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We introduce a solution concept in the context of large elections
with private information by embedding a model of boundedly ratio-
nal voters into an otherwise standard equilibrium setting. A retro-
spective voting equilibrium (RVE) formalizes the idea that voters
evaluate alternatives based on past performance. Since counterfac-
tual outcomes are not observed, the sample from which voters learn
is potentially biased, leading to systematically biased beliefs in equi-
librium. We provide an explicit learning foundation for RVE and
contrast it to standard solution concepts in the literature.
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In economics, voters are usually portrayed as sophisticated individuals who
have well-defined preferences, can solve complicated signal-extraction problems,
and have correct expectations about the distribution of (counterfactual) payoffs.
The empirical evidence, however, often finds that voters are poorly informed and
have little understanding of ideology and policy.1 Consistent with the evidence,
political scientists often view voters as boundedly rational individuals who vote
“retrospectively” and reward or punish politicians and their parties based on their
past performance.

The main contribution of this paper is to embed a model of boundedly ratio-
nal voters who learn from the previous performance of policies or parties into an
otherwise standard equilibrium setting. By doing so, we are able to capture an
important feature of elections that is often overlooked in the literature. To illus-
trate this feature, consider an election between a Republican and a Democratic
candidate in the United States. Voters are likely to use information about the
past performance of the parties to predict their future performance and deter-
mine which party to vote for. For example, voters who are currently unemployed
may favor a Democratic candidate if, while being unemployed in the past, they
experienced better results from previously elected Democratic, compared to Re-
publican, administrations. This tendency to learn from the past is not limited
to political elections. When shareholders vote on takeover proposals, they ben-
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efit from learning the outcome of previous takeovers in the same or comparable
firms. A similar phenomenon occurs with legislators choosing whether to vote
along party lines, union members voting to accept or reject negotiated contracts,
and residents voting whether to approve additional funding for school districts.

A key feature in these examples is that, when using past information to evaluate
alternatives, voters only observe the performance of the elected alternatives, so
that counterfactual outcomes are not observable. For example, we will never find
out how Romney would have performed had he been elected President of the U.S.
in 2012 instead of Obama. Similarly, shareholders will not learn the benefits of
a takeover that is not approved. Consequently, the sample from which voters
learn is potentially biased. The reason is that the selection of alternatives is
not randomized: To the extent that voters have some private information, they
will elect alternatives that are likely to perform better. Thus, voters who fail
to account for other voters’ private information will end up with systematically
biased beliefs.

There is a large experimental literature in common value auctions and elections
that shows that many subjects do not account for the informational content of
other people’s actions (e.g., Thaler (1988), Kagel and Levin (2002), Charness
and Levin (2009), Esponda and Vespa (2014)). Recently, Esponda and Vespa
(2015) find that essentially no subject correctly accounts for the sample selection
problem that arises in a setting with private information and lack of counterfactual
information.

The idea that voters do not account for unobserved counterfactuals is also
consistent with the empirical findings of Achen and Bartels (2004), Leigh (2009),
and Wolfers (2009), who find that voters punish politicians for events that are
outside of their control. Healy and Malhotra (2010) find that punishment is
related to the politician’s response to these events. Our model allows voters to
be fairly sophisticated and to condition their learning on private signals, such as
campaign platforms, media reports, and economic indicators.

In our setup, there is a continuum of voters and two alternatives. One of the
alternatives wins the election if it receives a high enough proportion of votes; oth-
erwise the other alternative wins. Voters have payoffs that are increasing in the
state of the world for one alternative and decreasing for the other. In addition,
voters have some information about the state of the world. This environment
is essentially the one considered by the literature on voting and information ag-
gregation (e.g., Feddersen and Pesendorfer (1997)). For example, in an election
between two political parties, the state can represent the fundamentals of the
economy. One of the parties might be best at governing during recessions and
the other during booms (perhaps because of their different positions on monetary
and fiscal policy).

We propose a new solution concept, retrospective voting equilibrium (RVE), to
formalize the idea that voters learn from a biased sample and have systematically
biased beliefs. An RVE consists of a strategy profile and an election cutoff that
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satisfy two conditions: (i) there is a tie at the cutoff, with one alternative being
elected above and the other below the cutoff; (ii) the strategy profile must be
optimal given the election cutoff. Optimality is defined in terms of retrospective
voting: Voters’ perceptions of the benefits of each alternative derive from the ob-
served performance of each alternative, which depends on the states in which each
alternative is elected, and, therefore, on the election cutoff. This parsimonious
characterization of retrospective voting in large elections is a major advantage of
the framework.

We then contrast RVE to the two most prominent solution concepts for vot-
ing games, Nash equilibrium (NE) and sincere voting (SV). By capturing the
sample selection problem, RVE provides different insights about the information
aggregation properties of elections while exhibiting the more attractive features of
these other solution concepts: Behavior is endogenous (as in NE, but unlike SV),
but outcomes depend on both the electoral rule and the precision of information,
and individual voting behavior depends on private information for a significant
fraction of the electorate (as in SV, but unlike NE).

We also provide a foundation for RVE by studying a dynamic voting environ-
ment with a finite number of players. We first characterize steady state behavior
when players follow a simple retrospective learning rule that uses observed per-
formance to update beliefs about the alternatives and fails to account for sample
selection. We do so by adapting the results of Fudenberg and Kreps (1993), who
provide a learning foundation for Nash equilibrium in strategic-form games of
complete information. In our setting, however, there is private information and
players do not observe the (information-contingent) strategies of other players.
Instead, players learn the average performance of the two alternatives from the
biased sample of elected alternatives. Finally, we show that, in the limit, as the
number of players goes to infinity, the steady state of the dynamic environment
is characterized by our notion of RVE.

This paper follows the literature on learning in games (see Fudenberg and Levine
(1998) and Fudenberg and Levine (2009) for surveys) as well as the theoretical lit-
erature on bounded rationality that studies mistakes in learning, coarse thinking,
and selection (e.g., Rubinstein (1993), Osborne and Rubinstein (1998), Barberis
et al. (1998), Rabin and Schrag (1999), Rabin (2000), Jehiel (2005), Eyster and
Rabin (2005), Jehiel and Samet (2007), Jehiel and Koessler (2008), Mullainathan
et al. (2008), Gabaix (2014), Schwartzstein (2014), Spiegler (2014), Esponda and
Pouzo (2015)).2 Esponda (2008) was the first to propose a general solution con-
cept where players fail to account for endogenous sample selection.

Spiegler (2013) studies a dynamic model of reforms in which an infinite sequence
of policy makers care about the public evaluation of their interventions. The
public follows a simple attribution rule and (mistakenly) attributes changes in

2In voting contexts, the most common solution concept, other than Nash equilibrium, is sincere
voting (generalized by Eyster and Rabin (2005)). See also Osborne and Rubinstein (2003), who apply
their notion of sampling equilibrium to a voting context.
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outcomes to the most recent intervention. Levy and Razin (2015) study a setting
where voters have two correlated pieces of private information but naive voters
fail to account for their correlation. Bendor et al. (2010, 2011) postulate a
dynamic model of retrospective voting where voters follow a satisficing rule and
vote for the incumbent if it has performed well given their endogenous aspiration
level. These papers focus on other interesting aspects of bounded rationality and
not on the type of sample selection problem that motivates our paper.3

Our work is conceptually different to the formal literature in retrospective vot-
ing, beginning with Barro (1973) and Ferejohn (1986), which studies elections as
incentive mechanisms to hold politicians accountable. Instead, our model follows
Downs’ (1957) view of retrospective voting as a way to predict how parties will
perform in the future rather than as a way to simply punish or reward the party
for past performance (see also Key (1966) and Fiorina (1981)).4

In Section I, we introduce the framework and the solution concept, and compare
it to Nash equilibrium and sincere voting. In Section II, we provide the equilibrium
foundation.

I. Voting framework

A. Setup

A continuum of voters participate in an election between two alternatives, R
(Right) and L (Left). A state ω ∈ Ω = [−1, 1] is first drawn according to a
probability distribution G and, conditional on the state, each player observes an
independently-drawn private signal. Players then simultaneously submit a vote
for either R or L. Votes are aggregated according to an electoral rule ρ ∈ (0, 1):
Alternative R is elected if the proportion of votes in favor of R is greater or equal
than ρ; otherwise, L is elected.

For expositional clarity, we assume that all voters have the same preferences and
information; the extension to heterogenous voters is straightforward and relegated
to Online Appendix A. Conditional on a state W = ω, players independently draw
a signal S = s from a finite, nonempty set S ⊂ R with probability q (s | ω); let
sL and sR denote the lowest and highest signals in S. The payoff of each voter is
u(o, ω), where o ∈ {L,R} is the winner of the election.

Let σ : S → [0, 1] denote the strategy of an (average) voter, where σ(s) is the
probability of voting for alternative R after observing signal s.5 A strategy σ is
nondecreasing if σ(s′) ≥ σ(s) for all s′ > s.

We maintain the following assumptions throughout the paper:

3Callander (2011) studies a model of dynamic policy-making where “rational” voters learn the map-
ping between policies and outcomes.

4In the words of Fiorina (1981, p. 5), voters “need not know the precise economic or foreign policies
of the incumbent administration in order to see or feel the results of those policies.”

5As shown in Online Appendix B, σ represents the average strategy in the population and so we are
not restricting voters to play symmetric strategies.
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A1. (i) u(R, ·) : Ω→ R is nondecreasing, u(L, ·) : Ω→ R is nonincreasing, and
one of them is strictly monotone; (ii) u(R, ·) and u(L, ·) are continuously differen-
tiable, except possibly in a finite number of points, and sup(o,ω)∈{L,R}×Ω |u(o, ω)| ≤
K <∞.

A2. MLRP: For all ω′ > ω, and s′ > s:

q(s′|ω′)
q(s′|ω)

− q(s|ω′)
q(s|ω)

> 0.

A3. (i) G has a density function g, where infω∈Ω g(ω) > 0; (ii) there exists
d > 0 such that q(s|ω) > d for all s ∈ S and ω ∈ Ω; (iii) q(s | ·) is continuous for
all s ∈ S.

Assumptions A1-A2 provide an ordering between states, information, and play-
ers’ preferences.6 Note that A2 is trivially satisfied if there is no private informa-
tion (i.e., S is a singleton). The case without private information should be viewed
as the limiting case of a class of MLRP environments with private information
in which information precision vanishes (see Online Appendix B.B2, Remark 2,
for details).7 Assumption A3 rules out “strong signals” in the sense of Milgrom
(1979).

Example 1. The state is uniformly distributed in [−1, 1] and there is a con-
tinuum of identical voters with payoffs u(R,ω) = ω − 1/3, u(L, ω) = −ω − 1/3,
so that the payoff from the Right [Left] policy is increasing [decreasing] in the
state. In particular, cFB = 0 is the first-best election cutoff, i.e., everyone prefers
R in states ω > cFB and L in states ω < cFB. In addition, each voter privately
observes a binary signal from S = {sL, sR} with probability q(sR | ω) = .5 + ιω,
where ι ∈ (0, .5] is the precision of information. �

B. Retrospective voting equilibrium

Let
κ(ω;σ) ≡

∑
s∈S

q(s | ω)σ(s)

denote the proportion of votes in favor of alternative R under state ω when voters
follow strategy σ. Assumption A2 implies that κ(·;σ) is nondecreasing if σ is
nondecreasing. In the case where the strategy depends on private information, so
that σ(·) is not a constant function, then κ(·;σ) is increasing and the outcome of
the election can be characterized by a cutoff: R is elected if and only if κ(ω;σ) ≥ ρ,

6One difference with the standard setup (e.g., Feddersen and Pesendorfer (1997)) is that, to char-
acterize Nash equilibrium, it suffices to require that u(R, ·) − u(L, ·) is monotone, as opposed to each
individual term being monotone.

7For the game-theoretic foundation of RVE in Section II, we rely on assumption A5, which strengthens
A2 by requiring a bound on the rate at which the likelihood ratio changes.
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or, equivalently, for all sufficiently high states. This observation motivates the
following definition.8

DEFINITION 1: A state ω ∈ Ω is an election cutoff given a strategy σ if
κ(ω̃;σ) ≥ ρ for all ω̃ > ω and κ(ω̃;σ) ≤ ρ for all ω̃ < ω.

When making her decision, each voter takes the cutoff as given. A cutoff de-
termines the set of states for which each alternative is chosen, and, consequently,
each voter’s evaluation of the benefits of electing each alternative. For a given
cutoff ω ∈ Ω, the difference in benefits from electing R over L that is perceived
by a voter who observes signal s is

(1) v (s;ω) ≡ E (u(R,W ) |W > ω,S = s)− E (u(L,W ) |W < ω,S = s) .

To interpret the above expression, note that, for election cutoff ω, alternative R
is elected whenever W > ω. So a voter’s retrospective evaluation of R is given
by expected observed performance of R, conditional on her own signal, which is
the first term in the right hand side of (1). A similar interpretation holds for the
second term. Assumptions A1-A2 guarantee that v(·;ω) is increasing.

The following definition captures the idea that each voter votes for the alter-
native that she sincerely believes to have the highest perceived benefit.

DEFINITION 2: A strategy σ is optimal given an election cutoff ω if, for all
s ∈ S, v(s;ω) > 0 implies σ(s) = 1 and v(s;ω) < 0 implies σ(s) = 0.

Note that the fact that v(·;ω) is increasing implies that optimal strategies must
be nondecreasing.

DEFINITION 3: A retrospective voting equilibrium (RVE) is a strategy σ∗ and
an election cutoff ω∗ such that: (i) σ∗ is optimal given ω∗, and (ii) ω∗ is an
election cutoff given σ∗.

A retrospective voting equilibrium requires players to choose a strategy σ∗

that is optimal given their beliefs about the expected benefits of the alternatives.
Beliefs, however, are not necessarily correct but rather determined by the average
observed performance of the alternatives, v(s, ω∗), which depends on the election
cutoff ω∗. Thus, voters do not try to account for the fact that they do not
observe the performance of an alternative that is not elected. In addition, the
election cutoff ω∗ is endogenously determined by the equilibrium strategy σ∗. In
particular, unlike the standard notion of sincere voting, voting behavior depends
endogenously on the aggregate behavior of all voters.

Notice that voters form beliefs conditional on their signals, and so their choices
may depend on the observed signals. For instance, in the context of a political

8When σ, and, therefore, κ(·;σ) are constant functions, this definition is motivated by the limiting
case where signals satisfy MLRP but become uninformative; see Online Appendix B.B2.
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election, voters observe signals (i.e., news) about the state of the economy, foreign
affairs, etc. A voter, for example, may learn that the performance of an economic
policy is correlated with her chances of becoming unemployed.

In Section II, we argue that retrospective voting equilibrium (RVE) corresponds
to a steady state of a dynamic environment in which a large number of voters
are assumed to follow a particular retrospective voting rule. In particular, voters
do not compute conditional expectations to reach expression (1); in contrast,
voters follow a particular retrospective voting rule and their beliefs happen to be
characterized in the steady state by expression (1).

C. Characterization of RVE

We now characterize retrospective voting equilibrium. For each signal s, define
the personal cutoff

(2) c(s) ≡ arg min
ω∈Ω
|v (s;ω)| ,

which depends only on the primitives of the environment. Since Ω is compact
and v(s; ·) is continuous and increasing (by A1-A3), there exists a unique solution
c(s); moreover, c(·) is nonincreasing because v(·;ω) is nondecreasing for all ω ∈ Ω.
Let c ≡ c(sR) and c ≡ c(sL) denote the lowest and highest personal cutoffs.

If we knew the equilibrium election cutoff ω∗, then it would be straightforward
to characterize the equilibrium strategy: a voter with signal s such that c(s) < ω∗

must satisfy v (s;ω∗) > 0 and, therefore, she will optimally vote for R; similarly, if
c(s) > ω∗, then she will optimally vote for L. For example, consider a voter with
two signals and personal cutoffs c(sR) < c(sL), as depicted in Figure 1. If the
equilibrium election cutoff were lower than c(sR), this voter would always vote for
L. Similarly, if the election cutoff were higher than c(sL), she would always vote
for R. In the case where the election cutoff were between her personal cutoffs
c(sR) and c(sL), this voter would vote her signal.9

We now characterize the set of equilibrium cutoffs. For any election cutoff
ω ∈ Ω,

(3) κ(ω) ≡
∑

{s:c(s)<ω}
q (s | ω)

may be interpreted as the proportion of players that vote for R in state ω when
the cutoff is also given by ω.10

The next result says that there is a unique equilibrium cutoff and that it is
essentially given by the state where the proportion of votes for R, as captured by
the function κ, coincides with the electoral rule ρ. In particular, the proportion

9The analysis is easily extended to the case where there is a continuum of signals.
10The interpretation is exact except when ω is one of the personal cutoffs.
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of votes for R is higher than ρ for states above this intersection and lower than ρ
for states below this intersection.

✦✶ ✶

✶

�❝✭s❘✮

✈✭s❘❀ á✮

❝✭s▲✮

✈✭s▲❀ á✮

❱✁t❡ ✂ ❱✁t❡ ✄

❱✁t❡ ✂ ✐❢ ☎✆

❱✁t❡ ✄ ✐❢ ☎✝

✉✭✞✟ á✮✉✭✠✟ á✮

Figure 1. Beliefs, personal cutoffs, and voting behavior.

Note: The figure shows the personal cutoffs c(sR) and c(sL) that result from equating the perceived
benefits from electing R over L, represented by v(sR; ·) and v(sL; ·), to zero. The personal cutoffs
determine voting behavior as a function of the equilibrium cutoff.

THEOREM 1: For any electoral rule ρ ∈ (0, 1), there exists a unique retrospec-
tive voting equilibrium cutoff ω∗ and it is given by ω∗ = κ̄−1(ρ) ∈ [c, c̄].11

PROOF:
See the Appendix.

The following examples illustrate how to find a retrospective voting equilibrium.

Example 1 (continued from pg. 5). An RVE can be found in four simple
steps, depicted in Figure 2 for the case ρ > 1/2 and ι = 1/2. First, we obtain the
“belief function”

v (s;ω) = E (W |W > ω, s)− E (−W |W < ω, s)

=
1
4(1− ω2) + Is

ι
3(1− ω3)

1
2(1− ω) + Is

ι
2(1− ω2)

+
1
4(ω2 − 1) + Is

ι
3(ω3 + 1)

1
2(ω + 1) + Is

ι
2(ω2 − 1)

,

11The inverse function κ̄−1 : (0, 1)→ [c, c̄] is defined as κ̄−1(ρ) = inf{ω ∈ Ω : κ̄(ω) ≥ ρ}.
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✦✶ ✶

✶

✵✳✺

�

✧

q✭s❘⑤✁✮

❝✂✄☎✆

✈✂✄☎❀ á✆

❝✂✄▲✆

✈✂✄▲❀ á✆

ø✝

�✞

Figure 2. Example 1. Finding a retrospective voting equilibrium.

Note: The figure shows how to use the personal cutoffs to construct the vote share function κ̄, and how
to then find the equilibrium cutoff ω∗ by intersecting the vote share function with the threshold rule ρ.

where IsR = −IsL = 1. Second, we compute the personal cutoffs c(s), which solve
v (s; c(s)) = 0. Since v(sR; 0) > 0 > v(sL; 0), then c(sR) < cFB < c(sL).

Third, we compute the vote share for R,

κ(ω) =


0 ifω ≤ c(sR)

.5 + ιω if c(sR) < ω ≤ c(sL)

1 ifω > c(sL)

Finally, we intersect the vote share for R with the electoral rule. The equilibrium
cutoff as a function of the electoral rule ρ is then

ω∗ =


c(sR) if ρ ≤ .5− (−ιc(sR))
1
ι (ρ− .5) if .5− (−ιc(sR)) < ρ < .5 + ιc(sL)

c(sL) if ρ ≥ .5 + ιc(sL)

Thus, the first-best outcome can be obtained with our boundedly rational voters
if and only if the electoral rule is ρ = 1/2. In contrast, a rule that requires
a supermajority to elect one of the alternatives will inefficiently elect the other
alternative too often in equilibrium (as shown in Figure 2 for ρ > 1/2, alternative
R is elected in states higher than ω∗ and L is elected in lower states, which implies
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that L is being inefficiently elected in the interval (0, ω∗)). �

Example 2. (State-dependent vs. state-independent payoffs) A representative
voter with uncertain gross income y(ω) that is increasing in the state chooses be-
tween two policies. Under a full stabilization policy (Left), taxes t(ω) = y(ω)− ȳ
are set to smooth recessions and booms and to obtain a constant disposable in-
come ȳ; hence, the policy leads to state-independent payoffs. Under a budget
balance policy (Right), taxes t(ω) = e are set to balance a fixed amount of ex-
penditure e; hence, the policy leads to state-dependent payoffs. Figure 3 depicts
the disposable income from each policy, where ȳ is normalized to zero and higher
states are associated with higher gross income (the figure plots the case of three
signals for concreteness). The first-best election cutoff is cFB = 0. But, since
E(u(R,W ) | W > 0, s) > E(u(L,W ) | W < 0, s) = 0 for any signal s, it follows
that all personal cutoffs are negative and, therefore, the budget balance policy
(Right) will be excessively elected in equilibrium relative to the first-best out-
come. The intuition is that, since voters tend to elect the state-dependent policy
(Right) in those states in which it is best, they will overestimate its value and
will be biased towards voting for it. As shown by Figure 3, this bias can be par-
tially mitigated by choosing a high enough threshold (above ρ∗) for electing the
policy with state-dependent payoffs, thus providing a new normative rationale for
requiring supermajorities to adopt alternatives with uncertain payoffs.12 �

D. Comparison to Nash and sincere voting

Beliefs in an RVE (i.e., expression (1) in Section I.B) can be compared to
corresponding expressions for the cases of Nash equilibrium and sincere voting.
In the case of Nash equilibrium (NE), the conditioning events in (1) are not the
events that an alternative is elected, i.e., {W > ω} or {W < ω}, but rather the
event that a voter is pivotal, i.e.,

(4) En (u(R,W ) | pivotal, S = s)− En (u(L,W ) | pivotal, S = s) ,

where n is the number of voters (note that expression (1) already represents the
limit as n → ∞; see Section II for details). Feddersen and Pesendorfer (1997)
show that, as the number of voters goes to infinity, the NE outcome in state ω is
essentially the outcome that would arise if voters had perfect information about ω
and, therefore, voted according to u(R,ω)−u(L, ω). This result, which is far from
being obvious, is known as full information equivalence and is true irrespective
of the level of information precision.13

12See, e.g., Buchanan and Tullock (1967), Caplin and Nalebuff (1988), Dal Bo (2006), and Holden
(2009) for alternative justifications of conservatism

13We restrict attention to the symmetric Nash equilibrium that is characterized by Feddersen and
Pesendorfer (1997).
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−1 1

1

ω

ρ∗

c(sR) c(sM ) c(sL)

κ̄

q(sR|·)

q({sR, sM}|·)

u(L, ·) = ȳ

u(R, ·) = y(·) − e

Figure 3. Example 2. RVE with state-dependent and state-independent payoffs.

Note: All personal cutoffs are negative and, therefore, the uncertain policy (Right) is excessively elected
in equilibrium relative to the first best cutoff cFB = 0. This welfare loss is mitigated by choosing any
majority rule ρ ≥ ρ∗, leading to an equilibrium cutoff ω∗ = c(sL).

In contrast, in the case of sincere voting (SV), voters choose the alternative with
the highest expected payoff conditional on their private signal. Thus, a voter’s
belief is simply given by

(5) E (u(R,W ) | S = s)− E (u(L,W ) | S = s) ,

irrespective of the number of voters. Hence, in large elections with sincere voting,
the proportion of people voting for R in state ω is approximately given by the
conditional probability of getting a signal s such that expression (5) is positive.

Example 1 illustrates how RVE differs from NE and SV, while still exhibiting
some of the more attractive features of these solution concepts: Behavior is en-
dogenous (as in NE, but unlike SV), but outcomes depend on both the electoral
rule and the precision of information (as in SV, but unlike NE).14

Example 1 (continued from pgs. 5 and 8). Under SV, voters vote for
R if they observe sR and for L if they observe sL. The election cutoff is given
by the intersection of the electoral rule with the proportion of voters choosing R
in each state, which is given by q(sR | ·). One can see from Figure 4 that SV is
efficient (i.e., aggregates information) if and only if majority rule is used, ρ = 1/2.
This result is an illustration of Condorcet’s famous “jury theorem”. Under NE,

14In Online Appendix A, we allow voters to be heterogeneous and show that individual voting behavior
under RVE depends on private information for a significant fraction of the electorate (as in SV, but unlike
NE).



12 AMERICAN ECONOMIC JOURNAL MONTH YEAR

by full information equivalence, the NE outcome is efficient and R is elected for
ω > 0 and L is elected for ω < 0. The striking aspect of NE is that this is true
for any (non-unanimous) election rule and for any precision of information ι > 0,
no matter how small. In contrast, changes in the election rule or information
precision affect outcomes both under SV and RVE.

�✶ ✶

✶

✵✿✺

✦

q✭s❘❥✁✮

q✂✭s❘❥✁✮

❝✄☎✆✝ ❝✄☎▲✝

b

b

✖✔

❝✞✄☎▲✝❝✞✄☎✆✝

✖✔

�✶ ✶

✶

✦

✚✵

✖✚

q✭s❘❥✁✮

❝✂✄☎✆ ❝✂✄▲✆ ❂ ✖✦✝ ✖✦❙❱

b

b

✞✔

Figure 4. Example 1. Comparative statics and comparison to SV and NE.

Note: The right panel shows that an increase in the electoral rule from ρ0 to ρ̄ leads to an increase in
the election cutoff to ω̄∗ and ω̄SV under RVE and SV, respectively. The left panel shows that a decrease
in information precision (i.e., from q(sR|·) to q′(sR|·)) has two opposing effects under RVE: it leads to
more extreme cutoffs along the flatter schedule q′(sR|·) but the personal cutoffs also get closer to zero.
The final effect on welfare is ambiguous. Under SV, only the first effect is present and lower information
precision results in lower welfare.

Changes in information precision. Under SV, a decrease in information pre-
cision flattens q(sR | ·), thus leading to more extreme election cutoffs and lower
welfare. The situation is more subtle under RVE. On the one hand, a flatter
q(sR | ·) leads to a flatter κ̄(·) over some range. This effect leads to more extreme
equilibrium cutoffs. On the other hand, the personal cutoffs get closer to zero
as information decreases (see c′(sR) and c′(sL) in Figure 4), therefore bringing
the equilibrium cutoff closer to the first-best cutoff of zero. Thus, as can be seen
from the left panel of Figure 4, information has an ambiguous welfare effect. This
result makes sense because voters learn from a biased sample and have systemat-
ically biased beliefs, so there is no reason why better information should mitigate
this bias.

Changes in election rules. Suppose that the electoral rule increases from ρ0

to ρ̄, as shown in the right panel of Figure 4. Under SV, behavior is exogenous
and voters continue to vote in the same way, so that the election cutoff increases
from zero to ωSV . In contrast, the RVE cutoff increases from zero to ω̄∗ =
c(sL) < ω̄SV , thus mitigating welfare losses from naive voting. Intuitively, the
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out of equilibrium dynamics implied by the dynamic retrospective rule described
in Section II is as follows. As the rule increases to ρ̄, voters initially do not react
to this change but the election outcome of course changes: R is now elected for
states higher than ω̄SV and L is elected for all lower states. As a result, R’s
observed performance improves and L’s observed performance worsens, so that
voters start voting for R even if they get sL signals. But this change in voting
behavior implies that the election cutoff will decrease and that R will begin to
be chosen in states lower than ω̄SV . This change in cutoff in turn makes R less
desirable, and this process stops at the new RVE cutoff ω̄∗ = c(sL), where voters
who receive signal sR vote R and voters who receive signal sL are indifferent
and randomize. In particular, under RVE, voter behavior is disciplined by the
performance of the parties, and dismal performances (e.g., an extreme election
cutoff) produces changes in behavior that in turn affects the cutoff and mitigates
welfare losses from changes in the primitives. �

Example 2 illustrates how biased behavior in the direction suggested by the
selection problem arises endogenously under RVE while not arising under NE or
arising only exogenously, for certain primitives, under SV.

Example 2 (continued from pg. 10). Under RVE, the logic of sample
selection implies that the alternative with state-dependent payoffs, R, is chosen
too often relative to the first-best solution. Under NE, in contrast, full information
equivalence implies that the first-best cutoff of zero is attained: R is elected if
ω > 0 and L is elected if ω < 0. Under SV, both excessive risk-taking and
excessive conservatism are possible depending on the primitives. To illustrate this
point, suppose that there are three signals, sL < sM < sR, as illustrated in Figure
3. If expression (5) is positive for s ∈ {sR, sM} and negative for sL, then R is
chosen too often under SV (i.e., the cutoff is at the intersection of q({sR, sM} | ω)
and ρ∗); if expression (5) is positive for sR and negative for s ∈ {sM , sL}, then L
is chosen too often under SV (i.e., the cutoff is at the intersection of q({sR} | ω)
and ρ∗). �

An alternative solution concept is to postulate that voters have beliefs that are
a convex combination of beliefs under NE and SV, i.e., equations (4) and (5). This
alternative corresponds to what Eyster and Rabin (2005) call a partially cursed
equilibrium. This approach, however, does not capture the key feature of our
equilibrium concept, which is that voters naively fail to account for sample selec-
tion in elections in which counterfactuals are not observed. In Online Appendix
C, we characterize partially cursed equilibrium as the number of voters goes to
infinity. As expected, the insights about sample selection that emerge from RVE
and not from either NE or SV, also don’t emerge from a convex combination of
NE and SV.
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II. Equilibrium foundation

We first define equilibrium for a finite number of players, rather than for a con-
tinuum. Then, in Section II.B, we provide a learning foundation for equilibrium
by showing that it corresponds to the steady state of a dynamic environment
where players follow a particular retrospective voting rule. Finally, in Section
II.C, we take the number of players to infinity and show that the resulting solu-
tion concept is characterized by the definition of RVE in Section I.B.

A. Voting game with finite number of players

Consider the game described in Section I but with a finite number of identi-
cal players indexed by i = 1, ..., n and a threshold of k votes required to elect
alternative R. Player i’s payoff when the election outcome is o ∈ {R,L} is now
u(o, ω) + 1 {o = L} νi, where νi ∈ V ⊆ R is a privately-observed payoff pertur-
bation drawn independently for each player from a probability distribution F .
Recall that K is the uniform bound on payoffs postulated in assumption A1. In
addition to A1-A3, we assume:

A4. F is absolutely continuous and satisfies F (−2K) > 0 and F (2K) < 1; its
density f satisfies infx∈[−2K,2K] f(x) > 0.

A5. S has at least two elements and there exists z > 0 such that for all ω′ > ω
and s′ > s,

q(s′|ω′)
q(s′|ω)

− q(s|ω′)
q(s|ω)

≥ z(ω′ − ω).

Assumption A4 guarantees that each alternative is voted with positive prob-
ability. It implies that the probability that players are pivotal (i.e., that their
vote decides the election) becomes negligible as n → ∞.15 Assumption A5 is a
strengthening of MLRP that establishes a bound on the rate at which the likeli-
hood ratio changes.

An action plan for player i is a function that describes player i’s signal-contingent
vote, L or R, as a function of her realized payoff perturbation.16 We restrict at-
tention to weakly undominated strategies, so that, irrespective of her signal, voter
i votes for R if her perturbation satisfies νi < −2K and for L if vi > 2K. Follow-
ing Harsanyi (1973), for each action plan we can integrate over the perturbations
to obtain a (mixed) strategy, σ : S → [0, 1], where σ(s) is the probability of vot-
ing for R after observing signal s. We restrict attention to symmetric equilibria

15A4 also yields a refinement, which is standard in the literature, that rules out equilibria where
everyone votes for the same alternative because a unilateral deviation cannot change the outcome. As
shown in the proof of Theorem 2, the perturbations are also important for providing a learning foundation
for equilibrium.

16The restriction to pure action plans is justified because F is absolutely continuous (Harsanyi, 1973).
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and show in Theorem 2 that this restriction is without loss of generality—i.e.,
the steady states are symmetric—because the environment is symmetric.17 In
addition, a symmetric strategy profile σ = (σ, ..., σ), together with the primitives
of the game, induces a distribution Pn(σ) over the profile of votes, signals, and
the state, Z = {L,R}n × Sn × Ω.18

DEFINITION 4: A strategy profile σ = (σ, ..., σ) is a (symmetric) naive equi-
librium of the voting game if for every s ∈ S,

σ(s) = F (∆(Pn(σ), s)) ,

where ∆(Pn(σ), s) ≡ EPn(σ) (u(R,W ) | o = R,S = s)−EPn(σ) (u(L,W ) | o = L, S = s).19

We refer to Pn(σ) ∈ ∆ (Z) as a naive equilibrium distribution.

In equilibrium, each player best responds to a belief that depends endoge-
nously on everyone’s strategy and that is consistent with observed equilibrium
outcomes. Players’ beliefs are given by the observed equilibrium performance of
each alternative conditional on their signal. Players, however, do not account for
the correlation between others’ votes and the state of the world (conditional on
their own private information). Existence of equilibrium follows from a standard
application of Brouwer’s fixed point theorem; the proof is omitted.20

B. Retrospective learning foundation

We provide a learning foundation for Definition 4. A group of n players play
the stage game described above for each discrete time period t = 1, 2, .... At time
t, the state is denoted by ωt ∈ Ω, the signals by st = (s1t, ..., snt) ∈ Sn, and the
votes by xt = (x1t, ..., xnt) ∈ {L,R}n. The outcome of the election at time t is
denoted by ot ∈ {L,R}. Player i’s utility is u(ot, ωt) + 1 {ot = L} vit, where vit is
the payoff perturbation drawn independently (across players and time) from F .

Let ht = (z1, ..., zt−1) denote the history of the game up to time t − 1, where
zt = (xt, st, ωt) ∈ Z is the time-t outcome. Let Ht denote the set of all time-t
histories and let H be the set of infinite histories.21 We define a retrospective
voting rule for player i, φi = (φi1, ..., φit, ...), where φit : H× V→ {L,R}S for all

17The extension to asymmetric players is straightforward and provided in Online Appendix B.
18Definition 4 extends naive behavioral equilibrium (Esponda, 2008) to mixed strategies for the specific

voting game that we consider.
19Whenever an expectation EP has a subscript P , this means that the probabilities are taken with

respect to the distribution P .
20The definition of naive equilibrium does not rely on the monotonicity assumptions on payoff functions

and the information structure. Bhattacharya (2013) relaxes monotonicity restrictions for the case of Nash
equilibrium.

21The payoff perturbations are not part of the history, implicitly assuming that players understand
that the perturbations are independent payoff shocks that are unrelated to the learning problem.
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t is defined as follows:

φit(h, vit)(s) =

{
R
L

if µRit (h) (s) ≥ µLit (h) (s) + vit
if µRit (h) (s) < µLit (h) (s) + vit

where, for each alternative o ∈ {L,R}, µoit : H → RS represents player i’s belief
at time t about the expected utility of alternative o conditional on her signal s
and is defined as follows: Let

Ziso =
{

(x′, s′, ω′) ∈ Z : o(x′) = o, s′i = s
}

denote the event that player i observes s ∈ S and the elected outcome is o ∈
{L,R}. For any history h ∈ H, let22

µoit(h)(s) =

∑t−1
τ=1 1Ziso(zτ )u(o, ωτ )∑t−1

τ=1 1Ziso(zτ )
(6)

for every s ∈ S, and t ≥ 2 whenever the denominator is greater than zero. If the
denominator is zero, then µoit(h)(s) ∈ (−2K, 2K).23 In words, players believe
that the expected payoff of an alternative given a signal is given by the observed
empirical average payoff. The idea is that players do not observe counterfactuals
and take the information they see at face value without attempting to account
for the informativeness of others’ votes.

EXAMPLE 1: To illustrate the retrospective voting rule, Table 1 shows data for
eight elections from the point of view of one particular voter (perturbations are
omitted for simplicity). For simplicity, we suppose that the voter knows that L
always yields a payoff of zero, and so she only learns about R (i.e., µLit = 0).
Suppose that there is an election in period 9 in which this voter observes signal
r prior to voting. A retrospective voter behaves as follows. First, she uses past
elections to form a belief about the performance of each alternative conditional on
signal r. In this example, alternative L is known to always deliver a payoff of zero,
while alternative R delivers an average payoff of µRi9(h)(r) = (−1+1+1)/3 = 1/3
when the signal is r (i.e., in periods 1, 2, and 6). Then, in period 9, if the voter
observes signal r, she votes for R, i.e., φi9(h)(r) = R. �

We now characterize the steady state outcomes under the assumption that
players follow the above retrospective voting rule. Given a retrospective voting rule

22Throughout the paper, 1 stands for the indicator function, i.e., 1A(z) = 1 if z ∈ A and 1A(z) = 0
if z /∈ A.

23This assumption guarantees that posteriors always belong to (−2K, 2K); hence, the perturbations
guarantee that both alternatives are chosen with positive probability.
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Table 1—Illustration of retrospective voting rule

 

 

 

 

 

time  signal  vote 

election 

outcome 

observed 

payoff 
   

1  r R  R  1     
2  r L  R   1     
3  r R  L   0  → 

counterfactual 

not observed 

4  l L  R  ‐1     

5  l L  L   0     

6  r R  R   1     

7  r R  L   0  → 
counterfactual 

not observed 

8  l L  R   1 
 

 

 

 

 

 
profile φ = (φ1, ..., φn), let Pφ denote the unconditional probability distribution
over histories, which we can construct by Kolmogorov’s extension theorem.

For simplicity, we assume that the set of states Ω is finite, and so the set Z is
also finite. For t ≥ 2, define the sequence of random variables P t : H → ∆(Z),
where

P t(h)(z) =
1

t− 1

t−1∑
τ=1

1{z}(zτ )

is the frequency distribution over outcomes in the dynamic game.
We focus attention on frequency distributions that eventually stabilize around

a steady-state distribution over outcomes. The following definition of stability
accounts for the probabilistic nature and possible multiplicity of steady states.

DEFINITION 5: P ∈ ∆(Z) is a stable outcome distribution of the dynamic
game under a policy profile φ if for all ε > 0 there exists tε such that24

Pφ
(∥∥P t(h)− P

∥∥ < ε for all t ≥ tε
)
> 0.

This definition of stability captures the idea that after a finite number of peri-
ods, there is a positive probability that the frequency distribution over outcomes
P t remains forever close to P .

THEOREM 2: If P is stable under a retrospective voting rule profile, then P is
a naive equilibrium distribution of the stage game.

24The norm || · || is defined as ||f || = maxy∈Y |f(y)|.
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PROOF:

See Online Appendix B.

Theorem 2 provides a justification for Definition 4: Any profile that is not
a naive equilibrium generates an outcome distribution that is not stable. The
proof of Theorem 2 adapts the arguments by Fudenberg and Kreps for games
with complete information (1993, Proposition 7.5) to our asymmetric-information
setting.

discussion. The mistake that our retrospective voters make is that they fail
to account for the correlation between others’ votes and the state of the world.
Because the counterfactual payoff of the non-elected alternative is not observed,
this correlation in turn implies that voters face a sample selection problem. In
Table 1, the voter also observes signal r in periods 3 and 7, but, since L is elected,
the voter does not observe the performance of R in those periods. If L and R
were randomly chosen each period, the fact that the performance of R is not
observed in periods 3 and 7 should not affect beliefs in the long run. The prob-
lem, however, is that the election outcome depends on private information that is
correlated with performance. In particular, it is likely that the reason why R was
not elected in periods 3 and 7 is that voters obtained signals that were relatively
unfavorable to R. So, if our voter had been somehow able to observe the counter-
factual performance of R in periods 3 and 7, she would have probably observed a
relatively bad performance. Thus, the fact that counterfactual performances are
not observed means that naive voters, who miss the correlation between others’
votes and the state of the world, will end up overestimating the value of electing
R in this example.

Two things are crucial here: retrospective voting and the fact that counterfac-
tual outcomes are not observed. Suppose, instead, that counterfactual outcomes
were observed (this is realistic in many contexts, though less so in the applica-
tions that we have in mind, as motivated in the introduction). Then steady-state
behavior with retrospective voting would correspond to sincere voting (general-
ized to general game-theoretic settings by Eyster and Rabin’s (2005) fully cursed
equilibrium).

Finally, consider the case of sophisticated voters. Suppose that counterfactual
outcomes are not observed (as in this paper) but voters understand the selection
problem and follow a sophisticated voting rule that is just like the retrospective
voting rule described above, except that voters only use data from elections in
which they were pivotal. Then it is possible to show that steady-state behavior
corresponds to Nash equilibrium. Of course, one may want to tell other stories
for how voters reach Nash.
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C. Large elections

We now consider the naive equilibrium in Definition 4 (which is the steady-
state of the retrospective rule described above, by Theorem 2) and characterize
its limit as the number of voters goes to infinity. The resulting characterization
is what we called RVE in Definition 3.25

We explain intuitively why equation (1) characterizes limiting beliefs with a
large number of players; see Online Appendix B.B2 for the formal results. Due to
the retrospective ruled described above, player i’s equilibrium belief is given by

EPn(σ) (u(R,W ) | o = R,S = s)− EPn(σ) (u(L,W ) | o = L, S = s) .

As the number of voters goes to infinity, the events o = R (i.e., R is elected) and
o = L (i.e., L is elected) are equivalent to {W > ω} and {W < ω}, respectively,
where ω is the equilibrium cutoff, thus explaining the origin of equation (1). The
intuition is as follows. Suppose that voter behavior converges to strategy σ. Then
the probability that a randomly chosen player votes for Right, conditional on ω,
converges to κ(ω;σ). By standard asymptotic arguments, the proportion of votes
for Right becomes concentrated around κ(ω;σ). So, for states where κ(ω;σ) > ρ,
the probability that the outcome is Right converges to 1. Similarly, for states
where κ(ω;σ) < ρ, the probability that the outcome is Right converges to 0.
Finally, the key is to show that σ is increasing, which then implies that there
is at most one (measure zero) state such that κ(ω;σ) = ρ; thus, the outcome is
characterized by a cutoff.

The proof that σ is increasing is standard for Nash equilibrium, where it relies
on the fact that, by MLRP, higher signals convey more favorable information
about Right. In our context, higher signals also have a second, indirect effect,
because, to the extent that a player can be pivotal and affect the outcome of the
election, her beliefs about the alternatives also depend on her own strategy. In
fact, this indirect effect may go in the opposite direction of the standard effect.26

However, we establish that the probability of being pivotal goes to zero as the
number of players increases and, therefore, the indirect effect eventually vanishes
and becomes dominated by the direct effect (provided a uniform version of MLRP
holds). Thus, equilibrium strategies are increasing in the limit as the number of
players goes to infinity.

25As a comparison, a similar exercise was carried out by Feddersen and Pesendorfer (1997) for the
case of Nash equilibrium.

26To see this claim, fix a player and a signal and suppose that she votes for Right with probability
close to 1. Then, most often, Right is the outcome of the election whenever at least k − 1 or more of
the other players have voted for Right. Compare this case to the case where she votes for Left with
probability close to 1. Then, most often, Right is the outcome of the election whenever at least k or more
of the other players have voted for Right. If strategies are increasing, then, by MLRP, the first event
conveys less favorable information about Right. Therefore, a higher signal leads this player to vote more
for Right, which then makes her less favorable about Right.
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Appendix

The following result is used in the proof of Theorem 1.

LEMMA 1: κ : Ω → [0, 1] is left-continuous, increasing over the subdomain
(c, c), and satisfies: κ(ω) = 0 if ω ≤ c and κ(ω) = 1 if ω > c.

PROOF:

κ̄(·) is left-continuous: Since there are a finite number of personal cutoffs (de-
fined by equation (2)), then for each c ∈ (−1, 1) there exists ω′ < c such that all
personal cutoffs are outside the interval [ω′, c). Then, for all ω̂,

∑
{s:c(s)<ω} q (s | ω̂) =∑

{s:c(s)<c} q (s | ω̂) for all ω ∈ [ω′, c]. In addition, q(s | ·) is continuous by A3(iii).

Therefore, limω↑c
∑
{s:c(s)<ω} q (s | ω) =

∑
{s:c(s)<c} q (s | c).

κ̄(·) is increasing over (c, c): Let c < ω < ω′ < c. Then∑
{s:c(s)<ω′}

q
(
s | ω′

)
≥

∑
{s:c(s)<ω}

q
(
s | ω′

)
>

∑
{s:c(s)<ω}

q (s | ω) ,(A1)

where the last inequality follows because, since c(·) is nonincreasing, the event
{c(s) < ω} is equivalent to {s ≥ s(ω)} for some threshold s(ω), and there is strict
MLRP (A2); see (Milgrom, 1981).

Finally: If ω ≤ c, then {c(s) < ω} = ∅, so that κ̄(ω) = 0. Similarly, if ω > c,
then {c(s) < ω} = S, so that κ̄(ω) = 1.

Proof of Theorem 1. The proof relies on the following claim.

Claim 1.1 Suppose that σ is optimal given election cutoff ω∗. Then

(A2) κ(ω;σ) =
∑

{s:c(s)<ω∗}
q(s | ω) +

∑
{s:c(s)=ω∗}

q(s | ω)σ(s)

for all ω ∈ Ω. In addition, κ̄(ω) ≥ κ(ω;σ) for ω > ω∗ and κ̄(ω) ≤ κ(ω;σ)
for ω < ω∗.

PROOF:

Since σ is optimal given ω∗, then

(A3) σ(s) =

{
0 if c(s) > ω∗

1 if c(s) < ω∗
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and equation (A2) follows. By equation (A2), for all ω > ω∗,

κ(ω;σ) ≤
∑

{s:c(s)≤ω∗}
q(s | ω)

≤
∑

{s:c(s)<ω}
q(s | ω) = κ̄(ω).

Similarly, for all ω < ω∗, κ(ω;σ) ≥ κ̄(ω).

We now prove Theorem 1. Fix ρ ∈ (0, 1) and let

(A4) ω∗ = κ−1(ρ) = inf{ω ∈ Ω : κ̄(ω) ≥ ρ}.

Note that, by Lemma 1, ω∗ ∈ [c, c]. We begin by showing that there exists σ∗

such that (σ∗, ω∗) is a voting equilibrium. Let σ∗ satisfy (A3). It remains to
specify σ∗(s) for s such that c(s) = ω∗. First, suppose that ω∗ /∈ {−1, 1}. If ω∗

is the election cutoff, then s such that c(s) = ω∗ is indifferent between R and
L, and, therefore, σ∗(s) = α is optimal for any α ∈ [0, 1]. Let σ∗α denote the
strategy profile that satisfies (A3) and σ∗(s) = α. We now pick α such that ω∗ is
an election cutoff given σ∗α. By Claim 1.1,

κ(ω∗;σ∗α) =

 ∑
{s:c(s)<ω∗}

q(s | ω∗) +
∑

{s:c(s)=ω∗}
q(s | ω∗)α

 ,

which is continuous in α. First, we establish that κ(ω∗;σ∗0) ≤ ρ. Suppose not,
so that κ(ω∗;σ∗0) = κ̄(ω∗) > ρ. Since κ̄ is left-continuous (Lemma 1), then there
exists ω′ < ω∗ such that κ̄(ω′) > ρ. But then (A4) is contradicted. Second, we
establish that κ(ω∗;σ∗1) ≥ ρ. Suppose not, so that κ(ω∗;σ∗1) = limω↓ω∗ κ̄(ω) < ρ.
Then, there exists ω′′ > ω∗ such that κ̄(ω′′) < ρ. But, since κ̄(·) is nondecreasing
(Lemma 1), then (A4) is contradicted. Since κ(ω∗;σ∗0) ≤ ρ and κ(ω∗;σ∗1) ≥ ρ,
by continuity of α 7→ κ(ω∗;σ∗α) there exists α∗ such that κ(ω∗;σ∗α∗) = ρ. Since
κ(·;σ∗α∗) is nondecreasing (because σ∗α∗ is nondecreasing), then ω∗ is an election
cutoff given σ∗α∗ . Hence, (σ∗α∗ , ω

∗) is a voting equilibrium. Next, suppose that
ω∗ = −1 (the case ω∗ = 1 is similar and, therefore, omitted). Now let α∗ = 1;
in particular, σ∗1 is optimal given ω∗ (note it would not necessarily be optimal
for α∗ 6= 1). Note that the argument provided above to show κ(ω∗;σ∗1) ≥ ρ for
all ω∗ /∈ {−1, 1} also holds for ω∗ = −1. Thus, κ(−1;σ∗1) ≥ ρ. Since κ(·;σ∗1) is
nondecreasing, it follows that κ(ω;σ∗1) ≥ ρ for all ω ∈ Ω, implying that ω∗ = −1
is a cutoff given σ∗1.

Finally, we show that, for all ω 6= ω∗, there exists no σ such that (σ, ω) is a
voting equilibrium. Suppose, in order to obtain a contradiction, that (σ, ω) is
a voting equilibrium, where ω < ω∗ (the case ω > ω∗ is similar and, therefore,



VOL. VOL NO. ISSUE RETROSPECTIVE VOTING IN LARGE ELECTIONS 25

omitted). Let ω′ ∈ (ω, ω∗). Then κ̄(ω′) ≥ κ(ω′;σ) ≥ ρ, where the first inequality
follows from Claim 1.1 and the fact that σ is optimal given ω, and the second
from the fact that ω is an election cutoff given σ. But then (A4) is contradicted.
�
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Online Appendix

Online appendix “Conditional Retrospective Voting in Large Elections, ” by
Ignacio Esponda and Demian Pouzo.

RVE with heterogeneous voters

We show that it is straightforward to define an RVE with heterogenous voters. We model heterogeneity

(in preferences and information) by assuming that each voter is of a particular type θ, where ϕ is the

full-support probability distribution over the set of types Θ ⊂ R. Conditional on a state W = ω, players

of type θ independently draw a signal Sθ = s from a finite, nonempty set Sθ ⊂ R with probability

qθ (s | ω); let sLθ and sRθ denote the lowest and highest signals in Sθ. The payoff of type θ is given by

uθ(o, ω), where o ∈ {L,R} is the winner of the election.

Let σθ : Sθ → [0, 1] denote the strategy of type θ, where σθ(s) is the probability that type θ votes for

alternative R after observing signal s. A strategy σθ is nondecreasing if σθ(s′) ≥ σθ(s) for all s′ > s. A

strategy profile σ = (σθ)θ∈Θ is nondecreasing if σθ is nondecreasing for each θ.

Assumptions A1, A2, and A3 are now required for all θ ∈ Θ. The following additional assumption

guarantees uniqueness of the equilibrium cutoff and is made only for convenience.

A6. Θ ⊂ R is a compact interval and Sθ = S; the functions (θ, ω) 7→ uθ(R,ω), (θ, ω) 7→ uθ(L, ω), and

(θ, ω) 7→ qθ(s | ω) are jointly continuous in Θ× Ω for all s ∈ S.

Let κ(ω;σ) ≡
´
Θ

∑
s∈S qθ(s | ω)σθ(s)ϕ(dθ) and

vθ (s;ω) ≡ E (uθ(R,W ) |W > ω,Sθ = s)− E (uθ(L,W ) |W < ω,Sθ = s)

be the natural counterparts of the expressions defined in the text for the case of homogenous voters.

Optimality is now required to hold for all θ ∈ Θ, and the definition of RVE is the same as in the text

(Definition 3).

In order to characterize RVE, let cθ(s) ≡ arg minω∈Ω |vθ (s;ω)| denote the personal cutoff of type θ

with signal s, and let c ≡ minθ cθ(sR) and c = maxθ cθ(sL) be the lowest and highest personal cutoffs

across all types (which exist by A1-A3 and A6). Let κ(·) in equation (3) now be defined by

κ(ω) ≡
ˆ

Θ

∑
{s:cθ(s)<ω}

qθ (s | ω)ϕ(dθ)

for all ω ∈ Ω. The characterization of RVE (i.e., Theorem 1) then holds exactly as stated. The proof

is almost identical, with the obvious difference that we need to integrate over Θ in several places. The

only claim that requires a new proof is the claim that the inequality in equation (A1) holds strictly. This

is trivially true if there exists a positive ϕ-measure of types with personal cutoffs in [ω, ω′), so suppose

that is not the case. Since, by A6, cθ(sL) is continuous in θ and Θ is a compact interval, the union

of cθ(sL) over all θ ∈ Θ is a compact interval. Given that there is no positive measure of types with

personal cutoffs in [ω, ω′), then, the facts that ϕ has full support and ω′ < c implies that, for all θ ∈ Θ,

cθ(sL) ≥ ω′ > ω and, therefore, {cθ(s) < ω} 6= S. Then, because MLRP holds strictly (by A2), the

second inequality in (A1) is strict.

We provide an example to illustrate how easy it is to incorporate heterogeneity into the model (and

to once again compare RVE to NE and SV).

Example 3. (Heterogeneous voters) Consider an environment identical to Example 1, with the

exception that preferences are heterogeneous: Payoffs of type θ are uθ(R,ω) = ω−1/2+θ and uθ(L, ω) =
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−ω− 1/2 for all ω ∈ Ω, and types are distributed uniformly on the interval [−1, 1]. In particular, higher

types get higher payoffs under R. For concreteness, suppose majority rule, ρ = .5, and information

precision ι = .5.

Figure A1 illustrates equilibrium with heterogeneous voters for all solution concepts. Under RVE, the

vote share function is given by

κ(ω) = q(sR | ω) Pr
(
cθ(sR) < ω

)
+ q(sL | ω) Pr

(
cθ(sL) < ω

)
,

where cθ(s) is the personal cutoff of type θ for signal s. The equilibrium cutoff is ω∗ = 0 and all types

lower than −.22 always vote L, all types higher than .22 always vote R, but all types between −.22

and .22 vote their signal. In particular, there is a significant fraction of “independent types” that vote

according to their signal.

−1 1

1

ω

ρ = 0.5

ω∗

↓
c−0.22(s

R) = c0.22(s
L)

ω∗′

↓
c′
0.09(s

R) = c′
0.56(s

L)

κ̄

κ̄′

−1 1

1

− 1
2

1
2

ω

ρ = 0.5

ω′
SV ω′

NE
ωSV = ωNE

κ̄NE

κ̄′
NE

κ̄′
SV

κ̄SV

Figure A1. Example 3: Heterogeneous voters.

Note: The vote share functions are smoothed out with heterogenous voters. The figure shows the effect
of an increase (in first order stochastic sense) in the distribution of voters who prefer R (left panel shows
RVE and right panel shows SV and NE).

Under SV, a voter votes R whenever she either observes sR and has type θ > −2/3 or she observes

sL and has type θ > 2/3. Thus, the proportion of R-votes in state ω is

κ̄SV (ω) = q(sR | ω) Pr (θ > −2/3) + q(sL | ω) Pr (θ > 2/3) = .5 + ω/3

and the election cutoff is ωSV = 0. Types below −2/3 always vote L, types above 2/3 always vote R,

and types in between −2/3 and 2/3 vote their signal.

Under NE, it suffices to characterize the outcome under full information. Since type θ prefers R

whenever uθ(R,ω) > uθ(L, ω), or, equivalently, ω > −.5θ, then the proportion of votes for R is κ̄NE(ω) =

.5 + ω for ω ∈ [−.5, .5]. Thus, the NE election cutoff is also ωNE = 0. Moreover, Feddersen and

Pesendorfer (1997) show that NE voting behavior is as follows. For a given ε > 0, there is a sufficiently

large number of voters such that, for all larger elections, voters that have a type in an ε-neighborhood

of θ = 0 vote their signal, but everyone else votes always R or always L.

Shift in the distribution of preferences. Suppose that there is an increase (in the first order stochastic

dominance sense) in the distribution of voters who prefer R. For concreteness, let the new probability

density function of types be ϕ′(θ) = .5(1 + θ) for θ ∈ [−1, 1]. Figure A1 shows the new functions κ̄′SV ,

κ̄′NE , and κ̄′, under SV, NE, and RVE. As expected, in all cases there is an upward shift in the proportion
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of votes for R, and the cutoff moves to the left, so that R is chosen in more states of the world. But the

effect on voting behavior is different in each case.

Under SV, voting behavior is exogenous and so every type behaves exactly as before. The increase in

the proportion of votes for R is driven by the fact that there are more high types and these types vote

for R. In contrast, behavior is endogenously affected by the change in equilibrium cutoff under both NE

and RVE. Under NE, the new “marginal type” is θ = .42: lower types always vote L and higher types

always vote R (while a vanishing fraction of types around .42 vote their signal). Under RVE, types lower

than .09 always vote L, types higher than .56 always vote R, and types in between .09 and .56 vote their

signal. In particular, more popular alternatives are supported by voters with more extreme preferences

under NE and RVE, which helps mitigate the preference shift in favor of the more popular alternative.27

�

Foundation for RVE with heterogeneous players

In Section B.B1, we provide the proof of the learning foundation for a finite number of players (Theorem

2 in the text), but allow players to be heterogenous. In Section B.B2, we consider the case where the

number of players goes to infinity, therefore providing a game-theoretic foundation for RVE.

We now allow players to be asymmetric and assume for simplicity that the set of types Θ (see Online

Appendix A) and the set of states Ω are both finite. Recall that player i is of type θi ∈ Θ. The general

definition of naive equilibrium with a finite number of players is the following.

DEFINITION 6: A strategy profile σ = (σ1, ..., σn) is a naive equilibrium of the voting game if for

every player i = 1, ..., n and for every s ∈ Sθi ,

σi(s) = Fθi (∆i(P
n(σ), s)) ,

where ∆i(P
n(σ), s) ≡ EPn(σ)

(
uθi (R,W ) | o = R,Si = s

)
− EPn(σ)

(
uθi (L,W ) | o = L, Si = s

)
. We

refer to Pn(σ) as a naive equilibrium distribution.

B1. Proof of Theorem 2

Throughout the proof, we fix a stable outcome distribution P and retrospective voting rule profile φ.

The proof compares “strategies” in the dynamic game with strategies in the stage game. To define the

former, let

Ai =
{
αi ∈ RS : Fθi (−2K) ≤ αi(s) ≤ Fθi (2K) ∀s ∈ Sθi

}
denote a player’s strategy space and define the vector-valued random variable αt = (α1t, ..., αnt) : H →∏n
i=1Ai denote a time-t strategy profile, where

(B1) αit(h)(s) =
´
1{vi:φit(h,vi)(s)=R}(νi)dFθi

is the probability that player i votes for R when observing signal s, conditional on history ht.

27In the case of NE, the reason for more extreme supporters of R is that the pivotal voter believes
that the state is given by the cutoff state, since this is where the proportions voting for R and L are
equal. When preferences shift and the cutoff decreases, then the pivotal voter believes the state is lower.
In order to be indifferent between voting for L or R, then its type must be higher. In the case of RVE,
the reason for more extreme supporters of R is that, if R is elected more often, then it must be elected in
worse states and its observed performance must be lower. Therefore, types that were marginally willing
to vote for R will no longer desire to vote for R.



4 AMERICAN ECONOMIC JOURNAL MONTH YEAR

Finally, let σ = (σ1, ..., σn) ∈ Πni=1Ai be such that

(B2) σi(s) = Fθi (∆i(P, s))

is the probability that player i votes for R if she optimally responds to beliefs ∆i(P, s).

The proof of Theorem 2 follows from the following claims, which are proven at the end of this section.

Claim 2.1 For all ε > 0, there exists Hε with Pφ(Hε) > 0 such that for all h ∈ Hε, there exists tε,h
such for all t ≥ tε,h, ‖αt(h)− σ‖ < ε and

∥∥P t(h)− P
∥∥ < ε.

Claim 2.2 ||P − Pn(σ)|| = 0

Claim 2.1 establishes that stability of P implies that beliefs for each player i, conditional on s ∈ Sθi ,
eventually remain close to ∆i(P, s), thus implying that the time-t strategy profile αt eventually re-

mains close to σ. The key of the proof is that players’ payoff perturbations are independently drawn

from an atom-less distribution, implying that if beliefs settle down, then strategies must also settle

down, not just in an average sense, but actually in a per-period sense. In particular, Claim 2.1 im-

plies that any correlation in players’ strategies induced by a common history eventually vanishes. In

Claim 2.2, we show that the fact that time-t strategies remain close to σ implies that P = Pn(σ).

Recall that Pn(σ) is the distribution over outcomes Z ≡ {L,R}n ×∏n
i=1 Sθi ×Ω, i.e., Pn(σ)(x, s, ω) =

g(ω)
∏n
i=1 σi(si)

1{R}(xi) (1− σi(si))1{L}(xi) qθi (si | ω). Both claims rely on a straightforward gen-

eralization of a technical result by Fudenberg and Kreps (1993, Lemma 6.2); this result allows us to

apply the law of large numbers in a context where a sequence of random variables is not independently

distributed, but where the distributions conditional on past history are eventually very close to some

common distribution.

Claim 2.2 and equation (B2) imply that, for all i and s ∈ Sθi ,

σi(s) = Fθi (∆i(P
n(σ), s)) ,

so that σ is a naive equilibrium of the stage game. Therefore, P = Pn(σ) is a naive equilibrium

distribution. �

The proof of Claims 2.1 and 2.2 used above rely on the following two lemmas. The statement and

proof of Lemma 2 are straightforward adaptations of a result by Fudenberg and Kreps (1993).

LEMMA 2: (cf. Fudenberg and Kreps, 1993, Lemma 6.2) Let (zt)t be a sequence of random variables

with range on a finite set Z. Fix a set-function π : 2Z → [0, 1] (not necessarily a probability measure)

and fix ε ∈ R. Let Hε be a subset of infinite histories such that for all h ∈ Hε there exists tε,h such that

for all t ≥ tε,h , the distribution of each zt conditional on ht = (z1, ..., zt−1), denoted πt(· | ht), satisfies

max
Z′∈Z

πt(Z
′)− π(Z′) > −ε,(B3)

where Z ⊆ 2Z is a set of subsets of Z.28

Then

(B4) lim inf
t→∞

1

t

t∑
τ=1

1Z′ (zτ ) ≥ π(Z′)− ε

for all Z′ ∈ Z, almost surely on Hε. Moreover, if (B3) is replaced by maxZ′∈Z πt(Z′)−π(Z′) < ε, then

the conclusion in (B4) is replaced by lim sup
t→∞

1
t

∑t
τ=1 1Z′ (zτ ) ≤ π(Z′) + ε.

28If Hε has zero probability, the lemma is taken to be vacuous.
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PROOF:

First note that #Z < ∞ and thus any subset of Z ⊂ 2Z has also finitely many elements. Therefore,

it suffices to show the result for any (arbitrary) subset Z′ ∈ Z since there are only finitely many of them

(roughly speaking, Z′ is what a is in FK93, i.e., Fudenberg and Kreps, 1993). Since Z is finite we can

order the elements as (z1, ...z#Z), and WLOG we set the first #Z′ elements of Z to be the elements of

Z′. Just as FK 93, let (ωt)t be an independent sequence of uniform random variables and let yt : Ω→ Z

be a new random variable.

As in FK 93, we construct (yt(ωt))t as follows. For t = 1, y1(ω1) = zm iff
∑m−1
n=1 π1(zn) ≤ ω1 <∑m

n=1 π1(zn). For t = τ , let yτ (ωτ ) = zm iff
∑m−1
n=1 πτ (zn|y1, ..., yτ−1) ≤ ωτ <

∑m
n=1 πτ (zn|y1, ..., yτ−1).

Moreover, by construction the probability over ht coincides with the probability over (ωτ )τ≤t; we

thus can use both interchangeably. In particular, the set of ω for which yt(ωt) ∈ Z′ is the set of

{ω : ωt ≤
∑#Z′
n=1 πt(zn|y1, ..., yt−1) = πt(Z′|y1, ..., yt−1)} (recall that Z′ consists of the first #Z′ ele-

ments in Z).

Under equation (B3) the latter set includes the set {ω : ωt ≤ π(Z′) − ε}; thus 1{ω:ωt≤π(Z′)−ε} ≤
1{ω:ωt≤πt(Z′|y1,...,yt−1)} = 1{ω:yt(ωt)∈Z′} = 1{zτ∈Z′}.

Let νt(r, ω) be the number of times ωt ≤ r. Then νt(π(Z′) − ε) ≤ ∑t
τ=1 1Z′ (zτ ). By the strong

law of large numbers, limt→∞ νt(π(Z′)− ε) = π(Z′)− ε a.s. on Hε (this is under the measure of (ωt)t,

which by construction is equal to the measure associated with (zt)t). Therefore it must follow that

lim inft→∞ t−1
∑t
τ=1 1Z′ (zτ ) ≥ π(Z′)− ε.

Similarly, under equation (B3), the set {ω : ωt ≤ πt(Z′|y1, ..., yt−1)} is included in the set {ω : ωt ≤
π(Z′) + ε}. By a similar argument as before, lim supt→∞ t−1

∑t
τ=1 1Z′ (zτ ) ≤ π(Z′) + ε.

LEMMA 3: There exists H′ with Pφ(H′) = 1, such that for all % > 0 and for all h ∈ H′, there exists

t%,h such that for all t ≥ t%,h and all i, si ∈ Sθi , and o ∈ {L,R}, P t(h)(Ziso) > Kp − %, where

(B5) Kp ≡
1

2
min
i,si

{
Ψi ×

ˆ
Ω
qθi (si | ω)G(dω)

}
> 0,

and, for all i, Ψi ≡ min
{∏n

j=1 Fθj (−2K) ,
∏n
j=1

(
1− Fθj (2K)

)}
.

PROOF:

By definition of assessment rules, µRit (h) (s) − µLit (h) (s) ∈ [−K,K], and, therefore, αit(h)(s) ∈[
Fθi (−2K), Fθi (2K)

]
for all i, s ∈ Sθi , for all h, and for all t. Hence, for all i, s ∈ Sθi , for all h, and for

all t,

Pφt
(
zt ∈ ZisR | ht

)
≥

n∏
j=1

Fθj (−2K)

ˆ
Ω
qθi (s | ω)G(dω) > Kp,

and, similarly, Pφt
(
zt ∈ ZisL | ht

)
> Kp, where Pφt (· | ht) denotes the probability distribution over

histories, conditional on history up to time t, ht ∈ Ht.
An application of Lemma 2 (by setting π(ZisR) = Kp—the case of ZisL is analogous and thus

omitted—ε = 0, and Hε = H) implies that lim inft→∞ P t(h)(Ziso) ≥ Kp Pφ- a.s. on H. Therefore,

there exists a H′ ⊆ H with Pφ(H′) = 1 such that for all % > 0 and all h ∈ H′, there exists a t%,h such

that for all t ≥ t%,h, P t(h)(Ziso) > Kp − %.

Proof of Claim 2.1. By continuity of Fθi , it suffices to show that for all ε > 0, there exist γ(ε) > 0

with limε→0 γ(ε) = 0 and Hε with Pφ(Hε) > 0 such that for all h ∈ Hε, there exists tε,h such for all

t ≥ tε,h, all i, and all s ∈ Sθi ,

(B6) Fθi (∆i(P, s)− γ(ε)) ≤ αit(h)(s) ≤ Fθi (∆i(P, s) + γ(ε))
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and

(B7)
∣∣P t(h)(z)− P (z)

∣∣ < ε

for all z ∈ Z.

Note that equation (6) can be written as

µoit(h)(s) =

∑
(x,s,ω)∈Ziso P t(h)(x, s, ω)uθi (o, ω)∑

(x,s,ω)∈Ziso P t(h)(x, s, ω)
(B8)

provided that
∑

(x,s,ω)∈Ziso P t(h)(x, s, ω) > 0.

Because P is stable, for all ε > 0, there exists tε and H∗ε with Pφ(H∗ε ) > 0 such that for all h ∈ H∗ε
and t ≥ t∗ε , equation (B7) holds for all z ∈ Z. In addition, (B7) implies that

(B9)
∣∣P t(h)(Z′)− P (Z′)

∣∣ < ε×#Z

for all Z′ ⊂ Z. Next, let b = min
{
Pφ(H∗ε ), .5Kp

}
> 0, where Kp > 0 is defined by equation (B5). By

Lemma 3, for all h ∈ H \Ho (where Ho has zero measure) there exists tb,h such that for all t ≥ tb,h and

o ∈ {L,R}

(B10) P t(h)(Ziso) > Kp − b ≥ .5Kp > 0.

Let Hε = H∗ε ∩H \Ho, and note that by our choice of H∗ε , Pφ(Hε) > 0. Therefore, for all ε > 0, there

exists Hε with Pφ(Hε) > 0 such that for all h ∈ Hε and t ≥ tε,h ≡ max{t∗ε , tb,h}, all i, s ∈ Sθi ,

|µRit(h)(s)− µLit(h)(s)−∆i(P, s)| ≤ γ(ε) ≡ (ε×#Z)× (0.5Kp)2

2K (1 + #Ω) + 0.5 (ε×#Z)Kp
−→
ε→0

0(B11)

where the inequality follows from (B8), (B9), (B10), the facts that utility is bounded by K and #Ω <∞,

and simple algebra that uses the fact that

∆i(P, si) =

∑
(x,s,ω)∈ZisR P (x, s, ω)uθi (R,ω)∑

(x,s,ω)∈ZisR P (x, s, ω)
−
∑

(x,s,ω)∈ZisL P (x, s, ω)uθi (L, ω)∑
(x,s,ω)∈ZisL P (x, s, ω)

.

Then, equation (B11) and the definition of the policy rules imply that

φit(h, vi)(s) =

{
R

L

if vi ≤ ∆i(P, s)− γ(ε)

if vi > ∆i(P, s) + γ(ε)
,

so that (B6) holds by (B1). �

Proof of Claim 2.2. Note that for each z ∈ Z,

Pφ(zt = z | ht) = Pn(αt(h))(z).

Then, Claim 2.1 and the fact that Pn(·) is continuous imply that for all ε > 0, there exists Hε with

Pφ(Hε) > 0 such that for all h ∈ Hε, there exists t̂ε,h such that for all t ≥ t̂ε,h,

(B12)
∣∣∣Pφ(zt = z | ht)− Pn(σ)(z)

∣∣∣ < ε

and

(B13)
∣∣P t(h)(z)− P (z)

∣∣ < ε

for all z ∈ Z.



VOL. VOL NO. ISSUE RETROSPECTIVE VOTING IN LARGE ELECTIONS 7

Then, by equation (B12) and Lemma 2 applied to all the singleton sets of Z,

(B14) lim sup
t→∞

P t(h)(z) ≤ Pn(σ)(z) + ε and lim inf
t→∞

P t(h)(z) ≥ Pn(σ)(z)− ε

for all z ∈ Z, almost surely on Hε.

By the triangle inequality, for any t,

||P − Pn(σ)|| ≤ ||P − P t(h)||+ ||P t(h)− Pn(σ)||(B15)

for any h ∈ Hε; we pick one h ∈ Hε (outside the measure zero set). By equation (B14), the second

summand in the RHS of (B15) is less than ε for all t sufficiently large; by equation (B13), the first

summand of the RHS is also less than ε for all t sufficiently large. Hence, ||P − Pn(σ)|| ≤ ε; since this

holds for all ε > 0, then we obtain the desired result by taking ε→ 0. �

B2. Large number of players

In this section, we characterize (naive) equilibria of the voting game as the number of voters goes to

infinity. We do so by studying sequences of voting games. We build such sequences by independently

drawing infinite sequences of types ξ = (θ1, θ2, ..., θn, ...) ∈ Ξ according to the probability distribution

ϕ ∈ ∆(Θ); we denote the distribution over Ξ by Φ and we let θi(ξ) denote the type of player i, i.e., the

ith component of ξ. We interpret each sequence of types as describing an infinite number of n-player

games by letting the first n elements of ξ represent the types of the n players.

Let ς denote a strategy mapping from sequences of types Ξ to sequences of strategy profiles–i.e., for

all ξ ∈ Ξ, let ς(ξ) =
(
σ1(ξ), ...,σn(ξ), ...

)
, where

σn(ξ) = (σn1 (ξ), ..., σnn(ξ))

is the strategy profile that is played in the n-player game with types θ1, ..., θn. Let Pn(ς(ξ)) be the

probability distribution over {L,R}n×Πni=1Sθi ×Ω induced by the strategy profile σn(ξ) in the n-player

game. We define two properties of strategy mappings.

DEFINITION 7: A strategy mapping ς is an ε-equilibrium mapping if, for a.e. ξ ∈ Ξ, there exists

nε,ξ such that for all n ≥ nε,ξ

(B16)
∥∥σni (ξ)− Fθi(ξ) (∆i(P

n(ς(ξ)), ·))
∥∥ ≤ ε

for all i = 1, ..., n.29 A strategy mapping ς is asymptotically interior if, for a.e. ξ ∈ Ξ,

(B17) lim inf
n→∞

Pn(ς(ξ)) (o = R) > 0 and lim sup
n→∞

Pn(ς(ξ)) (o = R) < 1.

The first property in Definition 7 requires that, for large enough n, players play strategies that con-

stitute an ε equilibrium. Our notion of limit equilibrium will require this property to hold for all ε > 0;

while being slightly weaker than requiring strategies to constitute an equilibrium, this condition yields a

full characterization of limit equilibrium.30 The second property requires that the probabilities of choos-

ing R and L remain bounded away from zero as the number of players increases. The reason for this

29The a.e. in “for a.e. ξ ∈ Ξ” stands for “almost every” and means that there is a set Ξ′ with
Φ(Ξ′) = 1 such that a condition is true for all ξ ∈ Ξ′. The results continue to hold if we only require
Φ(Ξ′) > 0.

30Our result that a limit equilibrium is a fixed point of a particular correspondence remains true
under the stronger requirement that strategies constitute an equilibrium. But the converse result, that
any fixed point is also a limit equilibrium, relies on the notion of ε equilibrium.
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restriction is that we can always obtain extreme equilibria where everyone votes for the same alternative,

no information is obtained about the other alternative, and, therefore, beliefs about the other alternative

can be arbitrary. The restriction to asymptotically interior strategies allows us to focus on equilibria

where beliefs are not arbitrary.

In addition to characterizing the equilibrium cutoff, we characterize the profile of equilibrium strategies.

Given a strategy mapping ς and a sequence of types ξ ∈ Ξ, let σ̄n(ξ; ς) : Θ→ [0, 1]S represent the average

strategy of each type in the n-player game. Formally, for all θ ∈ Θ and s ∈ S,

(B18) σ̄nθ (ξ; ς)(s) =

∑n
i=11 {θi(ξ) = θ}σni (ξ)(s)∑n

i=11 {θi(ξ) = θ}

whenever
∑n
i=11 {θi(ξ) = θ} > 0, and arbitrary otherwise. We call any element σ : Θ → [0, 1]S an

average strategy function and say that σ is increasing if s′ > s implies σθ(s′) > σθ(s) for every type

θ ∈ Θ.

DEFINITION 8: An average strategy function σ∗ : Θ→ [0, 1]S is a limit ε-equilibrium if there exists an

asymptotically interior ε-equilibrium mapping ς such that limn→∞ ‖σ̄n(ξ; ς)− σ∗‖ = 0 for a.e. ξ ∈ Ξ.

An average strategy function σ∗ is a limit equilibrium if it is a limit ε-equilibrium for all ε > 0.

The following result characterizes limit equilibria.

THEOREM 3: σ∗ is a limit equilibrium if and only if there exists a cutoff ω∗ ∈ (−1, 1) such that

κ(ω∗;σ∗) = ρ and σ∗θ (s) = F (vθ (s;ω∗)) for all θ ∈ Θ and s ∈ S.

The intuition of Theorem 3 is as follows. Suppose that there is a sequence of average strategy functions

σ̄n that converges to an increasing function σ∗.31 Then the probability that a randomly chosen player

votes for R in state of the world ω converges to κ(ω;σ∗). By standard asymptotic arguments, the

proportion of votes forR in state ω becomes concentrated around κ(ω;σ∗). So, for states where κ(ω;σ∗) >
ρ, the probability that R is elected converges to 1. Similarly, for states where κ(ω;σ∗) < ρ, the probability

that R is elected converges to 0. Since σ is increasing, then there is at most one (measure zero) state ω∗

such that κ(ω∗;σ∗) = ρ, so that the election outcome is characterized by an election cutoff ω∗. Moreover,

the fact that the election outcome is characterized by a cutoff means that the beliefs of player i, ∆i,

can be approximated by the belief function vθi defined in equation (1). Thus, the optimal strategy of a

player of type θ who observes signal s is σ∗θ (s) = F (vθ (s;ω∗)).

Vanishing perturbations. — We now consider sequences of equilibria where the perturbations

vanish. We index games by a parameter η that indexes the cdf F ηθ from which perturbations are drawn.

DEFINITION 9: A family of perturbations {Fη}η∈N, where Fη = {F ηθ }θ∈Θ, is vanishing if for all

θ ∈ Θ and η: assumption A4 is satisfied and

lim
η→0

F ηθ (ν) =

0 if ν < 0

1 if ν > 0

Under a vanishing family of perturbations, the payoff perturbations converge to zero and we recover the

original, unperturbed game. The next two results provide a foundation for the notion of RVE introduced

in Section I.

31We show in Section B.B2 that optimal strategies are increasing when the number of players is
sufficiently large.
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THEOREM 4: (i) Suppose that there exists a vanishing family of perturbations {Fη}η and a sequence

(ση , ωη)η such that limη→0(ση , ωη) = (σ∗, ω∗) and where ση is a limit equilibrium and ωη its corre-

sponding cutoff for all η. Then (σ∗, ω∗) is a retrospective voting equilibrium.

(ii) Suppose that (σ∗, ω∗) is a retrospective voting equilibrium with ω∗ ∈ (−1, 1). Then there exists a

vanishing family of perturbations {Fη}η and a sequence (ση , ωη)η such that limη→0(ση , ωη) = (σ∗, ω∗)
and where ση is a limit equilibrium and ωη its corresponding cutoff for all η.

The first part of Theorem 4 follows by standard continuity arguments and the second part by con-

struction.32

REMARK 1: Situations where one alternative is never chosen are easily justified: if an alternative

is never chosen, then beliefs about its performance can be arbitrary. Our solution concept in Section

I considers, say, ω∗ = 1 (i.e., Right is never chosen) to be an equilibrium cutoff only if equilibrium

beliefs are such that Right yields the payoff at state ω = 1 and Left yields the unconditional payoff. The

formal justification is that, if players follow symmetric increasing strategies such that the probability of

Right being elected converges to zero, then the probability of state ω = 1 conditional on Right being

elected converges to 1.

REMARK 2: Our game-theoretic foundation uses assumption A5, which is stronger than A2 in Section

I. In particular, A2 allows for the case where voters have no private information. We can provide a

foundation for such a case by considering a sequence of voting games indexed by r ∈ N, where zr > 0

denotes the constant defined in assumption A5, and where limr→∞ zr = 0. Therefore, the case of no

private information must be viewed as the limiting case of an information structure that satisfies A5 but

where informativeness vanishes.

REMARK 3: Finally, in Section I we assumed that Θ was a compact interval, rather than a finite set,

in order to obtain uniqueness of equilibrium and facilitate the application of the framework. However,

we can view the case where Θ is a compact interval as the limiting case of a sequence of environments

where the finite number of elements in Θ goes to infinity.

The remainder of this section provides the proofs of Theorems 3 and 4.

Preliminary lemma. — The proof of Theorem 3 relies on the following lemma.

LEMMA 4: Let ς be such that limn→∞ ‖σ̄n(ξ; ς)− σ∗‖ = 0 for a.e. Ξ, where σ∗ is increasing. Then

there exists ω∗ ∈ arg minω∈Ω |κ(ω;σ∗)− ρ| such that for all ε > 0 and a.e. ξ ∈ Ξ,

(B19) lim
n→∞

inf
ω∈Ω:ω≥ω∗+ε

Pn(ς(ξ))(o = R | ω) = 1

and

(B20) lim
n→∞

sup
ω∈Ω:ω≤ω∗−ε

Pn(ς(ξ))(o = R | ω) = 0.

Moreover, if ω∗ ∈ (−1, 1), then for a.e. ξ ∈ Ξ and for all ε > 0 there exists nξ,ε such that for all

n ≥ nξ,ε,

(B21)
∥∥∆i(P

n(ς(ξ)), ·)− vθi(ξ) (·;ω∗)
∥∥ ≤ ε

for all i = 1, ..., n.

32As shown in the proof, the argument holds for any family of perturbations if ω∗ is the unique
equilibrium cutoff and ϕ {(θ : cθ(s) = ω∗, s ∈ Sθ)} = 0.
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PROOF:

We use the following notation. Let xi ∈ {L,R} denote the vote of player i, let κni (ω; ξ) ≡ Pn (xi = R | ω)

be the probability that player i = 1, ..., n votes for R conditional on the state being ω, and let κn(ω; ξ) ≡
1
n

∑n
i=1 κ

n
i (ω; ξ) be the average over all players.

First, note that, for a.e. ξ ∈ Ξ, for all ω ∈ Ω,

lim
n→∞

κn(ω; ξ) = lim
n→∞

1

n

n∑
i=1

∑
θ∈Θ

∑
s∈S

qθ(s|ω)1{θi(ξ) = θ}σni (ξ)(s)

= lim
n→∞

∑
θ∈Θ

∑
s∈S

qθ(s|ω)

{
1

n

n∑
i=1

1{θi(ξ) = θ}σni (ξ)(s)

}

=
∑
θ∈Θ

∑
s∈S

qθ(s|ω)

{
lim
n→∞

σ̄nθ (ξ; ς)(s)×
(

lim
n→∞

1

n

n∑
i=1

1{θi(ξ) = θ}
)}

=
∑
θ∈Θ

∑
s∈S

qθ(s|ω)σ∗θ (s)ϕ(θ) = κ(ω;σ∗),(B22)

where we have used the assumption that limn→∞ ‖σ̄n(ξ; ς)− σ∗‖ = 0 a.s.-Ξ and the strong law of large

numbers applied to 1
n

∑n
i=1 1{θi(ξ) = θ}. Note also that, for all ω, ω′ ∈ Ω,

|κn(ω; ξ)− κn(ω′; ξ)| ≤
∑
θ∈Θ

∑
s∈S

∣∣qθ(s|ω)− qθ(s|ω′)
∣∣{σ̄nθ (ξ; ς)(s)×

(
1

n

n∑
i=1

1{θi(ξ) = θ}
)}

≤max
θ∈Θ

max
s∈S

∣∣qθ(s|ω)− qθ(s|ω′)
∣∣

and since |Θ| <∞ and |S| <∞, this display and A3(iii) imply that the family {κn(·; ξ) : Ω→ [0, 1] : n =

1, 2, ...} is equicontinuous for all ξ ∈ Ξ. This result, the one in (B22) and the fact that Ω is compact,

implies that

(B23) lim
n→∞

sup
ω∈Ω
|κn(ω; ξ)− κ(ω; ξ)| = 0

a.s.-Ξ.

Second, let Y n(ω; ξ) ≡ n−1/2
∑n
i=1

(
1{xni = R} − κni (ω; ξ)

)
. It follows that for all δ > 0 and for a.e.

ξ, there exists n′(δ, ξ) such that, for all n ≥ n′(δ, ξ),

Pn(ς(ξ))(o = R | ω) = Pn(ς(ξ))
(
Y n(ω; ξ) ≥ √n(ρ− κn(ω; ξ)) | ω

)
≤ Pn(ς(ξ))

(
Y n(ω; ξ) ≥ √nδ | ω

)
≤ (n2δ2)−1

n∑
i=1

E
[
(1{xni = R} − κni (ω; ξ))2 | ω

]
≤ 4(nδ2)−1,

for all ω ∈ {ω ∈ Ω : κ(ω;σ) ≤ ρ − δ}, where the second line follows from (B23) and the third from the

Markov inequality.

Third, the facts that κ(·;σ∗) is increasing (because σ∗ is increasing) and continuous (by A3(iii)) imply

that there exists ω∗ ∈ [−1, 1] such that ω∗ ∈ arg minω∈Ω |κ(ω;σ∗)− ρ| and that, for any ε > 0, there

exists a δ > 0 such that κ(ω;σ∗) ≤ ρ − δ for all ω ≤ ω∗ − ε. Hence, {ω ∈ Ω : ω ≤ ω∗ − ε} ⊆ {ω ∈ Ω :

κ(ω;σ∗) ≤ ρ− δ}, and the previous argument implies that

(B24) lim
n→∞

sup
ω∈Ω:ω≤ω∗−ε

Pn(ς(ξ))(o = R | ω) = 0.

By employing a similar argument, it follows that limn→∞ infω∈Ω:ω≥ω∗+ε Pn(ς(ξ))(o = R | ω) = 1 a.e.
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ξ ∈ Ξ.

We now establish the second part of the lemma. Suppose that ω∗ ∈ (−1, 1). First note that the

previous part of the proof implies that, for any ω ∈ Ω

(B25) lim
n→∞

Pn(ς(ξ))(o = R | ω) = 1{ω > ω∗}.

Second, note that, for all n and all ω ∈ Ω,

(B26) Pn(ς(ξ))(o = R | ω) =
∑
s∈S

Pn(ξ)(o = R | ω, Si = s)qθi(ξ)(s|ω)

for all i ≤ n. By (B25), (B26), and A3(ii), for a.e. ξ ∈ Ξ and all s ∈ S,

(B27) lim
n→∞

Pn(ς(ξ))(o = R | ω, Si = s) = 0 (= 1)

for ω < ω∗ (ω > ω∗), where convergence is uniform in i ≤ n.33 Therefore, for a.e. ξ ∈ Ξ and all s ∈ S,

limn→∞ EPn(ς(ξ))

(
uθi(ξ)(R,W ) | o = R,Si = s

)
=

= lim
n→∞

´
Ω P

n(ς(ξ)) (o = R |W,Si = s) qθi(ξ)(s |W )uθi(ξ)(R,W )G(dW )´
Ω P

n(ς(ξ)) (o = R |W,Si = s) qθi(ξ)(s |W )G(dW )

=

´
Ω limn→∞ Pn(ς(ξ)) (o = R |W,Si = s) qθi(ξ)(s |W )uθi(ξ)(R,W )G(dW )´

Ω limn→∞ Pn(ς(ξ)) (o = R |W,Si = s) qθi(ξ)(s |W )G(dW )

=

´
Ω 1{W > ω∗}qθi(ξ)(s|W )uθi(ξ)(R,W )G(dW )´

Ω 1{W > ω∗}qθi(ξ)(s|W )G(dW )

= E
(
uθi(ξ)(R,W ) |W > ω∗, Si = s

)
,(B28)

where convergence is uniform in i ≤ n. The first and fourth lines in (B28) follow by definition, the second

line follows from the dominated convergence theorem and the fact that uθi is bounded (and the denomina-

tor being greater than zero, as established next), and the third line follows from (B27) and the fact that G

is absolutely continuous, so we can ignore the case {W = ω∗} (also, note the importance of ω∗ < 1 for the

denominator to be well-defined). A similar argument holds for EPn(ς(ξ))

(
uθi(ξ)(L,W ) | o = L, Si = s

)
,

thus establishing the lemma.

Proof of Theorem 3. — PROOF:

Only if : Let σ∗ be a limit equilibrium, so that σ∗ is a limit ε-equilibrium for all ε > 0. Lemma

OA in Section B.B2, shows that σ∗ must be increasing. Fix any ε > 0 and let ς be the corresponding

ε-equilibrium mapping that is asymptotically interior. Because ς is asymptotically interior, then ω∗ ∈
(−1, 1) and, therefore, (B21) holds by Lemma 4. Then, for all θ ∈ Θ, there exists ξ ∈ Ξ and n′ such that

for all n ≥ n′,

‖σ∗θ − Fθ(vθ(·;ω∗))‖ ≤ ‖σ∗θ − σ̄nθ (ξ; ς)‖

+

∥∥∥∥∑n
i=11 {θi(ξ) = θ}σni (ξ)(s)∑n

i=11 {θi(ξ) = θ} −
∑n
i=11 {θi(ξ) = θ}Fθ (∆i(P

n(ς(ξ)), s))∑n
i=11 {θi(ξ) = θ}

∥∥∥∥
+

∥∥∥∥∑n
i=11 {θi(ξ) = θ}Fθ (∆i(P

n(ς(ξ)), s))∑n
i=11 {θi(ξ) = θ} − Fθ (vθ (·;ω∗))

∥∥∥∥
≤ ε+ ε+ ε,

33Formally, suppose that ω < ω∗. Then for all ε > 0 there exists nξ,ω,ε such that, for all n ≥ nξ,ω,ε,
Pn(ς(ξ))(o = R | ω, Si = s)qθi(ξ)(s|ω) ≤ ε for all i ≤ n and s ∈ S.
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where the last inequality follows because: (i) σ∗ being a limit equilibrium implies that limn→∞ ‖σ̄n(ξ; ς)− σ∗‖ =

0 for a.e. ξ ∈ Ξ; (ii) ς is an ε-equilibrium mapping; and (iii) equation (B21) and continuity of Fθ (A4).

Since the above relationship holds for every ε > 0, then
∥∥σ∗θ − Fθ(vθ(·;ω∗))

∥∥ = 0 for all θ.

If : Consider the strategy mapping ς defined by letting players of type θ always play σ∗θ–i.e., for all

ξ, s, n, and i ≤ n, σni (ξ)(s) = σ∗
θi(ξ)

(s). First, note that σ̄n = σ∗ converges trivially to σ∗, and σ∗

is increasing because Fθ and vθ(·;ω∗) are increasing (by A1-A3 and A4). Moreover, ω∗ ∈ (−1, 1) by

assumption. Then, equations (B19) and (B20) in Lemma 4 and the dominated convergence theorem

imply that ς is asymptotically interior. In addition, for a.e. ξ ∈ Ξ and for every ε > 0, there exists nξ,ε
such that for all n ≥ nξ,ε,∥∥σni (ξ)− Fθi(ξ) (∆i(P

n(ς(ξ)), ·))
∥∥ =

∥∥∥σ∗θi(ξ) − Fθi(ξ) (∆i(P
n(ς(ξ)), ·))

∥∥∥
=
∥∥Fθi(ξ) (vθi(ξ) (·;ω∗)

)
− Fθi(ξ) (∆i(P

n(ς(ξ)), ·))
∥∥ ≤ ε

for all i = 1, ..., n, where the first line follows by construction of the strategy and the second line follows

by (B21) and continuity of Fθ (A4). Thus, (σ∗, ω∗) is a limit equilibrium.

Proof of Theorem 4. — PROOF:

Part (i): Theorem 3 implies that σ∗θ (s) = limη→0 σ
η
θ (s) = limη→0 F

η
θ (vθ(s;ω∗)) for all θ ∈ Θ and

s ∈ S. Since Fη is vanishing, then σθ(s) = 1 if vθ(s;ω∗) > 0 and σθ(s) = 0 if vθ(s;ω∗) < 0. Therefore,

σ∗ is optimal given ω∗. Next, fix any ω′ < ω∗. Since ωη → ω∗, there exists η̄ such that, for all

η < η̄, ω′ < ωη , and, by Theorem 3, κ(ω′;ση) ≤ ρ. Since ση → σ∗, continuity of κ(ω′; ·) implies that

κ(ω′;σ∗) ≤ ρ . Similarly, κ(ω′′;σ∗) ≥ ρ for all ω′′ > ω∗. Therefore, ω∗ is an election cutoff given σ∗.
Part (ii): For any family of vanishing perturbations {Fη}η , define

κ̄η(ω) ≡
∑
θ∈Θ

ϕ(θ)
∑
s∈S

qθ(s | ω)F ηθ (vθ(s;ω)) .

Let (σ∗, ω∗) be a voting equilibrium with ω∗ ∈ (−1, 1). Because ω∗ ∈ (−1, 1) is an election cutoff

given σ∗ and κ(·;σ∗) is continuous, then κ(ω∗;σ∗) = ρ. We split the proof into two cases: Either it is the

case that all players vote for the same alternative (which may be different for each player) irrespective

of their private information–so that κ(·;σ∗) is a constant function–or not–so that κ(·;σ∗) is increasing.

Case 1 (κ(·;σ∗) is increasing): Rewrite κη as

κ̄η(ω) =
∑
θ∈Θ

ϕ(θ)

 ∑
s:cθ(s)<ω∗

qθ(s | ω)F ηθ (vθ(s;ω)) +
∑

s:cθ(s)=ω∗
qθ(s | ω)F ηθ (vθ(s;ω))

+
∑

s:cθ(s)>ω∗
qθ(s | ω)F ηθ (vθ(s;ω))

 ≡ T η1 (ω) + T η2 (ω) + T η3 (ω).

Since vθ(s; ·) is increasing and ω∗ ∈ (−1, 1), then: for all (θ, s) such that cθ(s) ≥ ω∗, vθ(s;ω) < 0 for all

ω < ω∗ and, for all (θ, s) such that cθ(s) ≤ ω∗, vθ(s;ω) > 0 for all ω > ω∗. Therefore, since {Fη}η is

vanishing, limη→0 T
η
2 (ω)+T η3 (ω) = 0 for all ω < ω∗ and limη→0 T

η
1 (ω)+T η2 (ω) =

∑
θ∈Θ ϕ(θ)qθ(cθ(Sθ) ≤

ω∗ | ω) ≥ κ(ω;σ∗) for all ω > ω∗. In addition, T η1 (ω) ≤ κ(ω;σ∗) and T η3 (ω) ≥ 0 for all ω. Therefore,

limη→0 κ̄η(ω) ≤ κ(ω;σ∗) < κ(ω∗;σ∗) = ρ for all ω < ω∗ and limη→0 κ̄η(ω) ≥ κ(ω;σ∗) > κ(ω∗;σ∗) = ρ

for all ω > ω∗. Consequently, by continuity of κη(·), there exists (ωη)η such that ωη → ω∗ ∈ (−1, 1)

and κ̄η(ωη) = ρ for all sufficiently small η. By letting σηθ (s) = F ηθ (vθ(s;ωη)) for all θ, s, it follows that

κ(ωη ;ση) = κ̄η(ωη) = ρ for all sufficiently small η and, by Theorem 3, that ση is a limit equilibrium

and ωη its corresponding cutoff for all sufficiently small η. Finally, it remains to establish that ση → σ∗.
Consider a type and signal such that cθ(s) < ω∗, so that vθ(s;ω∗) > 0. By continuity of vθ(s; ·) and the
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fact that ωη → ω∗, it follows that vθ(s;ωη) > 0 for all sufficiently small η and, therefore, because {F η}η
is vanishing, it also follows that limη→0 σ

η
θ (s) = 1 = σ∗θ (s), where the last equality follows since σ∗ is

optimal given ω∗–see equation (A3). A similar argument establishes that limη→0 σ
η
θ (s) = 0 = σ∗θ (s)

for types and signals such that cθ(s) > ω∗. Therefore, if {s : cθ(s) = ω∗} = ∅ for all θ, we have shown

that, for any family of vanishing perturbations, there exists a sequence of limit equilibria that converge

to a voting equilibria. In the case where {s : cθ(s) = ω∗} 6= ∅ for some θ, we construct a specific family

of perturbations
{
F̂η
}
η

with the property that limη→0 F̂
η
θ (vθ(s;ωη)) = σθ(s) for all (θ, s) such that

cθ(s) = ω∗. The details that show existence of such a family are tedious but straightforward and are as

follows.First, observe that ωη → ω∗ and thus, by continuity of vθ′ (sθ′ ; ·), it follows that vθ′ (sθ′ ;ω
η)→ 0.

Since there are a finite number of such (θ′, sθ′ ), there exists a sequence (rη)η such that rη → 0 and

|vθ′ (sθ′ ;ωη)| ≤ rη uniformly over (θ′, sθ′ ). Second, for each θ′ ∈ Θ, let F̂ η
θ′ (0) = σθ′ (sθ′ ) and for all

t ∈ [−rη , rη ], F̂ η
θ′ (t) = σθ′ (sθ′ ) + t if σθ′ (sθ′ ) + t ∈ (0, 1) and either 0 or 1 if σθ′ (sθ′ ) + t ≤ 0 or

σθ′ (sθ′ )+ t ≥ 1, respectively. For any t /∈ [−rη , rη ] F̂ η
θ′ (t) can be chosen arbitrarily, provided it conforms

with the properties of a cdf and F̂ η
θ′ (t)→ 0 and F̂ η

θ′ (t)→ 1 as η → 0 for t < −rn and t > rn, respectively.

Note that since rη → 0, for each fixed t 6= 0, limη→0 F̂
η
θ′ (t) = 1{t > 0}, and thus

{
F̂η
}
η

is vanishing.

Also note that, if σθ′ (sθ′ ) ∈ (0, 1), F̂ η
θ′ (vθ′ (s;ω

η)) = σθ′ (sθ′ ) + vθ′ (s;ω
η) for sufficiently small η and

thus converges to σθ′ (sθ′ ). If σθ′ (sθ′ ) = 1, then 1 ≥ F̂ η
θ′ (vθ′ (s;ω

η)) ≥ 1+vθ′ (s;ω
η) and it also converges

to σθ′ (sθ′ ) = 1. If σθ′ (sθ′ ) = 0 a similar result applies.

Case 2 (κ(ω;σ∗) = ρ for all ω): Without loss of generality, suppose that Sθ ⊂ (0,∞) for all θ. Let

TL = {(θ, s) : vθ(s;ω∗) < 0 or (vθ(s;ω∗) = 0 &σ∗θ (s) = 0)}, TR = {(θ, s) : vθ(s;ω∗) > 0 or (vθ(s;ω∗) =

0 &σ∗θ (s) = 1)}, and T0 = {(θ, s) : vθ(s;ω∗) = 0 &σ∗θ (s) ∈ (0, 1)}. Note that, since (σ∗, ω∗) is a voting

equilibrium, then σ∗θ (s) = 0 if (θ, s) ∈ TL and σ∗θ (s) = 1 if (θ, s) ∈ TR. Define XL ≡
∑

(θ,s)∈TL ϕ(θ)q(s |
ω∗)s ≥ 0, XR ≡

∑
(θ,s)∈TR ϕ(θ)q(s | ω∗) 1

s
≥ 0, and X0 ≡

∑
(θ,s)∈T0 ϕ(θ)q(s | ω∗) ≥ 0. The proof

constructs a specific family of perturbations. For all η and all θ ∈ Θ and s ∈ Sθ and for any (ζL, ζ0, ζR)

let

F ηθ (vθ (s;ω∗)) =


ζLsη if vθ(s;ω∗) < 0 or (vθ(s;ω∗) = 0 &σ∗θ (s) = 0)

σ∗θ (s) + ζ0η if {vθ(s;ω∗) = 0 &σ∗θ (s) ∈ (0, 1)}
1− ζR

s
η if vθ(s;ω∗) > 0 or (vθ(s;ω∗) = 0 &σ∗θ (s) = 1)

By construction, for all ζj ∈ (0,∞),j = R,L and ζ0 ∈ [0,∞), and for all η sufficiently low, there exists a

vanishing family {Fη}η that satisfies the above restrictions; note that, by MLRP, for each θ there is at

most one signal that satisfies vθ(s;ω∗) = 0. Then, since ω∗ ∈ (−1, 1),

κ̄η(ω∗)− ρ = κ̄η(ω∗)− κ(ω∗;σ∗) =
∑
(θ,s)

ϕ(θ)q(s | ω∗)
(
F ηθ (vθ (s;ω∗))− σ∗θ (s)

)
= η (−ζRXR + ζLXL + ζ0X0) .

It is straightforward to check that we can always pick ζR, ζL, ζ0 such that −ζRXR + ζLXL + ζ0X0 = 0

and, therefore, κ̄η(ω∗) = ρ for all η sufficiently small. As in Case 1, by letting σηθ (s) = F ηθ (vθ(s;ωη)) for

all (θ, s), it follows that ση is a limit equilibrium and ω∗ its corresponding cutoff for all sufficiently small

η. The proof is completed by noting that, by construction, limη→0 ση = σ∗.

Supplementary lemma: increasing strategies . —

Lemma OA. There exists ε such that for all ε < ε: If σ is a limit ε-equilibrium, then it is increasing.

Proof: We use the following notation. Let xi ∈ {L,R} denote the vote of player i, let κni (ω; ξ) ≡
Pn (xi = R | ω) be the probability that player i = 1, ..., n votes for R conditional on the state being ω,

and let κn(ω; ξ) ≡ 1
n

∑n
i=1 κ

n
i (ω; ξ) be the average over all players.

Throughout the proof let Ξ′ be the set in Definition 8 and fix ξ ∈ Ξ′ and a strategy mapping ς̃ =(
σ̃1(ξ), ..., σ̃n(ξ), ...

)
such that 1.-3. in Definition 8 are satisfied. We drop ξ and ς̃ from the notation, let
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Pn ≡ Pn (ς̃(ξ)) and, for each strategy σni , let Pnσi ≡ Pn
(
σni , σ̃

n
−i(ξ)

)
. The proof relies on the following

claims; the proofs of the first three claims appear at the end of this section.

Claim OA.1: For all δ > 0 and ω ∈ Ω, there exits nδ,ω such that for all n ≥ nδ,ω ,∣∣∣Pnσi (o = R | ω, si)− Pnσ′i
(
o = R | ω, s′i

)∣∣∣ < δ uniformly over i, si, s
′
i, σ

n
i , σ

′n
i .

Claim OA.2: For all δ > 0 there exist nδ such that for all n ≥ nδ, |∆i(P
n, si) − ∆i(P

n
σi
, si)| < δ

uniformly over i, si, σ
n
i .

Claim OA.3: There exists c > 0 and nc such that for all n ≥ nc, ∆i

(
Pnσi , s

′
i

)
−∆i

(
Pnσi , si

)
≥ c for all

i and s′i > si such that σni (s′i) = σni (si).

Claim OA: There exists c′ > 0 and nc′ such that for all n ≥ nc′ , ∆i

(
Pn, s′i

)
−∆i (Pn, si) ≥ c′ for all

i and s′i > si.

PROOF OF CLAIM OA:

Fix any σni such that σni (s′i) = σni (si). By Claims OA.2 and OA.3, for all n ≥ max {nc, nδ}

∆i

(
Pn, s′i

)
−∆i (Pn, si) ≥

(
∆i

(
Pnσi , s

′
i

)
− δ
)
−
(
∆i

(
Pnσi , si

)
+ δ
)

≥ c− 2δ.

The claim follows by setting δ = c/4 and c′ = c/2 > 0.

PROOF OF LEMMA OA:

The definition of ε-equilibrium implies that for all i, s′i > si, n ≥ nε,

σ̃ni (s′i)− σ̃ni (si) ≥ Fθi
(
∆i

(
Pn, s′i

))
− Fθi (∆i (Pn, si))− 2ε.

+ Fθi
(
∆i (Pn, si) + c′

)
− Fθi

(
∆i (Pn, si) + c′

)
,(B29)

where we have added and subtracted the same term to the RHS. Let c′ > 0 be as defined in Claim OA.

Since Fθi is absolutely continuous, then

Fθi
(
∆i (Pn, si) + c′

)
− Fθi (∆i (Pn, si)) =

ˆ ∆i(P
n,si)+c

′

∆i(Pn,si)
fθi (t) dt ≥ c′′ > 0,

where the inequality follows from A4 and the fact that c′ > 0. Hence, the sum of the second and fourth

terms in the RHS of (B29) is at least c′′ > 0. By Claim OA, the sum of the first and last terms in the

RHS of (B29) is positive. Therefore, for all i, s′i > si, n ≥ nε,

σ̃ni (s′i)− σ̃ni (si) ≥ c′′ − 2ε > 0.

Since σ̄nθ (ξ, ς̃) are averages of the strategies, then for all θ, s′ > s, and n ≥ nε, it follows that σ̃nθ (s′) −
σ̃nθ (s) ≥ c′′ − 2ε. Since limn→∞ ‖σ̄n − σ‖ = 0, then it follows that σθ(s′) − σθ(s) ≥ c′′ − 2ε > 0, thus

establishing that limit ε-equilibrium are increasing as long as 0 < ε < ε ≡ c′′/2 > 0.

PROOF OF CLAIM OA.1:

The proof is divided into 3 steps.

Step 1. We first show that the probability of being pivotal goes to zero; i.e., for all ω ∈ Ω, for all i,

limn→∞ Pivnω,i = 0, where

Pivnω,i ≡ Pn1 (o = R | ω)− Pn0 (o = R | ω) ,

where the “1” and “0” are understood as vectors of the same dimension as αi. The sub-index “i” indicates

that agent i is the one being pivotal.
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By simple algebra,

Pivnω,i = Pn

(
√
nKn

ω +
κniω − 1

V nω
√
n

+
Zniω√
n
≤
∑n
j=1 Z

n
jω√

n
<
√
nKn

ω +
κniω

V nω
√
n

+
Zniω√
n
| ω
)
,

where Znjω ≡
{1{xnj =R}−κnjω}

V nω
, V nω ≡

√
1
n

∑n
j=1 κ

n
j,ω

(
1− κnj,ω

)
, and Kn

ω ≡
ρ−κnω
V nω

. Note that, for a

given n, {Znjω}j are independent, they have zero mean and unit variance. Moreover, by Step 3 below,

lim infn→∞ V nω > 0, so that

n∑
j=1

E

[∣∣∣∣Znjω√n
∣∣∣∣3
]
≤ 2
√
n (V nω )3

→ 0 as n→∞,

Hence by Lindeberg-Feller CLT, it follows that, given ω,
∑n
j=1

Znjω√
n
⇒ N(0, 1) as n→∞.

Note also that,
Zniω√
n
→ 0 a.s. as n→∞ and this limit is uniform on i.

We divide the remainder of the proof in 3 cases: (a)
√
nKn

ω → −∞, (b)
√
nKn

ω → K ∈ (−∞,∞) or

(c)
√
nKn

ω → ∞ (if necessary, we take a subsequence that converges, which exists since (V nω (ξ))n and

(κnω(ξ))n are uniformly bounded).

We first explore case (a) (case (c) is symmetrical). Note that, since lim infn→∞ V nω > 0, then
κniω
V nω
√
n
→

0. Therefore,
√
nKn

ω +
κniω
V nω
√
n

+
Zniω√
n
→ −∞, (and this limit holds uniformly for i = 1, ..., n) so that

we can take n ≥ nM,ε such that
√
nKn

ω +
κniω
V nω
√
n

+
Zniω√
n
≤ −M, where LN (−M) < 0.5ε (where LN

is the standard Gaussian cdf) for any ε. Therefore, for all ε > 0 there exists nε,ω such that for all

n ≥ max{nε,ω , nM,ε}:

Pivnω,i ≤Pn
(∑n

j=1 Z
n
j,ω√

n
< −M | ω

)
≤ 0.5ε+ LN (−M) < ε

uniformly over i = 1, ..., n, where the first inequality follows from the fact that n ≥ nM,ε and the second

follows from CLT and our choice of M .

For case (b) (i.e., K finite). Let δ > 0 be such that LN (K + δ)− LN (K − δ) < 0.5ε. Note that since

limn→∞(V nω
√
n)−1 = 0, there exists a nδ,ω such that (V nω

√
n)−1 < 0.5δ for all n ≥ nδ,ω ; also since

Zniω√
n
→ 0 a.s. as n → ∞, we can take nδ,ω such that

∣∣∣Zniω√
n

∣∣∣ < 0.5δ (note that nδ,ω does not depend on

i since convergence is uniform on i). Then, it follows for all ε > 0, there exists nε,ω such that for all

n ≥ max{nε,ω , nδ,ε}:

Pivnω,i ≤Pn
(
√
nKn

ω −
1

V nω
√
n

+
Zniω√
n
≤
∑n
j=1 Z

n
jω√

n
<
√
nKn

ω +
1

V nω
√
n

+
Zniω√
n
| ω
)

≤Pn
(
K − δ <

∑n
j=1 Z

n
jω√

n
≤ K + δ | ω

)
≤0.5ε+ LN (K + δ)− LN (K − δ) < ε,

where the third inequality follows from the CLT. We showed that for any convergent subsequence (Kn
ω )n,

the associated subsequences of probabilities converge to zero, thus this result must hold for the whole

sequence.
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Step 2. Note that:

Pnσi (o = R | ω, si) =σni (si)P
n
1 (o = R | ω) + (1− σni (si))P

n
0 (o = R | ω)

=Pn0 (o = R | ω)

+ σni (si) (Pn1 (o = R | ω)− Pn0 (o = R | ω))

≡Pn (o = R | ω) + σni (si)Piv
n
ω,i

Therefore

|Pnσi (o = R | ω, si)− Pnσ′i
(
o = R | ω, s′i

)
| ≤ |σni (si)− σ

′n
i (si)| · |Pivnω,i|.

By step 1, it follows that for all n ≥ nδ,ω : |Pivnω,i| ≤ δ. Since |σni (si) − σ
′n
i (si)| ≤ 1 the desired result

follows.

Step 3. We now show that for all ω ∈ Ω,

lim inf
n→∞

1

n

n∑
j=1

κnjω
(
1− κnjω

)
> 0.(B30)

Fix any n and j ≤ n. By assumption, σnj (sj) ∈ [Fj (−2K) , Fj (2K)] ⊂ (0, 1) for all sj . Therefore,

0 < κnjω < 1 for all ω, thus implying equation (B30).

PROOF OF CLAIM OA.2:

We prove that

lim
n→∞

(
EPn

(
uθi (R,W ) | o = R,S = si

)
− EPnσi

(
uθi (R,W ) | o = R,S = si

))
= 0;

the proof for o = L is similar and therefore omitted. We first show that, for all i, si, σi,

EPnσi

(
uθi (R,W ) | o = R,S = si

)
=

´
Ω P

n
σi

(o = R |W, si) qθi (si |W )uθi (R,W )G(dW )´
Ω P

n
σi

(o = R |W, si) qθi (si |W )G(dW )

is well-defined for sufficiently large n. Fix any i. A3(ii) and the fact that ς̃ is asymptotically interior

imply that there exists n such that for all n ≥ n, there exists s∗i such that

Pn(o = R, s∗i ) =

ˆ
Ω
Pn(o = R |W, s∗i )qθi (s∗i |W )G(dW ) ≥ c > 0,

which implies that
´
Ω P

n(o = R |W, s∗i )G(dW ) ≥ c > 0. By Claim OA.1, for each si, σ
n
i , Pn

(
o = R | ω, s∗i

)
−

Pnσi (o = R | ω, si) converges to zero as n → ∞. Since both probabilities are bounded by one, then the

dominated convergence theorem implies that
´
Ω

(
Pn
(
o = R |W, s∗i

)
− Pnσi (o = R |W, si)

)
G(dW ) → 0

as n → ∞, uniformly over σi. Therefore, there exists n.5c such that supσi |
´
Ω[Pn

(
o = R |W, s∗i

)
−

Pnσi (o = R |W, si)]G(dW )| < .5c for all n ≥ n.5c. So for all n ≥ max n̄, n.5c ≡ nc,
ˆ

Ω
Pnσi (o = R |W, si) qθi (si |W )G(dW ) ≥ d

ˆ
Ω
Pnσi (o = R |W, si)G(dW ) > .5dc > 0.

Hence, EPnσi

(
uθi (R,W ) | o = R,S = si

)
is well defined.

By simple algebra, and letting ∆Pnσi (R,ω, si) ≡ Pn (o = R | ω, si)− Pnσi (o = R | ω, si),
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∣∣∣EPn (uθi (R,W ) | o = R,S = si
)
− EPnσi

(
uθi (R,W ) | o = R,S = si

)∣∣∣
≤
∣∣´

Ω ∆Pnσi (R,W, si)qθi (si |W )uθi (R,W )G(dW )
∣∣´

Ω P
n
σi

(o = R |W ) qθi (si |W )G(dW )

+

∣∣´
Ω ∆Pnσi (R,W, si)qθi (si |W )G(dW )

∣∣ ´
Ω P

n (o = R |W ) qθi (si |W )uθi (R,W )G(dW )´
Ω P

n (o = R |W ) qθi (si |W )G(dW )
´
Ω P

n
σi

(o = R |W ) qθi (si |W )G(dW )

To establish the desired result, it is sufficient to show that each of the two absolute value terms in the

numerator of the second and third line converge to zero as n → ∞. However, this result follows by the

dominated convergence theorem since |uθi (R,ω)| < K, qθi (s|ω) ≤ 1, and pointwise convergence (for each

ω) is obtained by Claim OA.1.

PROOF OF CLAIM OA.3:

For each O ∈ {R,L}: Let Gnσi (ω | O, si) ≡ Pnσi ({W ≤ ω} | o = O, si) denote the cdf of ω conditional

on o = O and si, and let gnσi (ω | O, si) ≡ Pnσi (dω | o = O, si) denote the density. Let ∆gnσi (ω | O, s′i, si) ≡
gnσi (ω | O, s′i)− gnσi (ω | O, si) and ∆Gnσi (ω | O, s′i, si) ≡ Gnσi (ω | O, s′i)−Gnσi (ω | O, si).

Then

∆i

(
Pnσi , s

′
i

)
−∆i

(
Pnσi , si

)
=

ˆ
Ω

(
uθi (R,W )∆gnσi (W | R, s

′
i, si)− uθi (L,W )∆gnσi (W | L, s

′
i, si)

)
dW

=

ˆ
Ω

(
duθi
dω

(R,W )∆Gnσi (W | R, si, s
′
i)−

duθi
dω

(L,W )∆Gnσi (W | L, si, s
′
i)

)
dW

≥
ˆ

Ωn⊂Ω

duθi
dω

(R,W )∆Gnσi (W | R, si, s
′
i)dW

≥ cM
ˆ

Ωn⊂Ω

duθi
dω

(R,W )dW

≥ cm · cM inf
W∈Ω̄

duθi
dω

(R,W )

≡ c > 0

for all n ≥ n′ (where Ωn, cm · cM > 0, and n′ are all defined in Claim OA.3.1 below), where the first line

follows by definition, the second by integration by parts (note how the signals are inverted), the third

by Claim OA.3.1(i) (see below) and the facts that that
duθi
dω

(R,ω) > 0 and
duθi
dω

(L, ω) < 0 for all ω, the

fourth by Claim OA.3.1(ii). Finally, for the fifth line, let Ω̄ = Ω \ ∪Ni=1(ωi − ε, ωi + ε) where (ω1, ..., ωN )

are the discontinuity points of
duθi
dω

(R, ·); by assumption there are finitely many, so N < ∞ and ε > 0

is chosen such that ε < mini6=j |ωi − ωj |. It is easy to see that Ω̄ is compact and over it,
duθi
dω

(R, ·) is

well-defined and continuous. Since cm · cM > 0 and infω∈Ω̄

duθi
dω

(R,ω) = minω∈Ω̄

duθi
dω

(R,ω) > 0 where

(because uθi is continuously differentiable in Ω̄ and
duθi
dω

(R,ω) > 0 for all ω).

Claim OA.3.1: For all i and s′i > si such that σni (si) = σni (s′i): (i) For all n, ∆Gnσi (ω | O, si, s′i) ≥ 0

for all ω and O ∈ {R,L}; (ii) There exists n′, cM > 0, and (Ωn) n with Ωn = [ln, un] ⊆ Ω and

lim infn→∞ un − ln = β2 > 0 such that, for all n ≥ n′ and all ω̃ ∈ Ωn \ {−1, 1},

∆Gnσi (ω̃ | R, si, s
′
i) ≥ cM .

PROOF OF CLAIM OA.3.1:



18 AMERICAN ECONOMIC JOURNAL MONTH YEAR

There exists z > 0 such that for all n and all ω′ > ω,

gnσi (ω
′ | O, s′i)gnσi (ω | O, si)− g

n
σi

(ω′ | O, si)gnσi (ω | O, s
′
i)

=
Pnσi (O | ω′, si)Pnσi (O | ω, si)g(ω′)g(ω)

Pnσi (O, s
′
i)P

n
σi

(O, si)

[
qθi
(
s′i | ω′

)
qθi (si | ω)− qθi

(
si | ω′

)
qθi
(
s′i | ω

)]
≥ z

Pnσi (O | ω′, si)Pnσi (O | ω, si)g(ω′)g(ω)qθi
(
s′i | ω

)
qθi (si | ω) (ω′ − ω)

Pnσi (O, s
′
i)P

n
σi

(O, si)

≥0(B31)

where the first line uses the fact that Pnσi (O | ω̂, si) = Pnσi (O | ω̂, s′i) for all ω̂ (because of conditional

independence and the fact that σni (si) = σni (s′i)), the second line follows from A5, and the third line

follows because z > 0 and ω′ > ω. Therefore, it follows from Milgrom (1981, Proposition 1) that, for all

n, ∆Gnσi (ω | O, si, s′i) ≥ 0 for all ω.

(ii) From the proof of Claim OA.2, there exists n′ and c′ > 0 such that, for all n ≥ n′,
ˆ

Ω
Pnσi (o = R |W, si)G(dW ) ≥ c′

for all i, σi, si. For a ∈ (0, 1), let

ωna = min

{
ω′ :

ˆ
W≤ω′

Pnσi (o = R |W, si)G(dW ) ≥ a · c′
}
∈ Ω.

Fix any n ≥ n′. Then

c′/4 =

ˆ
ωn0.25≤W≤ωn0.50

Pnσi (o = R |W, si)G(dW ) ≤ G (ωn0.50)−G (ωn0.25) .

Therefore, the fact thatG has no mass points implies that there exists cL > 0 such that ωn0.50−ωn0.25 ≥ cL.

A similar argument establishes that here exists cR > 0 such that ωn0.75 − ωn0.50 ≥ cR.

Let Ωn =
[
ωn0.50 − cm/2, ωn0.50 + cm/2

]
, where cm ≡ min{cL, cR} > 0. Then, un − ln = cm > 0. In

addition, fix any ω̃ ∈ Ωn. Then, by construction,

(B32)

ˆ
ω<ω̃−cm/2

Pnσi (o = R |W, si)G(dW ) ≥ c′/4

and

(B33)

ˆ
ω>ω̃+cm/2

Pnσi (o = R |W, si)G(dW ) ≥ c′/4.

By integrating each side of (B31) twice, first with respect to G(dω) over ω ≤ ω̃ and second with respect

to G(dω′) over ω′ > ω̃, we obtain
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∆Gnσi(ω̃ | R, si, s
′
i) =

=
z

Pnσi(R, s′i)P
n
σi(R, si)

×
ˆ
W ′>ω̃

ˆ
W<ω̃

Pnσi(R | ω
′, si)P

n
σi(R |W, si)g(W ′)g(W )qθi

(
s′i |W

)
qθi (si |W ) (W ′ −W )dG(W )dG(W ′)

≥ z

ˆ
W ′>ω̃+ cm

2

ˆ
W<ω̃− cm

2

Pnσi(R |W
′, si)P

n
σi(R |W, si)g(W ′)g(W )qθi

(
s′i |W

)
qθi (si |W ) (W ′ −W )dG(W )dG(W ′)

≥ z · cm · d2

ˆ
W ′>ω̃+ cm

2

Pnσi(R |W
′, si)G(dW ′)

ˆ
W<ω̃− cm

2

Pnσi(R |W, si)G(dW )

≥ z · cm · d2 ·
(
c′

4

)2

≡ cM > 0,

where the first inequality follows from Pnσi (R, s
′
i)P

n
σi

(R, si) ≤ 1, the second from A3, and the third from

(B32) and (B33).

Partially cursed equilibrium

In this section we characterize Eyster and Rabin’s partially cursed equilibrium in the voting game (see
Eyster and Rabin (2005) for the definition) as the number of voters goes to infinity. For simplicity, we
restrict attention to the environment with homogeneous voters introduced in Section I.

For any χ ∈ (0, 1), define

vPC (s;ω) ≡ (1− χ) (u(R,ω)− u(L, ω)) + χ (E (u(R,W ) | s)− E (u(L,W ) | s)) .

This expression will be shown to represent the beliefs of a partially cursed voter who observes signal s in
a large election in which the equilibrium cutoff is ω. Note that χ = 0 corresponds to beliefs under Nash
equilibrium (NE) and χ = 1 corresponds to sincere voting (SV).

In a manner analogous to what we did for RVE, define the partially cursed personal cutoff

cPC(s) ≡ arg min
ω∈Ω

∣∣∣vPC (s;ω)
∣∣∣

as well as
κPC(ω) ≡

∑
{s:cPC(s)<ω}

q (s | ω) ,

which may be interpreted as the proportion of players that vote for R in state ω when the cutoff is also
given by ω.34

Finally, define ωPC ≡ κ̄−1
PC(ρ). The next result shows that ωPC is essentially the election cutoff if

there are a large number of partially cursed voters.

THEOREM 5: Suppose that voters play a partially cursed equilibrium with χ ∈ (0, 1). For all ε > 0,
there is an nε such that for all n′ > nε, the following holds: if ω < ωPC − ε, then L is elected with
probability greater than 1− ε; if ω > ωPC + ε, then R is elected with probability greater than 1− ε.

PROOF:
We provide only a sketch of the proof and focus on equilibria in increasing strategies (even in the

limit). Not surprisingly, the arguments are very similar to those used by Feddersen and Pesendorfer

34The interpretation is exact except when ω is one of the personal cutoffs.
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(1997) to characterize NE in large elections.35 First, it is easy to see that the definition of partially
cursed equilibrium (see Eyster and Rabin 2005) implies that, for a given strategy profile σ−i of other
players, voter i’s belief after observing signal s is a convex combination of NE and SV beliefs, i.e.,
(C1)

(1−χ)
[
En,σ−i (u(R,W ) | pivotal, s)− En,σ−i (u(L,W ) | pivotal, s)

]
+χ [E (u(R,W ) | s)− E (u(L,W ) | s)] ,

where the expectation in the first term depends on the number of voters and the strategies of these
other voters. Second, because strategies are increasing, then the election cutoff in a large election will be
uniquely given by some state ω at which the proportion of people voting for R equals the electoral rule
ρ. Thus, conditional on being pivotal, a voter in a large election puts probability 1 on a neighborhood
around the election cutoff ω, and so (C1) converges to vPC (s;ω). By optimality, a voter who observes s
votes R or L depending on the sign of vPC (s;ω), and so κPC(ω) is the proportion of votes for R at the
election cutoff ω. But, as mentioned earlier, the cutoff must have the property that κPC(ω) = ρ; thus,
the limiting cutoff is the unique state that solves this equation.

As mentioned in the text, partially cursed equilibrium also provides a middle ground between NE and
SV. It does not, however, capture the failure to account for selection that motivates this paper. Not
surprisingly, the insights about sample selection that emerge from RVE and not from either NE or SV,
also don’t emerge from a convex combination of NE and SV. We illustrate this point using Example 2
from the text.

Example 2 (continued from pg. 13). As mentioned in the text, the cutoff under NE is the
efficient cutoff of zero and the cutoff under sincere voting can be either positive or negative depending
on the two cases that depend on the primitives:

Case (1) If expression (5) is positive for s ∈ {sR, sM} and negative for sL, then the election cutoff is
lower than zero and given by the intersection of q({sR, sM} | ·) and ρ∗.

Case (2) If expression (5) is positive for sR and negative for s ∈ {sM , sL}, then the election cutoff is
greater than zero and given by the intersection of q({sR} | ·) and ρ∗.

It is straightforward to check that the partially cursed equilibrium cutoff is between the Nash and
Sincere Voting cutoffs. In Case (1), the partially cursed equilibrium cutoff is greater than zero and
converges to zero as χ converges to zero. In Case (2), the partially cursed equilibrium cutoff is less than
zero and converges to zero as χ converges to zero. Note the difference with RVE, where the equilibrium
cutoff is always less than zero and bounded away from zero due to the selection problem described in the
main text. �

35The proof is actually much easier than their proof. The reason is that equilibrium strategies are
always strictly monotone, even in the limit. In the case of NE (i.e., χ = 1), the main challenge is to
show that, despite the fact that strategies are becoming flat and voters are almost ignoring their private
information, this is happening at a sufficiently slow rate such that information is still being aggregated.


