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Abstract. This paper provides a version of the transversality theorem for
a class of Lipschitz functions of the form f : Rn × C → Rn where C is
a convex subset of a normed vector space Z indexing the parameters in the
problem. The set C may be infinite-dimensional, and the notion of generic used
is the measure-theoretic notion of prevalence introduced by Hunt, Sauer and
Yorke (1992) and Christensen (1974). This paper also provides some results
on sensitivity analysis for solutions to locally Lipschitz equations.

1. Introduction

This paper studies a class of problems of the following form: for a given Lipschitz
function f : Rn × Z → Rn and a fixed value y ∈ Rn, how big is the subset of
parameters z in a set C ⊂ Z for which all solutions x to the equation

f(x, z) = y

are locally unique and vary in a Lipschitz manner with z? That is, how big is the
set of parameters in C for which the solutions to this equation are “determinate”?

To address this question, this paper first provides some results on sensitivity
analysis for solutions to locally Lipschitz equations. These ideas are then used to
establish a version of the transversality theorem for a class of Lipschitz functions
of the form f : Rn × C → Rn where C is a convex subset of a normed vector
space Z. The set C may be infinite-dimensional, and the notion of generic used is
the measure-theoretic notion of prevalence introduced by Christensen (1974) and
developed by Hunt, Sauer and Yorke (1992), and the extension of this concept to
relative prevalence developed by Anderson and Zame (2001).

2. Regular Values of Lipschitz Functions

We start with some preliminary results regarding sensitivity analysis for solutions
to locally Lipschitz equations. Several different notions of regular point and regular
value of a Lipschitz function will be used in this paper, each giving rise to different
properties of the set of solutions. The basic definition which will be the focus for
most of the results of this paper is the following.
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Definition 2.1. Given a function g : Rm → Rn, a point x ∈ Rm is a regular
point of g if g is differentiable at x and Dg(x) is surjective. A value y ∈ Rn is a
regular value of g if every point x ∈ g−1(y) is a regular point of g.

The main application of this concept here will be to the case in which g = f(·, z)
for a locally Lipschitz function f : Rn × Z → Rn where Z is a Banach space
and z ∈ Z. In this case, if y ∈ Rn is a regular value of f(·, z̄) for some fixed
z̄ ∈ Z, then every solution x ∈ Rn to the equation f(x, z̄) = y is locally unique.
Unlike the case in which f is C1, if f is only locally Lipschitz then this condition
is not sufficient to imply that the solution set will remain locally single-valued as z
changes. A simple counterexample is provided by the function g : R → R given by
g(x) = x2 sin(1/x) + x, which is Lipschitz continuous and for which 0 is a regular
point, but which is not one-to-one on any neighborhood of 0. Sensitivity analysis
for the set of solutions will then rely on derivatives for multivalued maps and some
of the techniques developed in the recent work on nonsmooth or variational analysis
(see e.g. Rockafellar (1988a, 1988b), Rockafellar and Wets (1999), Clarke, Ledyaev,
Stern and Wolenski (1998)).

The derivatives for multivalued maps that are most useful in this problem are
based on Painlevé-Kuratowski convergence of sets. If {At : t ∈ T } is a net of sets
in a topological space, then

lim supAt ≡ {a : a = lim
n

atn , atn ∈ Atn n = 1, 2, . . .}

and

lim inf At ≡ {a : a = lim
t
at, at ∈ At t ∈ T }.

Notice that for a given net {At} one or both of these sets may be empty. If
lim supAt = lim inf At then {At} has a limit and lim

t
At ≡ lim supAt = lim inf At.

The main derivative used here is the contingent derivative, introduced by Aubin
(1984). Given a multivalued map H : X−→→Y where X and Y are normed spaces,
the contingent derivative of H at a point (x, y) ∈ graph(H) is denoted DH(x|y)
and is the mapping whose graph is the contingent cone to the graph of H at (x, y),
that is,

graph DH(x|y) = lim sup
t↓0

1
t
[graph H − (x, y)] .

Rockafellar (1988a) provides an important strengthening of this condition in the
spirit of Hadamard differentiability by requiring that the limit exist in the above
expression and that this limit not depend on the way a particular direction is
approached. More precisely, H is semi-differentiable at (x, y) if

lim
t↓0

w′→w

1
t
[H(x+ tw′)− y]

exists for all w ∈ X . When this limit exists it is simply equal to the contingent
derivative at w, DH(x|y)(w).

King and Rockafellar (1992) show that the single-valuedness of the contingent
derivative provides a regularity condition strong enough to imply that the set of
solutions to generalized equations is semi-differentiable and locally Lipschitz in the
following sense. A multivalued map H : X−→→Y between two normed spaces is
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upper Lipschitzian at x̄ ∈ X if there exists λ > 0 and a neighborhood Ω of x̄
such that

H(x) ⊂ H(x̄) + λ‖x− x̄‖B ∀x ∈ Ω

where B is the unit ball in Y . A multivalued map that is upper Lipschitzian at
a point x̄ exhibits a strong type of stability in a neighborhood of that point: for
every x ∈ Ω, if y ∈ H(x) then there exists ȳ ∈ H(x̄) such that ‖y− ȳ‖ ≤ λ‖x− x̄‖.

To study the behavior of the solutions of the equation f(x, z) = y as z varies,
let the solution map E : Z−→→Rn be defined by

E(z) ≡ {x ∈ Rn : f(x, z) = y}.
For these results, we suppose that the parameterization itself is sufficiently smooth,
in the following sense.

Definition 2.2. Let X , Y , and Z be topological vector spaces. A function f :
X × Z → Y is Fréchet equi-differentiable in z if for every x ∈ X , f(x, ·) is
differentiable at every point z ∈ Z, and Dzf(B) is bounded for every bounded
subset B ⊂ X × Z.

For example, if X and Z are locally compact, f(x, ·) is differentiable in z for
each x ∈ X and Dzf is continuous on X × Z, then f is Fréchet equi-differentiable
in z.1

The first result below shows that if y is a regular value of f(·, z̄) then the solution
map E(·) is locally upper Lipschitzian at z̄ and semi-differentiable provided the
parameterization is equi-differentiable.

Theorem 2.3. Let Z be a normed vector space. Let f : Rn × Z → Rn be locally
Lipschitz and Fréchet equi-differentiable in z. Let y ∈ Rn be a regular value of
f(·, z̄) for some z̄ ∈ Z. For each x̄ ∈ E(z̄) there exists a neighborhood U such that
U ∩E(z̄) = {x̄} and such that U ∩E(·) is upper Lipschitzian at z̄. Moreover, E is
semi-differentiable at z̄ relative to x̄ and for each z ∈ Z,

DE(z̄|x̄)(z) = lim sup
t↓0

1
t
[E(z̄ − tz)− x̄] .

Every selection x(·) ∈ E(·) ∩ U is upper Lipschitzian and semi-differentiable at z̄
with Dx(z̄|x̄) = DE(z̄|x̄).
Proof. First, DE(z̄|x̄)(0) ⊂ {0}. To see this, note that by definition (0, v) ∈
graph DE(z̄|x̄) ⇐⇒ ∃(wt, vt) such that (wt, vt) = 1

t ((zt, xt) − (z̄, x̄)) where
(zt, xt) ∈ graph E, i.e., where f(xt, zt) = y for all t, and such that (wt, vt) → (0, v).
Note that zt → z̄ and xt → x̄ as t → 0. Now let ∆zt = zt − z̄ and ∆xt = xt − x̄.
Since y is a regular value of f(·, z̄) and f is Fréchet equi-differentiable in z, f is
(Fréchet) differentiable at (x̄, z̄). Then

f(x̄+ ∆xt, z̄ + ∆zt) − f(x̄, z̄) −Df(x̄, z̄)(∆xt,∆zt) = o(‖(∆xt,∆zt)‖),
which implies that

Df(x̄, z̄)(∆xt,∆zt) = o(‖(∆xt,∆zt)‖) + f(x̄+ ∆xt, z̄ + ∆zt) − f(x̄, z̄)
= o(‖(∆xt,∆zt)‖) + 0,

1An alternative sufficient condition for these results is that f(x, ·) is continuously differentiable
for each x ∈ X.
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since f(x̄+ ∆xt, z̄ + ∆zt) = f(xt, zt) = y = f(x̄, z̄) for every t. So

Df(x̄, z̄)
(∆xt,∆zt)

‖(∆xt,∆zt)‖ =
o(‖(∆xt,∆zt)‖)
‖(∆xt,∆zt)‖

⇒ Df(x̄, z̄)
(∆xt

t , ∆zt

t )∥∥(∆xt

t , ∆zt

t )
∥∥ =

o(‖(∆xt,∆zt)‖)
‖(∆xt,∆zt)‖

⇒ Df(x̄, z̄)
(

∆xt

t
,
∆zt

t

)
=

∥∥∥∥
(

∆xt

t
,
∆zt

t

)∥∥∥∥ o(‖(∆xt,∆zt)‖)
‖(∆xt,∆zt)‖ .

As t → 0,
(

∆xt

t , ∆zt

t

)
= (vt, wt) → (v, 0) and the right hand side above goes to 0, so

this last equation implies that Df(x̄, z̄)(v, 0) = 0. Thus Dxf(x̄, z̄)v = 0. Because
y is a regular value of f(·, z̄), Dxf(x̄, z̄) is nonsingular, which implies that v = 0.
Thus DE(z̄|x̄)(0) ⊂ {0} as desired.

Now we show that for w ∈ Z arbitrary, DE(z̄|x̄)(w) is at most single-valued.
Suppose v ∈ DE(z̄|x̄)(w). Then there exists (qt, vt) such that (qt, vt) = 1

t ((zt, xt)−
(z̄, x̄)) where (zt, xt) ∈ graph E, i.e., where f(xt, zt) = y for all t, and such that
(qt, vt) → (w, v). As above note that zt → z̄ and xt → x̄. Repeating the argu-
ment above shows that Df(x̄, z̄)

(
∆xt

t , ∆zt

t

)
= Df(x̄, z̄)(vt, qt) → 0 as t → 0. Thus

Df(x̄, z̄)(v, w) = 0. Now if there exist v1, v2 such that v1, v2 ∈ graph DE(z̄|x̄)(w),
Df(x̄, z̄) ((v1, w) − (v2, w)) = 0, i.e., Df(x̄, z̄)(v1 − v2, 0) = 0. By the same argu-
ment as above, this implies that v1 − v2 = 0, i.e., v1 = v2.

Finally, we must show that if U ′ is a neighborhood of x̄ then E−1(U ′) is a
neighborhood of z̄. Since DE(z̄|x̄)(0) ⊂ {0}, there exists a neighborhood U of x̄
such that E(z̄) ∩ U = {x̄} by King and Rockafellar (1992, Proposition 2.1). Since
y is a regular value of f(·, z̄), |d(f(·, z̄), U, y)| = 1 where d(·) denotes Brouwer’s
degree, by Shannon (1994, Theorem 9). By the domain decomposition property
of Brouwer’s degree and the fact that E(z̄) ∩ U = {x̄}, |d(f(·, z̄), U ∩ U ′, y)| = 1.
Hence x̄ is an essential solution of the equation f(x, z̄) = y on U ∩U ′ (see, e.g., Fort
(1950)). This yields a neighborhood W of graph f(·, z̄) such that if g : U∩U ′ → Rn

is any continuous function with graph g ⊂ W , then g−1(y)∩(U∩U ′) �= ∅. Since f is
Lipschitz in z, we can choose r > 0 such that for z ∈ Br(z̄), graph f(·, z)|U∩U ′ ⊂ W .
Thus for all z ∈ Br(z̄), ∃x ∈ U ∩ U ′ such that f(x, z) = y, which implies that
Br(z̄) ⊂ E−1(U∩U ′) ⊂ E−1(U ′). Now the result follows from King and Rockafellar
(1992, Proposition 2.2). �

If the function f is C1 instead of merely locally Lipschitz continuous, then much
stronger results can be derived when y is a regular value of f , in particular versions
of the transversality theorem. To develop analogues of these results in the case when
f is only Lipschitz continuous requires different notions of regular value which build
on the generalized Jacobian or Clarke derivative of a Lipschitz function and utilize
Clarke’s implicit function theorem for Lipschitz functions (Clarke (1983)).

If f : Rm → Rn is locally Lipschitz continuous, then its generalized Jacobian
at a point x ∈ Rm, denoted ∂f(x), is given by

∂f(x) = co


A : A = lim

x′→x
x′∈Df

Df(x′)


 ,

where co(B) denotes the closed convex hull of the set B, and Df denotes the
set of points at which f is differentiable. In particular, note that the generalized
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Jacobian may be multi-valued at some points. The generalized Jacobian is said to
be of maximal rank at x if every element of ∂f(x) is of maximal rank. For our
results, we will need a strengthening of this condition.

Definition 2.4. Let f : Rm → Rn be locally Lipschitz continuous, where m ≥ n.
The generalized Jacobian ∂f is uniformly of maximal rank at x if there exists
(v1, . . . , vn) such that ∂(v1,...,vn)f(x) has maximal rank.

For the generalized gradient to be uniformly of maximal rank at a point x then
means not only that every element of ∂f(x) is of maximal rank, but that the
generalized partial gradient of f with respect to some fixed set of variables v is of
maximal rank. This notion of nonsingularity suggests the following stronger notion
of regular value.

Definition 2.5. Let f : Rm → Rn be locally Lipschitz continuous. A vector
y ∈ Rn is a uniformly regular value of f if for each x ∈ f−1(y) the generalized
Jacobian ∂f(x) is uniformly of maximal rank at x.

For uniformly regular values a Lipschitz version of the preimage theorem holds;
that is, the preimage of a uniformly regular value is a Lipschitz manifold,2

Theorem 2.6. Let f : Rn × Rk → Rn be locally Lipschitz. If y is a uniformly
regular value of f , then f−1(y) is a k-dimensional Lipschitz manifold or is empty.

Proof. Assume f−1(y) �= ∅, and let (x, z) ∈ f−1(y). Without loss of generality,
suppose ∂xf(x, z) has maximal rank. By Clarke’s implicit function theorem (Clarke
(1983)), there exist neighborhoods V of z and W of x and a Lipschitz function
g : V → W such that for all z′ ∈ V , f(g(z′), z′) = y and such that x′ ∈ W
and f(x′, z′) = y iff x′ = g(z′). Then graph (g) = {(g(z), z) : z ∈ V } ⊂ f−1(y)
and f−1(y) ∩ (W × V ) ⊂ graph (g). Since graph (g) ⊂ W × V , this implies
f−1(y) ∩ (W × V ) = graph (g). Moreover, graph (g) is a k-dimensional Lipschitz
manifold, which is easily seen by considering the transition functions φ : Rn×V →
Rn×V defined by φ(x, z) = (x−g(z), z). Thus f−1(y) is a k-dimensional Lipschitz
manifold. �

The transversality theorems that are developed in the next section rely on an
additional, slightly stronger notion of regular value, which requires that the partial
derivative with respect to a particular set of parameters is nonsingular at every
solution. To formalize this, let f : Rn×Z → Rn where Z is a Banach space and let
V be an n-dimensional subspace of Z. Since V is finite-dimensional, Z = V ⊕ V ⊥.
For each fixed z ∈ Z, define fz : Rn × V → Rn by fz(x,w) = f(x,w + zV ⊥) for
each (x,w) ∈ Rn × V , where z = zV + zV ⊥ for zV ∈ V and zV ⊥ ∈ V ⊥. Note
that fz(x,w) = y for some z ∈ Z and (x,w) ∈ Rn × V if and only if w = zV and
(x, z) ∈ f−1(y). Let λV denote Lebesgue measure on V .3

2A set M is a Lipschitz manifold if it is a Hausdorff topological space such that for every
x ∈ M, there exists an open neighborhood Wx of x and a homeomorphism φx : Wx → Rn such
that both φx and φ−1

x are Lipschitz continuous.
3More precisely, let T : V → Rn be a linear isomorphism and set λV (A) = λn(T (A)) for

each A ⊂ V , where λn is standard Lebesgue measure on Rn. While T is not unique and the

measure λV does depend on the choice of isomorphism, all such measures are mutually absolutely
continuous. Since all such measures have the same sets of measure 0, the choice of isomorphism
is irrelevant here.
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Definition 2.7. Let f : Rn ×Z → Rn be locally Lipschitz continuous, where Z is
a Banach space. Let C ⊂ Z be a convex Borel set. A vector y ∈ Rn is a strongly
regular value of f relative to C if there exists an n-dimensional subspace V of
Z such that ∂wf

z(x, zV ) has maximal rank for each (x, z) ∈ f−1(y) and such that
λV (C + a) > 0 for some a ∈ Z. If C = Z, y is called a strongly regular value of
f .

As both are based on the Clarke derivative, strong regularity and uniform reg-
ularity are nested: for a fixed function f : Rn × Z → Rn, every strongly regular
value is uniformly regular. Regularity, strong regularity and uniform regularity are
not necessarily nested, however, as regularity is based on properties of the classical
derivative, which does not necessarily coincide with the Clarke derivative at an
arbitrary point of differentiability. The next section develops a parametric version
of the transversality theorem that links these concepts in answering the question
posed initially: strong regularity will lead to generic regularity, and hence generic
local uniqueness and Lipschitz stability of the solution set.

3. A Prevalent Transversality Theorem

When the parameter value z̄ is chosen so that y is a regular value of the locally
Lipschitz function f(·, z̄), the solution set displays strong stability and directional
derivative properties in a neighborhood of z̄, as the results of the previous section
demonstrate. How large is the set of parameter values for which these conclusions
hold? Is this determinacy “typical” or “rare”? Answering this question requires a
version of the transversality theorem which is applicable to Lipschitz functions. This
section develops such results for both finite-dimensional and infinite-dimensional
settings.

A difficulty in establishing the genericity of regular values in parametric settings
stems from the fact that the preimage of a regular value must consist only of points
at which the function f is differentiable. For any given value of z, the set

Dz ≡ {x ∈ Rn : f(·, z) is not differentiable at x}
has Lebesgue measure zero by Rademacher’s theorem. Some control over the de-
pendence of this set on the parameter z is needed, however, to rule out cases in
which there exists a large subset of Z on which f−1(y) ∩ (Dz × {z}) �= ∅.

To handle this difficulty, introduce the following notion.

Definition 3.1. A function f : Rn × Z → Rn is tame if ∃D ⊂ Rn such that
∀z ∈ Z, D = {x ∈ Rn : f(·, z) is not differentiable at x}.

A simple example of a class of such functions takes the form fi ≡ h1
i + h2

i gi for
i = 1, . . . , n, for functions h1 : Rn → Rn, h2

i : Rn → R and gi : Z → R for each
i = 1, . . . n, where g is continuously Fréchet differentiable. See also Remark 3.3 and
Section 4.

The first result below considers the case in which the parameter space Z is
n-dimensional. This finite-dimensional result will provide the basis for the final
infinite-dimensional theorem.

Lemma 3.2. Let f : Rn × Rn → Rn be locally Lipschitz, equi-differentiable in z,
and tame. If y is a strongly regular value of f , then

S ≡ {z ∈ Rn : y is not a regular value of f(·, z)}
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has Lebesgue measure 0.

Proof. By Theorem 2.5, f−1(y) is an n-dimensional Lipschitz manifold. Let M =
f−1(y) and let π : M → Rn be projection onto the last n factors, so π(x, z) = z.
Given (x̄, z̄) ∈ M , choose a neighborhood W on which M ∩ W = graph g where
g : Rn → Rn is Lipschitz. So M ∩ W = {(x, g(x)) : x ∈ A} for some open set
A ⊂ Rn with x̄ ∈ A. Since there is a countable cover of M by such neighborhoods
it suffices to restrict attention to this neighborhood.

Let φ(x) = (x, g(x)). On A consider π ◦ φ : A → Rn; note that π ◦ φ = g. Let
P1 ≡ {z ∈ Rn : z is a regular value of g}. Since g : Rn → Rn is Lipschitz, P1 has
full measure in Rn (e.g., Rader (1973, Lemma 2)). Let

P2 ≡ {z ∈ Rn : φ is differentiable at φ−1(x, z) ∀(x, z) ∈ M ∩W}.
Then P c

2 ⊂ g(B) where B ≡ {x ∈ Rn : φ is not differentiable at x}. By definition
B = {x ∈ Rn : g is not differentiable at x}, so P1 ⊂ P2. Now let P3 = g(D)c where
D ≡ {x ∈ Rn : Dxf(x, z) does not exist for some z}. By tameness,

D = {x ∈ Rn : f(·, ẑ) is not differentiable at x}
for a fixed ẑ ∈ X . For a fixed ẑ, f(·, ẑ) : Rn → Rn is a locally Lipschitz function,
so D has measure 0, and then so does g(D), again because g is a Lipschitz function
from Rn to Rn. Thus P c

3 = g(D) has measure 0.
Now define P = P1 ∩ P3; by the above arguments P has full measure. Let

z ∈ P . It suffices to show that y is a regular value of f(·, z). Choose x̄ such that
(x̄, z) ∈ M ∩W . Let r ∈ Rn be arbitrary. Since z ∈ P3 and f is equi-differentiable
in z, f is differentiable at (x̄, z). Let Df(x̄, z) = (Dx, Dz). We must show that Dx

has full rank. Since y is a uniformly regular value of f and Df(x̄, z) ∈ ∂f(x̄, z),
there exists (q1, q2) ∈ Rn × Rn such that

Dxq1 +Dzq2 = r.

Since z is a regular value of π ◦ φ = g and φ is differentiable at φ−1(x̄, z) there
exists w ∈ Rn such that (w, q2) ∈ Im Dφ(φ−1(x̄, z)). Let q = q1 − w. Then
(w, q2) ∈ Im Dφ(φ−1(x̄, z)) ⇒ Dxw +Dzq2 = 0, so

Dxq = Dxq1 −Dxw +Dzq2 −Dzq2 = Dxq1 +Dzq2 − (Dxw +Dzq2)
= Dxq1 +Dzq2 = r.

So y is a regular value of f(·, z). �

Remark 3.3. The assumptions that f is locally Lipschitz, tame, and Fréchet equi-
differentiable in z guarantee that there exists a set D ⊂ Rn of Lebesgue measure 0
such that

D × Z ⊃ {(x, z) ∈ Rn × Z : f is not differentiable at (x, z)}.
Call a function for which there exists such a set D controlled. As will become
clear, this result and the remaining results of the paper hold if instead of assuming
that f is tame and Fréchet equi-differentiable in z, the function f is assumed to be
controlled.

To extend this result to the case in which the parameters are drawn from an
infinite-dimensional set, Lebesgue measure zero will be replaced with Christensen’s
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(1974) Haar measure zero, equivalently with Hunt, Sauer and Yorke’s (1992) shy-
ness, as the notion of exceptional.4 Anderson and Zame (2001) have extended the
work of Hunt, Sauer and Yorke and Christensen by defining prevalence and shyness
relative to a convex subset which may be a shy subset of the ambient space. Their
notion of relative prevalence, presented below, is the concept of generic adopted
here.

Definition 3.4. Let Z be a topological vector space and let C ⊂ Z be a convex
Borel subset of Z which is completely metrizable in the relative topology. Let
c ∈ C. A universally measurable subset E ⊂ Z is shy in C at c if for each δ > 0
and each neighborhood W of 0 in Z, there is a regular Borel probability measure
µ on Z with compact support such that supp µ ⊂ (δ(C − c) + c) ∩ (W + c) and
µ(E + z) = 0 for every z ∈ Z. The set E is shy in C if it is shy at each point
c ∈ C. A (not necessarily universally measurable) subset F ⊂ C is shy in C if it
is contained in a shy universally measurable set. A subset K ⊂ C is prevalent in
C if its complement C \K is shy in C.

Like Lebesgue measure 0, (relative) shyness is translation invariant, preserved
under countable unions, coincides with Lebesgue measure 0 in Rn, and no relatively
open set is relatively shy. In particular, every relatively prevalent set is dense. One
particularly straightforward example of a shy set is a set such that it and all of its
translates have Lebesgue measure 0 in some finite-dimensional subspace. Formally:

Definition 3.5. Let Z be a topological vector space and let C ⊂ Z be a convex
Borel subset of Z which is completely metrizable in the relative topology. A univer-
sally measurable subset E ⊂ C is finitely shy in C if there is a finite-dimensional
subspace V ⊂ Z such that λV (C + a) > 0 for some a ∈ Z and λV (E + z) = 0 for
every z ∈ Z.5 A (not necessarily universally measurable) subset F ⊂ C is finitely
shy in C if it is contained in a finitely shy universally measurable set. A subset
K ⊂ C is finitely prevalent in C if its complement C \K is finitely shy in C.

All finitely prevalent sets in C are also prevalent in C (Anderson and Zame (2001,
Fact 6)). The finite-dimensional transversality theorem established above then
provides the foundation for a finitely prevalent, and thus prevalent, transversality
theorem.

As a preliminary step, the following lemma establishes that the set of parameter
values z for which y is a regular value of f(·, z) is universally measurable.

Lemma 3.6. Let Z be a Banach space and let f : Rn×Z → Rn be locally Lipschitz,
Fréchet equi-differentiable in z, and tame. Let C ⊂ Z be a convex Borel set in Z.
For a given y ∈ Rn, R ≡ {z ∈ C : y is a regular value of f(·, z)} is universally
measurable.

4Another alternative is to use topological notions of genericity such as open and dense or
residual. These may be appropriate in some problems, but for problems in which statements are
loosely interpreted in a probabilistic sense, concerning the likelihood of a certain event occurring,
these topological notions are far from satisfactory. For example, as is well-known, even in Rn open
and dense sets can have arbitrarily small Lebesgue measure, and residual sets can have Lebesgue
measure 0. Stinchcombe (2001) explores the relationship between prevalence and probability.

5Hunt, Sauer and Yorke (1992) also discuss this case, and say that there is a probe for such a
set.
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Proof. Since all analytic sets are universally measurable (Dellacherie and Meyer
(1978, III.33(a))), it suffices to show that R is analytic. Let

S = C \R = {z ∈ C : y is not a regular value of f(·, z)}.
Let

B1 = {(x, z) ∈ Rn × C : f(x, z) = y and f(·, z) is not differentiable at x}
and

B2 = {(x, z) ∈ Rn × C : f(x, z) = y and Dxf(x, z) exists and is singular}.
Then S = πZ(B) where B = B1 ∪ B2 and πZ(·) denotes projection onto Z. To
show that S is analytic, and hence that R is analytic, it suffices to show that B is
a Borel set (Dellacherie and Meyer (1978, Theorem III.13)).

To that end, first consider the set B1.

B1 = {(x, z) ∈ Rn × C : f(x, z) = y} ∩ {(x, z) ∈ Rn × C : f(·, z) is not differentiable at x}
= {(x, z) ∈ Rn × C : f(x, z) = y} ∩ {(x, z) ∈ Rn × C : f is not differentiable at (x, z)}
= {(x, z) ∈ Rn × C : f(x, z) = y} ∩ (D × C)

where D = {x ∈ Rn : f is not differentiable at (x, z) for some z}, and the last
two equalities follow because f is Fréchet equi-differentiable in z and tame. Now
since f is locally Lipschitz, {(x, z) ∈ Rn × C : f(x, z) = y} is a Borel set. By
tameness, D = {x ∈ Rn : f(·, ẑ) is not differentiable at x} for some fixed ẑ ∈ Z,
and f(·, ẑ) : Rn → Rn is locally Lipschitz so D is a Borel set in Rn. Thus D × C
is a Borel set, which means that B1 is the intersection of two Borel sets and hence
Borel. Similarly,

B2 = {(x, z) ∈ Rn × C : f(x, z) = y} ∩ {(x, z) ∈ Dc × C : Dxf(x, z) is singular}.
To show thatB2 is Borel it suffices to show that {(x, z) ∈ Dc×C : Dxf(x, z) is singular}
is Borel. But Dxf(·, ·) is measurable and the set of singular n×n matrices is closed,
so this is a Borel set. Thus B2, and hence B = B1 ∪B2, is Borel. �

The following is then the main result of the paper.

Theorem 3.7. Let Z be a Banach space and let f : Rn × Z → Rn be locally
Lipschitz, Fréchet equi-differentiable in z and tame. Let C ⊂ Z be a convex Borel
set in Z that is completely metrizable in the relative topology. If y is a strongly
regular value of f relative to C, then R ≡ {z ∈ C : y is a regular value of f(·, z)}
is finitely prevalent in C.

Proof. I will show that S = C \ R is finitely shy in C. By the previous lemma
S is universally measurable. Let V be an n-dimensional subspace of Z such that
∂wf

z(x, zV ) is of maximal rank for each (x, z) ∈ f−1(y). Such a subspace exists
because y is a strongly regular value of f . Moreover, by assumption ∃a ∈ Z such
that λV (C + a) > 0.

Let z ∈ Z be arbitrary and consider (S−z)∩V . An element v ∈ (S−z)∩V ⇐⇒
v ∈ V and v = z̃ − z for some z̃ ∈ S. Then v ∈ (S − z) ∩ V if and only if y is
not a regular value of f(·, v + z), or equivalently, if and only if y is not a regular
value of fz(·, v + zV ). Thus v ∈ (S − z) ∩ V if and only if v + zV ∈ Sz ≡ {w ∈
V : y is not a regular value of fz(·, w)}, i.e., if and only if v ∈ Sz − zV . But y
is a strongly regular value of fz, so by Lemma 3.2, Sz has Lebesgue measure 0 in
V , and thus Sz − zV has Lebesgue measure 0 in V . Since (S − z) ∩ V = Sz − zV ,
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(S − z) ∩ V has Lebesgue measure 0 in V . As z was arbitrary, S is finitely shy in
C. �

If Z = Rk and C ⊂ Rk has non-empty interior, then a set is shy in C if and
only if it has Lebesgue measure 0 in Rk (Anderson and Zame (2001, Fact 5)). The
following finite-dimensional transversality theorem is then an immediate corollary
of the previous results.

Corollary 3.8. Let f : Rn × Rk → Rn be locally Lipschitz, equi-differentiable in
z and tame, where k ≥ n. Let C ⊂ Rk have non-empty interior. If y is a strongly
regular value of f then R ≡ {z ∈ C : y is a regular value of f(·, z)} has full Lebesgue
measure.

4. Applications

An application in which these questions are of central importance, and to which
these results apply, is the study of equilibria in competitive markets. For models
with a finite-dimensional commodity space, Debreu’s (1970) seminal work gives
conditions under which the set of equilibria is finite in number and each equilibrium
is locally a smooth function of the parameters for all parameter values outside a set
of Lebesgue measure 0. Debreu’s work relies on Sard’s theorem and thus requires
the equations characterizing equilibria to be sufficiently smooth. In an infinite-
dimensional setting, including important classes of dynamic infinite horizon models
and continuous-time asset trading models, the equations characterizing equilibria
typically fail to be differentiable. Shannon (1999, 2002) and Shannon and Zame
(2002) show that the equations characterizing equilibria in these models are instead
typically locally Lipschitz continuous under conditions analogous to Debreu’s.

These models start with a description of traded commodities and admissible
prices via a dual pair 〈X,X ′〉, where X is a partially ordered topological vector
space and X ′ is its topological dual.6 For our purposes, suppose in addition that X
is a Banach space. In a model with m + 1 traders, equilibria can be characterized
as the vectors λ ∈ A ⊂ Rm such that f(λ, e1, . . . , em) = 0, for a locally Lipschitz
function f : A×Xm → Rm taking the form

f(λ, e1, . . . , em) = (p(λ) · (x1(λ) − e1), . . . , p(λ) · (xm(λ) − em))

where p : A → X ′
++ is locally bounded (i.e. p(B) is bounded for each bounded set

B ⊂ A) and xi : A → X+ is locally Lipschitz continuous for each i = 1, . . . ,m.
Such a function f is locally Lipschitz continuous, Fréchet equi-differentiable in
(e1, . . . , em) and tame. To see how the results of the paper can be applied, let
ē ∈ X++ be fixed and set C ≡ {(e1, . . . , em+1) ∈ Xm+1

+ :
∑m+1

i=1 ei = ē}; C
is clearly a convex Borel subset of Xm+1. The element ei is interpreted as the
exogenous initial position of trader i. To see that 0 is a strongly regular value of f
relative to C, choose y ∈ X+ \ {0} such that ∃b > 0 for which ω̄ − by ∈ X+ \ {0}.
Let V ⊂ Xm+1 be the m-dimensional subspace

V ≡ {v ∈ Xm+1 : vi = αiy, for some αi ∈ R, i = 1, . . . ,m, and
m+1∑
i=1

vi = ē}.

6Given a dual pair 〈X, X′〉 where X is partially ordered, X+ = {x ∈ X : x ≥ 0}, X′
+ = {x′ ∈

X′ : 〈x, x′〉 ≥ 0 for all x ∈ X+}, and X++ = {x ∈ X : 〈x, x′〉 > 0 for all x′ ∈ X′
+}.
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For any vector e = (e1, . . . , em+1) ∈ Xm+1
++ and λ ∈ A, ∂vf

e(λ, eV ) = {(p(λ) ·y)Im}
where Im is the m × m identity matrix; since p(λ) is strictly positive for each λ,
∂vf

e(λ, eV ) is nonsingular. Also λV (C) > 0, so 0 is a strongly regular value of f
relative to C. Let R ≡ {e ∈ C : 0 is a regular value of f(·, e)}; R is prevalent in C
by Theorem 3.7, and by Theorem 2.2, for each e ∈ R the equilibria of the economy
corrsponding to e are determinate in that each equilibrium is locally unique and
every selection from the equilibrium set is locally upper Lipschitzian and semi-
differentiable at e.
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