and therefore inertia enlarges the set of implementable actions.

3.2. The principal’s problem

Given an action, the principal looks for the cheapest contract that implements it. She then
decides which action to implement. As usual, we focus only on the first of these problems. For a
given action a, let H(a) be the (possibly empty) set of incentive schemes that implement a, and
HI (a) be the (also possibly empty) set of incentive schemes that implement a with inertia. We
say ŵ(a) is an optimal incentive scheme to implement a if it is a solution to

min
w∈H(a)

N∑
j=1

πP
j (a)wj (1)

Let Ŵ (a) denote the set of solutions to (1). Similarly, we say that ŵ(a) is an optimal incentive
scheme to implement a with inertia if it is a solution to

min
w∈HI (a)

N∑
j=1

πP
j (a)wj (2)

Let Ŵ I (a) denote the set of solutions to (2).

3.3. Some characteristics of the optimal incentive scheme

Although the agent’s behavior depends on all the probability distributions in his belief set,
some are particularly relevant because they determine whether incentive and participation con-
straints are satisfied.

For any action a and contract w, let

Π(a;w) := arg min
π(a)∈Π(a)

N∑
j=1

πj (a)wj

Given w, any π ∈ Π(a;w) is a probability distribution yielding the minimum expected value
for the agent when he chooses action a. A contract w satisfies the participation constraint for
action a if and only if Eπ [w] − c(a) � w for every π ∈ Π(a;w). Similarly, given a contract w,
action a satisfies the non-comparability constraint if and only if Eπ [w] − c(a) < w for some
π ∈ Π(a;w). For any fixed action a and contract w, let

Π(a;w) := arg max
π(a)∈Π(a)

N∑
j=1

πj (a)wj

Then π ∈ Π(a;w) is a probability yielding the maximum expected value of the contract w for
the agent when he chooses action a. A contract w satisfies the incentive compatibility constraint
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for action a versus a′ if and only if Eπ [w] − c(a) � Eπ [w] − c(a′) for all π ∈ Π(a;w) and all
π ∈ Π(a′;w).

The following proposition extends some standard results about optimal contracts (all proofs
are in Appendix A).

Proposition 2. Let a be the action to be implemented.

(i) For any ŵ in Ŵ (a) or Ŵ I (a), the participation constraint binds when computed according
to π(a) ∈ Π(a; ŵ); formally,

N∑
j=1

πj (a)ŵj − c(a) = w

for any ŵ ∈ Ŵ (a) ∪ Ŵ I (a) and π(a) ∈ Π(a; ŵ).
(ii) If a is the least costly action, the scheme that pays w + c(1) in all states implements a (with

inertia); that is, w + c(1) ∈ Ŵ (1).
(iii) If ŵ ∈ Ŵ I (a) and a is not the least costly action, then there exists an action less costly than

a such that either (IC) or (NC) binds for this action; formally, if a > 1 there exists an a′ < a

such that either

N∑
j=1

πj (a)ŵj − c(a) =
N∑

j=1

πj

(
a′)ŵj − c

(
a′)

∀π(a) ∈ Π(a; ŵ) and ∀π
(
a′) ∈ Π

(
a′; ŵ)

or

N∑
j=1

πj

(
a′)ŵj − c

(
a′) = w ∀π

(
a′) ∈ Π

(
a′; ŵ)

for any ŵ ∈ Ŵ I (a).
Similarly, if ŵ ∈ Ŵ (a) and a is not the least costly action, then there exists an action less
costly than a such that (IC) binds for this action.

4. Optimal incentive schemes

In this section, we first consider the case of two actions. Then we generalize the result to many
actions.

The main results depend on two properties of beliefs.

Assumption A-1. For each action a ∈ A, Π(a) is the core of a convex capacity va on N .12 That
is,

Π(a) = {
π ∈ �(N ): π(E) � νa(E) for each E ⊂ N

}
(3)

12 A convex capacity on N is a function ν : 2N → [0,1] such that (i) ν(∅) = 0, (ii) ν(N ) = 1, (iii) ∀E,E′ ⊂ N ,
E ⊆ E′ implies ν(E) � ν(E′), and (iv) ∀E,E′ ⊂ S, ν(E ∪ E′) � ν(E) + ν(E′) − ν(E ∩ E′).
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Fig. 2. Agent’s beliefs with 3 output states.

Geometrically, Assumption A-1 requires that Π(a) is a polyhedron with boundaries deter-
mined by the linear inequalities in (3). Fig. 2 displays some examples with three states: ΠA and
ΠB are cores of convex capacities while ΠC is not.

Some intuition for the content of this assumption might be gleaned from a slightly stronger
condition that makes use of probability bounds. That is, for each state i = 1, . . . ,N , take qi, ri ∈
[0,1] with qi � ri ; the interval [qi, ri] will be interpreted as bounds on the probability of state i

occurring. Under several consistency conditions,13

Π := {
π ∈ �(N ): πi ∈ [qi, ri] ∀i

}
is the core of the convex capacity ν defined by

ν(E) = min
π∈Π

π(E) ∀E ⊂ N

A similar restriction is found in much of the work on applications of ambiguity, which fre-
quently uses a version of Choquet expected utility [22]. In these models uncertainty aversion and
a limited notion of independence generate beliefs represented by the core of a convex capacity.
For example, both [18] and [9] assume the beliefs of both parties involved in a moral hazard
model are represented by the cores of convex capacities.

13 Specifically, the collection {qi , ri : i = 1, . . . ,N} is proper if∑
i

qi � 1 �
∑
i

ri

For a proper collection, the set of probabilities consistent with the associated intervals state by state is nonempty. Thus if
{qi , ri : i = 1, . . . ,N} is proper,{

π ∈ �(N ): πi ∈ [qi , ri ] ∀i
}

is nonempty. The collection {qi , ri : i = 1, . . . ,N} is reachable if for each i,∑
j 
=i

qj + ri � 1 and
∑
j 
=i

rj + qi � 1

This guarantees that

qi = inf
{
πi : π ∈ �(N ), πj ∈ [qj , rj ] ∀j

}
and ri = sup

{
πi : π ∈ �(N ), πj ∈ [qj , rj ] ∀j

}
for each state i. If {qi , ri : i = 1, . . . ,N} is proper and reachable, then the set Π consistent with these bounds is the core
of a convex capacity, in particular ν(E) = minπ∈Π π(E) ∀E ⊂ N . For example, see [6].
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For simplicity we have chosen to state Assumption A-1 directly as a technical condition on
the belief sets. We could give an alternative formulation based on conditions on the agent’s un-
derlying preferences, however. That is, for each a ∈ A, let �a denote the agent’s strict preference
order over state-contingent monetary payoffs RN , conditional on choosing the action a. Given
our assumptions, for any pair w,y ∈ RN ,

w �a y ⇐⇒ Eπ [w] − c(a) > Eπ [y] − c(a) ∀π ∈ Π(a)

Assumption A-1 can be rephrased as a condition on �a by making use of a natural extension of
the notion of subjective beliefs in [21].

Assumption A-2. For each action a ∈ A, πP (a) is an element of the relative interior of Π(a).14

In addition to the relative imprecision condition we maintain by assuming πP (a) ∈ Π(a) for
each a, Assumption A-2 requires that the agent perceives sufficiently rich uncertainty so that
Π(a) has a nonempty relative interior for each action a, and refines the restriction on principal’s
beliefs to rule out cases where the principal’s belief is an extreme element of the agent’s set of
beliefs.

4.1. Optimal incentive schemes with two actions

Assume there are only two actions, H and L, with c(H) > c(L). We interpret these as high
and low effort respectively. By Proposition 2, the principal can implement low effort at the first
best cost with a constant contract. Our main result shows that a contract implementing high effort
can be optimal only if it takes two values.

Proposition 3. Suppose Assumptions A-1 and A-2 hold, and the high action H is implementable
(implementable with inertia). Then, the unique optimal incentive scheme to implement H (with
inertia) divides the N states into two subsets and is constant on each subset.

This result suggests Knightian uncertainty could explain the emergence of simple contracts.
Without it, our setup reduces to the standard principal-agent model with linear utilities. In that
case, both parties are risk-neutral and a continuum of contracts is optimal. These include simple
two-valued contracts and many complicated ones. The simplest in this class is the contract that
corresponds to selling the firm to the agent, hence avoiding incentive problems altogether. In
our setup, because of Knightian uncertainty the parties cannot avoid the incentive problem even
when utility functions are linear. Furthermore, a two-tier contract is the unique optimal contract
with Knightian uncertainty. Adding Knightian uncertainty to the standard model selects a unique,
simple contract.

Our model predicts simple contracts when the standard model with risk-averse agent does
not. Although the standard model makes a different assumption on the curvature of the agent’s
utility function, it shares some behavioral characteristics with the particular form of Knightian
uncertainty we assume, since the agent’s better-than sets are not half-spaces but proper cones.
With Knightian uncertainty, thinking of an agent as risk-neutral when his utility function is linear
seems inappropriate since he cares about the distribution of payoffs across states.

14 Here we mean interior relative to �(N ), that is, the points π ∈ Π(a) such that there exists an open set O ⊂ RN with
π ∈ O ∩ �(N ) ⊂ Π(a).
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Notice that the inertia assumption plays no role in Proposition 3. In Appendix A, we provide
a detailed proof for the inertia case, but the other case can be proved very similarly. Intuitively,
the result follows from a simple consequence our assumptions. For any state, there is at least one
belief of the agent that assigns lower probability than the principal to that state. Therefore, for any
state there is a belief that makes the principal more optimistic about the likelihood of that state.
Because all beliefs matter, the optimal contract must “accommodate” this probability and doing
so is costly to the principal. Since this is true for all states, and utility is linear, the principal can
always benefit by using a “flatter” contract. Eventually, this process must stop because a contract
must have enough variation to provide incentives.

Next we show that Proposition 3 is robust to the introduction of a small degree of risk aver-
sion. Consider the generalization of our basic model in which the agent’s utility function over
certain monetary outcomes is a strictly increasing and strictly concave function u : R → R that
is twice continuously differentiable, with u′(x) > 0, u′′(x) < 0 for all x ∈ R. Let vM denote the
highest utility level that the agent can receive, i.e. vM = u(V∗), where V∗ denotes the highest
profit generated by any action. Let h : R → R denote the inverse of u. Since h is strictly increas-
ing and convex, we can represent it as the sum h(u) = u + g(u), where g : R → R is convex
and continuously differentiable. Our main result remains valid provided g′ is sufficiently small.
Because the derivation of the requisite bound is somewhat complicated, we defer the proof to
Appendix A.

Proposition 4. Suppose Assumptions A-1 and A-2 hold, and the high action H is implementable
(implementable with inertia). Then there exists b > 0 such that if g′(vM) < b, then the unique
optimal incentive scheme to implement H (with inertia) divides the N states into two subsets and
is constant on each subset.

The idea is that when the curvature of the utility function is small, Knightian uncertainty
dominates, and the intuition behind Proposition 3 is powerful enough to overcome the usual
arguments that make the optimal contract depend on the likelihood ratios of different states across
different actions.

4.2. Optimal incentive schemes with many actions

We now provide conditions to extend the previous results to many actions. Simple reasoning
shows that the main result is easily extended to more actions without additional restrictions; it
implies that an optimal contract takes as many values as there are actions. The proof of Proposi-
tion 3 shows that reducing the number of states on which a contract depends is profitable for the
principal. Clearly, this becomes impossible when all constraints are binding. In the case of two
actions, this implies the contract has two values. If there are M possible actions, there will be at
most M binding constraints, and the optimal contract must be at most M-valued.

Under additional restrictions, we can show that the optimal contract must be two-valued even
when there are many actions. These conditions reduce the many-action case to the two-action
case. The exercise parallels what is done to obtain monotonicity (in output) of the optimal con-
tract in the standard model, and uses analogous assumptions.

Assumption A-3. For each action a, every selection in{
πe: A → �(N )

∣∣ πe(a) is an extreme point of Π(a) for each a
}
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satisfies the monotone likelihood ratio property and concavity of the distribution function. That
is, if πe : A → �(N ) is a selection such that πe(a) is an extreme point of Π(a) for each a, then

(i) (MLR) for any two actions a′, a, c(a) > c(a′) implies that
πe

i (a′)
πe

i (a)
is decreasing in i.

(ii) (CDFC) for any three actions a′′, a′, a such that c(a) = λc(a′) + (1 − λ)c(a′′) for some
λ ∈ [0,1], ∑j

i=1 πe
i (a) � λ

∑j

i=1 πe
i (a′) + (1 − λ)

∑j

i=1 πe
i (a′′) for all j .

The first part of this assumption says that the standard monotone likelihood ratio assumption
holds for any extreme point of the set of probability distributions induced by each action. The
second part extends concavity of the distribution function along similar lines by also requiring
that it holds for any extreme point of the set of probability distribution induced by each action.
Without uncertainty, these are pretty standard assumptions in the moral hazard literature. With
uncertainty, all we do is extend them in the most obvious fashion so that they hold for the sets of
probability distribution of our previous assumptions.

Proposition 5. Suppose Assumptions A-1, A-2 and A-3 hold. Then for any action a∗ > 1, the
optimal contract to implement a∗ (with inertia) has a two-wage structure.

Interestingly, a sufficient condition to reduce the multi-action case to the two-action case is
a generalized version of the requirement one needs in the standard model to obtain monotonic-
ity in output of the optimal contract. Notice that, a fortiori, this same condition would induce
monotonicity of the contract in our model.

5. The primitive model

The standard principal-agent model is formalized by using probability distributions that de-
pend on actions. This is a shortcut for the formal model considered by the early literature in
which actions determine output jointly with the state of the world while probabilities over states
are given. As noted in [15], the parameterized distribution model lacks an axiomatic founda-
tion since in both Savage and Anscombe–Aumann probability distributions over states do not
depend on choices. Without Knightian uncertainty, any primitive model can be written in the
parameterized distribution formulation but not vice versa (see [13] for a discussion). Hence as-
sumptions made directly on the parameterized distribution model may not have a counterpart
in any primitive model and thus may not be consistent with first principles. In this section, we
formalize the primitive model with Knightian uncertainty, and show that our main assumptions
can be deduced from similar assumptions on preferences in that model. In the process, we show
how action-based beliefs over outcomes are derived from a fixed set of beliefs over states and
therefore establish that the parameterized distribution formulation can also be thought of as a
shortcut for the primitive model in the presence of Knightian uncertainty.

Let S be the state space, with elements s = 1, . . . , S. Output is determined by a produc-
tion function that depends on effort as well as stochastic factors. For each action a ∈ A,
y(a) :S → R denotes the output that results from the action a. For each action a, a′, we as-
sume suppy(a) = suppy(a′) := {y1, . . . , yN }; different output levels across actions correspond
to different permutations of the state space, so that observing a particular output level does not
reveal the agent’s action.
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If the output is y, the principal’s payoff is y − w. The agent’s payoff is w − c(a), where as
above c : A → R denotes the agent’s disutility of effort. The wage depends on output alone and
not on the state. Since the agent knows which action he has taken, he also knows which state has
occurred. The principal, on the other hand, does not know the realized state of the world since he
can only observe realized output. We assume that the agent’s beliefs over S are given by a closed
and convex set Π ⊂ �(S), and that the principal’s belief is πP ∈ �(S).

Our notions of implementation can be reformulated as follows.

Definition 3. An incentive scheme w implements a∗ if:

S∑
s=1

πsw
(
ys

(
a∗)) − c

(
a∗) � w ∀π ∈ Π (P)

and for each a ∈ A with a 
= a∗

S∑
s=1

πsw
(
ys

(
a∗)) − c

(
a∗) �

S∑
s=1

πsw
(
ys(a)

) − c(a) ∀π ∈ Π (IC)

Definition 4. An incentive scheme w implements a∗ with inertia in A if

S∑
s=1

πsw
(
ys

(
a∗)) − c

(
a∗) � w ∀π ∈ Π (P)

and for each a ∈ A with a 
= a∗, either

S∑
s=1

πsw
(
ys

(
a∗)) − c

(
a∗) �

S∑
s=1

πsw
(
ys(a)

) − c(a) ∀π ∈ Π (IC)

or
S∑

s=1

πsw
(
ys(a)

) − c(a) � w for some π ∈ Π (NC)

To relate this model to the parameterized distribution model, given π ∈ Π and a ∈ A, define
π(a) ∈ �(N ) by

πi(a) =
∑

{s∈S : ys(a)=yi }
πs

For each a, set Π(a) := {π̂ ∈ �(N ): π̂ = π(a) for some π ∈ Π}. Notice that Π(a) is closed
and convex for each a. This means assumptions about the set Π can easily be translated into
assumptions about Π(a). In particular, we show that Assumptions A-1 and A-2 can be derived
from analogous assumptions on Π (the beliefs over the primitive state space).

For each E ⊂ {1, . . . ,N} and each a, let E(a) := {s ∈ S : ys(a) ∈ E}. Then notice that π̂ ∈
Π(a) ⇔ ∃π ∈ Π such that π̂(E) = π(E(a)) for each E ⊂ {1, . . . ,N}.

Proposition 6. Let ν : 2S → [0,1] be a convex capacity on S and let Π be the core of ν. For
each a ∈ A define νa : 2N → [0,1] by νa(E) = ν(E(a)) for each E ⊂ {1, . . . ,N}. Then for each
a ∈ A, νa is a convex capacity on {1, . . . ,N} with core Π(a).
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We say that a subset B ⊂ S is unambiguous if π(B) = π ′(B) for all π,π ′ ∈ Π . While the
empty set and the entire state space S are always unambiguous, every nonempty, proper subset
of S is ambiguous under the assumption that Π has nonempty relative interior. Here we assume
that Π has nonempty relative interior, and that the principal’s unique prior πP ∈ �(S) is an
element of rel intΠ . Under these assumptions, together with the assumption that the support of
stochastic output y(a) is the same for all actions a, no action eliminates ambiguity. That is, Π(a)

also has a nonempty relative interior, and πP (a) ∈ rel intΠ(a) for each action a.

Proposition 7. If πP ∈ rel intΠ , then πP (a) ∈ rel intΠ(a) for each action a.

These two results allow us to identify assumptions in this primitive model that will suffice to
ensure that optimal contracts robust to uncertainty will be simple, as in the previous section.

Assumption A-4. Π is the core of a convex capacity ν on S .

Assumption A-5. πP is an element of the relative interior of Π .

Proposition 8. Suppose Assumptions A-4 and A-5 hold, and the high action H is implementable
(implementable with inertia) in {L,H }. Then, the unique optimal incentive scheme to imple-
ment H (with inertia) divides the S states into two subsets and is constant on each subset.

6. Conclusions

We study a principal-agent model with Knightian uncertainty and asymmetric confidence in
beliefs. In this model, optimal contracts must be robust to the agent’s imprecise beliefs about the
stochastic relationship between effort and output, as well as reflect the fact that the principal is
more confident than the agent in evaluating that relationship. Our main result shows that optimal
contracts must be two-valued, and are therefore simpler than the contracts that frequently obtain
in the standard principal-agent model. This result also allows for the presence of a small amount
of curvature in the agent’s utility function. Knightian uncertainty thus introduces a force that
pushes incentive schemes to be as flat as possible, while still providing incentives. This force
can be sufficient to prevail over the usual motives that make contracts highly dependent on fine
details of beliefs.

Appendix A

Proof of Proposition 2. We prove each statement separately.
Proof of (i): Suppose not. Then ŵ(a) is optimal and

∑N
j=1 πj (a)ŵj (a) − c(a) > w. Reduce

the payment in each state by ε > 0; that is, for all j , let w̃j = ŵa
j − ε. For ε small enough, w̃j

implements a according to both definitions because it satisfies (P), (IC), and (NC). Furthermore,∑N
j=1 πP

j (a)w̃j <
∑N

j=1 πP
j (a)ŵj (a) − ε, contradicting the optimality of ŵ(a).

Proof of (ii): Because πP (1) ∈ Π(1), for any payment scheme w and any π(1) ∈ Π(1;w),
by definition

∑N
j=1 πj (1)wj �

∑N
j=1 πP

j (1)wj . The constant contract ŵj = w + c(1) for all j

is feasible: it satisfies (P), and it satisfies (IC) because alternative actions are more costly for the
agent. It is a solution to (1) because w + c1 = ∑N

πj (1)ŵj (1) = ∑N
πP (1)ŵj (1).
j=1 j=1 j
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Proof of (iii): Suppose the claim does not hold. That is, ŵ(a) is optimal and for each a′ < a,
either

N∑
j=1

πj (a)ŵj (a) − c(a) >

N∑
j=1

πj

(
a′)ŵj (a) − c

(
a′)

for all π(a) ∈ Π(a; ŵ) and π(a′) ∈ Π(a′; ŵ), or

N∑
j=1

πj (a
′)ŵj (a) − c(a′) < w

for some π(a′) ∈ Π(a′). The latter inequality implies
∑N

j=1 πj (a
′)ŵj (a) − c(a′) < w for any

π(a′) ∈ Π(a′; ŵ). Because none of the respective constraints binds, ŵ(a) is a solution for a
problem like (1) where all actions like a′ have been dropped from the constraints. In this new
problem, a is the least costly action and a contract that pays w + c(a) in all states is optimal.
That is, ŵj = w+c(a) for each j . Thus, w+c(a) = ∑N

j=1 πj (a)ŵj (a) = ∑N
j=1 πj (a

′)ŵj (a) =∑N
j=1 πj (a

′)ŵj (a). Hence c(a′) > c(a), contradicting a′ < a. �
Proofs for Section 4

We will use the following results adapted from [7].

Lemma 1. Let v be a convex capacity on S with core Π , and let Πe be the set of extreme points
of Π . Then, for any N -vector z such that z1 � z2 � · · · � zN ,

min
π∈Π

N∑
j=1

πjzj

is attained at π ∈ Πe such that
∑N

s=j πs = ∑N
s=j v({s}) for each j = 2, . . . ,N . In particular, if

z and z′ are two N -vectors such that z1 � · · · � zN and z′
1 � · · · � z′

N , then

arg min
π∈Π

N∑
j=1

πjzj = arg min
π∈Π

N∑
j=1

πjz
′
j

The first result follows from [7, Propositions 10 and 13]. The second follows from the first,
which shows that the set of minimizing distributions depends only on the order of the elements
of z and not on the values of the components.

When Assumption A-1 holds, the lemma provides a characterization of the probability distri-
butions that, among a set, yield the smallest and largest expected values of a fixed contract. In
particular, this lemma can be used to show that for each action a, the smallest expected value for
a given z is attained at an extreme point of Π(a) such that πK(a) < πP

K (a) and π1(a) � πP
1 (a),

where K is an index at which the maximum value of zk is attained. Moreover, when two incentive
schemes are “ordered” in the same way, their minimum or maximum expectations are attained
using the same distributions.

Proof of Proposition 3. The main step is to show, by contradiction, than an optimal contract
cannot be contingent on more than two subsets of output levels. Define a partition of the state
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space such that each element in this partition corresponds to different payments in the optimal
contract ŵ. Let k be an element of this partition; we say k is an event. Any probability distribution
over the original space defines a probability distribution over this partition. Label events so that
K corresponds to the largest ŵk , K − 1 to the second largest, and so on until event 1 corresponds
to the smallest value of ŵk . By construction, K is the number of events the optimal contract is
contingent upon, and ŵ1 < ŵ2 < · · · < ŵK . We need to show K equals 2.

By Proposition 2, ŵ must satisfy
K∑

k=1

πk(H)ŵk = w + c(H) (4)

for any π(H) ∈ Π(H ; ŵ). We claim ŵ must also satisfy

K∑
k=1

πk(L)ŵk = w + c(L) (5)

for any π(L) ∈ Π(L; ŵ). Suppose not. Then,
∑K

k=1 πk(L)ŵk < w + c(L). Let

w̃ =
(

ŵ1 − ε
πK(H)

π1(H)
, ŵ2, . . . , ŵK−1, ŵK + ε

)
where ε is positive and small enough so that the ranking of the payments for w̃ and ŵ is the
same. By Lemma 1, π(H) and π(L) minimize the expected value of w̃ for the agent. For any
distribution π , the expected values of w̃ and ŵ are related by the following:

K∑
k=1

πkw̃k −
K∑

k=1

πkŵk = π1πK(H) − πKπ1(H)

π1(H)
ε (6)

π = π(H) implies the right-hand side of (6) is equal to 0; thus, w̃ satisfies (4). For some ε

close enough to zero and π = π(L) the right-hand side of (6) is very small; thus w̃ satisfies
(NC) because ŵ satisfies it strictly. By Lemma 1 and Assumption A-1, πK(H) < πP

K (H) and
π1(H) � πP

1 (H); thus, the right-hand side of (6) is negative when π = πP (H). Summarizing,
w̃ is feasible and cheaper than ŵ, contradicting the optimality of ŵ. Hence (5) must hold for ŵ

to be an optimum.
We claim K must be strictly larger than 1. Suppose not, i.e., K = 1. If this is the case, all

payments are the same, and the left-hand sides of Eqs. (4) and (5) are the same. Thus, we have
w + c(L) = w + c(H), contradicting c(H) > c(L).

We claim K is not larger than 2. Suppose not. Then ŵ is optimal, so satisfies Eqs. (4) and (5),
and K > 2. Eqs. (4) and (5) constitute a system of two equations which can be solved for ŵK

and some ŵk′ , yielding:

ŵK = πk′(L)(w + c(H)) − πk′(H)(w + c(L))

πk′(L)πK(H) − πK(L)πk′(H)

+
∑

k 
=K,k′

πk′(H)πk(L) − πk(H)πk′(L)

πk′(L)πK(H) − πK(L)πk′(H)
ŵk (7)

ŵk′ = πK(H)(w + c(L)) − πK(L)(w + c(H))

πk′(L)πK(H) − πK(L)πk′(H)

+
∑

′

πK(L)πk(H) − πK(H)πk(L)

πk′(L)πK(H) − πK(L)πk′(H)
ŵk (8)
k 
=K,k
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These are well defined unless

πK(L)πk′(H) − πk′(L)πK(H) = 0 for all k′ 
= K (9)

In that case:

0 = πK(L)

K−1∑
k=1

πk(H) − πK(H)

K−1∑
k=1

πk(L)

= πK(L)
(
1 − πK(H)

) − πK(H)
(
1 − πK(L)

)
= πK(L) − πK(H)

⇒ πK(H) = πK(L)

Using this result in (9):

πK(H)
(
πk′(H) − πk′(L)

) = 0

Thus, either πK(H) = πK(L) = 0, or πk′(H) = πk′(L) for all k′ 
= K . If πK(H) = πK(L) = 0,
ŵ cannot be optimal because it makes the largest payment in a state that does not affect the con-
straints and, by Assumption A-2, has positive probability for the principal. If πk′(H) = πk′(L)

for all k′ 
= K , then π(L) = π(H). In this case,
∑K

k=1 πk(H)ŵk = ∑K
k=1 πk(L)ŵk and c(H) =

c(L), a contradiction.
Using Eqs. (7) and (8), we can write the expected cost of the optimal incentive scheme as

follows:
K∑

k=1

πP
k (H)ŵk = α̂ +

∑
k 
=K,k′

β̂kŵk

where

α̂ = πP
K (H)πk′(L) − πP

k′ (H)πK(L) + πP
k′ (H)πK(H) − πP

K (H)πk′(H)

πk′(L)πK(H) − πK(L)πk′(H)
w

+ πP
K (H)πk′(L) − πP

k′ (H)πK(L)

πk′(L)πK(H) − πK(L)πk′(H)
c(H)

+ πP
k′ (H)πK(H) − πP

K (H)πk′(H)

πk′(L)πK(H) − πK(L)πk′(H)
c(L)

and

β̂k = πP
k (H) − πk(H)

πP
K (H)πk′(L) − πP

k′ (H)πK(L)

πk′(L)πK(H) − πK(L)πk′(H)

− πk(L)
πP

k′ (H)πK(H) − πP
K (H)πk′(H)

πk′(L)πK(H) − πK(L)πk′(H)
(10)

We claim that β̂k′′ 
= 0 for some k′′ 
= K,k′. Suppose not. Then, β̂k = 0 for each k 
= K,k′.
Using Eq. (10),

πP
k (H)

(
πk′(L)πK(H) − πK(L)πk′(H)

)
= πk(H)

(
πP (H)πk′(L) − πP′ (H)πK(L)

) + πk(L)
(
πP′ (H)πK(H) − πP (H)πk′(H)

)

K k k K
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Summing over k, rearranging, and solving for πP
k′ (H):

πP
k′ (H) = −πk′(L)πK(H) − πK(L)πk′(H) + πP

K (H)(πk′(H) − πk′(L))

πK(L) − πK(H)

This implies:

πP
K (H)πk′(L) − πP

k′ (H)πK(L)

πk′(L)πK(H) − πK(L)πk′(H)
= πK(L) − πP

K (H)

πK(L) − πK(H)

and

πP
k′ (H)πK(H) − πP

K (H)πk′(H)

πk′(L)πK(H) − πK(L)πk′(H)
= πP

K (H) − πK(H)

πK(L) − πK(H)

We know that πK(H) < πP
K (H). Thus,

πK(L)−πP
K (H)

πK(L)−πK(H)
< 1 and

πP
K (H)−πK(H)

πK(L)−πK(H)
> 0. Hence:

K∑
k=1

πP
k (H)ŵk = α̂ = w + c(H) + πP

K (H) − πK(H)

πK(L) − πK(H)

(
c(L) − c(H)

)
< w + c(H)

a contradiction.
Because β̂k′′ 
= 0 for some k′′ 
= K,k′, we find a feasible contract which is cheaper than ŵ.

Let w̃ be defined as follows:

w̃k = ŵk when k 
= K,k′, k′′

w̃K = ŵK + πk′(H)πk′′(L) − πk′′(H)πk′(L)

πk′(L)πK(H) − πK(L)πk′(H)
ε

w̃k′ = ŵk′ + πK(L)πk′′(H) − πK(H)πk′′(L)

πk′(L)πK(H) − πK(L)πk′(H)
ε

w̃k′′ = ŵk′′ + ε

where

|ε| < min{ŵk′′ − ŵk′′−1, ŵk′′+1 − ŵk′′ , ŵK − ŵK−1, ŵk′ − ŵk′−1, ŵk′+1 − ŵk′ }
By construction, the payments in w̃ and ŵ are ranked in the same order. Lemma 1 applies, and
π(H) and π(L) yield the minimum expected values of w̃ under actions H and L. Moreover,

0 = πK(L)
πk′(H)πk′′(L) − πk′′(H)πk′(L)

πk′(L)πK(H) − πK(L)πk′(H)

+ πk′(L)
πK(L)πk′′(H) − πK(H)πk′′(L)

πk′(L)πK(H) − πK(L)πk′(H)
+ πk′′(L)

0 = πK(L)
πk′(H)πk′′(L) − πk′′(H)πk′(L)

πk′(L)πK(H) − πK(L)πk′(H)

+ πk′(L)
πK(L)πk′′(H) − πK(H)πk′′(L)

πk′(L)πK(H) − πK(L)πk′(H)
+ πk′′(L)

Hence, w̃ is feasible because ŵ is. The expected cost of w̃ is given by
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K∑
k=1

πP
k (H)w̃k = α̂ +

∑
k 
=K,k′

β̂kw̃k

= α̂ +
∑

k 
=K,k′
β̂kŵk + β̂k′′ε

Thus, we can choose ε > 0 whenever β̂k′′ < 0 and ε < 0 whenever β̂k′′ > 0. In either case, w̃ is
feasible and cheaper than ŵ, contradicting the optimality of ŵ. Summarizing, if an optimal con-
tract is contingent on K > 2 events, we can find a feasible contract which is cheaper. Therefore,
because we already proved K < 2 is impossible, a contract can be optimal only if K = 2. �
Proof of Proposition 4. To simplify notation, throughout we use πP in place of πP (H).

First, set

S :=
{(

A,B,C,π1,π2): A,B,C ⊂ N are pairwise disjoint,

π1 ∈ Π(H), π2 ∈ Π(L) are extreme points,

π1(A)π2(B) − π1(B)π2(A) 
= 0∣∣∣∣πP (B)
π1(C)π2(A) − π1(A)π2(C)

π1(A)π2(B) − π1(B)π2(A)

∣∣∣∣
+

∣∣∣∣πP (A)
π1(B)π2(C) − π1(C)π2(B)

π1(A)π2(B) − π1(B)π2(A)

∣∣∣∣ 
= 0∣∣∣∣πP (C) + πP (B)
π1(C)π2(A) − π1(A)π2(C)

π1(A)π2(B) − π1(B)π2(A)

+ πP (A)
π1(B)π2(C) − π1(C)π2(B)

π1(A)π2(B) − π1(B)π2(A)

∣∣∣∣ 
= 0

}
Notice that S is finite; we argue below that S is also nonempty.
For any pairwise disjoint events A,B,C ⊂ N and any extreme points π1 ∈ Π(H) and π2 ∈

Π(L) with (A,B,C,π1,π2) ∈ S, set

R
(
A,B,C,π1,π2)
:=

|πP (C) + πP (B)
π1(C)π2(A)−π1(A)π2(C)

π1(A)π2(B)−π1(B)π2(A)
+ πP (A)

π1(B)π2(C)−π1(C)π2(B)

π1(A)π2(B)−π1(B)π2(A)
|

|πP (B)
π1(C)π2(A)−π1(A)π2(C)

π1(A)π2(B)−π1(B)π2(A)
| + |πP (A)

π1(B)π2(C)−π1(C)π2(B)

π1(A)π2(B)−π1(B)π2(A)
|

By definition, R is well defined and strictly positive.
Finally, set

b := min
(A,B,C,π1,π2)∈S

R
(
A,B,C,π1,π2)

Since S is finite, b is positive.
Arguments similar to the ones used in the first part of the proof of Proposition 2, with each

payment variable wk replaced by the utility variable vk := u(wk), can be used to establish that:
(i) (P) must hold with equality for all π ∈ Π(H ;v), and (ii) (NC) must hold with equality for
all π ∈ Π(H ;v) and π ∈ Π(L;v). Thus we can restrict the search for optimal contracts in the
subset F of Rm defined by the set of vectors v for which (P) and (NC) hold with equality.
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Suppose that v1, . . . , vK are the agent’s utility levels corresponding to an optimal contract
with K levels w1 < · · · < wK, i.e. vk := u(wk), and suppose by way of contradiction that K > 2.

Thus v1, . . . , vK solves the following program:

min
v1,...,vK

K∑
k=1

πP
k h(vk)

subject to (P) and (NC).

Claim 1. For any v ∈ F there exists j ∈ {1, . . . ,K} such that (NC) and (P) can be solved for
(vj , vK), i.e.

vj = πK(w0 + cL) − πK(w0 + cH )

πKπj − πjπK

+
∑

k 
=j,K

πkπK − πKπk

πKπj − πjπK

vk = αj +
∑

k 
=j,K

σjkvk

vK = πj (w0 + cL) − πj (w0 + cH )

πjπK − πKπj

+
∑

k 
=j,K

πjπk − πkπj

πKπj − πjπK

vk = αK +
∑

k 
=j,K

σKkvk

(11)

where πKπj − πjπK 
= 0, and π ∈ Π(L;v),π ∈ Π(H ;v) are extreme points.

Proof. See the part of the proof of Proposition 2 which begins with “These are well defined
unless” immediately before formula (9) (here we have replaced k′ with j ). �

Substituting the expressions in (11) into the objective yields

K∑
i=1

πP
k h(vi) =

∑
k 
=j,K

πP
k h(vk) + πP

j h

(
αj +

∑
k 
=j,K

σjkvk

︸ ︷︷ ︸
vj

)
+ πP

K h

(
αK +

∑
k 
=j,K

σKkvk

︸ ︷︷ ︸
vK

)

Since the given contract v1, . . . , vK is optimal it must minimize the last expression, hence satisfy
the first order condition (FOC):

∀k 
= j,K: 0 = πP
k h′(vk) + πP

j σjkh
′(vj ) + πP

K σKkh
′(vK)

= [
πP

k + πP
j σjk + πP

KσKk

]
h′(vk)︸ ︷︷ ︸

T1

+ πP
j σjk

[
h′(vj ) − h′(vk)

] + πP
KσKk

[
h′(vK) − h′(vk)

]
︸ ︷︷ ︸

T2

Claim 2. Since πP 
= π, for any v ∈ F there exists k∗ 
= j,K such that the first term in square
brackets

T1 = πP
k + πP

j σjk + πP
K σKk

is not zero.

Proof. See the part of the proof of Proposition 3 which establishes that β̂k′′ 
= 0 for some
k′′ 
= k′,K . �
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Remark. Given Claim 2, the FOC is violated (for vk∗ ) if h′ is constant (i.e. the agent’s utility
function is linear); or if h′ does not vary too much, so that

|T1| > |T2|
The remainder of the argument verifies that this holds provided g′(vM) < b.

Note that by Lemma 1, the two sets of critical probabilities Π(H ;w) and Π(L;w) do not
change if the order of the payments in the contract does not change.

By Claims 1 and 2 we can conclude that for any v ∈ F there exists k∗(v) such that the first
term in square brackets (T1) is not zero.

Then the FOC can be written as

∀k 
= j,K: 0 = [
πP

k + πP
j σjk + πP

K σKk

][
1 + g′(vk)

] + πP
j σjk

[
g′(vj ) − g′(vk)

]
+ πP

K σKk

[
g′(vK) − g′(vk)

]
Recall that h is unique up to affine transformations. Thus without loss of generality we can set
g′(u) = 0, where u denotes the agent’s reservation utility, i.e. u := u(w). This together with the
convexity of g implies g′(u) � 0 for all u > u(w); and in particular g′(vk) � 0. Thus it suffices
to show that the first term in square brackets is larger in absolute value than the term on the last
line (T2) in absolute value.

Since by assumption g′(vM) < b, we have∣∣πP
j σjk

[
g′(vj ) − g′(vk)

] + πP
K σKk

[
g′(vK) − g′(vk)

]∣∣
�

∣∣πP
j σjk

[
g′(vj ) − g′(vk)

]∣∣ + ∣∣πP
KσKk

[
g′(vK) − g′(vk)

]∣∣ (triangle inequality)

= ∣∣πP
j σjk

∣∣∣∣g′(vj ) − g′(vk)
∣∣ + ∣∣πP

KσKk

∣∣∣∣g′(vK) − g′(vk)
∣∣ |xy| = |x||y|

�
[∣∣πP

j σjk

∣∣ + ∣∣πP
K σKk

∣∣][g′(vM) − g′(u)
]

(convexity of g)

= [∣∣πP
j σjk

∣∣ + ∣∣πP
K σKk

∣∣]g′(vM)
(
g′(u) = 0

)
<

[∣∣πP
j σjk

∣∣ + ∣∣πP
K σKk

∣∣] |πP
k + πP

j σjk + πP
K σKk|

|πP
j σjk| + |πP

K σKk|
(
g′(vM) < b

)
= ∣∣πP

k + πP
j σjk + πP

K σKk

∣∣
Since this is a contradiction, the contract could not be optimal and the result is established. �
Proof of Proposition 5. Again we prove the result for the case of implementation with inertia;
the other case is analogous. Let ŵ be an optimal contract that implements a∗ with inertia. With-
out loss of generality, label payments so that ŵN corresponds to the highest, ŵN−1 the second
highest, and so on. We claim there exists only one action a′ 
= a∗ for which the incentive com-
patibility constraint binds, and a′ < a∗. Suppose not. Then, there exist two actions a′ and a′′
different from a∗ such that

N∑
j=1

πj

(
a′′)ŵj − c

(
a′′) =

N∑
j=1

πj

(
a′)ŵj − c

(
a′) =

N∑
j=1

πj

(
a∗)ŵj − c

(
a∗) = w

for any π(a∗) ∈ Π(a∗; ŵ), π(a′) ∈ Π(a′; ŵ), and π(a′′) ∈ Π(a′′; ŵ). By construction π(a∗),
π(a′), and π(a′′) can be taken to be extreme points of the corresponding belief sets. From here
on, following the argument in [11] establishes the claim.
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If only the constraint relative to one action a′ ∗ binds, ŵ must also be optimal in a problem
where all other actions a 
= a′ ∗ are dropped from the constraints. Therefore, Proposition 3 applies
to that problem and the optimal contract has a two-wage structure. �
Proofs for Section 5

Proof of Proposition 6. Fix a ∈ A. Let E,F ⊂ {1, . . . ,N}. Then

νa(E) + νa(F ) = ν
(
E(a)

) + ν
(
F(a)

)
� ν

(
E(a) ∩ F(a)

) + ν
(
E(a) ∪ F(a)

)
= ν

(
(E ∩ F)(a)

) + ν
(
(E ∪ F)(a)

)
= νa(E ∩ F) + νa(E ∪ F)

Thus νa is a convex capacity. Moreover, if π̂ ∈ Π(a), then π̂ = π(a) for some π ∈ Π . For
each π̂ ∈ Π(a), π̂(E) = π(E(a)) � ν(E(a)) = νa(E). Thus Π(a) is a subset of the core of νa .
Since Π(a) is closed and convex, it suffices to show that Π(a) contains all of the “marginal
contribution” vectors for νa , that is, any vector π of the form πj = νa({σ(1), . . . , σ (j)}) −
νa({σ(1), . . . , σ (j − 1)}) where σ is a permutation on {1, . . . ,N}. Without loss of generality,
consider the identity permutation and corresponding vector π in which πj = νa({1, . . . , j}) −
νa({1, . . . , j − 1}) for each j . Thus for each j , πj = ν({y1, . . . , yj }(a)) − ν({y1, . . . , yj−1}(a)).

For each j , set {sj

1 , . . . , s
j
kj

} := {yj }(a) = {y1, . . . , yj }(a) \ {y1, . . . , yj−1}(a). Define π ∈ �(S)

as follows. Set

π
(
s1

1

) = ν
({

s1
1

})
and for each k 
= 2, . . . , k1, set

π
(
s1
k

) = ν
({

s1
1 , . . . , s1

k

}) − ν
({

s1
1 , . . . , s1

k−1

})
For j = 2, . . . ,N , similarly define

π
(
s
j

1

) = ν
({y1, . . . , yj−1}(a) ∪ {

s
j

1

}) − ν
({y1, . . . , yj−1}(a)

)
and for k = 2, . . . , kj ,

π
(
s
j
k

) = ν
({y1, . . . , yj−1}(a) ∪ {

s
j

1 , . . . , s
j
k

}) − ν
({y1, . . . , yj−1}(a) ∪ {

s
j

1 , . . . , s
j

k−1

})
Then π is an element of the core of ν, since it is the marginal contribution vector corresponding
to the permutation (s1

1 , . . . , s1
k1

, . . . , sN
1 , . . . , sN

kN
). Thus π ∈ Π . By construction, for each j ,

π
({yj }(a)

) =
kj∑

k=1

π
(
s
j
k

) = ν
({y1, . . . , yj }(a)

) − ν
({y1, . . . , yj−1}(a)

) = πj

Thus π ∈ Π(a), and the claim is established. �
Proof of Proposition 7. Fix an action a. For each j = 1, . . . ,N , {yj }(a) ⊂ S is a nonempty
and proper subset of S , since y(a) has support {y1, . . . , yN }. Thus for a nonempty, proper subset
E ⊂ {1, . . . ,N}, E(a) ⊂ S must also be nonempty and proper. By assumption,

min π
(
E(a)

)
< πP

(
E(a)

)
< maxπ

(
E(a)

)

π∈Π π∈Π
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From this we conclude

min
π∈Π(a)

π(E) < πP
j (a)(E) < max

π∈Π(a)
π(E)

Thus the claim is established. �
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