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1. Introduction

Many economic situations are characterized by the existence of some type of comple-
mentarity, whether it be between the actions of players in a game, the outputs of firms
in an industry, or the products of several different industries. When goods in a market
are substitutes, a price increase by several other firms may make it more profitable for a
given firm to increase its price as well. In a model of bank runs in which a player must
decide whether to withdraw funds, withdrawals by other customers may make it more
profitable for him to withdraw as well. Technological innovation, in which many products
are better thought of as systems, provides a wealth of further examples, as improvements
in one part of the system often become more profitable with improvements in other parts
of the system. For example, the introduction of steel rails made possible the use of longer
trains which traveled faster and carried heavier loads, which was even more profitable with
similar improvements in braking technology. Similarly, the development of more powerful
engines and faster automobiles became even more profitable with the development of bet-
ter brakes and safety equipment, as well as better roads.! Indeed, Rosenberg (1979) argues
that the early industrial revolution can only be understood in terms of “the interactions
of a few basic technologies that provided the esseﬁtia.l foundation for other technological
changes in a series of ever-widening concentric circles...” (Rosenberg, 1979, p.29). More-
over, complementarities characterize many macroeconomic models of multiple equilibria
and coordination failure, as in Cooper and John (1988) and Heller (1986).

Several authors have explored the importance of notions of strategic complementarity
in economic models, which is defined by Bulow et. al. as the situation wherein a more
aggressive strategy by one player increases the marginal, rather than total, profit or payoff
to other players (Bulow et. al., 1985). Some of the first work on types of functions which
give rise to such strategic complementarity in games was done by Topkis. He develops
many results on submodular functions and submodular optimization, as well as developing
results on equilibria in certain games with submodular payoff functions (Topkis, 1976, 1978,
1979). Work on submodularity and submodular optimization, as well as related topics in
lattice programming, has also been done by Veinott (1989). Furthermore, Vives (1989)
and Sobel (1989) both discuss supermodular games, and give results on the existence of

equilibria in supermodular games, and the existence of monotone equilibrium selections

! These examples are found in Rosenberg (1979); for a more in depth discussion, see his

article.



in such games, as well as giving several examples of supermodular games in an economic
setting. Lippman, Mamer, and McCardle (1987) use transfinitely iterated play to analyze
equilibria and comparative statics in games with monotone increasing composite best reply
functions, which is one of the implications of supermodularity.

Milgrom and Roberts (1989a) develop quite strong results in a model of modern man-
ufacturing which exhibits strategic complementarity via supermodularity, and then give
a relatively comprehensive theory of supermodular games in a following paper, detailing
a number of strong results which derive from relatively weak order- and lattice-theoretic
notions (Milgrom and Roberts, 1989b). They show that in any supermodular game, not
only does a Nash equilibrium always exist, but a closed interval can be found whose end-
points are the smallest and largest serially undominated strategy profiles in the game, as
well as the smallest and largest Nash equilibria in the game. Moreover, these endpoints
represent monotone selections from the equilibrium correspondence. They also give com-
parative statics and welfare results for such games, as well as a large number of examples
demonstrating how these theorems can be applied to yield interesting new results.

A common theme to most of this work, however, is the inherently cardinal nature
of the underlying assumptions which drive the results, whereas the results themselves are
inherently ordinal. Indeed, as related by Topkis (1978, pp. 310-11), Samuelson criti-
cized such a definition of complementarity as applied to consumer decision making on the
grounds that strictly monotone transformations in utility may not preserve the property
of complementarity thus defined (Samuelson, 1947). Moreover, in many games, the issue is
not so much the actual number which is the payoff to a player as it is the actions induced
by comparisons of payoffs under different strategies, so that as in the consumer decision
problem, it is really only the ordinal information contained in the payoff function which
is of interest. This suggests that an ordinal theory of complementarity would not only be
powerful, in that one could hope to recover all of the results known for supermodularity,
but important as well, in that while encompassing supermodular games, potentially many
more situations not previously covered could be analyzed using these powerful tools.

This paper develops an ordinal theory of strategic complementarity for which all of
the existing results for supermodular games carry over, and discusses several methods of
characterizing this class of games. Examples of games in this class are developed, including
certain Bertrand oligopoly models with convex cost functions, and a pure exchange general

equilibrium model with gross substitutes.




The paper proceeds as follows: section 2 details some preliminary results, including
most of the relevant definitions and some results on optimization of functions with these
ordinal concepts of complementarity; section 3 develops the theory of games which exhibit
this type of complementarity; section 4 discusses methods of characterizing this class of

games; section 5 presents several examples, and section 6 concludes.

2. Preliminaries

Before turning to the ordinal theory of games with strategic complementarity, some
definitions and preliminary results are required. Let X be a partially ordered set, with
the transitive, reflexive, antisymmetric order relation >. Then recall the following order

theoretic notions:

z € X is a maximal element of X if Ay € X such that y > z.

z € X is the largest element of X if z > y Vy € X.

Minimal element and smallest element are of course defined analogously.

Given z,y € X, denote by z V y the least upper bound of =z and y (if it exists),
and by z A y the greatest lower bound of z and y (if it exists). X is then a lattice if
Vez,y€ X, zVy € X and z Ay € X; thus X is a lattice iff Vz,y € X, £V y and z A y exist
and are elements of X.

A lattice X is complete if for every nonempty subset Z C X, inf(Z) € X and
sup(Z) € X.2 A subset Z of X which is closed under the operations V and A is a
sublattice. A subset Z of X is a quasisublattice if Vz,y € Z, either zVy € Z or
z Ay € Z. Perhaps the simplest example of a complete lattice is S = [0,1] x [0,1];
{0,1} x {0,1} is a complete sublattice of S, and (0,0) U (0,1) U (1,0) is a quasisublattice
of S which is not a sublattice.

With these basic notions of the order structure of the spaces in question, some notions
of the behavior of functions on such spaces are possible. Let C C X be a chain, and let
¢t = sup(C), ¢. = inf(C). Then if X is a complete lattice, f : X — R is order

continuous iff V chain C C X,

limeeo, a1c, flz) = f(c.)

2 Completeness is also equivalent to the lattice being compact in the interval topology;
see Birkhoff (1967) or Frink (1942).



and
lim,cc, ater f(2) = f(c*).

f is order upper semi-continuous iff V chain C C X,

lim sup,ec, zlc.f(z) < f(c*)
and
lim  sup,ec, o1 f(2) < f(c7)

Finally, let S be a lattice. Then f : S — R is supermodular if Vz,y € S,

flzvy)+ flzAy) > f(z)+ fv)-

This property has been studied under various pseudonyms by Veinott (1989), Topkis (1978,
1979), Milgrom and Roberts (1989b), and others.

As discussed above, one of the main goals of this work is to explore the ordinal
underpinnings of the theory of supermodular games and supermodular optimization, with
the hope of developing a more general theory which encompasses the inherently ordinal
results already in the literature. With this goal in mind, then, a closer examination of the
ordinal implications of the cardinal property of supermodularity is in order.

Suppose f : S — R is supermodular. Then if

f(z) > f(zVvy),

by supermodularity it must necessarily be the case that

fzAy) = fly)-

This is clearly an ordinal implication of supermodularity; however, it is not sufficient to
guarantee one of the main results on monotonicity (Proposition 1), as will be seen below.

The remaining ordinal information contained in supermodularity is analogous:
fy) = f(zAy)
= f(zVy) > f(z)
or, reformulated using the contrapositive,
f(z) > f(zVy)
= f(z Ay) > f(y)-
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Then f : S — R will be said to be quasisupermodular (gsm) iff Vz,y € S,

f(=z) 2
= f(zAy) >

(zVy)

f
f(y)

and

f(z) > f(zVy)
= f(z Ay) > f(y)-

A similar cardinal condition which is important both in the existing literature on
supermodular games (see Topkis, 1978, and Milgrom and Roberts, 1989b, for example)
and in the present work, is increasing differences. Let S = S; X S;, where S;,S; are
lattices and S is endowed with the product or component-wise ordering. Then f: S — R
exhibits increasing (or isotone ) differences in (z,y) iff Vz' > =z, f(z',y) — f(z,y)
is nondecreasing in y. Note that this definition is symmetric in (z,y); that is, this is
equivalent to the condition that f(z,y') — f(z,y) be nondecreasing in z.

When f if taken to be the payoff function of a player in a noncooperative game, z
that player’s strategy variable, and y the strategy variables of his opponents, increasing
differences implies the existence of a type of strategic complementarity: facing an increase
in the strategy variables of his opponents, the player finds a given increase in his strategy
variable more profitable at the higher level chosen by his opponents than at the prior,
lower level. In other words, the player finds that increasing his strategy variable is even
more profitable to him if his opponents also increase their strategy variables.

The corresponding ordinal notion which is explored in this paper carries the (ordinal)
interpretation that an increase in a player’s strategy variable which is profitable at some
level of the opponents’ strategy variables is also profitable at any higher level chosen by
the opponents. This is a weaker notion of complementarity than increasing differences,
as increasing differences requires increases in a player’s strategy variable to become more
profitable when other players also increase, yet this ordinal notion, while requiring that
any profitable increase remain profitable when other players increase, makes no statement
about the degree of profitability. In the ordinal world, a player may find that the addi-
tional return from increasing his strategy variable, while remaining positive, could decrease
under certain increases made by his opponents, yet this could never happen in a world of

increasing differences.



Formally, f : S — R has the single crossing property (scp) in (z,y) iff

>z, f(z,y)— f(z,¥) > (>)0
= f(e,y) - f(z,y) > (>)0 V' 2>v.

Some pictures might be useful at this point to clarify the concepts.
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The picture on the left displays behavior which is acceptable for a function with the

single crossing property as well as behavior which is not acceptable, explaining the name

given to the condition. The picture on the right displays the behavior required of a function

with increasing differences, and highlights the difference in character imposed by these two

properties.

With these definitions in place, it is possible to begin establishing the properties of

functions which are quasisupermodular, or have the single crossing property. First, such

functions exhibit a type of monotonicity.

Proposition 1. Let S, be a lattice, and S; be a partially ordered set. Let f : S5, X S; — R
be gsm in z for y fixed, and let f have the scp in (z,y). Let y' >y, and define M =
argmaz,cs, f(z,y), M' = argmaz,es, f(z,y'). Let z € M, 2’ € M'. Thenz Az’ € M,
and zV ' € M'. Hence M is a sublattice.

Proof: Consider zV z':

TEM=>

flz,y) > f(z A 2',y)

6




= by gsm

flzve,y) > f(',y)

But zV z' > z' and y' > y, so by the single crossing property,
flzvz,y') > f(z',y).

=zVz e€M.
Consider z A z'":
reM =

fle',y')> f(zv,y')

zV x' > ', so by the single crossing property,

flzva,y) - f(e',y) > (>) 0
= f(zve,y)-f(«,y')> (>)0.

But
flzve,y)—f(z',y) #0
Hence
fly) - flzve,y) 20
or
f(&'y) 2 f(zv e,y
thus by gsm,
flznz',y) > f(z,y)
=>zAz' €M.

Letting y = v’ gives Vz, 2’ € M, zVz' € M and z Az’ € M, i.e., M is a sublattice. |

M is then said to be lower than M’, denoted M <, M’, a relation introduced by
Veinott (see Topkis, 1978, Veinott, 1989). A result similar to Proposition 1 also holds for

certain types of constrained optimization, as the following corollary shows.
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Corollary. Let f be as in Proposition 1, and suppose T(y) <, T(y'), for y' > y. Define
M = argmaz,cr(y) f(z,y), and M' = argmaz,cr () f(z,y'). Let £ € M and ' € M'.
ThenzxANx' e M andzVz' € M'.

The corollary is proved in the same manner as the proposition, using the relation <,

to establish that if z € M and ' € M', then zAz' € T(y) and z VvV =’ € T(y').

It is to ensure that this proposition and corollary hold that the full ordinal content
of supermodularity is required in the definition of quasisupermodularity.® The above
proposition then shows that if f(-,y) is gsm for a given y, the set of maximizers of f(-,y) is
a sublattice. However, it does not guarantee that this is a nonempty sublattice. A logical
question is then when is M = argmaz,cs, f(-,y) nonempty? Conditions under which M
is nonempty arise from the following theorem due to Veinott (1989), which requires an
additional definition.

Let L* = {z € S : f(z) > a}, a € R. Then f : S — R is upper chain
subcomplete iff Vo € R, L* is chain subcomplete, i.e., iff V chain C C L*, sup(C) € L*
and inf(C) € L*.

Theorem (Veinott). If f : S — R is upper chain subcomplete, S is a complete lattice,

and L* is a quasisublattice Vo € R, then f attains its maximum on S.

The existence result alluded to above then follows as a corollary of this theorem, by
showing that requiring f to be gsm and order upper semi- continuous implies that f is

upper chain subcomplete and that L* is a quasisublattice Vo € R.

Proposition 2. If f : S — R is gsm and order upper semi- continuous, and S is a

complete lattice, then f attains its maximum on S.

Proof: First, f gsm = Va € R, L“ is a quasisublattice:
Let « € R, and z,y € L*. Then f(z) > e, and f(y) > a.
Suppose zVy ¢ L, so that f(z Vy) < a. Then

flz) > a>f(zVy)

8 A function which only satisfies the first ordinal implication of supermodularity as
detailed above may fail to have its set of maximizers be a sublattice: consider the lattice
[0,1] x [0,1], and the function f(z,,z;) = 1 — min(z,, z,).
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= by gsm
flzry) > fly) > @

ie, Ay € L".
Thus L* is a quasisublattice.
Furthermore, if f is order upper semi-continuous, f is upper chain subcomplete:

Let C C L*. Then Vz € C, f(z) > a. Thus order upper semi-continuity =

a<lim sup.cc,zic. f(z) < f(e.).

=c, € L°.
Similarly,
a <lim sup,ec,ate f(z) < f(c7).
= c* € L°.
Therefore by the theorem cited above, f attains its maximum on S. |

It should be noted that as pointed out by Milgrom and Roberts (1989b), it is certainly
not true that every bounded, order upper semi-continuous function from a complete lattice
to R attains its maximum. For a counterexample, see Milgrom and Roberts (1989b).

The preceding two propositions serve to establish that if f : S — R is qsm and order
upper semi-continuous, where S is a complete lattice, M = argmaz,¢ s f(z) is a nonempty
sublattice of S. Moreover, M is actually a complete sublattice of S, which is established

by the next proposition.

Proposition 3. Let f be an order upper semi-continuous function from a complete lattice

S to R. If M is a nonempty sublattice of S, then M is a complete sublattice of S.

The proof of this proposition follows from the proof of Theorem 2, Milgrom and
Roberts (1989b).

This proposition shows in particular, since M is a nonempty subset of itself, that under
certain conditions, there exist greatest and least elements of the set M of maximizers of a
gsm function f. If f(z,,z_,) is the payoff function of player n in a game, and f(:,z_,)
is gsm for each z_, and satisfies the conditions of Propositions 1-3, then the preceding
three propositions tell us that the player’s best reply correspondence is nonempty, complete
sublattice valued. In particular, to each strategy profile z_, of the opponents, the player

always has a greatest and a least best response among his strategies. Furthermore, these
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largest and smallest best responses move monotonicly in z_,,, so that if ', > z_,, then

*
n

z: (2 ) > = (z_,), and similarly for z,.,.
These results on the nature of gsm functions and their sets of maximizers will pro-
vide the foundation for the ordinal theory of games which exhibit this type of strategic

complementarity, developed in the next section.

3. Games With the Single Crossing Property

Consider the following general environment in which a certain class of games will be
defined. A nonempty set N indexes the players in the game, and each player n € N chooses
his strategies from a set S, , which is partially ordered by >, . The space of strategy profiles
is then S = Hf:;l S, , partially ordered by the product or component-wise ordering. Each
player n € N has a payoff function f, (z,,z_,). The combinationT' = {N,(S,, fa)nen,>}
is called a game in ordered normal form by Milgrom and Roberts (1989b). The game T’
will be called a game with the single crossing property (scp game) if Vn € N:

(1) S, is a complete lattice.
(2) fo : S = RU{—o0} is order upper semi- continuous in z, for z_, fixed, and order

continuous in z_,, for fixed z,,.

(3) f. is gsm in z, for z_, fixed.
(4) f. has the scp in (z,,z_,).

A player in a game with the single crossing property is then assumed to experience a
weak sort of strategic complementarity, both within her own strategy variables, and with
her opponents. The requirement that f, be gsm in z,, for given z_,, expresses this idea of
complementarity between a player’s own strategy variables, while the requirement that f,
have the scp in (z,,z_, ) expresses the complementarity between players, so that if a player
ever finds an increase in strategy profitable, she will also find that increase to be profitable
under an increase in the opponents’ strategies. The requirement that f, be gsm in z,
for fixed z_, is often not very restrictive, however. An examination of the inequalities
defining gsm shows that any function whose domain is R, or any chain C for that matter,
is automatically gsm, as the order notions V, A are then trivial. Hence whenever the
strategy variable of each player is real-valued, or lies in some chain, (3) becomes vacuous.

Once the particular characteristics of a game, such as the player set and payoff func-
tions, have been specified, natural questions arise concerning the existence and nature of

various equilibrium notions. The potential power of the relatively weak order notions of
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order continuity, order upper semi-continuity, gsm, and the single crossing property is dis-
played in the next several propositions. If the game in question is a game with the single
crossing property, then as the following proposition will establish, not only does a Nash
equilibrium always exist in the game, but in fact there exists an interval [z.,z*] C S such
that z, and z* are the smallest and largest serially undominated strategy profiles. The in-
terval [z, ,z*] then contains all of the serially undominated strategies; i.e., those strategies
which remain after the iterated removal from the strategy space of each player all pure
strategies which are strongly dominated. Moreover, both z, and z* are Nash equilibrium
profiles, and hence they are the smallest and largest Nash equilibrium profiles. A game
with the single crossing property generates a closed interval that not only strictly bounds
the set of serially undominated strategies in the sense that the endpoints of the interval
are themselves serially undominated strategy profiles, but also necessarily bounds both the
set of possible pure and mixed strategy Nash equilibria, and the set of possible correlated
equilibria.* Furthermore, these bounds coincide with the actual bounds on the set of Nash

equilibria in the game. Formally, the result is given in the following proposition.

Proposition 4. Let T be a scp game. Then Vn € N, there exist strategies z,, and
z; which are the smallest and largest serially undominated strategies for that player.

Moreover, the pure strategy profiles z, = (z,.;n € N) and z* = (z};n € N) are Nash

equilibria.

Before discussing the proof of this proposition, more notation and a lemma are re-
quired. Given z € S, let B,.(z) denote the smallest best response of player n to z_,,
and B (z) denote the largest best response to z_,, in a game with the single crossing
property, which are well-defined by Proposition 3. Let B,(z) = (B,.(z);n € N) and
B*(z) = (B:(z);n € N). For T C S, define

U, (T)={z, € S, :Vz, €85,, IZ€T st. fo(Tn,%-0)> fulz,,E-0)}

Then U, (T) represents the strategies of player n which are not strongly dominated
when the player faces strategies in T. Let U(T) = (U.(T);n € N), and U(T) =

[inf{U(T)}, sup{U(T)}].

4 Tt is well known that pure and mixed strategy Nash equilibria must be serially un-

dominated, and that only serially undominated strategies will be played with positive

probability at any correlated equilibrium.
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Lemma. Under the conditions for a scp game, let z,, z* € S be such that z, < z*. Then
sup{U([z.,2*])} = B*(2*) and inf{U([2.,2*])} = B.(z.); hence

U([z.,2"]) = [B.(2.), B*(2")].

Proof: By definition, B*(2*), B.(2.) € U|z.,2*], hence [B.(z.), B*(z*)] C U([2.,2*]).
Suppose z ¢ [B.(z.),B*(z*)]. Then z ¢ U([z.,2*]). To see this, suppose 2z, £ z: =
B: (2*). Then let z € [2,,2*]. By the scp,

fu(zn,z—n) - fn (zn Az:;’z—n) Z 0
= fn(znyz:n) _fn(zn /\Z;,Z:n) Z 0

By gsm, if the last line above holds, then

fa(za VZzi,28 )= fulzi,22,) >0.
But z, V 2% > 2, so by the definition of z,*,v

fa(2a VZzi,20 ) — fu(zh,22,) <O.

Thus
fn(Zn,,x_n) - fn(z,,, /\ z:,x_n) < 0.

Thus 2, A 2! strongly dominates 2, against every z € |z.,2*|. Hence 2z & U([z., 2*]).
A similar argument shows that if z, 7 z,. = B,.(2.) for some n, then z, V z,. strongly

dominates 2, against strategies in [z,,2*]. Therefore U([z,,2*]) = [B.(z.),B*(z*)]. M

With the establishment of this lemma, the proof of the proposition follows exactly
as the proof of Theorem 5, Milgrom and Roberts (1989b), relying solely on the preceding
lemma, the monotonicity of the operator U, the definition of serially undominated strate-
gies, and order continuity. It is interesting to note that this proof is actually constructive,
generating an algorithm for finding z, and z*, and hence for finding a pure strategy Nash
equilibrium in the scp game I.

Although there are certainly cases where the result described by this proposition is
vacuous or nearly so, as when [z, ,z*] = S, there are many instances when the implications
are quite striking. First, as stated above, this proposition implies that for any scp game T,

there exists a pure strategy Nash equilibrium; indeed, there exists a largest and smallest
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one. If the game in question has a unique pure strategy Nash equilibrium, it is actually
dominance solvable; that is, the iterated elimination of strongly dominated strategies leaves
each player with a singleton, and the resulting strategy profile composed of these singletons
is the unique pure strategy Nash equilibrium. Finally, if the scp game I' is symmetric
in N, and has a unique symmetric pure strategy Nash equilibrium, then as noted by
Milgrom and Roberts (1989b), it is dominance solvable as well. This follows from the line
of reasoning used above by noting that if I' is symmetric in n, then z,, = z;, Vn € N,
and z; =z} Vn € N, hence z, and z* are symmetric pure strategy Nash equilibria, which
must by uniqueness be equal.

The last result in this section concerning the theory of games with the single crossing
property develops some of the properties of comparative statics in such games. More
precisely, suppose the payoff functions of players are parameterized by 7 € T, where T is
a partially ordered set. Under the additional assumption

(5) fo(zn,2_,;7) has the scp in (z,,7) for z_,, fixed,
the following proposition holds.

Proposition 5. Let ', = {N,S,, fo(Z.,Z_,,7), >} be a family of games with the scp
satisfying (5), where € T and T is a partially ordered set. Then z,.(r) and = (7) are

nondecreasing functions of 7.

Again, the proof follows as the proof of the analogous result in Milgrom and Roberts
(1989b). The preceding results have established that the strong properties of supermod-
ular games all carry over to the purely ordinal notion of games with the single crossing
property. Several issues which remain to be addressed relate to the breadth and impor-
tance of this class of games. The following section deals with the question of breadth
by considering the nature of quasisupermodularity and the single crossing property, and

possible characterizations of these conditions.
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4. Characterizing Quasisupermodularity and the Single Crossing Property

It is in searching for conditions which are necessary and/or sufficient to guarantee that a
function f : S — R be gsm that one comes to realize how much more general and en-
compassing quasisupermodularity is in relation to the cardinal notion of supermodularity.
This increased generality is both a help and a hinderance, in that while increasing the
scope of the results pertaining to these games, the difficulty of determining when games
fall into the class of scp games may increase as well.

Before discussing various characterizations of gsm, however, it should first be demon-
strated that qsm is not a trivial ordinal extension of supermodularity, in the sense that the
class of gsm functions is much larger than the set of strictly monotone increasing transfor-
mations of supermodular functions. Indeed, it is clear from the definition of gsm that if
S is a lattice and f : S — R is supermodular, then g o f is gsm for any strictly monotone
increasing function g : R — R, fortunately. However, given a gsm function A : S — R,
there does not always exist a strictly monotone increasing function g : R — R such that
goh is supermodular, as the following example illustrates. Consider a function which takes
values as indicated on the lattice {0,1} x {0,1,2,3} with the usual order on R in each

chain.

Then h is gsm, yet if g : R — R is strictly monotone increasing and g o f is supermodular,

then

Hence g(5) < g(4), which is a contradiction.
Furthermore, the above example also shows that given a qsm function h, there does
not always exist a transformation g : R x S — R, where g is strictly increasing in the first

argument, such that g(h(z),z_,) is supermodular. To see this, note that on a product of
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discrete sets, such a transformation is'simply a collection of row-specific, strictly monotone

increasing transformations g, and g,. Then supermodularity requires

91(2) +92(3) < g1 (1) + 92(4)
9:(1) +92(5) < ¢:1(2) +9:2(3)

But this implies g, (5) < g,(4), which is a contradiction.

Therefore, at least in the sense given above, the class of gsm functions is not merely
a trivial extension of the notion of supermodularity. In fact, the class of gsm functions is
really quite broad. For example, any strictly monotone increasing or decreasing function
g : S — R, where S is a lattice, is qgsm, whereas monotonicity is clearly not sufficient
for supermodularity. From this observation one can construct many gsm functions. For

example, let g; : S; — R be nonnegative and monotone increasing, where S; is a lattice.
Then f :[[ S: — R given by

f(xl,---xk) =0 (x1) . 'gk(zk)

is gsm, as is

f(zy,.z) = g1(z1) + oo + gi (1)-

The generality of gsm can also be seen by comparison with the lengths to which one must
go to construct supermodular functions as demonstrated by Topkis (1978, p. 312).
Topkis also points out that supermodularity is closely related to concavity: both are
cardinal, second-order properties which involve an infinite number of inequalities in gen-
eral, yet for C? functions on R¥*, each has a simple characterization in terms of restrictions
placed on second partial derivatives. Indeed, many properties of concave functions served
as inspiration for the derivation of similar properties of supermodular functions (Topkis,
1978, p.319). Moreover, the relationship between supermodularity and quasisupermodu-
larity is much like the relationship between concavity and quasiconcavity, with the analogy
between quasiconcavity and quasisupermodularity exploited by the choice of name for this
ordinal condition. Although the increased generality of quasiconcavity makes characteriz-
ing it more difficult than characterizing concavity, several sets of necessary and sufficient
conditions do exist for quasiconcavity, chief among which are restrictions placed on the

bordered Hessian matrix of first and second derivatives, and restrictions on the level sets.
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One might hope that some sort of similar characterizations can be developed for quasisu-
permodular functions. Results of varying degrees of power along these lines are developed
below by appealing to this hope.

The result alluded to above regarding the characterization of C? supermodular func-
tions is given in Topkis (1978), and follows from an important characterization also given

by Topkis (1978) concerning functions whose domains are finite products of chains:

Theorem (Topkis). If S; is a chain for 1 = 1,...,n, then f has (strictly) increasing
differences in (z;,z;) Vi# j on [[]_, S; iff f is (strictly) supermodular on [];_, S;.

This theorem implies that when the function under consideration has domain equal to
a finite product of chains, the question of whether the function is supermodular reduces to
the question of whether the function has increasing differences in every pair of variables.
When S; = R for every 1, so that [[7_, S; = R, then f is supermodular iff for every
t, f(z + ee;) — f(z) is nondecreasing in z; for every 5 # ¢ and for every € > 0, where
e; = (0,...,1,...,0) is the i** standard basis vector in R®. Hence if f € C*, then f is
supermodular iff 3f/dz; is nondecreasing in z; for every ¢ # 7 and for every z € R. For
f € C?, f is then supermodular iff 8* f/dz,;0z; > 0, for every ¢ # j, and for every z € R.

The equivalence of supermodularity and increasing differences for functions whose
domain is R™, combined with the equivalent differential conditions for C* and C? functions,
is crucial, as many economic examples will involve individual strategy spaces which are
at least chains, if not subsets of R, and payoff functions which are C* for some k >
2. Furthermore, although supermodularity is often easier to work with as a technical
condition, increasing differences carries the interpretation of strategic complementarity
which is often found in economic examples; thus their equivalence for functions whose
domain is a finite product of chains is quite helpful in identifying supermodular games.

However, with the increased generality of gsm and the single crossing property, some
of these useful results are lost, in turn complicating the job of identifying scp games.
For example, it is no longer true that for a function on a finite product of chains, gsm
is equivalent to the single crossing property in every pair (z;,z;), 1 # j. Indeed, this
equivalence breaks down even on a relatively simple product of discrete sets. For example,
consider a function f which takes values on {0,1} x {0,1} x {0,1}, as depicted below,

where 0 < 1 in every chain.
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4 -3

Then f has the single crossing property on the given lattice, but f is not gsm there, as
—1= f(1,0,1) > f(0,0,0) = —2, but 1 = f(1,1,1) # f(0,1,0) = 4. However, the converse

is true.

Proposition 6. If S; is a lattice for 1 = 1,..m, S C [[~, S; is a sublattice, and f :
S — R is gsm, then f has the single crossing property in (z;,z;) Vi # j (and hence in
(Zpsz_n) Vn).

The proof is clear from the relevant definitions.

Results similar to the differential characterization of supermodularity, concavity, and
quasiconcavity do exist for gsm and the single crossing property, as illustrated in the

following proposition, yet the conditions derived are merely necessary and not sufficient.

Proposition 7. Let f : U — R have the single crossing property in (z;,z;) Vi # j,
where U C R™ is open. Then
(1) If f € C*, then V1,

D,-f(z,-,:z:_,-) >0:>D;f($;,$'_i) 20 V:l:'_,- Z:Z:_,-.
(2) If f € C?, then Vi,
Dif(xiaz——i) :0:>Dijf(xi,x—i) ZO VZ#]

Proof: Both (1) and (2) follow from the observation that f has the single crossing property
in (z;,z;) Vi#j < Vi, Ve>0,
flz: +e,z_;) — fzi,z_;) > (>)0
= f(xi + E,!E’_'-) - f(xiax{-;')

A
v
o
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Then if f € C*, and the above holds, so that f has the scp, D; f(z;,z_;) > 0 =

Hmh_’of(zi+h,z—€’1—f(xi,z—i) >0 (1)

(1) holds <= 3h st. h<h=

fz: + hyz_;) — f(zi,2-:) >0 (1)

Then by the scp, (1) = V', > z_;,

f(z; + h,z' ) — f(zi,2".,) >0 Vh<h.

=>D.-f(:c,-,:z:;) 20 V:z:'_‘. 2.’13_,'.
Then if f € C?, (2) follows from (1). |

The same proof can be used to establish a slightly more general result. Let f be gsm
and real-valued on an open set U C R”, and f € C*. Then if v € R", let D, f(z) denote
the directional derivative of f in the direction v. One can show that if v is nonnegative,
D, f(z) > 0= D, f(z') > 0 for every z' > z. Similarly, if v is nonpositive, then D, f(z') <
0= D, f(z) <0 for every z < z'.

Disappointingly, although these conditions are necessary for a function to have the
single crossing property, and hence to be gsm, they are not sufficient. It is not very difficult
to discover examples of functions which satisfy (1) and (2) as above, but which fail to have
the single crossing property. For example, let g(z,y) = y - sin?(z), where y € R, and
z € (7/2,m) U (37/2,27). Then (1) and (2) will hold, but clearly 3z', z in this range such
that ' > = and sin?(z') — sin®(z) < 0, so that g(z',y) — g(z,y) > 0 when y < 0, yet
9(z',y) — g9(z,y) < 0 when y > 0.

Another method which is slightly more fruitful when attempting to characterize gsm
functions is to consider the level sets of such functions, and examine the restrictions on such
sets which are implied by or imply qsm. As discussed above, this approach is suggested
by the analogy between concavity and quasiconcavity on one hand, and supermodularity
and quasisupermodularity on the other hand, together with the characterization of quasi-
concave functions as precisely those having concave level sets. The lattice structure of the

level sets of gsm functions cannot be quite so precisely determined, yet more can be said
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about these sets than could be determined about the differential nature of such functions.

Using the same notation as above, where L* = {z : f(z) > a}, it can be shown that
L* is a sublattice Va = f is gsm = L* is a quasisublattice Ve.

Of course the second implication has already been demonstrated in the proof of Proposition
2.5

This result follows from the next proposition and work done by Veinott (1989) con-
cerning another class of functions which he refers to as supermeet and superjoin. Formally,
a function f is called (strictly) supermeet if f(zVy) A f(zAy) > (>)f(z) A f(y). Su-
perjoin is defined analogously, with the join relation in place of the meet relation. It is
interesting to note first that supermeet and superjoin are ordinal conditions, and moreover,
a function f is supermeet iff L* is a sublattice for every a € R. Furthermore, supermeet

and superjoin are related to the notion of gsm, as the next proposition demonstrates.

Proposition 8. If S is a lattice and f : S — R is either strictly supermeet or strictly
superjoin, then f is gsm. Moreover, if f is qsm, then Vz,y € S, f is either supermeet or
superjoin at z,y.
Proof: Suppose f is strictly superjoin on S. Then suppose f(z) > f(z V y). Since f is
strictly superjoin, f(zVy) # f(zVy) VvV f(z Ay). Then f(zAy) = f(zVy)V flz Ay).
Hence f(z Ay) > f(z) V f(y) > f(y). Therefore f is gsm.

Suppose f is strictly supermeet, and suppose f(z) > f(z V y). Then either

(1) f(zVy) = f(zVy) A f(zAy) and hence f(z) # f(z) A f(y)

or
(2) f(zVvy) # f(zVy) A flzAy).

(1) = f(zAy) = f(zVvy) > f(z) A fy) = f(y)-

(2) = f(z) = f(z)VSf(y),as f(z) > f(zVy) > f(zAy) > f(z)A f(y). Hence f(zAy) > f(y).

Therefore, f is gsm.

Finally, suppose f is qsm, and suppose Jz,y € S such that f is neither superjoin nor

supermeet at z,y. Then
f@)Afly) > flzVvy) A flzAy)
f@) Vv £y) > flzvy) Vv flzAy).

5 Having quasisublattice-valued level sets is not sufficient for a function to be gsm,

however, and counterexamples are easy to come by.
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However, this contradicts the quasisupermodularity of f. |

Then this proposition, combined with the result quoted above about the level sets of
supermeet functions, yields the first implication, that if L* is a sublattice for every « in
R, then f is gsm.

Veinott (1989) has developed further necessary and sufficient conditions for a function
to be supermeet in the special case that S = []|- S;, where each S; is a chain, and

f:S — T, where T is a complete chain, as detailed in the following theorem.

Theorem (Veinott). With the above conditions, f is supermeet iff f = Af;;, where
i,7€{1,..m}, fi;:S—>T,and f; is a function only of z;,z; which is increasing in z;

and decreasing in ;.

Combining the above results yields a broad, ordinal class of functions which is a subset
of the class of gsm functions, yet for which relatively simple necessary and sufficient con-
ditions can be found. One very interesting consequence of the fact that strictly supermeet
functions are a subset of gsm functions is striking confirmation of the size of the extension
from supermodular to quasisupermodular functions: in general, strictly supermeet is a
concept which is disjoint from supermodularity. Supermeet does not imply supermodu-
larity, which is not surprising, and moreover supermodularity does not imply supermeet.
Counterexamples can be readily constructed, and several simple ones are given below for
illustration.

supermeet 7 supermodular:

[ ] [ ]
10 5
[ ] [ ]
4 0
supermodular # supermeet:

[ o
3 5
® [ ]
0 1
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If f(z.,z_,) is the payoff function of a player in a game in ordered normal form, to say
that f is supermeet assumes that a certain amount of return to coordination exists in the
game. For suppose z!, > z,,and ', > z_,; then let y = (z,,z_,); 2 = (z,,z",). The
assertion that f is strictly supermeet requires that f(z!,z" A f(Z.,z-,.) > f(zl,z-n) A
f(zn,z",). In a worst case scenario, coordination pays off more than disparity, as the
minimum payoff to the player if everyone chooses either higher levels or lower levels is
greater than the minimum payoff if only some players choose higher or some players choose
lower levels. Such a situation is related to the coordination failure models discussed by
authors such as Cooper and John (1988) and Heller (1986). For example, Heller (1986,
pp.157-158) discusses a model of markets for two complementary goods in which demand
in each industry is conditional on the equilibrium outcome in the other industry. A low-
level and a high-level equilibrium exist in the economy, hence coordination can move the
economy out of the low-level equilibrium and into the high-level equilibrium. However,
without coordination, expansion by just one producer in an industry may just increase
demand for other producers’ goods in the industry, without increasing demand for his.

Several examples of games which display such complementarity, or the more general

single crossing property, are discussed in the next section.

5. Examples

The first example of a game with the single crossing property is the class of Bertrand
oligopoly games with differentiated products in which each firm faces a convex cost func-
tion. Milgrom and Roberts (1989b) have analyzed the class of Bertrand games where each

firm faces a constant unit cost, so that firm n faces the profit function

Tn = (pn - cn)Dn(pnsp—n)-

D, (pn,p-») is the demand function which firm n faces for its product, and Milgrom and
Roberts (1989b) have shown that if log(D, ) is supermodular for every n, and firms are
restricted to choose prices in some closed interval [0, P, ], then the corresponding game is
supermodular as well. There are many demand functions for which log (D) is supermodular,
including several which arise often in applications. For example, linear, CES, logit, and
translog demand functions are all included. Milgrom and Roberts (1989b) were further
able to show that any such Bertrand game has a unique Nash equilibrium, and thus is

dominance solvable.
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Milgrom and Shannon (1990) show that given any such Bertrand game with unit costs
for which each firm’s profit function has the single crossing property in (p,,p-,) for every
choice of the constant unit cost level ¢, , the corresponding game in which constant unit
cost functions are replaced by convex cost functions is a game with the single crossing
property, under the assumption that D, (p,,p-,) is nondecreasing in p_,,.

The results of Section 3 imply that for any such Bertrand game, there exists an
interval of price vectors [p.,p*| such that p, and p* are the smallest and largest serially
undominated strategy profiles, as well as the smallest and largest Nash equilibrium profiles.
Also, for every player n € N, p,.(p-,) and p; (p-,) are monotone increasing in p_,. If
there were a unique pure strategy Nash equilibrium, the corresponding game would be
dominance solvable; however, uniqueness has not yet been determined.

A second example of a game with the single crossing property, also detailed by Milgrom
and Shannon (1990), deals with a model about which quite a bit is already known: an
exchange economy in a general equilibrium setting with gross substitutes.

Consider an Arrow-Debreu economy with [ goods and a finite number of consumers,
and let Z;(p) denote the aggregate excess demand function for good ¢, ¢ = 1,...,I. Demand
for each good is assumed to exhibit gross substitutability, so that Z;(p) is decreasing in
p; and increasing in p; for every j # 1. This model can be converted into a game with
the single crossing property by creating a player for each market whose duty it is to set a
price p; € [0,00]* for good 7, where [0, 00]* is the one point compactification of [0, o), and
whose payoff function is —|Z;(p)|. Each payoff function is then of the form g o f, where
g : R — R is strictly quasiconcave, and f is a function which is increasing in one argument
and decreasing in all other arguments. Such a function has the single crossing property,
as shown in Milgrom and Shannon (1990).

Under the condition of gross substitutes, there exists a unique competitive equilibrium
price vector for the economy. Clearly the only pure strategy Nash equilibria in the game
correspond to players announcing competitive equilibrium prices; hence there is a unique
Nash equilibrium in the game. Then it is dominance solvable, and moreover, utilizing the
results of Milgrom and Roberts (1990), this equilibrium is stable under a wide class of
learning processes other than tatonnemont.

An area in which one might think ordinal restrictions on payoff functions would be
crucial as well as applicable is consumer games, such as models of externalities, where

the players’ payoff functions would usually be utility functions. That these models are
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not compatible with single crossing property games indicates some of the difficulties with
quasisupermodularity and the single crossing property. Any sort of condition relating to
these payoff functions, such as qsm, or increasing differences, should be invariant to mono-
tone transformations of the payoff functions in accordance with standard ordinal utility
theory. Unfortunately, problems arise when one attempts to reconcile usual assumptions
about consumer behavior with the notions of single crossing games. Suppose player ¢ has
utility function or payoff function U;(z;,z_;), so that his utility level depends both on his
consumption vector z;, as well as the consumption vectors of the other N — 1 consumers
in the economy, denoted by z_;. As applied to this function, the single crossing property

would require that if z; > ;,

Ui(I:,z-i) —U.'(Ii,x—i) 0

= U;(I:,JZ'__‘) - U,‘(Z,‘,Z’_-) 2 0

v

for every vector z', > z_;. Yet a standard assumption regarding consumer behavior is
monotonicity in own consumption, so that with z_; fixed, z; > z; implies that U; (z},z_;) >
U;(z},z_;). Making this monotonicity assumption first guarantees that the player’s pay-
off function will be quasisupermodular in z; for fixed z_;, and strong monotonicity (i.e.,
T, > z;, =, # z;. = U;(z},z-;) > U;(z:,z-,)) will guarantee that the payoff function has
the single crossing property with respect to (z;,z_;).

However, the consumer does not carry out an unconstrained maximization of his
utility function, so U;(:,-) is not the relevant payoff function for the player. Instead, the
consumer’s problem when faced with prices p and initial endowment w; is maz., U;(z:,z_;)
subject to p- z; < p-w;. However, the budget set will not be a sublattice in general with
strictly pdsitive prices, hence the results derived for constrained optimization in section 2
are not applicable. The relevant payoff function if this model is viewed as a game is then
the Lagrangian £ = U;(z;,z_;) + A\ (p: w; — p - z;). With this payoff function, however,
satisfaction of the single crossing property will be in general incompatible with an ordinal

theory of utility, for consider the basic item of concern in single crossing:
ﬂ(xf,f\ux—i) - £($i,'\iax-i) = Ui(zﬁ,z—i - U,-(:z:;, 33—;') - Ai(P ‘T, —p- mi)-

The nature of this quantity, and the similar quantity with z’ ; in place of z_;, while
invariant to monotone increasing transformations of the function £, will no longer be

invariant to monotone increasing transformations of the utility function U;.
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6. Conclusions

This paper has sought to develop a theory of complementarity in economic behavior
which is purely ordinal in nature, and to demonstrate both the wide range of results
which pertain to such situations, as well as the wide range of situations included in the
theory. Many questions remain unanswered, however. Simple and powerful necessary
and sufficient conditions for quasisupermodularity and the single crossing property are
important to further develop the theory of such games, and to aid in the determination of
other examples of such games and the extension of some of the examples given. Moreover,
future research might attempt to develop a theory of strategic substitutability analogous

to the theory of strategic complementarity.
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