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Abstract

One of the central features of classical models of competitive mar-
kets is the generic determinacy of competitive equilibria. For smooth
economies with a ¯nite number of commodities and a ¯nite number of
consumers, almost all initial endowments admit only a ¯nite number
of competitive equilibria, and these equilibria vary (locally) smoothly
with endowments; thus equilibrium comparative statics are locally de-
terminate. This paper establishes parallel results for economies with
¯nitely many consumers and in¯nitely many commodities. The most
important new condition we introduce, quadratic concavity, rules out
preferences in which goods are perfect substitutes globally, locally,
or asymptotically. Our framework is su±ciently general to encom-
pass many of the models that have proved important in the study of
continuous-time trading in ¯nancial markets, trading over an in¯nite
time horizon, and trading of ¯nely di®erentiated commodities.

JEL Classi¯cation Numbers: C62, D41, D51, D90, G12

Keywords: determinacy, in¯nite-dimensional commodity spaces,
competitive equilibria, continuous-time ¯nance, commodity di®erenti-
ation, in¯nite horizon economies, Lipschitz economies



1 Introduction

One of the central features of classical models of competitive markets is the
generic determinacy of competitive equilibria. For smooth economies with
a ¯nite number of commodities and a ¯nite number of consumers, almost
all initial endowments yield an economy that admits only a ¯nite number of
competitive equilibria, and these equilibria vary (locally) smoothly with en-
dowments. These results, based on Debreu's (1970, 1972) seminal work, guar-
antee that equilibrium and local comparative statics in the Arrow-Debreu
model are meaningful.

In this paper we establish parallel results for economies with ¯nitely many
consumers and in¯nitely many commodities. Our framework is su±ciently
general to encompass many of the models that have proved important in the
study of continuous-time trading in ¯nancial markets, trading over an in¯nite
time horizon, and trading of ¯nely di®erentiated commodities.

While our results parallel familiar results for economies with ¯nitely many
commodities, our methods are, of necessity, quite distinct. Debreu's meth-
ods, which build on the now standard techniques he introduced for the study
of smooth economies, rely on the characterization of equilibrium as a zero
of aggregate excess demand. If preferences are di®erentiably strictly convex
and satisfy a standard boundary condition { that the closures of indi®erence
sets at interior consumptions remain interior { then individual demands and
hence aggregate excess demand are smooth. If the economy is regular, in
the sense that the Jacobian of aggregate excess demand is invertible at every
equilibrium, then the implicit function theorem guarantees that each equi-
librium is locally unique and that local comparative statics are smooth and
determinate. Finally, the transversality theorem guarantees that the set of
endowment pro¯les that correspond to regular economies has full measure.

For economies with in¯nitely many commodities, it is by now well-known
that no straightforward extension of Debreu's methodology is possible. The
most obvious di±culty is that individual budget sets may be unbounded for
many prices, whence individual demand may be unde¯ned. Even restricting
attention to prices at which demand is de¯ned, that is, to candidate equi-
librium prices, it is unclear whether there are many commodity spaces and
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preferences for which demand is a smooth function of prices.1 Moreover, for
most in¯nite-dimensional models the price space and the commodity space
are di®erent, so that even if demand were a smooth function of prices, it is un-
clear whether any statements about regular economies would be meaningful,
much less valid.

To circumvent these problems, we follow much of the literature by using
Negishi's argument to characterize equilibrium as a zero of the excess spend-
ing mapping. We cannot simply adapt Debreu's techniques to the excess
spending mapping, however. As Shannon (1998a) stresses, the restrictions
on preferences that are needed to ensure the validity of the second welfare
theorem and the existence of equilibrium in many in¯nite-dimensional models
involve bounds on consumers' marginal rates of substitution, and thus allow
for boundary consumptions. Boundary consumptions may lead to \kinks" in
the solution to the planner's problem and hence in the excess spending map-
ping. Even in those instances for which consumptions are not on the bound-
ary, however, the absence of a suitable form of the implicit function theorem
prevents us from concluding that the solution to the planner's problem, and
hence the excess spending mapping, is smooth. Instead, we introduce a set
of simple and natural restrictions on preferences that allow us to show that
the excess spending function is Lipschitz continuous. The most important of
these restrictions is a condition we call quadratic concavity, which requires
that near any feasible bundle, utility di®ers from the linear approximation
by an amount that is at least quadratic in the distance to the given bundle.
Quadratic concavity implies that distinct commodities are not perfect sub-
stitutes | globally, locally, or asymptotically. Given the Lipschitz nature
of the excess spending mapping, we build on the framework developed by
Shannon (1998a,b) and the notion of genericity developed by Christensen
(1974), Hunt, Sauer, and Yorke (1992) and Anderson and Zame (1997) to
obtain our generic determinacy results.

This paper is part of a relatively small body of work on determinacy
with in¯nitely many commodities. Much of this existing literature, begin-
ning with the work of Kehoe and Levine (1985) on discrete-time in¯nite
horizon models (with commodity space `1), assumes that utilities are addi-
tively separable; see also Kehoe, Levine, and Romer (1990), Balasko (1997),

1See Araujo (1987).
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and Chichilnisky and Zhou (1998). Additive separability is an economically
restrictive assumption, but it is crucial to that work because it implies that
the planner's problem can be decomposed into a sequence of independent
¯nite-dimensional problems. Kehoe, Levine, Mas-Colell, and Zame (1989)
take a di®erent path, assuming that the commodity space is a Hilbert space,
specifying a consumer by a smooth demand function rather than by a prefer-
ence relation or utility function, and assuming that prices and consumptions
lie in open sets. Because the positive cones of their consumption and price
spaces have empty interior, however, the last assumption means that they
allow for negative consumptions and negative prices, which are di±cult to
interpret economically.

Our paper is most closely related to Shannon (1998a), which has two
parts. The ¯rst part shows that Lipschitz continuity of the excess spending
mapping is enough to guarantee generic determinacy of equilibrium; we build
directly on this framework. The second part gives conditions on preferences
su±cient to guarantee Lipschitz continuity of the excess spending mapping,
and hence generic determinacy, in models with countably many commodities,
such as arise in considering trade over countably many dates or states of
nature. The arguments establishing the latter results rely crucially on the
fact that there is a natural way to approximate the solution to the planner's
problem with a countable number of commodities by the solution to the
planner's problem for a su±ciently large truncated ¯nite set of commodities.
It is unclear how such arguments could be extended to environments with
a continuum of commodities, such as would arise in considering trade in
continuous time, or over a continuum of states of nature, or in di®erentiated
commodities.

By contrast, we analyze the planner's problem directly, rather than by
approximation, in a manner that is independent of the number of commodi-
ties. We use a simple geometric argument to show that the solution to the
planner's problem is Lipschitz. A parallel analysis of supporting prices es-
tablishes that the excess spending mapping is Lipschitz. Because the zeroes
of the excess spending mapping characterize equilibrium prices and alloca-
tions, this allows us to obtain generic determinacy by applying the methods
of Shannon (1998a), Anderson and Zame (1997) and Shannon (1998b).

Because our approach does not depend on the number of commodities, our
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results apply equally well to all commodity spaces, regardless of whether they
have a ¯nite, countably in¯nite, or uncountably in¯nite number of commodi-
ties. For spaces with a ¯nite number of commodities, our results encompass
those of Debreu (1970, 1972) and Shannon (1994). For the commodity space
`2, our results encompass those of Shannon (1998a), while for the commod-
ity space `1, our results are not comparable to those in Shannon (1998a),
although in spirit both our assumptions and our conclusions are weaker.2

Our paper proceeds as follows. In Section 2 we detail the basic as-
sumptions maintained throughout. In Section 3 we introduce the notion
of quadratic concavity. In Section 4 we characterize equilibrium in terms of
welfare weights as the zeroes of the excess spending mapping. In Section 5 we
study the social planner's problem characterizing Pareto optimal allocations,
and in Section 6 we show that the excess spending map is Lipschitz. We
use these results in Section 7 to show that equilibria are generically determi-
nate in our economies. In Section 8 we present several illustrative examples,
including models of continuous-time trading, trading in di®erentiated com-
modities, and trading over an in¯nite horizon.

2In particular, Shannon (1998a) uses a stronger notion of di®erentiability and a di®erent
notion of genericity, but obtains determinacy with respect to the `1 norm, while we obtain
determinacy with respect to the Mackey topology.
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2 The Economy

In this section we lay out the basic assumptions that we will maintain
throughout the paper.

We consider an exchange economy E with m consumers. Throughout we
maintain the following quite standard assumptions on the commodity and
price spaces and on consumer characteristics:

A1 the commodity space X is a vector lattice endowed with a Hausdor®,
locally convex topology ¿ 3

A2 the price space X¤ is the topological dual of X and is a sublattice of
the order dual of X 4

A3 order intervals in X are weakly compact

A4 each consumer's consumption set is the positive cone X+

A5 each individual endowment ei is positive and the social endowment
¹e =

P
ei is strictly positive

5

A6 each consumer's utility function Ui : X+ ! R is ¿ -continuous, strictly
monotone, and strictly concave

We view the social endowment as ¯xed and treat the distribution of en-
dowments as parameters. Let P (¹e) ½ Xm denote the set of feasible Pareto
optimal allocations of the social endowment ¹e and P 0(¹e) ½ P (¹e) the subset
of allocations (x1; : : : ; xm) for which each xi 6= 0. Let Pi(¹e) and P 0i (¹e) denote

3Following Mas-Colell and Richard (1991), we do not assume X is a topological vector
lattice, so the lattice operations may not be continuous.

4In particular, prices are ¿ -continuous and the supremum and in¯mum of prices in X¤

are again in X¤.
5Recall that ¹e 2 X+ is strictly positive if the order ideal

X(¹e) ´ fx 2 X : jxj · k¹e for some k > 0g

is weakly dense in X. If X is a topological vector lattice, this is equivalent to the more
familiar requirement that p ¢ ¹e > 0 for every p 2 X¤

+ n f0g.
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the projections of P (¹e) and P 0(¹e) onto the i-th coordinate. In addition to
the above we assume:

A7 for each i, Ui is Gateaux di®erentiable at each x 2 P 0i (¹e) and the
Gateaux derivative DUi(x) 2 X¤

++
6

We call an economy satisfying assumptions A1-A7 a basic economy.

These seven assumptions are standard conditions in equilibrium analysis
with in¯nitely many commodities needed to ensure the existence of equilibria.
The assumption that consumers' utilities are Gateaux di®erentiable plays the
role of uniform properness here in ensuring the existence of prices supporting
each Pareto optimal allocation. While it might seem strange to require dif-
ferentiability only on the Pareto set, rather than on the entire consumption
set, our weaker requirement allows us to include preferences satisfying Inada
conditions, which might otherwise be excluded.7 Of course di®erentiability
on the entire consumption set or on the order interval [0; ¹e] would su±ce.

6Recall that Ui is Gateaux di®erentiable at x 2 X+ if there is a continuous linear
functional DUi(x) such that·

lim
h!0+

Ui(x+ hy)¡ Ui(x)
h

¡DUi(x) ¢ y
¸
= 0

for each y 2 X having the property that x+ hy 2 X+ for h su±ciently small.
7For more on this point see Du±e and Zame (1989) and Araujo and Monteiro (1991).
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3 Quadratic Concavity

To motivate the central new notions we use, consider the simplest examples
of robust indeterminacy of equilibrium in a two person, two commodity Edge-
worth square: equilibria will be generically indeterminate if both consumers
¯nd the two commodities to be perfect complements or if both consumers ¯nd
the two commodities to be perfect substitutes. Requiring utility functions to
be smooth rules out perfect complements, while requiring utility functions
to be di®erentiably strictly concave rules out perfect substitutes. Our as-
sumptions are intended to have the same e®ect, but our in¯nite-dimensional
setting requires some care in formulating them.

To understand the assumptions we use, let U : Rn
+ ! R be a utility

function that is twice continuously di®erentiable and di®erentiably strictly
concave. For our purposes, these assumptions have three important impli-
cations. First, continuity of the derivative implies that it is bounded on
compact sets, thus:

² there is a constant B such that

jDU(x) ¢ yj · B kyk

for each x 2 [0; ¹e] and y 2 Rn.

Moreover, continuity of the second derivative implies that the gradient map-
ping x 7! DU(x) is Lipschitz on [0; ¹e]. That is, there is a constant c such
that

kDU(x)¡DU(y)k · c kx¡ yk
for all x; y 2 [0; ¹e].8 In particular, for z 2 [0; ¹e],

jDU(x) ¢ z ¡DU(y) ¢ zj · kDU(x)¡DU(y)k kzk · c kzk kx¡ yk

Because [0; ¹e] is a bounded set, we conclude:

8To see this, apply Taylor's theorem to the ¯rst derivative. Given x; y 2 [0; ¹e], there
is some ~x on the line segment from x to y such that DU(x) ¡DU(y) = D2U(~x)(x ¡ y).
Hence kDU(x)¡DU(y)k · kD2U(~x)k kx¡ yk. Because ~x 7! D2U(~x) is continuous and
[0; ¹e] is compact, there is a constant c such that kDU(x)¡DU(y)k · c kx¡ yk.
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² there is a constant C such that

jDU(x) ¢ z ¡DU(y) ¢ zj · C kx¡ yk

for each x; y 2 [0; ¹e] and z 2 [0; ¹e].

In other words, the evaluation map x 7! DU(x) ¢ z is Lipschitz on [0; ¹e],
uniformly for z 2 [0; ¹e].
Finally, Taylor's theorem implies that for x; y 2 [0; ¹e],

U(y) = U(x) +DU(x) ¢ (y ¡ x) + 1
2
[D2U(x̂)(y ¡ x)] ¢ [y ¡ x]

for some x̂ on the line segment between x and y. Strict di®erential concav-
ity together with continuity of the second derivative means that the second
derivative matrix is strictly negative de¯nite, uniformly on compact sets, so:

² there is a constant K > 0 such that

U(y) · U(x) +DU(x) ¢ (y ¡ x)¡Kky ¡ xk2

for each x; y 2 [0; ¹e].

All of these statements are unambiguous in a ¯nite-dimensional setting,
both because there is a norm on Rn and because all norms on Rn are equiv-
alent. In an in¯nite-dimensional setting, there may be no norm on X or,
if there is, there may be many non-equivalent norms. While our key as-
sumptions will abstract the above properties of di®erentiably strictly con-
cave functions in Rn, crucial to our approach | and to understanding these
assumptions | is that we do not require that X be normed, or that the
conditions above be satis¯ed with respect to the original norm of X even if
X is normed. Rather, we require only that there be some norm with respect
to which these conditions are satis¯ed, and which induces the given topology
¿ on the set [0; ¹e] of feasible consumptions.

We begin by abstracting the ¯rst two conditions from the ¯nite-dimensional
setting.
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De¯nition Let U : X+ ! R be Gateaux di®erentiable on Y ½ X+. We say
the norm k¢k is adapted to U on Y if the topology induced by k¢k coincides
with ¿ on the order interval [0; ¹e],9 and

² there is a constant B such that for each y 2 Y and z 2 X

jDU(y) ¢ zj · Bkzk

² there is a constant C such that for each y; y0 2 Y and z 2 [0; ¹e]

jDU(y) ¢ z ¡DU(y0) ¢ zj · Cky ¡ y0k

That is, the evaluation map y 7! DU(y) ¢ z : Y ! R is Lipschitz on Y ,
uniformly for z 2 [0; ¹e].

As in the ¯nite-dimensional setting, the second assumption is implied by
either of the simpler and more familiar conditions:

² the gradient map y 7! DU(y) : X ! X¤ is Lipschitz on Y

² U is twice continuously Gateaux di®erentiable on Y and D2U(y) is
uniformly bounded with respect to k¢k on Y

While it may seem that we are splitting hairs by insisting on the more
complicated condition in the de¯nition rather than either of these simpler
conditions, the di®erence is real and important in a number of applications.
Indeed, as the following example shows, the condition we use may be sat-
is¯ed in an environment in which natural utility functions are never twice
di®erentiable and gradient mappings are never Lipschitz.

Example 3.1 Let X = L1[0; 1]; X¤ = L1[0; 1] and

U(x) =
Z 1

0
u(x(t)) dt

9For most of our purposes, it would su±ce to assume that the topology induced by k¢k
is stronger than ¿ on the order interval [0; ¹e].
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where u : [0;1)! [0;1) is C2. Then DU(x)(t) = u0(x(t)) for each x 2 X+.
Set x = 1, the function that is identically 1, and for each " > 0 de¯ne y" by

y"(t) =
½
0 if 0 · t · "
1 if " < t · 1

Then ky" ¡ xk = " but kDU(y)¡DU(x)k = u0(0) ¡ u0(1). In particular,
the map x 7! DU(x) is not norm-to-norm continuous and not Lipschitz
continuous, and U is not twice continuously di®erentiable.

On the other hand, ¯x ¹e 2 X+ and suppose that there exists M > 0 such
that ¹e(t) ·M for all t. For each x; y 2 [0; ¹e] we have

jDU(y) ¢ z ¡DU(x) ¢ zj =
¯̄̄̄Z 1

0
[u0(y(t))¡ u0(x(t))]z(t)dt

¯̄̄̄
· k

Z 1

0
jy(t)¡ x(t)jjz(t)jdt

· kkzk
Z 1

0
jy(t)¡ x(t)jdt

· k k¹ek ky ¡ xk:
Thus the evaluation map x 7! DU(x) ¢ z is uniformly Lipschitz for z 2 [0; ¹e].

In economies with ¯nitely many goods, a su±cient condition for generic
determinacy is the additional condition that goods are never perfect substi-
tutes, even locally. This idea is typically formalized by the assumption of
strict di®erential concavity. Here we formalize the idea that goods are not
perfect substitutes with a simpler version of this condition relying only on
directional derivatives, which allows us to highlight the intuition underly-
ing generic determinacy results and give a uni¯ed treatment of many of the
most important equilibrium models that is independent of the number of
commodities in the economy.

De¯nition Let U : X+ ! R be a concave function and let k¢k be a norm
on X. We say U is quadratically concave on Y ½ X+ with respect to k¢k if U
is Gateaux di®erentiable on Y and there is a constant K > 0 such that for
each x; y 2 Y

U(y) · U(x) +DU(x) ¢ (y ¡ x)¡K ky ¡ xk2
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To understand this condition, recall that a di®erentiable concave function
is bounded above by the linear approximation given by the gradient, i.e, for
all y; x 2 X+,

U(y) · U(x) +DU(x) ¢ (y ¡ x)
Quadratic concavity simply adds to this requirement the stipulation that the
error in this linear approximation on Y increases at least quadratically, and
at a rate independent of the direction or points in question. As a simple il-
lustration, suppose U : X+ ! R is twice continuously Gateaux di®erentiable
on X+ and di®erentiably strictly concave on a convex set Y ½ X+. That is,
suppose there exists K > 0 such that z ¢D2U(y)z · ¡Kkzk2 for all z 2 X
and y 2 Y . Then, as we argued above, U is quadratically concave on Y by
Taylor's theorem.

While quadratic concavity includes the standard ¯nite-dimensional ver-
sion of strict di®erential concavity and its natural in¯nite-dimensional coun-
terpart, the additional generality we get by stating our condition only in
terms of the directional derivatives and the ¯rst-order approximation error is
very useful. In some of the most basic models with in¯nitely many commodi-
ties, natural utility functions are quadratically concave but fail to satisfy the
stronger condition of strict di®erential concavity. One example is given by
the separable utility function we analyzed in Example 1, which is not twice
continuously Gateaux di®erentiable. We discuss this point in more detail in
the context of several other examples in Section 8.

Our key new assumptions will then be that each consumer's utility func-
tion is quadratically concave on weakly compact subsets of P 0i (¹e) with re-
spect to some norm k¢ki that is adapted to Ui on weakly compact subsets of
P 0i (¹e). The °exibility both to choose a norm di®erent from the underlying
norm when X is a normed space, and to choose a di®erent norm for each
consumer, will be important in a number of applications, as the following
example illustrates.

Example 3.2 Let X = `1, the space of bounded real sequences, with the
Mackey topology. Let u : R+ ! R be twice continuously di®erentiable and
di®erentiably strictly concave, and de¯ne

U(x) =
1X
t=0

¯tu(xt)
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for some discount factor ¯ < 1. We claim that U is not quadratically concave
with respect to the `1 norm k¢k1 on [0; ¹e] for any positive social endowment
¹e.

Intuitively, this is not surprising. The natural assumption that consumers
choosing over an in¯nite horizon discount future consumption relative to
current consumption means that big changes in consumption may have a
small e®ect on marginal utility provided these changes occur far enough in
the future. Discounting generates the same insensitivity of marginal utility to
changes in consumption typically associated with goods with a high degree of
substitutability, and hence suggests the potential for robust indeterminacies.

For a Gateaux di®erentiable function U , however, quadratic concavity on
some set Y requires that there exist some K > 0 such that for each x; y 2 Y

U(x) · U(y) +DU(y) ¢ (x¡ y)¡Kkx¡ yk2

and
U(y) · U(x) +DU(x) ¢ (y ¡ x)¡Kky ¡ xk2

Combining these and simplifying, quadratically concave utilities must satisfy
the following inequality for some K > 0 and all x; y 2 Y :

(DU(y)¡DU(x)) ¢ (x¡ y) ¸ 2Kkx¡ yk2

Now consider the commodity space `1 equipped with the supremum
norm. When a consumer is impatient, the change in the directional deriva-
tive corresponding to a change in consumption may be small even when the
change in consumption is large in the supremum norm if this change in con-
sumption occurs su±ciently far in the future. That is, the left hand side of
this inequality may be quite small even when the right hand side is large
in the supremum norm, provided the change in consumption occurs in the
distant future.

To see this formally, set x = (1; 1; : : :). For each T , let ÂT 2 `1 be the
sequence which has 1 in the T -th coordinate and 0 elsewhere. Let yT =
x+ ÂT , and note that kyT ¡ xk = 1 for each T . Applying Taylor's theorem
and noting that DU(x) ¢ (yT ¡ x) = ¯Tu0(1), we conclude that there exists
³ 2 (1; 2) such that

U(yT ) = U(x) + ¯T (u(2)¡ u(1))

12



= U(x) + ¯Tu0(1) +
1

2
¯Tu00(³)

= U(x) +DU(x) ¢ (yT ¡ x)¡ 1
2
¯T ju00(³)jkyT ¡ xk21

Because u00 is bounded on the interval [1; 2], ¯Tu00(³)kyT ¡ xk21 ! 0 as
T !1. In particular, U is certainly not quadratically concave with respect
to the `1 norm.

On the other hand, there is a weighted norm which is adapted to U and
with respect to which U is quadratically concave.10 To see this, for each
z 2 `1 de¯ne the ¯ weighted norm of z by

kzk¯ =
1X
t=0

¯tjztj

This norm re°ects the same impatience as the utility function, measuring as
close bundles that di®er only in the distant future. Moreover, for any ¹e 2 `1+
the topology generated by this norm agrees with the Mackey topology on
[0; ¹e].

To see that k¢k¯ has the desired properties, ¯x the social endowment
¹e 2 `1+. Simple computations show that k¢k¯ is adapted to U on [0; ¹e].
Moreover, U is quadratically concave on [0; ¹e] with respect to k¢k¯. To see
this, ¯x x; y 2 [0; ¹e]. Applying Taylor's theorem to utility in period t yields

u(yt) = u(xt) + u
0(xt)(yt ¡ xt) + 1

2
u00(zt)(yt ¡ xt)2

for some zt between xt and yt. Because u is di®erentiably strictly concave,
there is a constant c > 0 such that u00(³) < ¡c for ³ · supt et. Hence

U(y)¡ U(x) =
X
¯t(u(yt)¡ u(xt))

=
X
¯tu0(xt)(yt ¡ xt) +

X
¯t
1

2
u00(zt)(yt ¡ xt)2

= DU(x) ¢ (y ¡ x) + 1
2

X
¯tu00(zt)(yt ¡ xt)2

· DU(x) ¢ (y ¡ x)¡ c

2

X
¯t(yt ¡ xt)2

10See also Example 8.3 in Section 8.
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· DU(x) ¢ (y ¡ x)¡ cb
³X

¯tjyt ¡ xtj
´2

= DU(x) ¢ (y ¡ x)¡ cbky ¡ xk2¯
for some b > 0, where the second inequality follows from the fact that in a
¯nite measure space, there exists B > 0 such that kfk2 ¸ Bkfk1 for all f ,
where k¢kp denotes the Lp norm for 1 · p · 1. Thus U is quadratically
concave with respect to k¢k¯ on [0; ¹e].
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4 Equilibrium and the Excess Spending Map

Given a distribution e = (e1; : : : ; em) of the social endowment ¹e, an equilib-
rium can be characterized, using the welfare theorems, as a Pareto optimal
allocation x and a supporting price p for which the budget equations

p ¢ (x1 ¡ e1) = 0
...

p ¢ (xm ¡ em) = 0

are satis¯ed. Of course since x is a feasible allocation one of these equations
is redundant; we henceforth suppress the last equation. Central to our ap-
proach is a simpli¯cation of this characterization, following Negishi, through
which both Pareto optimal allocations and supporting prices are indexed by
\welfare weights".

The ¯rst step in this simpli¯cation, the characterization of Pareto op-
tima as the solutions to a social planner's problem, is quite familiar. Given
a social endowment bundle ¹e and a vector of \welfare weights" ¸ 2 Rm

+

with
P
¸i = 1, the social planner's problem is to choose a feasible alloca-

tion x(¸) = (x1(¸); : : : ; xm(¸)) to maximize the weighted sum of utilitiesP
¸iUi(xi). The following result records several basic properties of the solu-

tion to the planner's problem under our assumptions; we omit the familiar
proof. We write

¤ ´ f¸ 2 Rm
+ :

X
¸i = 1g

for the set of welfare weights and

¤0 ´ f¸ 2 ¤ : ¸i > 0 for all ig
for the set of strictly positive weights.

Lemma 4.1 If E is a basic economy then

(i) for each ¸ 2 ¤ the planner's problem has a unique solution x(¸) 2 P (¹e)
(ii) the mapping x : ¤ ! P (¹e) is continuous when P (¹e) is equipped with

the weak topology of Xm
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(iii) x(¤) = P (¹e) and x(¤0) = P 0(¹e)

To characterize equilibrium in similar terms, we must also be able to
characterize equilibrium prices using the welfare weights. Because prefer-
ences are smooth, each interior Pareto optimal allocation admits a unique
supporting price, up to normalization. A Pareto optimal allocation on the
boundary, however, may admit multiple supporting prices.11 Fortunately,
supporting prices can be characterized uniquely in terms of welfare weights;
the following lemma is just what we need. Surprisingly, this result does not
seem well-known, even in the ¯nite-dimensional context.

Lemma 4.2 If E is a basic economy, x is a feasible allocation for which xi 6=
0 for each i, and q 2 X¤

+ is a non-zero price, then the following statements
are equivalent:

(i) x is a Pareto optimal allocation and q supports x

(ii) there is a vector of welfare weights ¸ 2 ¤0 and a constant ¯ > 0 such
that x solves the planner's problem for the weights ¸ and

q = ¯
_
i

¸iDUi(xi)

Proof: (i) ) (ii): Let x be a Pareto optimal allocation and let q be a
supporting price. We ¯rst establish the desired representation of q.

For each i, set

¯i =
q ¢ xi

DUi(xi) ¢ xi
The fact that utility functions are strictly monotone guarantees that the
denominator is strictly positive. The fact that q is a supporting price guar-
antees that the numerator, and hence ¯i, is strictly positive. Our goal is to
show that

q ¢ y =
"_
i

¯iDUi(xi)

#
¢ y

11Consider a corner optimum in an Edgeworth box, for instance.
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for every y 2 X, from which we will easily obtain the desired representation.
We proceed by verifying this equality ¯rst when 0 · y · xi for some i, then
when 0 · y · ¹e, then when y is in the order ideal generated by ¹e, and ¯nally
for arbitrary y 2 X.
Fix a consumer i. Supporting prices equate marginal rates of substitution

so if y 2 X+ then
DU(xi) ¢ xi
q ¢ xi ¸ DU(xi) ¢ y

q ¢ y
with equality if y · xi. Rearranging yields

q ¢ y ¸
Ã

q ¢ xi
DUi(xi) ¢ xi

!
DUi(y) ¢ y

for every y 2 X+, with equality if y · xi. Using the de¯nition of ¯i and
substituting, we have

q ¢ y ¸ ¯iDUi(xi) ¢ y for all y 2 X+;with equality if y · xi (1)

If y 2 X+ and y · xj for i 6= j, then two applications of (1) imply that

¯jDUj(xj) ¢ y = q ¢ y ¸ ¯iDUi(xi) ¢ y

In particular

¯jDUj(xj) ¢ y ¸ ¯iDUi(xi) ¢ y if y 2 X+; y · xj (2)

For y 2 X+,"_
i

¯iDUi(xi)

#
¢ y = sup

nX
¯iDUi(xi) ¢ ai : ai ¸ 0;

X
ai = y

o
(3)

by the de¯nition of the supremum of linear functionals. Thus"_
i

¯iDUi(xi)

#
¢ y = ¯jDUj(xj) ¢ y = q ¢ y if y 2 X+; y · xj (4)

Next consider any y 2 X+ for which 0 · y · ¹e. The Riesz Decomposition
Property of vector lattices guarantees that we can ¯nd vectors yj 2 X+ such
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that y =
P
yj and 0 · yj · xj for each j. Repeated applications of (4) yield"_

i

¯iDUi(xi)

#
¢ y =

"_
i

¯iDUi(xi)

#
¢
24X
j

yj

35
=

X
j

("_
i

¯iDUi(xi)

#
¢ yj

)

=
X
j

¯jDUj(xj) ¢ yj

=
X
j

q ¢ yj

= q ¢X
j

yj

= q ¢ y

Now consider any y in the order ideal generated by ¹e; that is, y 2 X such
that jyj · k¹e for some k > 0. Write z = (1=k)y and decompose z = z+ ¡ z¡
as the sum of positive and negative parts. Then 0 · z+ · ¹e and 0 · z¡ · ¹e,
so the previous paragraph implies that"_

i

¯iDUi(xi)

#
¢ z+ = q ¢ z+"_

i

¯iDUi(xi)

#
¢ z¡ = q ¢ z¡

It follows from linearity that"_
i

¯iDUi(xi)

#
¢ y = q ¢ y

Strict positivity of the social endowment ¹e means that the order ideal
generated by ¹e is dense in X, so continuity entails that"_

i

¯iDUi(xi)

#
¢ y = q ¢ y

for every y 2 X, which was our goal.
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Write ¯ =
P
¯i and ¸i = ¯i=¯ for each i, and note that ¸i > 0 because

¯i > 0. Then
q = ¯

_
i

¸iDUi(xi) (5)

which is the desired representation of q.

It remains only to show that x solves the planner's problem for these
weights ¸. To see this, suppose that x0 is an allocation. Then x0i ¸ 0 for each
i and

P
x0i = ¹e, so

q ¢ ¹e ¸ ¯X ¸iDUi(xi) ¢ x0i
Moreover, since utilities are concave,X

¸iUi(x
0
i)¡

X
¸iUi(xi) =

X
¸i [Ui(x

0
i)¡ Ui(xi)]

· X
¸i [DUi(xi) ¢ (x0i ¡ xi)]

ThusX
¸iUi(x

0
i)¡

X
¸iUi(xi) · X

¸i [DUi(xi) ¢ (x0i ¡ xi)]
=

X
¸iDUi(xi) ¢ x0i ¡

X
¸iDUi(xi) ¢ xi

=
X
¸iDUi(xi) ¢ x0i ¡

1

¯

X
q ¢ xi

· 1

¯
q ¢ ¹e¡ 1

¯

X
q ¢ xi

=
1

¯
q ¢ ¹e¡ 1

¯
q ¢Xxi

=
1

¯
q ¢ ¹e¡ 1

¯
q ¢ ¹e

= 0

Thus x solves the planner's problem for the weights ¸.

(ii) ) (i): Solutions to the planner's problem are Pareto optima, so we
need only show that

W
i ¸iDUi(xi) is a supporting price. Note ¯rst that for

every i; j the ¯rst order condition for Pareto optimality implies

¸iDUi(xi) ¢ (¡y) + ¸jDUj(xj) ¢ y · 0
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if y 2 X+; y · xi. Rewriting yields that
¸iDUi(xi) ¢ y ¸ ¸jDUj(xj) ¢ y

if y 2 X+; y · xi. It follows as above that
q ¢ z ¸ ¸iDUi(xi) ¢ z

for z 2 X+ with equality if z · xi.
Now ¯x i. To see that q supports Ui at xi, let z ¸ 0. Then

Ui(z)¡ Ui(xi) · DUi(xi) ¢ (z ¡ xi)
= DUi(xi) ¢ z ¡DUi(xi) ¢ xi
= DUi(xi) ¢ z ¡ 1

¸i
q ¢ xi

· 1

¸i
q ¢ z ¡ 1

¸i
q ¢ xi

=
1

¸i
q ¢ (z ¡ xi)

Thus if z ¸ 0 and Ui(z) ¸ Ui(xi), then q ¢ z ¸ q ¢ xi. It follows that q is a
supporting price, so the proof is complete. 2

Given a vector of welfare weights ¸ 2 ¤0, write
p(¸) ´_

i

¸iDUi(xi(¸))

In view of Lemma 4.2 and the redundancy of the budget equations, we obtain
immediately the following characterization of equilibrium in terms of welfare
weights.

Lemma 4.3 Let E be a basic economy. The allocation x and the price p
constitute an equilibrium if and only if there exists a vector of welfare weights
¸ 2 ¤0 such that

(a) x solves the planner's problem with weights ¸

(b) p = cp(¸) for some constant c > 0
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(c) the budget equations

p ¢ (x1(¸)¡ e1) = 0
...

p ¢ (xm¡1(¸)¡ em¡1) = 0

are satis¯ed

Given these results, we characterize equilibrium in terms of the zeroes of
the excess spending mapping. Given the social endowment, write

D0(¹e) ´
n
e 2 Xm

+ : ei 6= 0 for each i and
X
ei = ¹e

o
for the set of distributions of the social endowment that give no consumer
zero endowment. De¯ne the excess spending mapping

S : ¤0 £D0(¹e)! Rm¡1

by de¯ning the i-th component to be

Si(¸; e) = p(¸) ¢ (xi(¸)¡ ei)

If e is a distribution of the social endowment ¹e, write E(e) for the economy
with endowment pro¯le e. In view of the discussion above, we may identify
an equilibrium of E(e) with a zero of S(¢; e). In the following sections, we
show that the planner's problem is Lipschitz and then that the excess spend-
ing mapping is Lipschitz; we then use versions of Sard's theorem and the
transversality theorem for Lipschitz functions to obtain our generic determi-
nacy results.
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5 The Social Planner's Problem

In this section, we carry out the ¯rst step in our program, analyzing the
solution to the social planner's problem. As we show below, under the addi-
tional assumption of quadratic concavity with respect to an adapted norm,
the solution to the planner's problem is locally Lipschitz continuous. This
result will become the key to all of our determinacy results.

Lemma 5.1 If E is a basic economy and for each i there is a norm k¢ki such
that

(a) k¢ki is adapted to Ui on weakly compact subsets of P 0i (¹e)
(b) Ui is quadratically concave with respect to k¢ki on weakly compact sub-

sets of P 0i (¹e)

then the solution x(¢) to the planner's problem is locally Lipschitz on ¤0 with
respect to these norms and continuous with respect to the topology ¿ .

Proof: We ¯rst show that each Ui is Lipschitz on weakly compact subsets
of P 0i (¹e). For ± > 0 set

¤± ´ f¸ 2 ¤ : ¸i ¸ ± for all ig

Let P ±(¹e) = x(¤±) and let P ±i (¹e) be the projection of P
±(¹e) onto the i-th

coordinate. Lemma 4.1 guarantees that P ±i (¹e) is weakly compact, so by
adaptedness for each i there is a constant Bi such that

jDUi(x) ¢ zj · Bikzki
for each x 2 P ±i (¹e) and z 2 X. If x; y 2 P ±i (¹e) then concavity of Ui guarantees
that

Ui(y)¡ Ui(x) · DUi(x) ¢ (y ¡ x) · Biky ¡ xki
Reversing the roles of x and y yields

jUi(y)¡ Ui(x)j · max (jDUi(x) ¢ (y ¡ x)j; jDUi(y) ¢ (x¡ y)j) · Biky ¡ xki
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which is the desired Lipschitz estimate.

Now ¯x ± > 0 let ¸; ¸0 2 ¤±. Let x = x(¸) and x0 = x(¸0). For each i,
the quadratic concavity of Ui with respect to k ¢ ki on P ±i (¹e) means there is
a constant Ci > 0 such that

Ui(x
0
i) · Ui(xi) +DUi(xi) ¢ (x0i ¡ xi)¡ Cikx0i ¡ xik2i

Multiplying by ¸i and summing over i yieldsX
¸iUi(x

0
i) ·

X
¸iUi(xi) +

X
¸iDUi(xi) ¢ (x0i ¡ xi)¡

X
Ci¸ikx0i ¡ xik2i (6)

By assumption, x solves the social planner's problem for weights ¸, so the
¯rst order conditions imply that

P
¸iDUi(xi) ¢ (x0i ¡ xi) · 0. Substituting

into (6) givesX
¸iUi(x

0
i) ·

X
¸iUi(xi)¡

X
Ci¸ikx0i ¡ xik2i (7)

Because x0 solves the social planner's problem for weights ¸0, weighted utility
is no greater at x, so:

0 ·X
¸0iUi(x

0
i)¡

X
¸0iUi(xi) (8)

Adding (7) and (8) yields:X
¸iUi(x

0
i) · X

¸iUi(xi)¡
X
Ci¸ikx0i ¡ xik2i +

X
¸0iUi(x

0
i)¡

X
¸0iUi(xi)

Rearranging terms givesX
Ci¸ikx0i ¡ xik2i · X

(¸i ¡ ¸0i)[Ui(xi)¡ Ui(x0i)]
· X j¸0i ¡ ¸ij jUi(x0i)¡ Ui(xi)j (9)

Because utility functions are Lipschitz on P ±i (¹e) = x(¤
±), for each i there

is a constant Ki > 0 such that jUi(x0i)¡Ui(xi)j · Kikx0i¡ xiki. Substituting
into (9) yields X

Ci¸ikx0i ¡ xik2i ·
X
Kij¸0i ¡ ¸ij kx0i ¡ xiki (10)
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Let C = minCi and K = maxKi. The left hand side of (10) is the
summation of m positive terms, so is at least as large as any one of them.
Because ¸; ¸0 2 ¤±, it follows that

C±
µ
max
i
kx0i ¡ xiki

¶2
· Kmax

i
kx0i ¡ xiki

³X j¸0i ¡ ¸ij
´

Rearranging terms yields

max
i
kx0i ¡ xiki ·

K

C±

X j¸0i ¡ ¸ij

which gives the desired Lipschitz estimate.

Finally, because the topology induced by each of the norms k¢ki coincides
with the topology ¿ on the set [0; ¹e] of feasible consumptions, the solution
x(¢) to the planner's problem is continuous in the topology ¿ as well. 2
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6 Spending, Wealth and Excess Spending

In this section we turn to the second step in our program, demonstrating
that the excess spending map is locally Lipschitz continuous. In light of
the dependence of the excess spending map on the solution to the planner's
problem, and the Lipschitz continuity of this solution we established in the
previous section, this result is certainly intuitive. It is convenient to separate
the argument into several lemmas, and to begin by showing that the spending
map is locally Lipschitz.

Lemma 6.1 If E is a basic economy and for each i there is a norm k¢ki such
that

(a) k¢ki is adapted to Ui on weakly compact subsets of P 0i (¹e)
(b) Ui is quadratically concave with respect to k¢ki on weakly compact sub-

sets of P 0i (¹e)

then for each i the spending map

¸ 7! p(¸) ¢ xi(¸)
is locally Lipschitz on ¤0.

Proof: Fix ± > 0. Recall that ¤± = f¸ 2 ¤ : ¸i ¸ ± for each i g and
P ±(¹e) = x(¤±). Because ¤± is a compact set and x is weakly continuous,
P ±i (¹e) is a weakly compact subset of P

0
i (¹e) for each i. Because each of the

norms k¢ki is adapted to Ui on weakly compact subsets of P 0i (¹e), there are
constants Bi; Ci > 0 such that

jDUi(xi) ¢ yj · Bikyki (11)

for all xi 2 P ±i (¹e) and y 2 X, and
jDUi(xi) ¢ z ¡DUi(x0i) ¢ zj · Cikxi ¡ x0iki (12)

for all xi; x
0
i 2 P ±i (¹e) and z 2 [0; ¹e]. By Lemma 5.1, the solution to the

planner's problem is Lipschitz on ¤±, so there is a constant Ki > 0 such that

kxi(¸)¡ xi(¸0)ki · Ki

X j¸i ¡ ¸0ij (13)

25



for ¸; ¸0 2 ¤±.
Now ¯x a consumer j and weights ¸; ¸0 2 ¤±. To simplify notation, let

x = x(¸); x0 = x(¸0), p = p(¸); p0 = p(¸0), pi = ¸iDUi(xi) and p0i = ¸
0
iDUi(x

0
i)

for each i.

If 0 · z · xj(¸) then, as in the proof of Lemma 4.2, the ¯rst order
conditions imply that

¸jDUj(xj) ¢ z ¸ ¸kDUk(xk) ¢ z
for each k. Hence p(¸) ¢ xj = ¸jDUj(xj) ¢ xj = pj ¢ xj. Similarly, p(¸0) ¢ x0j =
¸0jDUj(x

0
j) ¢ x0j = p0j ¢ x0j. Thus
jp ¢ xj ¡ p0 ¢ x0jj = jpj ¢ xj ¡ pj ¢ x0j + pj ¢ x0j ¡ p0j ¢ x0jj

· jpj ¢ xj ¡ pj ¢ x0jj+ jpj ¢ x0j ¡ p0j ¢ x0jj
= jpj ¢ (xj ¡ x0j)j+ j(pj ¡ p0j) ¢ x0jj (14)

Because the norm k¢kj is adapted to Uj on P ±j (¹e) and the planner's problem
is Lipschitz on ¤±, we conclude that

jpj ¢ (xj ¡ x0j)j · Bjkxj ¡ x0jkj · BjKj

X j¸i ¡ ¸0ij (15)

j(pj ¡ p0j) ¢ x0jj · Cjkxj ¡ x0jkj · CjKj

X j¸i ¡ ¸0ij (16)

Combining (14), (15), (16) yields the desired Lipschitz estimate for the spend-
ing map. 2

Next we show that the wealth map is locally Lipschitz.

Lemma 6.2 If E is a basic economy and for each i there is a norm k¢ki such
that

(a) k¢ki is adapted to Ui on weakly compact subsets of P 0i (¹e)
(b) Ui is quadratically concave with respect to k¢ki on weakly compact sub-

sets of P 0i (¹e)

then the wealth map
¸ 7! p(¸) ¢ w

is locally Lipschitz on ¤0, uniformly for w 2 [0; ¹e].
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Proof: Again ¯x ± > 0 and let ¸; ¸0 2 ¤±. We again write x = x(¸); x0 =
x(¸0), p = p(¸); p0 = p(¸0), pi = ¸iDUi(xi) and p

0
i = ¸0iDUi(x

0
i) for each i.

Fix an arbitrary w 2 [0; ¹e]. By de¯nition,

p ¢ w =
³_

pi
´
¢ w = sup

nX
pi ¢ ai : ai ¸ 0;

X
ai = w

o
:

Fix " > 0 and choose (ai) so that
P
ai = w and

p ¢ w · "+X
pi ¢ ai:

As in the proof of Lemma 6.1, we use quadratic concavity and adaptedness of
the norm k¢ki to Ui on P ±i (¹e) to choose constants Bi; Ci;Ki so that (11)-(13)
obtain. Thus

p ¢ w ¡ p0 ¢ w · "+
X
pi ¢ ai ¡

X
p0i ¢ ai

· "+
X
(pi ¡ p0i) ¢ ai

· "+
X
Cikxi ¡ x0iki

· "+
X
i

CiKi

ÃX
k

j¸k ¡ ¸0kj
!

= "+

ÃX
i

CiKi

!ÃX
k

j¸k ¡ ¸0kj
!
:

Reversing the roles of p; p0 and keeping in mind that " > 0 was arbitrary, we
obtain

jp ¢ w ¡ p0 ¢ wj ·
ÃX

i

CiKi

!ÃX
k

j¸k ¡ ¸0kj
!

Because w 2 [0; ¹e] was arbitrary, this is the desired uniform Lipschitz esti-
mate. 2

The previous lemmas imply that the excess spending map is locally Lip-
schitz in ¸ and jointly continuous in (¸; e).

Lemma 6.3 If E is a basic economy and for each i there is a norm k¢ki such
that

(a) k¢ki is adapted to Ui on weakly compact subsets of P 0i (¹e)
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(b) Ui is quadratically concave with respect to k¢ki on weakly compact sub-
sets of P 0i (¹e)

then for each i

(i) S(¢; e) is locally Lipschitz on ¤0, uniformly for e 2 D0(¹e)

(ii) Si(¢; ¢) is jointly continuous on ¤0 £D0(¹e)

Proof: The ¯rst assertion is immediate from Lemmas 6.1 and 6.2. To es-
tablish the second assertion, ¯x an arbitrary (¸; e) 2 ¤0 £ D0(¹e) and let
(¸0; e0) 2 ¤0£D0(¹e) be another point. To see that Si is continuous at (¸; e),
note that

jSi(¸; e)¡ Si(¸0; e0)j = jp(¸) ¢ xi(¸)¡ p(¸0) ¢ xi(¸0)¡ p(¸) ¢ ei + p(¸0) ¢ e0ij
· jp(¸) ¢ xi(¸)¡ p(¸0) ¢ xi(¸0)j

+jp(¸) ¢ ei ¡ p(¸) ¢ e0i + p(¸) ¢ e0i ¡ p(¸0) ¢ e0ij
· jp(¸) ¢ xi(¸)¡ p(¸0) ¢ xi(¸0)j

+jp(¸) ¢ ei ¡ p(¸) ¢ e0ij+ jp(¸) ¢ e0i ¡ p(¸0) ¢ e0ij

Let " > 0 be given. By Lemma 6.1 and Lemma 6.2, there is a neighborhood
V of ¸ such that if ¸0 2 V then

jp(¸) ¢ xi(¸)¡ p(¸0) ¢ xi(¸0)j < "=3

and
jp(¸) ¢ e0i ¡ p(¸0) ¢ e0ij < "=3

Continuity of the linear functional p(¸) guarantees that there exists a neigh-
borhood W of e such that if e0 2W then

jp(¸) ¢ ei ¡ p(¸) ¢ e0ij < "=3

Thus if (¸0; e0) 2 V £ W , then jSi(¸; e) ¡ Si(¸0; e0)j < ". It follows that
Si is continuous at (¸; e). Since (¸; e) is arbitrary, we conclude that Si is
continuous on ¤0 £D0(¹e), as asserted. 2
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7 Generic Determinacy

In this section we will use the results of Sections 5 and 6 to establish generic
determinacy of equilibria. Here we consider the basic features of the economy
E | the commodity space, price space, utility functions, and social endow-
ment | as ¯xed, and consider variations in the initial endowment pro¯le e
over the set of all distributions of the social endowment ¹e. As before, we
write

D0(¹e) ´
n
e 2 Xm

+ : ei 6= 0 for each i and
X
ei = ¹e

o
for the set of non-zero endowment distributions. For e 2 D0(¹e), let E(e)
denote the economy E with initial endowment pro¯le e, and let E(e) denote
the set of equilibrium allocations of E(e).
As the arguments of the previous sections highlight, the Negishi method

results in a characterization of equilibria in our basic economies that is inde-
pendent of the dimensionality of the commodity space and formally identical
to that arising in a standard Arrow-Debreu economy with a ¯nite-dimensional
commodity space. Equilibria are solutions to a ¯nite system of equations in
a ¯nite number of variables, so a simple counting of equations and unknowns
suggests that we might expect the qualitative features of equilibria in these
economies to be similar to economies with a ¯nite set of commodities. In
particular, we might expect generic determinacy. By determinacy for the
economy E(e) we mean ¯niteness of the number of equilibria and continuity
of the equilibrium allocation correspondence. Formally:

De¯nition The economy E(e) is determinate if the number of equilibria
is ¯nite and the equilibrium allocation correspondence E : D0(¹e) ! Xm

+ is
continuous at e.

In view of our discussion at the end of Section 4, we may identify an
equilibrium of E(e) with a zero of S(¢; e). It is convenient to de¯ne the
equilibrium weight correspondence E¤ : D

0(¹e)! ¤ by

E¤(e) ´ f¸ 2 ¤ : S(¸; e) = 0g
Lemma 5.1 guarantees that the solution to the planner's problem x is con-
tinuous with respect to the topology ¿ . It follows that E(e) is determinate if
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and only if E¤(e) is ¯nite and E¤ is continuous at e.
12

Our goal is to show that, given our assumptions, almost all endowment
distributions lead to determinate economies. To make this statement precise,
we need to explain what we mean by \almost all" endowment distributions.
In a ¯nite-dimensional setting, it is natural to interpret \almost all" to mean
having full Lebesgue measure in the set of endowment distributions. In an
in¯nite-dimensional setting, however, there is no natural measure on the set
of endowment distributions. We provide two alternatives; the ¯rst makes use
of a ¯nite dimensional parameterization of endowment distributions, while
the second uses an in¯nite-dimensional analogue of Lebesgue measure 0.

For our ¯rst determinacy result, ¯x a pro¯le e¤ = (e¤1; : : : ; e
¤
m) 2 Xm for

which
P
e¤i = ¹e and a vector v 2 X+ n f0g.13 Set

A(e¤; v) =
n
® 2 Rm : e¤i + ®iv > 0 all i and

X
®i = 0

o
To each vector ® 2 A(e¤; v) corresponds an initial endowment distribution
e® of the social endowment ¹e de¯ned by e®i = ei + ®iv for each i. We view
e® as a perturbation of the initial pro¯le e¤. Considering the family of such
perturbations gives us a simple ¯nite-dimensional parameterization of initial
endowments indexed by A(e¤; v). Our ¯rst determinacy result shows that
those perturbations for which the economy E(e®) is determinate form a set
of full (m¡ 1)-dimensional Lebesgue measure.

Theorem 7.1 Let E be a basic economy in which for each i there is a norm
k¢ki such that
12Note that we do not require continuity of the equilibrium price correspondence; as our

¯rst example of Section 3 suggests, continuity of the equilibrium price correspondence may
be a delicate issue. However, for any ¯xed z 2 [0; ¹e], consider the equilibrium \evaluation"
correspondence Pz : D

0(¹e)! R de¯ned by

Pz(e) = fp(¸) ¢ z : ¸ 2 E¤(e)g

Our results in Theorem 7.2, together with Lemma 6.2, show that Pz is continuous at e for
each z 2 [0; ¹e] if the economy E(e) is determinate.
13For applicability in Theorem 7.2, we allow for the possibility that e¤i is not positive.

Moreover, note that for some choices of e¤ and v, A(e¤; v) may be empty, which we permit
for use in Theorem 7.2 as well.
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(a) k¢ki is adapted on weakly compact subsets of P 0i (¹e)
(b) Ui is quadratically concave with respect to k¢ki on weakly compact sub-

sets of P 0i (¹e)

Then for each e¤ 2 Xm with
P
e¤i = ¹e and v 2 X+nf0g, almost all parameters

® 2 A(e¤; v) lead to a determinate economy. That is,

Ad(e
¤; v) ´ f® 2 A(e¤; v) : E(e®) is determinate g

is a set of full (m¡ 1)-dimensional Lebesgue measure in A(e¤; v).

Proof: First, normalize prices by de¯ning

bp(¸) = Ã
1

p(¸) ¢ v
!
p(¸)

for each ¸ 2 ¤. Let bS : ¤0£D0(¹e)! Rm¡1 be the corresponding normalized
excess spending mapping whose i-th coordinate is:

bSi(¸; e) = bp(¸) ¢ [xi(¸)¡ ei]
Note that S and bS have the same zeroes. De¯ne ¾ : ¤0 ! Rm¡1 by

¾(¸) = bS(¸; e¤)
In particular, note that

bSi(¸; e®) = bSi(¸; e¤)¡ ®i = ¾i(¸)¡ ®i
for each i. Equivalently, for each ® 2 A(e¤; v), let ®¡m = (®1; : : : ; ®m¡1) 2
Rm¡1. Then bS(¸; e®) = ¾(¸)¡ ®¡m
Lemma 6.3 guarantees that the excess spending map S(¢; e) is locally Lips-
chitz on ¤0 for each e, and Lemma 6.2 guarantees that ¸ 7! p(¸) ¢ v is locally
Lipschitz on ¤0. It follows that bS(¢; e) is locally Lipschitz on ¤0 for each e
and thus that ¾ is locally Lipschitz on ¤0.
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If U is an open subset ofRm¡1 and f : U ! Rm¡1 is a mapping, recall that
° 2 Rm¡1 is said to be a regular value of f if Df(³) exists and is nonsingular
whenever ³ 2 U and f(³) = °. Sard's theorem for locally Lipschitz functions
(see Rader (1973) Lemma 2) guarantees that if f is locally Lipschitz then
almost every element of Rm¡1 is a regular value of f . Because ¾ is locally
Lipschitz, it follows that almost every ° 2 Rm¡1 is a regular value of ¾. It is
evident that ®¡m is a regular value of ¾ if and only if 0 is a regular value ofbS(¢; e®), so the set

Ar(e
¤; v) ´

n
® 2 A(e¤; v) : 0 is a regular value of bS(¢; e®)o

has full (m ¡ 1)-dimensional Lebesgue measure. To complete the proof it
remains only to show that Ar(e

¤; v) ½ Ad(e
¤; v), that is, if 0 is a regular

value of bS(¢; e®) then E(e®) is a determinate economy.
To see this, ¯x an ® 2 Ar(e¤; v). We must show that E¤(e®) is ¯nite and

that E¤ is continuous at e
®.

To see that E(e®) has ¯nitely many equilibria, note that by individual ra-
tionality, each equilibrium corresponds to a vector ¸ 2 ¤o. Each equilibrium
vector of weights is locally unique because 0 is a regular value of bS(¢; e®) (see
Shannon (1994)). Then to show there are only ¯nitely many equilibria it
su±ces to show that

¤IR ´ f¸ 2 ¤ : Ui(xi(¸)) ¸ Ui(e®i ) for all ig
is a compact subset of ¤o. To that end, ¯rst note that because x(¢) is weakly
continuous on ¤ and Ui(¢) is weakly upper semi-continuous, ¤IR is a compact
set. Moreover, because utilities are strictly monotone, xi(¸) = 0 if ¸i = 0.
Since e®i > 0 for each i, Ui(e

®
i ) > Ui(0) for each i, again using the strict

monotonicity of utilities, which implies that ¤IR ½ ¤0. Now each equilibrium
vector of welfare weights is locally unique and contained in the compact set
¤IR, so there are only ¯nitely many equilibria in E(e®).
The upper hemi-continuity of E¤ at e

® (and indeed, at every e 2 D0(¹e))
follows immediately from the joint continuity of S on ¤0 £D0(¹e). Although
this is a standard argument, we repeat it here for completeness. Let en ! e
and ¸n 2 E¤(en) for each n. Since Ui(eni )! Ui(ei), there exists N such that
for n ¸ N , Ui(eni ) ¸ Ui(ei=2) for each i. Thus for n ¸ N ,

¸n 2 ¤e ´ f¸ 2 ¤ : Ui(xi(¸)) ¸ Ui(ei=2) for each ig
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Moreover, ¤e ½ ¤0 and ¤e is a compact set. Now choose a convergent
subsequence of f¸ng, and relabeling if necessary, choose ¸ 2 ¤e such that
¸n ! ¸. Since ¸n 2 E¤(en) for each n, S(¸n; en) = 0 for each n. Using
the joint continuity of S, we conclude that S(¸; e) = limn S(¸

n; en) = 0, i.e.,
¸ 2 E¤(e).
It remains only to show that E¤ is lower hemi-continuous at e

®. Given
¸¤ 2 E¤(e®) and a neighborhood V ¤ of ¸¤ in ¤0, we must ¯nd a neighborhood
W of e® in D0(¹e) such that if e 2 W then bS(¸; e) = 0 for some ¸ 2 V ¤.
To accomplish this, we use the invariance of Brouwer degree under small
perturbations. If N ½ ¤0 is an open set and f : N ! Rm¡1 is a continuous
mapping, write deg (f;N; 0) for the Brouwer degree of f on N at 0.

Let ¸¤ 2 E¤(e®). Choose a neighborhood V of ¸¤ in ¤0 such that E¤(e®)\
V = f¸¤g. Because 0 is a regular value of bS(¢; e®), jdeg ( bS(¢; e®); V 0; 0)j = 1
for every neighborhood V 0 ½ V of ¸¤ (see Shannon (1994), Theorem 9). Then
for each such neighborhood V 0 ½ V of ¸¤ there exists a neighborhood B0 of
graph bS(¢; e®)jV 0 such that jdeg (f; V 0; 0)j = 1 for any continuous function
f : V 0 ! Rm¡1 for which graph f ½ B0. In particular, for any such function
f there exists ¸ 2 V 0 such that f(¸) = 0. To establish our result, it thus
su±ces to show that given a neighborhood B0 of graph bS(¢; e®)jV 0 there exists
a neighborhood W of e® in D0(¹e) such that graph bS(¢; e)jV 0 ½ B0 for each
e 2W .
To see this, note that for any e 2 D0(¹e) and ¸ 2 V 0,bSi(¸; e)¡ bSi(¸; e®) = p̂(¸) ¢ (ei ¡ e®i )

Now let " > 0 be given. The map (¸; v) 7! p(¸) ¢ v is jointly continuous on
¤0 £ [0; ¹e] by Lemma 6.3. Thus for each ¸ 2 V 0 there exists a neighborhood
V¸ of ¸ and a neighborhood W¸ of e

® in D0(¹e) such that for each e 2 W¸

and ~̧ 2 V¸
jp̂(~̧) ¢ (ei ¡ e®i )j < "

Since fV¸g is an open cover of V 0 and V 0 is compact, there is a ¯nite subcover
fV¸1 ; : : : ; V¸Ng. Set W = \W¸j . Then for e 2 W ,

j bSi(¸; e)¡ bSi(¸; e®)j < "
for each ¸ 2 V 0. Thus given a neighborhood B0 of graph bS(¢; e®)jV 0 there
exists a neighborhood W of e® in D0(¹e) such that graph bS(¢; e)jV 0 ½ B0 for
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each e 2W . Hence for each e 2W there exists ¸ 2 V 0 such that bS(¸; e) = 0,
that is, such that ¸ 2 E¤(e). We conclude that E¤ is lower-hemi-continuous
at e®, so the proof is complete. 2

Because of the ¯nite-dimensional nature of this parameterization, this re-
sult is not entirely satisfactory. To obtain a more satisfactory result, we need
a notion of \almost all" economies that is suitable in an in¯nite-dimensional
setting. Unfortunately, there is no natural analogue of Lebesgue measure in
an in¯nite-dimensional space, and topological notions of \almost all" are not
entirely satisfactory, particularly in problems like ours in which \almost all"
is interpreted in a probabilistic sense as a statement about the likelihood of an
event occurring.14 However, Christensen (1974) and Hunt, Sauer, and Yorke
(1992) have developed measure-theoretic analogues of Lebesgue measure 0
and full Lebesgue measure for in¯nite-dimensional spaces, called shyness and
prevalence. In many applications, particularly in economics, the parameters
are drawn not from the whole space but from some subset, such as a convex
cone or an order interval, that may be a very small subset of the ambient
space. To address this problem, Anderson and Zame (1997) have extended
the work of Hunt, Sauer and Yorke and Christensen by de¯ning prevalence
and shyness relative to a convex subset that may be a small subset of the
ambient space. Their notion of relative prevalence, given below, is the most
appropriate concept of \almost all" here.

De¯nition Let Y be a topological vector space and let C ½ Y be a convex
Borel subset which is completely metrizable in the relative topology. Let
c 2 C. A universally measurable subset E ½ Y is shy in C at c if for each
± > 0 and each neighborhoodW of 0 in Y , there is a regular Borel probability
measure ¹ on Y with compact support such that supp¹ ½ (±(C ¡ c) + c) \
(W + c) and ¹(E + y) = 0 for every y 2 Y .15 E is shy in C if it is shy at
each point c 2 C. A (not necessarily universally measurable) subset F ½ C
is shy in C if it is contained in a shy universally measurable set. A subset
E ½ C is prevalent in C if its complement C n E is shy in C.
14For example, open and dense sets in Rn can have arbitrarily small measure, and

residual sets can have measure 0.
15Recall that a set E ½ Y is universally measurable if for every Borel measure ´ on Y ,

E belongs to the completion with respect to ´ of the sigma algebra of Borel sets.
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Anderson and Zame (1997) show that relative shyness and prevalence
have the properties we ought to require of measure-theoretic notions of
\smallness" and \largeness." In particular, the countable union of shy sets
is shy, no relatively open subset is shy, and a subset of Rn is shy in Rn if
and only if it has Lebesgue measure 0. Hunt, Sauer, and Yorke (1992) and
Anderson and Zame (1997) also provide simple su±cient conditions for their
notions of shyness and prevalence. Again the relative version from Anderson
and Zame (1997) is the appropriate concept for our problem.

De¯nition Let Y be a topological vector space and let C ½ Y be a con-
vex Borel subset which is completely metrizable in the relative topology. A
universally measurable set E ½ C is ¯nitely shy in C if there is a ¯nite di-
mensional subspace V ½ Y such that (E+ y)\V has Lebesgue measure 0 in
V for every y 2 Y . A universally measurable set E ½ C is ¯nitely prevalent
in C if its complement C n E is ¯nitely shy.

Anderson and Zame (1997) show that sets that are ¯nitely shy are shy,
hence sets that are ¯nitely prevalent are prevalent. Using this fact leads to
a more satisfactory determinacy result.

Theorem 7.2 If E is a basic economy and for each i there is a norm k¢ki
such that

(a) k¢ki is adapted to Ui on weakly compact subsets of P 0i (¹e)
(b) Ui is quadratically concave with respect to k¢ki on weakly compact sub-

sets of P 0i (¹e)

then almost all endowment distributions lead to a determinate economy. That
is

D0
d(¹e) =

n
e 2 D0(¹e) : E(e) is determinate

o
is prevalent in D0(¹e).

Proof: We will show that D0
d(¹e) is ¯nitely prevalent in D

0(¹e). As before,
we use the fact that E(e) is determinate exactly if E¤(e) is ¯nite and E¤ is
continuous at e.
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It is evident that D0(¹e) is a Borel set. To see that it is completely metriz-
able, de¯ne a norm on Xm by

k(x1; : : : ; xm)k = max
i
kxiki

Adaptedness of k¢ki implies that the topology induced by k¢ki agrees with
the topology ¿ on the order interval [0; ¹e], so the topology induced by k¢k
agrees with the product topology ¿m on the set D(¹e) = fe 2 Xm

+ :
P
ei = ¹eg.

Because order intervals are weakly compact in X, D(¹e) is weakly compact
in Xm. It follows that D(¹e) is complete in the metric induced by the norm
k¢kmax.16 Because D0(¹e) is a relatively open subset of D(¹e), there is a com-
plete metric on D0(¹e) having the property that the metric topology coincides
with the topology ¿m.

We next show that D0
d(¹e) is a Borel set. Toward this end, write D

0
f (¹e)

for the endowment distributions e for which E(e) is ¯nite (equivalently, for
which E¤(e) is ¯nite), and D

0
c(¹e) for the endowment distributions e at which

the equilibrium correspondence E is continuous (equivalently, at which the
equilibrium weight correspondence E¤ is continuous). As D

0
d(¹e) = D

0
f(¹e) \

D0
c(¹e), it su±ces to show that these are Borel sets.

To see that D0
f(¹e) is a Borel set, write Q+ for the set of strictly positive

rational numbers. For each positive integer n, let Rn = (Qm
+ \ ¤0)n be the

set of n-tuples of points in ¤0 with rational coordinates. For rj 2 Qm
+ \ ¤0

and ¯j 2 Q+, let B(rj; ¯j) be the open ball in R
m with center rj and radius

¯j . An endowment distribution e 2 D0(¹e) leads to an economy with at most
n equilibria exactly if the set of equilibrium weights is contained in the union
of n balls with rational centers and arbitrarily small rational radii. Hence

D0
f (¹e) =

1[
n=1

\
r2Rn

[
¯2Qn

+

8<:e 2 D0(¹e) : E¤(e) ½
n[
j=1

B(rj ; ¯j)

9=;
Because E¤ is upper hemi-continuous (see the proof of Theorem 7.1), each
of the sets in curly brackets is is open, so D0

f(¹e) is a Borel set.

16Let eXm be the completion of Xm with respect to the topology ¿ . Note that Xm andeXm have the same dual spaces. Hence D(¹e) is weakly closed in eXm. Since ¿ is a stronger

topology, D(¹e) is also ¿ -closed in eXm. Now because eXm is complete, D(¹e) is ¿ -complete
as well.
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To see that D0
c(¹e) is a Borel set, let h denote the Hausdor® distance

between compact subsets of ¤0. The correspondence E¤ is continuous at e
exactly if for each integer n there is a neighborhoodW of e with the property
that h(E¤(e

0); E¤(e00)) < 1=n for e0; e00 2W . Hence

D0
c (¹e) =

1\
n=1

fe 2 D0(¹e) : 9 open W ½ D0(¹e) s.t. e 2W

and h(E¤(e
0); E¤(e00)) < 1=n for all e0; e00 2Wg

Thus, D0
c(¹e) is the countable intersection of open sets, and in particular is a

Borel set.

Now let D0
nd(¹e) = D

0(¹e) nD0
d(¹e). To show that D

0
nd(¹e) is ¯nitely shy, set

v = 1
m
¹e, and let V ½ Xm be the (m¡ 1)-dimensional subspace

V = f(®1v; : : : ; ®mv) :
X
®i = 0g

If ´¤ = (v; : : : ; v) then

V \ [D0(¹e)¡ ´¤] = f(®1v; : : : ; ®mv) :
X
®i = 0 and ®i > ¡1 all i g

so V \ [D0(¹e) ¡ ´¤] certainly has positive measure in V . Now let ´ 2 Xm

and consider V \ [D0
nd(¹e) ¡ ´]. If y 2 V \ [D0

nd(¹e) ¡ ´], then there exists
e 2 D0

nd(¹e) and ® such that
P
®i = 0 for which yi = ®iv = ei ¡ ´i for each

i. In particular, ei = ´i + ®iv > 0 for each i and E(e) is not determinate.
Thus ® 2 And(´; v), which has (m ¡ 1)-dimensional Lebesgue measure 0 by
Theorem 7.1. Thus

V \ [D0(¹e)¡ ´¤] = f(®1v; : : : ; ®mv) : ® 2 And(´; v)g
has (m¡ 1)-dimensional measure 0. We conclude that D0

nd(¹e) is ¯nitely shy,
and thus that D0

d(¹e) is ¯nitely prevalent, in D
0(¹e) as asserted. 2

Stronger assumptions on consumers' utility functions lead to a stronger
conclusion about local comparative statics. To make this statement precise
we need two additional notions.

De¯nition The economy E(e) is Lipschitz determinate with respect to k¢k
if it is determinate and for every equilibrium x 2 E(e) there exist neighbor-
hoods O of x and W of e such that every selection from O \ E is locally
Lipschitz on W with respect to k¢k.
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For this result we will need to specify a single norm on the commodity
space. For each x 2 X de¯ne

kxkmax = max
i
kxki:

If each individual norm k¢ki is absolute, that is if kjxjk = kxk for every x 2 X,
then Lipschitz determinacy with respect to k¢kmax holds for a prevalent set
of endowment distributions.17

Theorem 7.3 If E is a basic economy and for each i there is an absolute
norm k¢ki such that

(a) k¢ki is adapted to Ui on weakly compact subsets of P 0i (¹e)
(b) Ui is quadratically concave with respect to k¢ki on weakly compact sub-

sets of P 0i (¹e)

then almost all endowment distributions lead to an economy that is Lipschitz
determinate with respect to the norm k¢kmax on X. That is,

D0
ld(¹e) =

n
e 2 D0(¹e) : E(e) is Lipschitz determinate with respect to k¢kmax

o
is prevalent in D0(¹e).

17Requiring that a norm be absolute is not innocuous. For instance, there are many
norms onM [0; 1] (the space of signed measures on the unit interval) for which the topology
induced by the norm coincides with the weak star topology (viewing M [0; 1] as the dual
of the space C[0; 1] of continuous functions) on order intervals, but there is no absolute
norm with this property. To see this, let ¹ be Lebesgue measure on [0; 1]. For each n let

En =

n¡1[
k=0

[2k=2n; (2k + 1)=2n)

Fn = [0; 1] n En

and let ºn = ¹jEn ¡ ¹jFn . It is easily checked that ºn ! 0 in the weak star topology but
that jºnj = ¹ for each n. Hence for any norm k¢k on M [0; 1] that induces the weak star
topology on the order interval [0; ¹], kºnk ! 0 while kjºnjk = k¹k for each n.
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Proof: Fix a compact subset ¤¤ ½ ¤0. We ¯rst show that, for ¸ 2 ¤¤,
supporting prices p(¸) are uniformly bounded in the k¢kmax norm. To this
end, note that k¢kmax is an absolute norm, as

kjxjkmax = max
i
kjxjki = max

i
kxki = kxkmax

Moreover, by de¯nition,

kp(¸)kmax = sup
kzkmax·1

jp(¸) ¢ zj

Because p(¸) is positive and k¢kmax is absolute,
kp(¸)kmax = sup

kzkmax·1
jp(¸) ¢ zj = sup

kzkmax·1
z2X+

p(¸) ¢ z

By de¯nition, p(¸) =
W
¸iDUi(xi(¸)) and each ¸iDUi(xi(¸)) is a positive

linear functional, so for z 2 X+ we have

0 · p(¸) ¢ z ·
hX

¸iDUi(xi(¸))
i
¢ z =X

[¸iDUi(xi(¸)) ¢ z]

Using the adaptedness of k¢ki on x(¤¤) and the de¯nition of k¢kmax we obtain
kp(¸)kmax = sup

kzkmax·1
z2X+

p(¸) ¢ z

· sup
kzkmax·1
z2X+

X
[¸iDUi(xi(¸)) ¢ z]

· X
¸iBikzki

· X
¸iBi

· X
Bi

for some constants Bi > 0.

We now show that the excess spending map S is jointly locally Lipschitz
on ¤0 £D0(¹e). Fix a consumer i. For ¸; ¸0 2 ¤0 and e; e0 2 D0(¹e)

jSi(¸; e)¡ Si(¸0; e0)j = jp(¸) ¢ [xi(¸)¡ ei]¡ p(¸0) ¢ [xi(¸0)¡ e0i]j
· jp(¸) ¢ xi(¸)¡ p(¸0) ¢ xi(¸0)j+ jp(¸0) ¢ e0i ¡ p(¸) ¢ eij

39



· jp(¸) ¢ xi(¸)¡ p(¸0) ¢ xi(¸0)j
+ jp(¸0) ¢ e0i ¡ p(¸0) ¢ eij
+ jp(¸0) ¢ ei ¡ p(¸) ¢ eij

· jp(¸) ¢ xi(¸)¡ p(¸0) ¢ xi(¸0)j
+ kp(¸0)kmaxke0i ¡ eikmax
+ j[p(¸0)¡ p(¸)] ¢ eij

Consider the last three terms. Lemma 6.1 guarantees that there is a constant
C1 such that

jp(¸) ¢ xi(¸)¡ p(¸0) ¢ xi(¸0)j · C1j¸¡ ¸0j
The bound obtained in the previous paragraph guarantees that

kp(¸0)kmaxke0i ¡ eikmax ·
X
Bike0i ¡ eikmax

Lemma 6.2 guarantees there is a constant C2 such that

j[p(¸0)¡ p(¸)] ¢ eij · C2j¸¡ ¸0j

Putting these together, we conclude that S is Lipschitz on ¤¤ £D0(¹e), and
in particular, is locally Lipschitz on ¤0 £D0(¹e), as asserted.

The result now follows from the transversality results in Theorem 2.2 and
Theorem 3.7 in Shannon (1998b). 2
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8 Examples

In this section we develop several examples illustrating our results in a variety
of di®erent settings. We show that our results can be applied to canonical
preferences in each of the central in¯nite-dimensional models, continuous
time trading in ¯nancial markets, commodity di®erentiation, and trade over
an in¯nite horizon.

Example 8.1 Continuous-Time Trading in Financial Markets. The
standard model18 of continuous time trading begins with a probability space
(;F ; P ) and a ¯ltration fFt : 0 · t · Tg of sub-sigma-algebras of F such
that F0 = f;;g;FT = F and Ft ½ Ft0 if t < t0. The ¯ltration fFtg
represents revelation of information over the time interval [0; T ], as Ft is the
sigma-algebra of events observable at time t. Commodity bundles are square
integrable predictable stochastic processes, leading to the commodity space
L2(£ [0; T ];P ; º), where P is the predictable sigma algebra and º = P £¹
is the product of P with (normalized) Lebesgue measure on the time interval
[0; T ].

Each consumer i is characterized by an initial endowment ei and a utility
function, usually assumed to have an expected utility representation of the
form

U i(x) = E

"Z T

0
ui(xt; t)dt

#
=
Z


"Z T

0
ui(xt(!); t)dt

#
dP (!)

where ui(¢; t) : R+ ! R is strictly increasing and strictly concave for each t.
It is usually assumed that utility functions satisfy Inada conditions, so that
the partial derivatives uic(x; t) ! 1 as x ! 0, uniformly in t, and that the
social endowment ¹e is bounded above and uniformly bounded away from 0.

Under these assumptions for each consumer, it is easily veri¯ed that ev-
ery Pareto optimal allocation in P 0(¹e) is uniformly bounded away from 0.
A straightforward computation then shows that for each i the L2 norm is
adapted to Ui on weakly compact subsets of P

0
i (¹e).

If in addition ui(¢; t) is C2 and di®erentiably strictly concave, uniformly
in t, then U i is quadratically concave on weakly compact subsets of P 0i (¹e)

18See Du±e and Zame (1989) or Breeden (1979) for instance.
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with respect to the L2 norm. To see this, note that for each b¤ 2 R+ there
is a constant Ki > 0 such that

ui(b; t) · ui(a; t)¡ uic(a; t)(b¡ a)¡Kikb¡ ak2

for each t 2 [0; T ] and a; b 2 [0; b¤].19 Then for x; y 2 [0; ¹e]

U i(y)¡ U i(x) = E

"Z T

0
ui(yt; t)dt

#
¡ E

"Z T

0
ui(xt; t)dt

#

= E

"Z T

0
[ui(yt; t)¡ ui(xt; t)]dt

#

· E

"Z T

0
[uic(xt; t)(yt ¡ xt)¡Kijyt ¡ xtj2]dt

#

= E

"Z T

0
uic(xt; t)(yt ¡ xt)dt

#
¡KiE

"Z T

0
jyt ¡ xtj2dt

#
= DU i(x) ¢ (y ¡ x)¡Kiky ¡ xk2

which is the required inequality.

Because the L2 norm is absolute, Theorem 7.3 guarantees that almost all
endowment distributions lead to economies which are Lipschitz determinate
with respect to the L2 norm.

In the framework above, a commodity bundle x represents a rate of con-
sumption. Hindy, Huang, and Kreps (1992) (see also Hindy and Huang (1992,
1993)) argue that intertemporal consumption patterns should admit the pos-
sibility of consumption in discrete lumps, which they term \gulps", as well
as in rates, which they term \sips". For consumption over the time interval
[0; 1], they suggest that commodities should be represented by positive, in-
creasing, right continuous functions ' : [0; 1] ! R+, where '(t) gives total
consumption at or before time t. In this formulation, consumption occurs
in \sips" at points of continuity of ' and in \gulps" at points where ' has
an upward jump. For our purposes it is convenient to adopt an equivalent
formulation in which commodity bundles are non-negative measures x on

19Indeed, it would su±ce to assume that ui(¢; t) is C1 and appropriately quadratically
concave.
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[0; 1], so that x[0; t] represents total consumption on the interval [0; t]. In our
formulation, consumption occurs in \sips" at points where x has no mass
and in \gulps" at atoms of x. Equivalently, note that the functions that
represent commodity bundles in the Hindy, Huang and Kreps formulation
are just the cumulative distribution functions of the measures that represent
commodity bundles in our formulation. This alternative formulation leads to
the commodity space M [0; 1], the space of signed measures on [0; 1]. As the
following example shows, models such as those developed by Hindy, Huang
and Kreps also satisfy our requirements.

Example 8.2 Lumpy Consumption. The commodity space is M [0; 1],
endowed with the weak star topology when viewed as the dual of the space
of continuous functions C[0; 1]. To capture the idea that consumptions at
nearby dates should be nearly perfect substitutes at the margin, Hindy,
Huang, and Kreps (1992) assume that preferences are continuous in the weak
star topology and uniformly proper with respect to one of a particular family
of norms of the form

kxkp =
·Z 1

0
jx[0; t]jpdt+ jx[0; 1]jp

¸1=p
for p ¸ 1.
A typical utility function satisfying their assumptions is one of the form:

U(x) =
Z 1

0
u(x[0; t]; t)dt+ v(x[0; 1])

where u(¢; t) : R+ ! R is C2, strictly increasing and strictly concave for each
t and v : R+ ! R is C2, strictly increasing, and strictly concave. Suppose
in addition that v00(c) < 0 for each c and that ucc(c; t) < 0 for each c; t.20 We
assert that the norm k¢k1 is adapted to U on every order interval [0; ¹e], and
that U is quadratically concave on every order interval [0; ¹e] with respect to
this norm.21

20Again, it would su±ce to assume that v and u are C1 and appropriately quadratically
concave.
21Note that k¢k1 is not an absolute norm: if x 2M [0; 1] then kxk1 ¸ kjxjk1, but equality

holds exactly when x ¸ 0 or x · 0. Indeed, as we have noted in footnote 17, no absolute
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Hindy, Huang, and Kreps (1992) show that the topology induced by k¢k1
(or indeed any of their norms) coincides with the weak star topology on order
intervals. To verify that the norm k¢k1 is adapted to U , therefore, we must
only verify the relevant properties of derivatives. To this end, note that our
assumptions provide a constant C such that v0(c) · C and uc(¢; t) · C for
every c · ¹e[0; 1]. Thus

jDU(x) ¢ yj =
¯̄̄̄Z 1

0
uc(x[0; t]; t)y[0; t]dt+ v

0(x[0; 1])y[0; 1]
¯̄̄̄

= ·
Z 1

0
Cjy[0; t]jdt+ Cjy[0; 1]j

= Ckyk1
for x 2 [0; ¹e] and y 2M [0; 1]. Similarly, there exists C 0 > 0 such that

jDU(y) ¢ z ¡DU(y0) ¢ zj ·
¯̄̄̄Z 1

0
[uc(y[0; t]; t)¡ uc(y0[0; t]; t)] z[0; t]dt

¯̄̄̄
+ j[v0(y[0; 1])¡ v0(y0[0; 1])]z[0; 1]j

· C 0ky ¡ y0k1
for y; y0; z 2 [0; ¹e], so k¢k1 is adapted to U on [0; ¹e].
To see that U is quadratically concave, ¯x x; y 2 [0; ¹e]. Di®erential strict

concavity of v and u provides a constant C 00 > 0 such that:

u(c0; t)¡ u(c; t) · uc(c; t)(c
0 ¡ c)¡ C 00jc0 ¡ cj2

v(c0)¡ v(c) · v0(c)(c0 ¡ c)¡ C 00jc0 ¡ cj2

for each c; c0 · ¹e[0; 1] and for each t. Hence

U(y)¡ U(x) =
Z 1

0
[u(y[0; t]; t)¡ u(x[0; t]; t)] dt + v(y[0; 1])¡ v(x[0; 1])

·
Z 1

0

h
uc(x[0; t]; t)(y[0; t]¡ x[0; t]) ¡ C 00jy[0; t]¡ x[0; t]j2

i
dt

+ v0(x[0; 1])(y[0; 1]¡ x[0; 1]) ¡ C 00jy[0; 1]¡ x[0; 1]j2

norm on M [0; 1] has the property that the norm topology coincides with the weak star
topology on order intervals. Of course the total variation norm is an absolute norm on
M [0; 1] | but the utility functions considered above are not quadratically concave with
respect to the total variation norm.
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= DU(x) ¢ (y ¡ x)
¡ C 00

·Z 1

0
jy[0; t]¡ x[0; t]j2dt+ jy[0; 1]¡ x[0; 1]j2

¸
· DU(x) ¢ (y ¡ x)¡ C 00ky ¡ xk21

where the last inequality is a consequence of Jensen's inequality.

In¯nite horizon economies are perhaps the most familiar examples of mod-
els with in¯nitely many commodities. As we have noted in Example 3.2, the
standard assumption that individuals discount future consumption entails
that utility functions will not be quadratically concave with respect to the
`1 norm, but only with respect to some weighted norm. The following ex-
ample makes the same point for a more general speci¯cation of utilities.

Example 8.3 In¯nite-Horizon Economies. Consider a discrete time in-
¯nite horizon economy in which the commodity space is `1 endowed with
the Mackey topology. Consumer i is characterized by an endowment ei and
a utility function that displays habit formation of the form:

Ui(x) = vi(x0) +
1X
t=1

¯tiui(xt¡1; xt)

where ¯i 2 (0; 1) is a discount factor. We assume that vi : R+ ! R and
ui : R

2
+ ! R are C2, strictly increasing and di®erentiably strictly concave.

As in Example 3.2, it is easily seen that such utility functions are not
quadratically concave on any bounded set with respect to the `1 norm, but
only with respect to the weighted norm:

kxk¯i =
1X
t=1

¯ti jxtj

To see this, let ¹e 2 `1+ be given and let x; y 2 [0; ¹e]. To simplify notation,
for each z 2 `1 and for each t let z(t) = (zt¡1; zt). Then

Ui(y)¡ Ui(x) = vi(y0)¡ vi(x0) +
1X
t=1

¯ti [ui(y(t))¡ ui(x(t))]
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· v0i(x0)(y0 ¡ x0)¡ cjy0 ¡ x0j2 +
1X
t=1

¯tiDui(x(t)) ¢ [y(t)¡ x(t)]

¡c
1X
t=1

¯tiky(t)¡ x(t)k2

= DUi(x) ¢ (y ¡ x)¡ c
"
jy0 ¡ x0j2 +

1X
t=1

¯tiky(t)¡ x(t)k2
#

· DUi(x) ¢ (y ¡ x)¡ c(1 + ¯i)
1X
t=0

¯ti jyt ¡ xtj2

· DUi(x) ¢ (y ¡ x)¡ c(1 + ¯i)b
Ã 1X
t=0

¯ti jyt ¡ xtj
!2

= DUi(x) ¢ (y ¡ x)¡ c(1 + ¯i)bky ¡ xk2¯i
for some c; b > 0, where the ¯rst inequality follows from the quadratic con-
cavity of u and the last from the fact that in a ¯nite measure space, there
exists B > 0 such that kfk2 ¸ Bkfk1 for all f , where k¢kp denotes the Lp
norm for 1 · p · 1.
Similarly, it is straightforward to verify that this weighted norm is adapted

to the utility function Ui on bounded sets. However, note that if di®erent
individuals discount future consumption at di®erent rates then we must use
di®erent norms for each consumer.

Because each of these weighted norms is absolute, Theorem 7.3 guaran-
tees that almost all endowment distributions lead to Lipschitz determinate
economies.

Another important context in which in¯nite-dimensional models are nat-
ural is the choice of product characteristics or spatial location, as in the
classic work of Hotelling and Lancaster. As the following example, based on
Jones (1984) shows, some of the utility functions which are most natural in
this setting also lead to economies that are generically determinate.

Example 8.4 Di®erentiated Commodities. Let  be a compact Haus-
dor® space representing the characteristics goods may possess. A commod-
ity bundle is a non-negative measure on  and the commodity space is
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thus M(), the space of ¯nite signed measures on . For simplicity, take
 = [0; 1]. The commodity space is then M [0; 1], endowed with the weak
star topology when viewed as the dual of the space of continuous functions
C[0; 1]. We interpret a positive measure as a description of the character-
istics of a commodity bundle. Jones (1984) argues that nearby commodity
characteristics should be nearly perfect substitutes, and gives a class of pref-
erences satisfying such substitutability in characteristics. These preferences
are represented by utility functions constructed via \rolling averages", that
is, of the form

U(x) =
Z 1

0
u(x[t¡ ®; t+ ®])dt

where u : R+ ! R is C2, strictly increasing and strictly concave, and ® is a
parameter with 0 < ® < 1=2. Here and in what follows we interpret addition,
subtraction and multiplication modulo 1, unless explicitly noted otherwise.

Rolling averages utility functions may model distinct commodities as per-
fect substitutes, however: if the parameter ® = k=` is rational, such utility
functions are not even strictly concave. To see this, let ¹ be Lebesgue mea-
sure on [0; 1]. Set

E =
`¡1[
j=0

[2j=2`; (2j + 1)=2`)

F =
`¡1[
j=0

[(2j + 1)=2`; (2j + 2)=2`)

Let x = ¹jE and y = ¹jF . The measures x and y, and all convex combinations
of x and y, assign equal mass to every interval of length 2® = 2k=`. Since a
consumer having such a utility function cares only about the total mass of
each interval of length 2®, such a consumer is indi®erent between x and y and
any convex combination of x and y. Using this fact, it is easy to construct
economies in which consumer utility functions are of this form and equilibria
display robust indeterminacies.

However, if the parameter ® is irrational, then these utility functions are
quadratically concave with respect to an appropriate adapted norm. To see
this, ¯x an irrational ®. For each x 2M [0; 1], de¯ne

kxk® =
Z 1

0
jx[t¡ ®; t+ ®]jdt
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We assert that k¢k® is a norm onM [0; 1],22 that k¢k® is adapted to U on order
intervals, and that U is quadratically concave with respect to this norm on
order intervals. These facts, which we establish in detail below, and Theo-
rem 7.2 imply that almost all endowment distributions lead to determinate
economies under such preferences. As in Example 8.3, note that if ® dif-
fers across consumers, so that consumers average over intervals of di®erent
lengths, then we must use a di®erent adapted norm for each consumer.

To verify that k¢k® is a norm, we must show ¯rst that if kxk® = 0 then
x is the 0 measure. Suppose therefore that kxk® = 0. Let A ½ [0; 1] be the
(possibly empty) set of atoms of x, and de¯ne

A¤ = ft 2 [0; 1] : 9 integer n s.t. t+ n® 2 Ag
Note that A and A¤ are both countable, although possibly both empty.

Suppose a 2 [0; 1] n A¤ and x[a; a+ 2®] 6= 0. For 0 < " < 1
2
¡ ®, observe

that

x[a+ "; a+ 2®+ "]¡ x[a; a+ 2®] = ¡x[a; a+ ") + x(a+ 2®; a+ 2®+ "]
For " su±ciently small, both terms on the right hand side are small because
a =2 A¤, so if x[a; a+2®] 6= 0 then x[a+ "; a+2®+ "] 6= 0 for all " su±ciently
small. But then

kxk® =
Z 1

0
jx[t¡ ®; t+ ®]jdt ¸

Z a¡®+"

a¡®
jx[t¡ ®; t+ ®]jdt > 0

which is a contradiction. We conclude that x[a; a + 2®] = 0 for every a 2
[0; 1] nA¤.
Now ¯x a; b 2 [0; 1] n A¤ with b > a. If 0 < " < b ¡ a, irrationality

of ® implies that we can ¯nd in¯nitely many positive integers k; ` such that
b¡"+` < a+k(2®) < b+`, where here we are departing from our convention
of interpreting quantities mod 1. Reading modulo 1 again, we conclude that
given any " > 0, we can ¯nd in¯nitely many positive integers k such that
b¡ " < (a+ k(2®)) mod 1 < b. Because a 2 [0; 1]nA¤, we conclude from the
previous paragraph that

x[a+ n(2®); a+ (n+ 1)2®] = 0

22Note that k¢k® is not an absolute norm; see the discussion in footnote 21.
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for every integer n ¸ 0. Hence for integers k; ` as above,

0 =
kX
n=0

x[a+ n(2®); a+ (n+ 1)2®]

=
kX
n=0

Z a+(n+1)2®

a+n(2®)
1 dx

= (`¡ 1)
Z 1

0
dx+

Z a+k(2®)

a
1 dx

= (`¡ 1)x[0; 1] + x[a; a+ k(2®)]

Thus for each k, ` as above, (` ¡ 1)x[0; 1] = ¡x[a; a + k(2®)]. For each k,
jx[a; a+ k(2®)]j · kxk, hence (`¡ 1)x[0; 1] must be bounded for each `. On
the other hand, if k !1 then `!1, so (`¡ 1)x[0; 1] can be bounded only
if x[0; 1] = 0. Then for each k,

0 = (`¡ 1)x[0; 1] + x[a; a+ k(2®)] = x[a; a+ k(2®)]

Because " > 0 is arbitrary and a; b are not atoms of x, we can choose k as
large as we like and still arrange that x[a; a + k(2®)] is as close as we like
to x[a; b]. It follows that x[a; b] = 0 for a; b 62 A¤. Because A¤ is countable,
every interval I ½ [0; 1] is the descending intersection of countably many
intervals whose endpoints do not lie in A¤, and hence x(I) = 0 for every
interval I ½ [0; 1]. Hence x(E) = 0 for every Borel set, whence x is the 0
measure.

Veri¯cation of the other requirements for k¢k® to be a norm is straight-
forward and left to the reader.

To see that the topology induced by k¢k® coincides with the weak star
topology on bounded sets, recall that weak star closed, bounded sets are
weak star compact and metrizable. It therefore su±ces to show that if (xn)
is a bounded sequence converging weak star to 0 then kxnk® ! 0. To this
end, ¯x " with 0 < " < 1

2
¡ ®. De¯ne ' : [0; 1]! [0; 1] by

'(t) =

8>>><>>>:
1
"
t if 0 · t · "
1 if " · t · 2®+ "

1¡ 1
"
(t¡ 2®¡ 2") if 2®+ " · t · 2®+ 2"
0 if 2®+ 2" · t

49



De¯ne F : [0; 1]£ [0; 1]! [0; 1] by

F (t; s) = '(s+ ®+ "¡ t)
F is a continuous function, and for each t 2 [0; 1], F (t; ¢) is identically 1
on the interval [t ¡ ®; t + ®] and identically 0 on the complement of the
"-neighborhood of [t¡ ®; t+ ®]. We obtainZ 1

0
jxn[t¡ ®; t+ ®]j dt =

Z 1

0

¯̄̄̄Z 1

0
Â[t¡®;t+®](s)dxn(s)

¯̄̄̄
dt

=
Z 1

0

¯̄̄̄Z 1

0

n
F (t; s) + Â[t¡®;t+®](s)¡ F (t; s)

o
dxn(s)

¯̄̄̄
dt

·
Z 1

0

¯̄̄̄Z 1

0
F (t; s)dxn(s)

¯̄̄̄
dt

+
Z 1

0

¯̄̄̄Z 1

0

n
Â[t¡®;t+®](s)¡ F (t; s)

o
dxn(s)

¯̄̄̄
dt

·
Z 1

0

¯̄̄̄Z 1

0
F (t; s)dxn(s)

¯̄̄̄
dt

+
Z 1

0

Z 1

0
Â[t¡®¡";t¡®](s)djxnj(s)dt

+
Z 1

0

Z 1

0
Â[t+®;t+®+"](s)djxnj(s)dt

·
Z 1

0

¯̄̄̄Z 1

0
F (t; s)dxn(s)

¯̄̄̄
dt

+
Z 1

0
Â[t¡®¡";t¡®](s)dt djxnj(s)

+
Z 1

0
Â[t+®;t+®+"](s)dt djxnj(s)

·
Z 1

0

¯̄̄̄Z 1

0
F (t; s)dxn(s)

¯̄̄̄
dt+

Z 1

0
2"djxnj(s)

Because xn ! 0 in the weak star topology,
R 1
0 F (t; s)dx

n(s) ! 0 for each t,
so the bounded convergence theorem entails thatZ 1

0

¯̄̄̄Z 1

0
F (t; s)dxn(s)

¯̄̄̄
dt! 0

Because the sequence (xn) is bounded,
R 1
0 2"djxnj(s) can be made arbitrarily

small by choosing " small. We conclude that kxnk® ! 0, as desired.
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Simple calculations similar to those in Example 8.2 show that k¢k® is
adapted to U on order intervals, and that U is quadratically concave with
respect to k¢k® on order intervals.
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