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Abstract

We introduce a solution concept in the context of elections with private in-
formation by embedding a model of boundedly rational voters into an otherwise
standard equilibrium setting. Voters evaluate alternatives based on past perfor-
mance, but, since counterfactual outcomes remain unobserved, the sample from
which they learn is potentially biased. A retrospective voting equilibrium for-
malizes the idea that voters learn from a biased sample and have systematically
biased beliefs in large elections. This approach provides several novel insights
regarding the preference and information aggregation properties of elections.
When applied to a Downsian setting of two-party competition, we find that,
in contrast to the standard Nash equilibrium case, parties have an incentive to
exacerbate the degree to which their policy platforms differ. This incentive to
polarize, however, increases the welfare of the median voter.
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1 Introduction

In the economics literature, voters are often portrayed as sophisticated individuals
who have well-defined preferences, can solve complicated signal-extraction problems,
and have correct expectations about the distribution of (counterfactual) payoffs.1

The empirical evidence, on the other hand, often finds that voters are poorly in-
formed and have little understanding of ideology and policy.2 Consistent with the
evidence, political scientists often view voters as boundedly rational individuals who
vote “retrospectively” and reward or punish politicians and their parties based on
their past performance. In the words of Fiorina (1981, p. 5), voters “need not know
the precise economic or foreign policies of the incumbent administration in order to
see or feel the results of those policies.”

Many of the “rational” assumptions in the voting literature are implicitly embodied
in the notion of Nash equilibrium. Sometimes these assumptions seem more driven
by a methodological tradition than by a conviction in their empirical validity. On the
other hand, equilibrium analysis and comparative statics lies at the heart of economics
and has provided numerous insights in voting and several other contexts.

The main contribution of this paper is to combine the previous approaches by
embedding a model of boundedly rational voters who learn from the previous per-
formance of the policies or parties into an otherwise standard equilibrium setting.
This approach provides several novel insights regarding the preference and informa-
tion aggregation properties of elections. We apply our boundedly rational equilibrium
framework to a Downsian model of two-party competition and find that, in contrast
to the standard Nash equilibrium case, parties have an incentive to exacerbate the
degree to which their policy platforms differ. This incentive to polarize, however,
increases the welfare of the median voter.

Our model captures an important feature of elections that is often overlooked in
the literature. To illustrate this feature, consider an election between a Republican
and a Democratic candidate in the United States. Voters are likely to use informa-
tion about the past performance of the parties to predict their future performance
and determine which party to vote for. For example, voters who are currently un-
employed may favor a Democratic candidate if they have experienced better results

1In the context of elections with private information that we consider in this paper, see, e.g.,
Austen-Smith and Banks (1996) and Feddersen and Pesendorfer (1997).

2See, e.g., Delli Carpini and Keeter (1997) and Converse (2000).
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from previously elected Democratic administrations, compared to Republican admin-
istrations, when also unemployed in the past. This tendency to learn from the past
is not limited to political elections. When shareholders vote on takeover proposals,
they benefit from learning the outcome of previous takeovers in the same or compa-
rable firms. A similar phenomenon occurs with legislators choosing whether to vote
along party lines, union members voting to accept or reject negotiated contracts, and
residents voting whether to approve additional funding for school districts.

A key feature in these examples is that, when using past information to evaluate
alternatives, voters only observe the performance of the elected alternatives, so that
counterfactual outcomes are not observable. For example, we will never find out how
Romney would have performed had he been elected President of the U.S. in 2012
instead of Obama. Similarly, shareholders will not learn the benefits of a takeover
that is not approved. Consequently, the sample from which voters learn is potentially
biased. The reason is that the selection of alternatives is not randomized: To the
extent that voters have some private information, they will elect alternatives that are
likely to perform better. It is reasonable to assume that voters will not be able to
control for unobserved counterfactual outcomes, thus ending up with systematically
biased beliefs (see Section 2 for the evidence).

In our setup, there is a continuum of voters and two alternatives. One of the
alternatives wins the election if it receives a high enough proportion of votes; otherwise
the other alternative wins. Voters have (possibly heterogeneous) payoffs that are
increasing in the state of the world for one alternative and decreasing for the other.
In addition, voters have some information about the state of the world. For example,
in an election between two political parties, the state can represent the fundamentals
of the economy. One of the parties might be best at governing during recessions and
the other during booms (perhaps because of their different positions on monetary and
fiscal policy).

We propose a new solution concept, retrospective voting equilibrium (RVE), to
formalize the idea that voters learn from a biased sample and have systematically
biased beliefs. An RVE consists of a strategy profile and an election cutoff that
satisfy two conditions: (i) there is a tie at the cutoff, with one alternative being elected
above and the other below the cutoff; (ii) the strategy profile must be optimal given
the election cutoff. Optimality is defined in terms of retrospective voting: Voters’
perceptions of the benefits of each alternative derive from the observed performance of
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each alternative, which depends on the states in which each alternative is elected, and,
therefore, on the election cutoff. This parsimonious characterization of retrospective
voting in large elections is a major advantage of the framework.3

Our model is inspired by the notion of retrospective voting advanced by Key (1966)
and Fiorina (1981), among others. Our work, however, is conceptually very different
to the formal literature in retrospective voting, beginning with Barro (1973) and
Ferejohn (1986), which studies elections as incentive mechanisms that hold politicians
accountable. Instead, our model follows Downs’ (1957) view of retrospective voting
as a way to predict how parties will perform in the future rather than as a way to
simply punish or reward the party for past performance (Fiorina (1981), Chapter 1).

We compare RVE to the two standard solution concepts in the literature, sincere
voting (SV) and Nash equilibrium (NE), and find that RVE constitutes a middle
ground and exhibits the more realistic properties of these two solution concepts:
Behavior is endogenous and depends not only on the characteristic of an individual
voter but also on the aggregate characteristics of the electorate (as in NE, but unlike
SV); outcomes are significantly affected by both the electoral rule and the precision
of information (as in SV, but unlike NE); and there is often a non-negligible fraction
of nonpartisans (as in SV, but unlike NE).

We also highlight a tension that often precludes information aggregation under
RVE but is not present under NE or SV: If information were aggregated, then, in
general, one of the alternatives would be observed to have the best performance. But
then everyone would want to vote for that alternative irrespective of their private
information, which precludes information aggregation in the first place. Moreover, the
fact that mistakes are driven by selection bias implies that, contrary to folk wisdom,
a more informed electorate will not necessarily make better decisions. The extent of
mistakes, however, is limited by the fact that voters, while not fully sophisticated,
still tend to penalize alternatives that yield bad outcomes. Finally, the bias tends to
run in the direction of overestimating the benefits of the more risky alternative, thus
justifying conservatism as a means to mitigate mistakes.

We then turn to the main application of the framework, which is to embed the
voting model in a Downsian model of two-party competition, modified to allow for

3In a parallel with the definition of a competitive equilibrium, the role of prices is played here by
the election cutoff. Voters take the cutoff as given when optimizing, and the cutoff is determined
endogenously in equilibrium.
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state-contingent payoffs. There are two political parties, Left and Right, and each
of these parties is committed to a “left” and “right” platform, respectively, but they
can choose their degree of polarization. To illustrate, suppose that the state of the
economy ranges from recession to boom. The Left party is ideologically constrained
to favor expansionary fiscal policy while the Right party is constrained to favor con-
tractionary policy. Expansionary policy does best in a recession but hurts in a boom,
while the opposite is true for a contractionary policy. There is also a neutral, hands-
off policy that neither helps nor hurts the economy. The Left and Right parties
choose the degree of expansion or contraction in their policies, respectively, in order
to maximize the chance of being elected. Voters take these policies as given and play
an equilibrium of the voting game. We compare the cases where voters play Nash
equilibrium (NE) and retrospective voting equilibrium (RVE).

When voters play NE, the policy platforms converge to the neutral policy, and
the logic is similar to the standard convergence result (Downs, 1957). The idea is
that polarization hurts the chances of a party not only in states that are in the
opposite extreme of the policy but also in intermediate states. Thus, the parties end
up converging to a common, middle policy.

When voters play RVE, they evaluate parties based on observed, not counterfac-
tual, performance, and the standard logic no longer applies. A party has an incentive
to choose relatively extreme policies that work well in those states in which it is
elected into office, since those are the states that retrospective voters use to evalu-
ate its performance. This incentive to polarize under RVE leads to a better match
between states and policies under RVE compared to NE and, therefore, to higher
welfare (of the median voter, under majority rule). In the previous example, under
RVE voting, the Left party chooses an expansionary policy and tends to be elected
during recessions and the Right party chooses a contractionary policy and tends to
be elected during booms. Under NE, in contrast, both parties choose a neutral policy
that does not respond to a fluctuating economy.

These results highlight an important benefit of polarization that is analogous to
the idea of specialization or division of labor: parties specialize in certain policies and
they are elected into office when these policies tend to be best. The theory predicts
these features of two-party competition to be present in a context where there is un-
certainty about the best policy, the best policy depends on the state of the world, and
parties are committed to different ideological platforms but can choose their degree
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of polarization (e.g., the Democratic and Republican parties in the U.S.; the Labour
and Conservative parties in the U.K.). These predictions are also consistent with
empirical evidence from the literature on the political business cycle. For example,
Hibbs (1977) and Alesina and Roubini (1992) find that the economy tends to expand
with left-wing governments and to contract with right-wing governments, which is
consistent with left-wing governments having a relatively stronger concern for unem-
ployment over inflation. In addition, Faust and Irons (1999) find that Democrats are
more likely to be elected president in times of high unemployment and Republicans
are more likely to be elected in times of high inflation. In general, the literature
has a hard time establishing causality because it is difficult to assess to what extent
the correlation between political and economic variables is due to politics affecting
the economy or the other way around. By incorporating both private information
and state-contingent payoffs, our analysis provides a novel mechanism through which
the economy (i.e., the state of the world) influences politics that is consistent with
the data and could potentially be incorporated into empirical models of the political
business cycle.

Another implication of these results is that, in order to evaluate the functioning
of an electoral system, it is misleading to focus exclusively on whether voters are
sophisticated or well informed and to ignore the incentives of the parties. When
policies are exogenous, it is not surprising that NE voting is more efficient compared
to boundedly-rational RVE voting. But, when the parties’ incentives to choose policies
are taken into account, we actually find a reverse implication: a simple retrospective
voting heuristic leads to higher welfare for the median voter than sophisticated voting.

This paper follows a recent literature that studies game-theoretic equilibrium
concepts for boundedly rational players (e.g., Osborne and Rubinstein (1998), Je-
hiel (2005), Eyster and Rabin (2005), Jehiel and Samet (2007), Jehiel and Koessler
(2008), and Esponda (2008))). Papers that study elections with non-Nash solution
concepts include Osborne and Rubinstein (2003), Eyster and Rabin (2005), Costinot
and Kartik (2007), and Martinelli (2011).4

Bendor et al. (2010, 2011) postulate a dynamic model of retrospective voting
where voters follow a satisficing rule and vote for the incumbent if it has performed
well given their endogenous aspiration level. Spiegler (2013) studies a dynamic model

4The original literature on the political business cycle also assumed boundedly rational voters
(Nordhaus, 1975).
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of reforms in which an infinite sequence of policy makers care about the public evalu-
ation of their interventions. The public follows a simple attribution rule and (mistak-
enly) attributes changes in outcomes to the most recent intervention. Levy and Razin
(2014) study a setting where voters have two correlated pieces of private information
but naive voters fail to account for their correlation. They find that correlation neglect
might lead to higher welfare under fixed policies and to less polarized policies when
parties choose policies. These papers focus on other interesting aspects of bounded
rationality and not on the type of sample selection problem that motivates our paper.
5

Motivated by the empirical evidence on polarization (e.g., McCarty et al. (2006)),
a large literature relaxes the assumptions of the Downsian framework to explain
non-convergent policies.6 While this literature restricts attention to a private values
setting, McMurray (2013b) recently considers a pure common value setting and shows
that Nash voting leads to convergent policies when parties can commit and are office-
motivated, which is inefficient because policies do not match the state of the world.7

In contrast, we allow for both private and common value elements in voter preferences
and show that polarization obtains when voters are boundedly rational.

In Section 2, we discuss the behavioral assumptions underlying our solution con-
cept and the related evidence. In Section 3, we introduce the framework and the
solution concept. In Section 4, we study the degree of polarization under two-party
competition and, in Section 5, we provide a game-theoretic foundation for our solution
concept. We conclude in Section 6 by mentioning possible extensions.

5Callander (2011) studies a model of dynamic policy-making where “rational” voters learn the
mapping between policies and outcomes.

6Some explanations include: policy motivated candidates with uncertainty about median voter
preferences (Wittman (1977), Calvert (1985)), the threat of entry by a third party (Palfrey, 1984),
the effect of executive-legislative compromise (Alesina and Rosenthal, 2000), lack of policy commit-
ment (Osborne and Slivinski (1996), Besley and Coate (1997)), candidates with “valence” attributes,
(Aragones and Palfrey (2002), Gul and Pesendorfer (2009), Kartik and McAfee (2007)), differen-
tiation in the presence of multiple constituencies (Eyster and Kittsteiner, 2007), and convex voter
preferences (Kamada and Kojima, 2012).

7Kartik et al. (2012) show that elections are also inefficient when candidates have socially valuable
information about the state of the world.
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time	   signal	   vote	  
election	  
outcome	  

observed	  
payoff	  

	   	  
1	   r R	   R	   -1	   	   	  
2	   r L	   R	   	  1	   	   	  
3	   r R	   L	   	  0	   →	   counterfactual	  not	  observed	  

4	   l L	   R	   -‐1	   	   	  

5	   l L	   L	   	  0	   	   	  

6	   r R	   R	   	  1	   	   	  

7	   r R	   L	   	  0	   →	   counterfactual	  not	  observed	  

8	   l L	   R	   	  1	   	  
	  

	  
	  
	  
	   Table 1: Illustration of retrospective voting rule

2 Behavioral assumptions and evidence

In the dynamic environment that motivates our (steady-state) solution concept, voters
predict the future performance of an alternative based on its past observed perfor-
mance. For every election, each voter first observes a private signal that is correlated
with the performance of the alternatives. After observing their signals, voters simul-
taneously cast a vote. The election outcome is then determined and voters observe
the performance of the elected alternative. The environment is stationary, in the
sense that the signals and performances of the alternatives are drawn from the same
distribution in every election.

Table 1 shows data for eight elections from the point of view of one particular
voter. Suppose that there is an election in period 9 in which this voter observes
signal r prior to voting. A retrospective voter behaves as follows. First, she uses
past elections to form a belief about the performance of each alternative conditional
on signal r. In this example, alternative L always delivers a payoff of zero, while
alternative R delivers an average payoff of (−1 + 1 + 1)/3 = 1/3 when the signal is
r (i.e., in periods 1, 2, and 6). Then, in period 9, the voter votes for R, which is the
best alternative given the current evidence.

This retrospective voting rule is inspired by the idea of retrospective voting in the
political science literature (Key (1966), Fiorina (1981)). This idea has received both
empirical (e.g., Kramer (1971), Fiorina (1978), Lewis-Beck and Stegmaier (2000),
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Martorana and Mazza, 2012) and experimental support (Woon (2012), Huber et al.
(forthcoming)). More generally, the evidence shows that the electorate is often poorly
informed and has little understanding of ideology and policy (e.g., Delli Carpini and
Keeter (1997) and Converse (2000)), and voter mistakes do not tend to cancel in the
aggregate (e.g., Bartels, 1996).

One novelty with respect to the literature on retrospective voting is that we allow
for private information—hence the use of the term conditional retrospective voting.
An important insight is that the introduction of private information gives rise to
sample selection problems. In Table 1, the voter also observes signal r in periods
3 and 7, but, since L is elected, the voter does not observe the performance of R
in those periods. If L and R were randomly chosen each period, the fact that the
performance of R is not observed in periods 3 and 7 should not affect beliefs in the
long run. The problem, however, is that the election outcome depends on private
information that is correlated with performance. In particular, it is likely that the
reason why R was not elected in periods 3 and 7 is that voters obtained signals
that were relatively unfavorable to R. So, if our voter had been somehow able to
observe the counterfactual performance of R in periods 3 and 7, she would have
probably observed a relatively bad performance. Thus, the fact that counterfactual
performances are not observed likely leads to overestimating the value of electing R.
Our model provides a tractable way to account for the systematic bias in beliefs that
results from the selection problem.

As a starting point, we make the stark assumption that voters do not try to
control for the selection problem, either because they do not understand the selection
problem or because they do not know how to control for it. For example, even a
sophisticated voter might have trouble thinking how Romney would have performed
as president of the U.S. and including that counterfactual assessment in his overall
evaluation of Republican candidates.8

The idea that voters do not try to correct for unobserved counterfactuals is con-
sistent with the empirical findings of Achen and Bartels (2004), Leigh (2009), and
Wolfers (2009), who find that voters punish politicians for events that are outside of
their control. Healy and Malhotra (2010) find that punishment is related to the politi-
cian’s response to these events. Our model allows voters to be fairly sophisticated and

8In another paper (Esponda and Pouzo, 2012), we discuss intermediate assumptions under which
voters partially account for pivotality.
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to condition their learning on private signals, such as campaign platforms, media re-
ports, and economic indicators. This type of naiveté also underlies the winner’s curse
in common value auctions and has received robust support in experimental settings
(e.g., Thaler (1988), Kagel and Levin (2002), and Charness and Levin (2009)).9

In this paper, we focus on the steady state of the previous dynamic voting environ-
ment when voters follow the retrospective voting rule described above. This steady
state is formally captured by the notion of a (naive) behavioral equilibrium (Esponda,
2008)—we provide a formal proof of this statement in another paper (Esponda and
Pouzo, 2012). This solution concept captures the failure of players to account for
selection problems and differs from the standard notion of Nash equilibrium.10 One
of the contributions of the current paper is to characterize the (naive) behavioral
equilibrium, which captures the retrospective behavior we want to analyze, as the
number of voters goes to infinity. This exercise is analogous to that carried out by
Feddersen and Pesendorfer (1997), who characterize Nash equilibrium as the number
of voters goes to infinity. The formal results appear in Section 5. It turns out that
this characterization takes a very convenient and intuitive form, analogous to the
notion of a competitive equilibrium in market economies. Thus, we begin by directly
postulating this convenient characterization as our definition of retrospective voting
equilibrium in Section 3.

3 Voting framework

3.1 Setup

A continuum of voters participate in an election between two alternatives, R (right)
and L (left). A state ω ∈ Ω = [−1, 1] is first drawn according to a probability

9For voting experiments, Guarnaschelli et al. (2000) conclude that subjects’ votes do not deviate
much from Nash equilibrium play, although Eyster and Rabin (2005) find that these deviations can
be systematically attributed to naiveté. Recently, Esponda and Vespa (2011) show that between 50
and 80 percent of their subjects are not sophisticated. These experiments are only indirect tests of
our assumption because they inform subjects of the primitives of the game.

10In Esponda and Pouzo (2012), we also show that there is a rule that provides a foundation
for Nash equilibrium. This pivotal rule is identical to the retrospective rule described above, with
the exception that learning only takes place from those elections in which a voter was pivotal. We
believe, however, that this rule is unrealistic in the context of this paper, where there is a large
electorate, the probability of being pivotal is very small, and, hence, there would be essentially
no learning opportunities from the past under this rule. Thus, we believe that the existence of a
behavioral foundation for Nash equilibrium under a large electorate remains an open question.
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distribution G and, conditional on the state, each player observes an independently-
drawn private signal. Players then simultaneously submit a vote for either R or
L. Votes are aggregated according to an electoral rule ρ ∈ (0, 1): Alternative R is
elected if the proportion of votes in favor of R is greater or equal than ρ; otherwise,
L is elected.

We model heterogeneity (in preferences and information) by assuming that each
voter is of a particular type θ, where φ is the full-support probability distribution over
the set of types Θ ⊂ R. Conditional on a stateW = ω, players of type θ independently
draw a signal Sθ = s from a finite, nonempty set Sθ ⊂ R with probability qθ (s | ω);
let sLθ and sRθ denote the lowest and highest signals in Sθ. The payoff of type θ is
given by uθ(o, ω), where o ∈ {L,R} is the winner of the election.

Let σθ : Sθ → [0, 1] denote the strategy of type θ, where σθ(s) is the probabil-
ity that type θ votes for alternative R after observing signal s. A strategy σθ is
nondecreasing if σθ(s′) ≥ σθ(s) for all s′ > s. A strategy profile σ = (σθ)θ∈Θ is
nondecreasing if σθ is nondecreasing for each θ.

We maintain the following assumptions throughout the paper, for all θ ∈ Θ:

A1. (i) uθ(R, ·) : Ω → R is nondecreasing and uθ(L, ·) : Ω→ R is nonincreasing,
and one of them is strictly monotone; (ii) uθ(R, ·) and uθ(L, ·) are both continuously
differentiable, except possibly in a finite number of points, and supθ,o,ω |uθ(o, ω)| ≤
K <∞.

A2. MLRP: For all ω′ > ω, and s′ > s:

qθ(s
′|ω′)

qθ(s′|ω)
− qθ(s|ω′)
qθ(s|ω)

> 0.

A3. (i) G has a density function g, where infΩ g(ω) > 0; (ii) there exists d > 0

such that qθ(s|ω) > d for all θ ∈ Θ, s ∈ S and ω ∈ Ω; (iii) qθ(s | ·) is continuous for
all s ∈ S.

A4. Θ ⊂ R is a compact interval (a singleton is a special case) and Sθ = S;
uθ(R,ω), uθ(L, ω), and qθ(s | ω) are jointly continuos in Θ× Ω for all s ∈ S.

Assumptions A1-A2 provide an ordering between states, information, and players’
preferences. Note that A2 is trivially satisfied for types with a unique signal (i.e., no
private information). As mentioned in Section 5, we view the case without private
information as the limit of environments with private information as information
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precision vanishes. Assumption A3 rules out “strong signals” in the sense of (Milgrom,
1979). Assumption A4 guarantees uniqueness of the equilibrium outcome and is made
only for convenience. Thus, the voting environment essentially coincides with the
standard setup in Feddersen and Pesendorfer (1997).11

Example 1. (Homogenous informed voters) The state is uniformly distributed
in [−1, 1] and there is a unique voter type with payoffs u(R,ω) = ω − 1/2, u(L, ω) =

−ω− 1/2, so that the payoff from the Left [Right] policy is increasing [decreasing] in
the state. In particular, cFB = 0 is the first-best election cutoff, i.e., everyone prefers
R in states ω > cFB and L in states ω < cFB. In addition, each voter privately
observes a binary signal from S = {sL, sR} with probability q(sR | ω) = .5 + ιω,
where ι ∈ (0, .5] is the precision of information.

For example, these primitives represent an election between two candidates with
different proposals to lower unemployment. The Left candidate is committed to
spending more resources in education and training while the Right candidate is com-
mitted to lowering corporate taxes to incentivize employment. The state of the world
captures the true underlying cause for unemployment. In high states of the world,
unemployment is mostly due to weak demand; in low states of the world, it is due
to workers lacking the right skills. Voters observe information correlated with the
true cause for unemployment, such as reasons for job loss, types of job listings, or the
current premium for skilled labor. �

3.2 Retrospective voting equilibrium

Let
κ(ω;σ) ≡

ˆ
Θ

∑
s∈S

qθ(s | ω)σθ(s)φ(dθ)

denote the proportion of votes in favor of alternative R under state ω and strategy
profile σ. Assumption A2 implies that κ(·;σ) is nondecreasing if σ is nondecreasing.
In the case where the strategy depends on private information, so that σ is not flat,
then κ(·;σ) is increasing and the outcome of the election can be characterized by a
cutoff: R is elected if and only if κ(ω;σ) ≥ ρ, or, equivalently, for all sufficiently high

11One difference is that we require uθ(L, ·) and uθ(R, ·) to be separately monotone, rather than
only their difference to be increasing.
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states. This observation motivates the following definition.12

Definition 1. A state ω ∈ Ω is an election cutoff given a strategy profile σ if
κ(ω̃;σ) ≥ ρ for all ω̃ > ω and κ(ω̃;σ) ≤ ρ for all ω̃ < ω.

When making her decision, each voter takes the cutoff as given. A cutoff deter-
mines the set of states for which each alternative is chosen, and, consequently, each
voter’s evaluation of the benefits of electing each alternative. For a given cutoff ω ∈ Ω,
the difference in benefits from electing R over L that is perceived by a voter of type
θ who observes signal s is

vθ (s;ω) ≡ E (uθ(R,W ) | W ≥ ω, Sθ = s)− E (uθ(L,W ) | W < ω, Sθ = s) . (1)

To interpret the above expression, note that, for election cutoff ω, alternative R is
elected whenever W ≥ ω, so that a voter’s retrospective evaluation of R is given by
the first term in the right hand side of (1). A similar interpretation holds for the
second term. As a matter of comparison, the notion of Nash equilibrium differs by
conditioning not on the events {W ≥ ω} or {W < ω} but rather on the event that a
voter is pivotal.

The following definition captures the idea that each voter votes for the alternative
that she sincerely believes to have the highest perceived benefit.

Definition 2. A strategy profile σ is optimal given an election cutoff ω if, for all
θ ∈ Θ and s ∈ S, vθ(s;ω) > 0 implies σθ(s) = 1 and vθ(s;ω) < 0 implies σθ(s) = 0.

By assumptions A1-A2, vθ(·;ω) is increasing. Therefore, any strategy that is
optimal given some cutoff must be nondecreasing.

Definition 3. A retrospective voting equilibrium (RVE) is a strategy profile σ∗ and
an election cutoff ω∗ such that: (i) σ∗ is optimal given ω∗, and (ii) ω∗ is an election
cutoff given σ∗.

12When σ, and, therefore, κ(·;σ) are constant, this definition is motivated by the limiting case
where signals satisfy MLRP but become uninformative; see Section 5.
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A retrospective voting equilibrium requires players to optimize given an election
cutoff that is endogenously determined by players’ strategies. In particular, unlike
the standard notion of sincere voting, voting behavior now depends endogenously
on the aggregate behavior of all voters. Moreover, the definition of equilibrium is
reminiscent of the definition of a competitive equilibrium in market economies. In
the voting context, the role of prices is played by the election cutoff. Voters take
the election cutoff as given when they optimize, and their consequent behavior yields
that election cutoff. In Section 5, we provide a foundation for Definition 3 by showing
that a retrospective voting equilibrium characterizes the naive behavioral equilibrium
(Esponda, 2008) of the voting game as the number of voters goes to infinity.

3.3 Characterization of RVE

We now characterize retrospective voting equilibrium. For each type θ and signal s,
define the personal cutoffs

cθ(s) ≡ arg min
ω∈Ω
|vθ (s;ω)| , (2)

which depend only on the primitives of the environment. Since Ω is compact and
vθ(s; ·) is continuous and increasing (by A1-A3), there exists a unique solution cθ(s)
that is nonincreasing in s. Moreover, A4 implies that vθ(s;ω) is jointly continuous
in (θ, ω) and, by the Theorem of the Maximum, cθ(s) is continuous in θ. Thus, we
can define c ≡ minθ cθ(s

R) and c = maxθ cθ(s
L) as the lowest and highest personal

cutoffs across all types.
If we knew the equilibrium election cutoff ω∗, then it would be straightforward

to characterize the equilibrium strategy: a type θ with signal s such that cθ(s) < ω∗

must satisfy vθ (s;ω∗) > 0 and, therefore, she will optimally vote for R; similarly, if
cθ(s) > ω∗, then she will optimally vote for L. For example, consider a voter with
two signals and personal cutoffs c(sR) < c(sL), as depicted in the left panel of Figure
1. If the equilibrium cutoff were lower than c(sR), this voter would always vote for
L. Similarly, if the election cutoff were higher than c(sL), she would always vote for
R. In the case where the election cutoff were between her personal cutoffs c(sR) and
c(sL), this voter would vote her signal.
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We now characterize the set of equilibrium cutoffs. For any election cutoff ω ∈ Ω,

κ(ω) ≡
ˆ

Θ

∑
{s:cθ(s)<ω}

qθ (s | ω)φ(dθ) (3)

may be interpreted as the proportion of players that vote for R in state ω when the
cutoff is also given by ω.13

Lemma 1. κ : Ω→ [0, 1] is left-continuous, increasing over the subdomain (c, c), and
satisfies: κ(ω) = 0 if ω ≤ c and κ(ω) = 1 if ω > c.

Proof. See the Appendix.

The next result says that there is a unique equilibrium cutoff and that it is es-
sentially given by the state where the proportion of votes for R, as captured by the
function κ, coincides with the electoral rule ρ. By continuity of κ, the proportion of
votes for R is higher than ρ for states above this intersection and lower than ρ for
states below this intersection.

Theorem 1. For any electoral rule ρ ∈ (0, 1), there exists a unique retrospective
voting equilibrium cutoff and it is given by κ̄−1(ρ) ∈ [c, c̄].14

Proof. See the Appendix.

The following examples illustrate how to find a retrospective voting equilibrium.

Example 1, continued. An RVE can be found in four simple steps. First, we
obtain the “belief functions”

v (s;ω) = E (W | W ≥ ω, s)− E (−W | W < ω, s)

=
1
4
(1− ω2) + Is

ι
3
(1− ω3)

1
2
(1− ω) + Is

ι
2
(1− ω2)

+
1
4
(ω2 − 1) + Is

ι
3
(ω3 + 1)

1
2
(ω + 1) + Is

ι
2
(ω2 − 1)

,

13The interpretation is exact except when there is a unique type (i.e., Θ is a singleton) and ω is
one of its personal cutoffs.

14κ̄−1 : (0, 1)→ [c, c̄] is defined as κ̄−1(ρ) = inf{ω ∈ Ω : κ̄(ω) ≥ ρ}.
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Figure 1: Example 1. Finding a retrospective voting equilibrium.
The left panel shows the personal cutoffs c(sR) and c(sL) that result from equating the perceived
benefits from electing R over L, represented by v(sR; ·) and v(sL; ·), to zero. The right panel shows
how to use the personal cutoffs to construct the vote share function κ̄, and how to then find the
equilibrium cutoff ω∗ by intersecting the vote share function with the threshold rule ρ.

where IsR = −IsL = 1. Second, we compute the personal cutoffs c(s), which solve
v (s; c(s)) = 0. Since v(sR; 0) > 0 > v(sL; 0), then c(sR) < cFB < c(sL). The belief
functions and corresponding cutoffs are depicted in the left panel of Figure 1, together
with the payoffs from the Left and Right policies.

Third, we compute the vote share for R,

κ(ω) =


0 ifω ≤ c(sR)

.5 + ιω if c(sR) < ω ≤ c(sL)

1 ifω > c(sL)

Finally, we intersect the vote share for R with the electoral rule. The equilibrium
cutoff as a function of the electoral rule ρ is then

ω∗ =


c(sR) if ρ ≤ .5− (−ιc(sR))

1
ι
(ρ− .5) if .5− (−ιc(sR)) < ρ < .5 + ιc(sL)

c(sL) if ρ ≥ .5 + ιc(sL)
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Figure 2: Example 2. RVE with safe and risky alternatives.
All personal cutoffs are negative and, therefore, the risky policy (Right) is excessively elected in
equilibrium relative to the first best cutoff cFB = 0. This welfare loss is mitigated by choosing any
majority rule ρ ≥ ρ∗, leading to an equilibrium cutoff ω∗ = c(sL).

Thus, the first-best outcome can be obtained with our boundedly rational voters if and
only if the electoral rule is ρ = 1/2. In contrast, a rule that requires a supermajority
to elect one of the alternatives will inefficiently elect the other alternative too often
in equilibrium. The equilibrium is depicted in the right panel of Figure 1 for the case
ρ > 1/2 and ι = 1/2. In equilibrium, alternative R is elected in states higher than ω∗

and L is elected in lower states. �

Example 2. (Risky vs. safe alternatives) A representative voter with uncertain
gross income y(ω) that is increasing in the state chooses between two policies. Under
a full stabilization policy (Left), taxes t(ω) = y(ω) − ȳ are set to smooth recessions
and booms and to obtain a constant disposable income ȳ. Under a budget balance
policy (Right), taxes t(ω) = G are set to balance a fixed amount of expenditure
G. We refer to these policies as the safe and risky policies, respectively. Figure 2
depicts the disposable income from each policy, where ȳ is normalized to zero and
higher states are associated with higher gross income. The first-best election cutoff
is cFB = 0. But, since E(u(R,W ) | W ≥ 0, s) > 0 = u(L) for any signal s, it follows
that all personal cutoffs are negative and, therefore, the risky policy (Right) will be
excessively elected in equilibrium relative to the first-best outcome. The intuition
is that, since voters tend to elect the risky alternative in those states in which it is
best, they will overestimate its value and will be biased towards voting for the risky
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alternative. As shown by Figure 2, this bias can be partially mitigated by choosing
a high enough threshold (above ρ∗) for electing the risky alternative, thus providing
a new normative rationale for requiring supermajorities to adopt risky alternatives
(see Buchanan and Tullock (1967), Caplin and Nalebuff (1988), Dal Bo (2006), and
Holden (2009) for alternative justifications of conservatism).15 �

3.4 Comparison to other solution concepts

We illustrate how retrospective voting equilibrium (RVE) compares to the two stan-
dard solution concepts in the literature: sincere voting (SV) and Nash equilibrium
(NE). The main finding is that RVE exhibits the more realistic features of the other
solution concepts: behavior is endogenous (as in NE, but unlike SV), but outcomes
depend on both the electoral rule and the precision of information, and individual vot-
ing behavior depends on private information for a significant fraction of the electorate
(as in SV, but unlike NE).

As a reminder, under SV voters choose the alternative with the highest expected
payoff conditional on their private signal. Under NE, voters choose the alternative
with the highest expected payoff conditional on their private signal and conditional
on the event that their vote is pivotal in equilibrium. Feddersen and Pesendorfer
(1997) establish full information equivalence: the NE outcome in a sufficiently large
election is essentially the outcome that would arise if voters had perfect information
about the state of the world.16

Example 1, continued. Under SV, voters vote for R if they observe sR and for
L if they observe sL. The election cutoff is given by the intersection of the electoral
rule with the proportion of voters choosing R in each state, which is given by q(sR | ·).
One can see from Figure 3 that SV is efficient (i.e., aggregates information) if and
only if majority rule is used, ρ = 1/2. This result is an illustration of Condorcet’s
famous “jury theorem”. Under NE, by full information equivalence, the NE outcome
is efficient and R is elected for ω > 0 and L is elected for ω < 0. The striking aspect

15Recall that we restrict attention to non-unanimous rules. In this example, however, the pivotal
event and the event that the risky alternative is chosen coincide under unanimity, so that NE and
RVE behavior coincide and, as shown by Feddersen and Pesendorfer (1998), unanimity does poorly
in aggregating information.

16We restrict attention to the symmetric Nash equilibrium that is characterized by Feddersen and
Pesendorfer (1997).
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Figure 3: Example 1. Comparative statics and comparison to SV and NE.
The left panel shows that an increase in the electoral rule from ρ0 to ρ̄ leads to an increase in
the election cutoff to ω̄∗ and ω̄SV under RVE and SV, respectively. The right panel shows that a
decrease in information precision (i.e., from q(sR|·) to q′(sR|·)) has two opposing effects under RVE:
it leads to more extreme cutoffs along the flatter schedule q′(sR|·) but the personal cutoffs also get
closer to zero. The final effect on welfare is ambiguous. Under SV, only the first effect is present
and lower information precision results in lower welfare.

of NE is that this is true for any (non-unanimous) election rule and for any precision
of information ι > 0, no matter how small. In contrast, changes in the election rule
or information precision affect outcomes both under SV and RVE.

Changes in election rules. Suppose that the electoral rule increases from ρ0 to ρ̄,
as shown in the left panel of Figure 3. Under SV, behavior is exogenous and voters
continue to vote in the same way, so that the election cutoff increases from zero to ωSV .
In contrast, the RVE cutoff increases from zero to ω̄∗ = c(sL) < ω̄SV , thus mitigating
welfare losses from naive voting. Intuitively, the out of equilibrium dynamics implied
by the dynamic retrospective rule described in Section 2 is as follows. As the rule
increases to ρ̄, voters initially do not react to this change but the election outcome
of course changes: R is now elected for states higher than ω̄SV and L is elected for
all lower states. As a result, R’s observed performance improves and L’s observed
performance worsens, so that voters start voting for R even if they get sL signals.
But this change in voting behavior implies that the election cutoff will decrease and
that R will begin to be chosen in states lower than ω̄SV . This change in cutoff in turn
makes L more desirable, and voters once again begin to vote for L when their signal
is sL. This process stops at the new RVE cutoff ω̄∗ = c(sL), where voters who receive
signal sL vote L and voters who receive signal sR are indifferent and randomize.
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In particular, under RVE, voter behavior is disciplined by the performance of the
parties, and dismal performances (e.g., an extreme election cutoff) produces changes
in behavior that in turn affects the cutoff and mitigates welfare losses from changes
in the primitives.

Changes in information precision. Under SV, a decrease in information precision
flattens q(sR | ·), thus leading to more extreme election cutoffs and lower welfare.
The situation is more subtle under RVE. On the one hand, a flatter q(sR | ·) leads
to a flatter κ̄(·) over some range. This effect leads to more extreme equilibrium
cutoffs. On the other hand, the personal cutoffs c(sR) and c(sL) get closer to zero as
information decreases, therefore bringing the equilibrium cutoff closer to the first-best
cutoff of zero. Thus, as can be seen from the right panel of Figure 3, information
has an ambiguous welfare effect. This result makes sense because voters learn from a
biased sample and have systematically biased beliefs, so there is no reason why better
information should mitigate this bias. �

Example 3. (Heterogeneous voters) It is straightforward to incorporate hetero-
geneity among voters. Consider an environment identical to Example 1, with the ex-
ception that preferences are heterogeneous: Payoffs of type θ are uθ(R,ω) = ω−1/2+θ

and uθ(L, ω) = −ω − 1/2 for all ω ∈ Ω, and types are distributed uniformly on the
interval [−1, 1]. In particular, higher types get higher payoffs under R. For concrete-
ness, suppose majority rule, ρ = .5, and information precision ι = .5.

Figure 4 illustrates equilibrium with heterogeneous voters for all solution concepts.
Under RVE, the vote share function is given by

κ(ω) = q(sR | ω) Pr
(
cθ(s

R) < ω
)

+ q(sL | ω) Pr
(
cθ(s

L) < ω
)
,

where cθ(s) is the personal cutoff of type θ for signal s. The equilibrium cutoff is
ω∗ = 0 and all types lower than −.22 always vote L, all types higher than .22 always
vote R, but all types between −.22 and .22 vote their signal. In particular, there is a
significant fraction of “independent types” that vote according to their signal.

Under SV, a voter votes R whenever she either observes sR and has type θ > −2/3

or she observes sL and has type θ > 2/3. Thus, the proportion of R-votes in state ω
is

κ̄SV (ω) = q(sR | ω) Pr (θ > −2/3) + q(sL | ω) Pr (θ > 2/3) = .5 + ω/3
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Figure 4: Example 3: Heterogeneous voters.
The vote share functions are smoothed out with heterogenous voters. The figure shows the effect
of an increase (in first order stochastic sense) in the distribution of voters who prefer R (left panel
shows RVE and right panel shows SV and NE).

and the election cutoff is ωSV = 0. Types below −2/3 always vote L, types above
2/3 always vote R, and types in between −2/3 and 2/3 vote their signal.

Under NE, it suffices to characterize the outcome under full information. Since
type θ prefers R whenever uθ(R,ω) > uθ(L, ω), or, equivalently, ω > −.5θ, then the
proportion of votes for R is κ̄NE(ω) = .5 + ω for ω ∈ [−.5, .5]. Thus, the NE election
cutoff is also ωNE = 0. Moreover, Feddersen and Pesendorfer (1997) show that NE
voting behavior is as follows. For a given ε > 0, there is a sufficiently large number of
voters such that, for all larger elections, voters that have a type in an ε-neighborhood
of θ = 0 vote their signal, but everyone else votes always R or always L.

Shift in the distribution of preferences. Suppose that there is an increase (in the
first order stochastic dominance sense) in the distribution of voters who prefer R. For
concreteness, let the new distribution of types be φ′(θ) = .5(1 + θ) for θ ∈ [−1, 1].
Figure 4 shows the new functions κ̄′SV , κ̄′NE, and κ̄′, under SV, NE, and RVE. As
expected, in all cases there is an upward shift in the proportion of votes for R, and
the cutoff moves to the left, so that R is chosen in more states of the world. But the
effect on voting behavior is different in each case.

Under SV, voting behavior is exogenous and so every type behaves exactly as
before. The increase in the proportion of votes for R is driven by the fact that there
are more high types and these types vote for R. In contrast, behavior is endogenously
affected by the change in equilibrium cutoff under both NE and RVE. Under NE, the
new “marginal type” is θ = .42: lower types always vote L and higher types always
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vote R (while a vanishing fraction of types around .42 vote their signal). Under RVE,
types lower than .09 always vote L, types higher than .56 always vote R, and types
in between .09 and .56 vote their signal. In particular, more popular alternatives are
supported by voters with more extreme preferences under NE and RVE, which helps
mitigate the preference shift in favor of the more popular alternative.17 �

Example 3 also illustrates the more general point that voting behavior under both
NE and RVE is influenced by the composition of the electorate.18 The presence
of composition effects has been documented in empirical work (e.g., Gelman et al.
(2008), Leigh (2005)). One novel implication is that individual voting behavior might
differ in local vs. national elections, even if the underlying alternatives are similar,
because the composition of the electorate is different (see Fiorina (1992), Chari et al.
(1997), and Franck and Tavares (2008) for evidence and alternative explanations.)

4 Endogenous policies and the degree of polarization

In this section, we apply the framework to study the degree of polarization in a two-
party system. In the first stage, candidates commit to certain policies. In the second
stage, voters play a voting equilibrium—we study both Nash (NE) and retrospective
voting equilibrium (RVE).

We assume that there are two parties, that these two parties are ideologically
constrained to choose policies from different platforms, but that they are free to
choose the degree of polarization within their platform (e.g., a Republican candidate
chooses whether to be closer to the center or far to the right). These assumptions seem
consistent with constraints faced by candidates in the real world (e.g., because of their
affiliation to different national parties), and these constrains are arguably unrelated
to the type of equilibrium (Nash or RVE) played by voters.19 We also assume that

17In the case of NE, the reason for more extreme supporters of R is that the pivotal voter believes
that the state is given by the cutoff state, since this is where the proportions voting for R and L
are equal. When preferences shift and the cutoff decreases, then the pivotal voter believes the state
is lower. In order to be indifferent between voting for L or R, then its type must be higher. In the
case of RVE, the reason for more extreme supporters of R is that, if R is elected more often, then it
must be elected in worse states and its observed performance must be lower. Therefore, types that
were marginally willing to vote for R will no longer desire to vote for R.

18For example, McMurray (2013a) shows that, under NE, the relative quality of information in
the electorate influences individual voting behavior.

19The two-party assumption is realistic and often attributed to the fact that there is only one
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policies are not state contingent, which is a simple way to capture the fact that policies
are not fully responsive to states due to both political and informational constraints.
Finally, we assume that there is no private information (to be interpreted as the
limiting case of a negligible amount of information). This assumption is made for
tractability and because it constitutes a relatively small departure from the standard
setting of two-party competition (Downs, 1957).20 The main insight that arises is that
parties have incentives to polarize under RVE, but not NE, and that this polarization
actually increases welfare.

The environment is described by {I,Ω, g,Θ, φ,X, uθ}, where: I = {Left, Right}
is the set of players; Ω = [−1, 1] is the state space; g is the density function over states
satisfying infΩ g(ω) > 0; Θ ⊂ R is a compact interval (a singleton is a special case)
representing the set of preference types; φ is the probability distribution over types;
X = [−1, 1] is the set of policies, with the interpretation that x = L < 0 represents
a Left policy, x = R > 0 represents a Right policy, and x = 0 is a Neutral policy;
uθ : X × Ω → R is the payoff function of type θ, which is assumed to be bounded,
continuously differentiable in Ω (except possibly in a finite number of points), and
jointly continuous in X×Ω. We assume (for simplicity) that the election is decided by
majority rule and denote the type of the median voter by θM . We make the following
assumptions.21

B1. For all θ ∈ Θ: uθ(L, ·) is decreasing for all L < 0, uθ(R, ·) is increasing for all
R > 0, and uθ(0, ω) = 0 for all ω ∈ Ω.

B2. For all L < 0 and R > 0, uθ(L, ω) is decreasing in θ and uθ(R,ω) is increasing
in θ for all ω ∈ Ω.

B3. (i) uθM (x, 0) < 0 for all policies x 6= 0; (ii) There exist policies L̄ < 0 and
R̄ > 0 such that E

(
uθM (L̄,W )|W ≤ 0

)
> 0 and E

(
uθM (R̄,W )|W ≥ 0

)
> 0.

Assumption B1 says that, the higher the state, then the higher the payoff from

winner of the election (e.g., Duverger, 1954). The constraint on policies breaks the symmetry of the
model while guaranteeing that the monotonicity assumptions of Section 3 are satisfied (the literature
often breaks the symmetry by assuming that parties have policy preferences, though in some cases
the restriction is placed directly on the strategy space, e.g., Gul and Pesendorfer, 2009). From an
empirical perspective, these constraints on policies are often attributed to the weight of the national
parties’ distinctive ideologies (e.g., Ansolabehere et al. (2001)) and the influence of closed primaries
(e.g., Gerber and Morton (1998)).

20In fact, with no private information (not even a negligible amount), our setting corresponds to
a Downsian setting with random payoffs.

21Formally, the median voter is θM = min{θ′ : φ({θ : θ ≤ θ′}) ≥ 1/2}.
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Right policies and the lower the payoff from Left policies. In addition, there is a
Neutral policy x = 0 with a constant payoff (normalized to zero) that captures the
potential for policy convergence among the parties. Assumption B2 says that types
are also ordered: higher types have higher payoffs from Right policies and lower
payoffs from Left policies. Finally, assumption B3 says that polarized policies are
bad in “neutral” states but can be beneficial in “extreme” states from the point of
view of the median voter. If the state is ω = 0, then the Neutral policy is best and
any polarized policies L < 0 and R > 0 result in lower payoffs. There exist, however,
polarized policies L̄ < 0 and R̄ > 0 that are on average better than the Neutral policy
when evaluated in the Left (ω < 0) and Right (ω > 0) states, respectively.

We fix the previous environment and consider a policy game between two players
or parties, Left and Right. In the first stage, the parties simultaneously choose and
commit to policies (L,R) with the objective of maximizing their probability of winning
the election. The Left party is restricted to choose a Left or Neutral policy, L ≤ 0,
and the Right party is restricted to choose a Right or Neutral policy, R ≥ 0. In the
second stage, voters play an equilibrium of the voting game, where the policies in the
first stage determine voters’ payoffs. We consider two notions of voting equilibrium
for the second stage: Nash (NE) and retrospective voting equilibrium (RVE). We
assume that parties are sophisticated and know which notion of voting equilibrium
is played in the second stage, and we focus on the Nash equilibrium policies of the
policy game, which we refer to as policy equilibrium.

Voting behavior under NE and RVE is characterized by Feddersen and Pesendorfer
(1997) and the results in Section 3, respectively, for all policies (L,R) 6= (0, 0).22 For
the case (L,R) = (0, 0), we make the natural assumption that, under both NE and
RVE, the Left party is elected in states ω < 0 and the Right party is elected in states
ω > 0.23

Finally, to compare outcomes we will use the welfare of the median voter, which,
for a fixed policy profile (L,R), is

W θM (L,R) ≡ Pr (W ≥ ω∗)E (uθM (R,W ) | W ≥ ω∗)+Pr (W < ω∗)E (uθM (L,W ) | W < ω∗) ,

22For simplicity, we equate Nash equilibrium with its limit, full information equivalence. The
Online Appendix provides the formal justification for this approach.

23This assumption can be rationalized by adding a small constant ε > 0 to the payoff of electing
party Left whenever ω < 0 and party Right whenever ω > 0, and then taking the limit of equilibria
as ε goes to 0.
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where ω∗ is the equilibrium election cutoff that results either under NE or RVE.
The following examples satisfy the previous assumptions and illustrate the range

of environments to which our results apply.

Example 1, continued. Suppose that, in addition to a Left policy that focuses
on training and a Right policy that focuses on corporate subsidies, there is also a
Neutral policy that mitigates the costs of unemployment by a magnitude that does
not depend on whether unemployment is due to weak demand or poor skills. A typical
example is welfare policy intended to bring people out of poverty. In particular, the
Neutral policy does not depend on the state of the world, and we normalize its payoff
to zero. Then x = L ≤ 0 represents the weight given to education policies relative
to welfare policies, with L = −1 representing all the weight on education: u(L, ω) =

L(ω + 1/2). Similarly, x = R ≥ 0 represents the weight given to corporate subsidies
relative to welfare policies, with R = 1 representing all the weight on subsidies:
u(R,ω) = R(ω − 1/2). �

Example 4. Consider an election between two district attorneys in a county
plagued by drug-related crime. There is a choice between a “left” intervention that
targets the supply for drugs and a “right” intervention that targets demand. There is
also a neutral policy under which prosecution efforts are not increased for drug-related
crimes. The Left and Right candidates choose the level of resources devoted to a
left and right intervention, respectively. Drug-related crime is constant across states,
but crime is mostly driven by the demand side in high states and by the supply side
in low states.�

A Neutral policy also naturally arises in cases where voters compare the perfor-
mance of the policies to an observable benchmark. As the next examples illustrate,
the benchmark can be the payoff in a control group or the payoff before the policy is
enacted (for empirical evidence of such comparisons, see Healy and Malhotra (2010)).

Example 5. Two candidates compete in a local union election. The Left and
Right candidates adhere to a tough and soft bargaining platform, respectively. All
workers/voters have the same quadratic utility

Π(x, ω) = −(x− ω)2.
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The Left candidate commits to a relatively tough demand x = L ≤ 0 and the Right
candidate commits to a relatively soft demand x = R ≥ 0. The interpretation is
that, the higher the state of the world, the higher the firm’s bargaining power and,
therefore, the softer is the optimal demand by the union. Workers also observe,
as a benchmark, the payoffs Π(0, ω) of a non-unionized sector that is equivalent to
implementing a Neutral policy x = 0. Workers evaluate their union representative
against this benchmark,:

u(x, ω) = Π(x, ω)− Π(0, ω) = −x2 + 2xω.

In particular, higher states make it more desirable to adopt softer demands. �

Example 6.24 The natural rate of unemployment is given by a function Ū(ω)

that is decreasing in the state. The actual unemployment rate Uθ of a voter of type
θ > 0 is

Uθ(x, ω) = Ū(ω) + x/θ > 0,

where x ∈ [−1, 1] is the policy. A policy x = L < 0 is a fiscal stimulus and decreases
unemployment; a policy x = R > 0 is contractionary (e.g., expenditure reduction)
and increases unemployment. The Neutral policy x = 0 results in the natural un-
employment rate. Voters dislike both unemployment and increases in government
expenditure, and their utility is given by

Πθ(x, ω) = − (Uθ(x, ω))2 + x.

At the beginning of a period, the Neutral policy of x = 0 is in place and voters observe
the effects of this benchmark policy. Then, the party in power implements its chosen
policy and voters observe the effects of this policy. Voters’ then assess the extent to
which the policy implemented by the party was beneficial; thus

uθ(x, ω) = Πθ(x, ω)− Πθ(0, ω) = −x2/θ2 − 2xŪ(ω)/θ + x.

We assume that the median voter prefers the Neutral policy if she believes the state
to be ω = 0, i.e., θM = 2Ū(0).

In particular, higher states represent better economic fundamentals and make
24This example is based on a model by Persson and Tabellini (2000, p. 426).
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x = R > 0 policies more desirable; similarly, x = L < 0 policies are more desirable
when fundamentals are bad. Higher types are less affected by economic policy and
prefer less stimulus and more expenditure reduction. Finally, the median voter prefers
the Neutral policy in state ω = 0 but prefers some x = R > 0 policy if the economy
is better than average and some x = L < 0 if it is worse than average. �

The next result says that, because of the ordering over types, equilibrium is de-
termined by the preferences of the median voter.

Lemma 2. For any policy profile (L,R) 6= (0, 0), the unique NE election cutoff is
given by

ωNE(L,R) = arg min
ω∈[−1,1]

|uθM (R,ω)− uθM (L, ω)|

and the unique RVE election cutoff is given by the personal cutoff of the median voter,

ωRV E(L,R) = arg min
ω∈[−1,1]

|vθM (ω)| .

Moreover, welfare of the median voter under RVE is given by

W θM (L,R) = E (uθM (R,W )|W ≥ ω∗) ≥ E (uθM (L,W )|W ≤ ω∗)

if ω∗ < 1 and

W θM (L,R) = E (uθM (L,W )|W ≤ ω∗) ≥ E (uθM (R,W )|W ≥ ω∗)

if ω∗ > −1, where ω∗ = ωRV E(L,R).

Proof. See the Appendix.

The last part of Lemma 2 says that observed equilibrium performance must be
equalized, from the perspective of the median voter, when voters follow an RVE with
an interior election cutoff. The next result compares equilibrium policies and welfare
under NE and RVE.
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Proposition 1. The Neutral policy profile (0, 0) is the unique policy equilibrium when
voters play NE, but it is not an equilibrium when voters play RVE. Moreover, any
policy equilibrium under RVE yields strictly higher welfare to the median voter than
the unique policy equilibrium under NE.

Proof. Suppose voters play NE. By Lemma 2, the election cutoff for a profile (L,R)

is given by the intersection of uθM (R, ·) and uθM (L, ·). By continuity of the payoff
functions in the state, monotonicity of the payoff functions in policies (B1), and
the assumption that u(x, 0) < 0 for all x 6= 0 (B1), it follows that, for all R ≥ 0,
arg maxL≥0 ωNE(L,R) = 0. Therefore, the Neutral policy is a strictly dominant
strategy for party Left. A similar argument shows that the Neutral policy is a
strictly dominant strategy for party Right.

Now suppose voters play RVE and that (L,R) = (0, 0), so that ωRV E(0, 0) = 0.
By B3, there exists R̄ such that E

(
uθM (R̄,W )|W ≥ 0

)
> 0 = u(0, ·). Thus, R̄ is

a profitable deviation for party Right because, by B1 and Lemma 2, ωRV E(R̄, 0) <

ωRV E(0, 0).
Finally, consider any policy equilibrium under RVE, (L,R), with election cutoff

ω∗ ≡ ωRV E(L,R) ≤ 0. By Lemma 2, the equilibrium welfare of the median voter is
W θM (L,R) = E (uθM (R,W )|W ≥ ω∗). Suppose, in order to obtain a contradiction,
thatW θM (L,R) ≤ 0, where 0 is the payoff in the policy equilibrium under NE. Then,
by B3, there exists L̄ such that

E (uθM (R,W )|W ≥ ω∗) ≤ 0 < E
(
uθM (L̄,W )|W ≤ 0

)
≤ E

(
uθM (L̄,W )|W ≤ ω∗

)
,

where the last inequality follows by B1. Then L̄ is a profitable deviation for the Left
party because, by B1, ωRV E(L̄, R) > ωRV E(L,R), thus contradicting that (L,R) is
an equilibrium under RVE. The case where ωRV E(L,R) > 0 is similar and, therefore,
omitted.

The first result in Proposition 1 says that, when voters play NE, both parties
choose the same, Neutral policy. This result extends the standard Downsian logic
of the median voter theorem to a setting where there is uncertainty about the best
alternative.25 The idea is that polarization hurts the chances of a party not only

25McMurray (2013b) recently shows this convergence result in a pure common value setting.
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in states that are in the opposite extreme but also in intermediate states. Thus,
parties end up converging to a common, middle platform. This simple logic does not
apply under RVE. The reason is that retrospective voters evaluate parties based on
observed, not counterfactual, performance. A party which chooses a polarized policy
wins in those extreme states in which the policy is best, and, therefore, voters will
assess the party to have a relatively high performance. In equilibrium, this advantage
over the other party cannot persist and will have to be mitigated by electing the
party even in intermediate states in which its policy is not superior. Thus, the party
with a polarized policy ends up elected in both extreme and intermediate states of
the world.

Proposition 1 also says that the welfare of the median voter is strictly higher under
RVE compared to NE. The reason is that, under RVE, the parties choose different
policies and there is a better match between policies and the state of the world.
Thus, while Nash voting is efficient in aggregating information for fixed policies, it
does poorly if policies are endogenous when compared to retrospective voting.

Example 5 (continued). Figures 5 and 6 illustrate how to find a policy equilib-
rium for this example under the assumption that the state is uniformly distributed.
First, consider the case where voters follow NE. Suppose that L = −1/2 and R = 1/2,
so that the election cutoff is at ωNE(L,R) = 0, which is where the two quadratic util-
ity functions intersect. Then, as shown in the left panel of Figure 5, the Right party
can deviate to R′ = 0, move the election cutoff to ωNE(L,R′) = −1/4, and, therefore,
increase its chances of being elected. The unique Nash equilibrium, (0, 0), is shown
in the right panel of Figure 5. Any deviation (such as R′ > 0 in the figure) makes a
party worse off.

The left panel of Figure 6 shows that (0, 0) is not an equilibrium under RVE
because the Right party can decrease the election cutoff to ω∗(0, R′) < 0 by deviating
to policy R′. This is clear from the picture because the integral of Π(R′, ω) is higher
than Π(0, ω) over ω > 0, which implies that v(0) > 0 and, therefore, the election cutoff
decreases.26 The right panel of Figure 6 depicts the unique equilibrium under RVE:
(L,R) = (−1/2, 1/2) with election cutoff ω∗(−1/2, 1/2) = 0. Any deviation, such as
R′ > 0 shown in the figure, results in a lower integral and, therefore, a decrease in
the v(·) function and an increase in the election cutoff. Inspection of the right panels

26It suffices to look at Π, rather than u, because the same benchmark term E (u(L,W ) |W ≤ 0) =
E (u(R,W ) |W ≥ 0) is subtracted from payoffs whenever L = −R and the election cutoff is zero.
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Figure 5: Example 5: Policy equilibrium under NE voting.
Left panel: (−1/2, 1/2) is not an equilibrium because, for example, Right has a profitable deviation
to R = 0. Right panel: (0, 0) is the unique policy equilibrium. The figure illustrates how a deviation
by Right to R′ > 0 increases the NE cutoff and makes Right worse off.
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Figure 6: Example 5. Policy equilibrium under RVE voting.
Left panel: (0, 0) is not an equilibrium because, for example, Right can deviate to R′ > 0 and
decrease the RVE cutoff from zero to ω∗(L,R′). Right panel: (−1/2, 1/2) is the unique policy
equilibrium. The figure illustrates how a deviation by Right to R′ > 1/2 increases the RVE cutoff
and makes Right worse off; a similar figure applies for a deviation to R′ < 1/2.
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of Figures 5 and 6 also reveals that welfare is strictly higher under RVE compared
to NE. In both cases, Left is elected for ω < 0 and Right is elected for ω > 0. The
difference is that the average performance of policy −1/2 is strictly higher than the
performance of policy 0 in states ω < 0, and similarly for policies 1/2 and 0 in states
ω > 0.27 �

In the previous example, welfare is not only higher under RVE compared to NE,
but it is also efficient, in the sense that a planner who has to commit to two policies and
who wants to maximize voter welfare would choose policies L = −1/2 and R = 1/2

and would then decide to implement L for ω < 0 and R for ω > 0. Efficiency does
not hold in general, but we now show that a policy equilibrium (L,R) under RVE is
constrained-efficient in the sense that it maximizes the welfare of the median voter
when the election is decided by retrospective voting.

Proposition 2. Suppose that voters play RVE.
(i) If (L,R) maximizes WθM , then (L,R) is a policy equilibrium.
(ii) If (L,R) is a policy equilibrium with interior election cutoff, then (L,R) max-

imizes WθM .

Proof. (i) Suppose that (L,R) with election cutoff ω∗ ≡ ωRV E(L,R) maximizes WθM .
Suppose that Right has a profitable deviation to R′, so that ω′ ≡ ωRV E(L,R′) < ω∗ ≤
1. Then, by Lemma 2,

WθM (L,R′) = E (uθM (R′,W ) | W ≥ ω′) ≥ E (uθM (L,W ) | W ≤ ω′)

> E (uθM (L,W ) | W ≤ ω∗) = WθM (L,R),

where the strict inequality follows by B1. But the above expression contradicts the
assumption that (L,R) maximizes WθM . Therefore, Right has no profitable devia-
tion. A similar proof establishes that Left has no profitable deviation. Therefore,
(L,R) is a policy equilibrium.

(ii) Suppose not, so that (L′, R′) with election cutoff ω′ ≡ ωRV E(L′, R′) gives
strictly higher welfare to type θM than (L,R) with election cutoff ω∗ ≡ ωRV E(L,R) ∈

27In a RVE, the median voter is indifferent between Right and Left and, if faced with the option,
would prefer either of these policies to the Neutral policy. With heterogenous preferences, half of
the electorate would favor Left and the other half Right.
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(−1, 1), where we assume that ω′ ≤ ω∗ (the case ω′ > ω∗ is similar and, therefore,
omitted). Then

WθM (L,R) = E (uθM (L,W ) | W ≤ ω∗) = E (uθM (R,W ) | W ≥ ω∗)

< E
(
uθM (R′,W ) | W ≥ ω

′
)

= WθM (L′, R′)

≤ E (uθM (R′,W ) | W ≥ ω∗) ,

where the first two lines follow by Lemma 2 and the assumption that WθM (L′, R′) >

WθM (L,R) and the last line follows by B1 and the fact that ω′ ≤ ω∗. In particular,
E (uθM (L,W ) | W ≤ ω∗) < E (uθM (R′,W ) | W ≥ ω∗) and, therefore, ωRV E(L,R′) <

ω∗ and, therefore, (L,R) is not an equilibrium because player Right can increase its
chances of being elected by deviating to R′.

In Lemma 3 in the Appendix, we show that there always exists a policy profile
(L,R) that maximizes W θM under RVE. Thus, a corollary of Proposition 2 is that
a policy equilibrium under RVE always exists. We conclude by illustrating how
Proposition 2 can also be useful for finding a policy equilibrium.

Example 6 (continued). Suppose that the state is uniformly distributed and
that the natural rate of unemployment is given by Ū(ω) = 1 − ω/2 and the median
voter is θM = 2Ū(0) = 2. First, we argue that there is no equilibrium policy profile
with a corner election cutoff. Suppose, for example, that R is always elected in
equilibrium. Then E (uθM (R,W )) = −R2/4 < 0 and, therefore, player Left could
deviate to L = 0 and win the election with probability one. Thus, from now on we
analyze cases where the election cutoff is interior. For every policy profile (L,R),

vθM (ω) = E (uθM (R,W ) | W ≥ ω)− E (uθM (L,W ) | W ≤ ω)

=
1

4

(
L2 −R2 +R + L+ ω(R− L)

)
.

Then, for every (L,R) 6= (0, 0) with interior cutoff, the equilibrium cutoff is given by

cRV E(L,R) = L+R− R + L

R− L.

Moreover, by Lemma 2,WθM (L,R) = E (uθM (R,W ) | W ≥ cRV E(L,R)). It is straight-
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forward to check that (L,R) = (−1/2, 1/2) is the unique policy profile that maximizes
WθM (L,R). Then, by Proposition 2, (−1/2, 1/2) is the unique policy equilibrium un-
der RVE. Thus, the Left party chooses to stimulate the economy and is elected in
states where unemployment is high, while the Right party chooses a contractionary
policy and is elected in states where unemployment is low. On the other hand, the
unique equilibrium under NE voting is (0, 0), so that both parties choose the same
Neutral policy, which yields the natural rate of unemployment. Welfare is there-
fore higher for the median voter under RVE compared both to NE voting and to
a single-party system which implements the ex-ante optimal policy for the median
voter, x = 0. �

By incorporating state-contingent payoffs and (even a negligible amount of) pri-
vate information, our analysis provides a novel mechanism through which the economy
(i.e., the state of the world) interacts with the political environment: the parties spe-
cialize in different policies and the electorate tends to elect them in states in which
these policies are best. Moreover, the evidence appears to be consistent with this view
of party polarization: the economy tends to expand with left-wing governments and
contract with right-wing government (Hibbs (1977) and Alesina and Roubini (1992))
and left-wing government are more likely to be elected during periods of high unem-
ployment and right-wing government during periods of high inflation (Faust and Irons
(1999)). Finally, it is interesting to note that this better match between policies and
states arises as a result of boundedly rational voters who use a simple retrospective
heuristic and evaluate parties based on their observed performance. A more sophis-
ticated electorate, capable of complicated counterfactual and pivotal computations,
would actually decrease welfare.

5 Foundation for voting equilibrium

We provide a game-theoretic foundation for RVE by showing that it corresponds to
the limit of naive behavioral equilibrium (Esponda, 2008) as the number of players in
our voting environment goes to infinity. All proofs appear in the Online Appendix.
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5.1 Voting game

In this section, we describe the voting game with n voters and provide the definition of
naive behavioral equilibrium. The rules of the game are as described in Section 3. The
difference is that there are now a finite number of players, indexed by i = 1, ..., n,
with types (θ1, ..., θn), where we now assume that Θ is a finite set rather than a
compact interval (see the end of the section for a discussion). Player i’s payoff when
the election outcome is o ∈ {R,L} is now

uθi(o, ω) + 1 {o = L} ν,

where ν ∈ R is a privately-observed payoff perturbation drawn independently for each
player from a probability distribution Fθi . Recall that K is the uniform bound on
payoffs postulated in assumption A1. In addition to A1-A3, we maintain the following
assumptions for all θ ∈ Θ:

A5. Fθ is absolutely continuous and satisfies Fθ(−2K) > 0 and Fθ(2K) < 1; its
density f satisfies infx∈[−2K,2K] fθ(x) > 0.

A6. S has at least two elements and there exists z > 0 such that for all ω′ > ω

and s′ > s,

qθ(s
′|ω′)

qθ(s′|ω)
− qθ(s|ω′)
qθ(s|ω)

≥ z(ω′ − ω).

Assumption A5 guarantees that each alternative is voted with positive probability.
This property implies that the probability that players are pivotal (i.e., that their
vote decides the election) becomes negligible as n → ∞.28 Assumption A6 is a
strengthening of MLRP that establishes a uniform bound on the rate at which the
likelihood ratio changes.

Following Harsanyi (1973), for each player there is a threshold perturbation above
which the player will vote for L and below which she will vote for R. Thus, in-
tegrating over such perturbations and noting that Fθ is absolutely continuous, we

28A5 also yields a refinement, which is standard in the literature, that rules out equilibria where
everyone votes for the same alternative because a unilateral deviation cannot change the outcome.
Esponda and Pouzo (2012) show that the perturbations are also important for providing a learning
foundation for naive equilibrium.
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obtain a (mixed) strategy for each player i, αi : S → [0, 1], where αi(s) is the prob-
ability of voting for R after observing signal s. In addition, each strategy profile
α = (α1, ..., αn), together with the primitives of the game, induces a distribution
P n(α) over the outcomes of the game {R,L} × Sn × Ω.

To gain intuition for the notion of a naive equilibrium, suppose that player i
repeatedly faces a sequence of stage games where players use strategies α every period.
Then, under the assumption that the payoff to alternativeR is observed only whenever
R is chosen, player i will come to observe that, conditional on observing signal s,
alternative R yields in expectation EPn(α) (uθi(R,W ) | o = R, Si = s).29 A similar
expression holds for alternative L.

A naive player who observes ν and s believes that expected utility is maximized
by voting for R whenever ∆i(P

n(α), s)− ν > 0 and voting for L otherwise, where

∆i(P
n(α), s) ≡ EPn(α) (uθi(R,W ) | o = R, Si = s)−EPn(α) (uθi(L,W ) | o = L, Si = s)

(4)
is well-defined because of the payoff perturbations.

Definition 4. A strategy profile α = (α1, ..., αn) is a (naive) equilibrium of the voting
game if for every player i = 1, ..., n and for every s ∈ S,

αi(s) = Fθi (∆i(P
n(α), s)) .

In equilibrium, each player best responds to a belief that depends endogenously
on everyone’s strategy and that is consistent with observed equilibrium outcomes.
Naive players, however, do not account for the correlation between others’ votes and
the state of the world (conditional on their own private information).30

It is important to note that the definition of naive equilibrium does not rely on
the monotonicity assumptions on payoff functions and the information structure. We
do make use, however, of these monotonicity assumptions when characterizing naive
equilibrium with a large number of players. A characterization of equilibrium without
these monotonicity assumptions is outside the scope of this paper and is unlikely to

29Whenever an expectation EP has a subscript P , this means that the probabilities are taken with
respect to the distribution P .

30See Esponda and Pouzo (2012) for the proof that equilibrium exists and additional discussion.
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yield the tractable framework introduced in Section 3.31

5.2 Large number of players

Our technical contribution is to analyze (naive) equilibrium as the number of voters
goes to infinity. We do so by studying sequences of voting games. We build such
sequences by independently drawing infinite sequences of types ξ = (θ1, θ2, ..., θn, ...) ∈
Ξ according to the probability distribution φ ∈ ∆(Θ); we denote the distribution over
Ξ by Φ and we let θi(ξ) denote the type of player i, i.e., the ith component of ξ. We
interpret each sequence of types as describing an infinite number of n-player games
by letting the first n elements of ξ represent the types of the n players.

Letα denote a strategy mapping from sequences of types Ξ to sequences of strategy
profiles–i.e., for all ξ ∈ Ξ, let α(ξ) = (α1(ξ), ..., αn(ξ), ...), where

αn(ξ) = (αn1 (ξ), ..., αnn(ξ))

is the strategy profile that is played in the n-player game with types θ1, ..., θn. Let
P n(α(ξ)) be the probability distribution over {R,L}×Sn×Ω induced by the strategy
profile αn(ξ) in the n-player game. We define two properties of strategy mappings.32

Definition 5. A strategy mapping α is an ε-equilibrium mapping if for a.e. ξ ∈ Ξ

there exists nε,ξ such that for all n ≥ nε,ξ∥∥αni (ξ)− Fθi(ξ) (∆i(P
n(α(ξ)), ·))

∥∥ ≤ ε (5)

for all i = 1, ..., n. A strategy mapping α is asymptotically interior if, for a.e. ξ ∈ Ξ,

lim inf
n→∞

P n(α(ξ)) (o = R) > 0 and lim sup
n→∞

P n(α(ξ)) (o = R) < 1. (6)

31Recently, there has been some progress in relaxing monotonicity assumptions under Nash equi-
librium (Bhattacharya, 2008).

32The a.e. in “for a.e. ξ ∈ Ξ” stands for “almost every” and means that there is a set Ξ′ with
Φ(Ξ′) = 1 such that a condition is true for all ξ ∈ Ξ′. The results continue to hold if we only require
Φ(Ξ′) > 0.
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The first property in Definition 5 requires that, for large enough n, players play
strategies that constitute an ε equilibrium. Our notion of limit equilibrium will require
this property to hold for all ε > 0; while being slightly weaker than requiring strategies
to constitute an equilibrium, this condition yields a full characterization of limit
equilibrium.33 The second property requires that the probabilities of choosing R and
L remain bounded away from zero as the number of players increases. The reason
for this restriction is that we can always obtain extreme equilibria where everyone
votes for the same alternative, no information is obtained about the other alternative,
and, therefore, beliefs about the other alternative can be arbitrary. The restriction
to asymptotically interior strategies allows us to focus on equilibria where beliefs are
not arbitrary.

In addition to characterizing the equilibrium cutoff, we characterize the profile of
equilibrium strategies. Given a strategy mapping α and a sequence of types ξ ∈ Ξ,
let σn(ξ;α) : Θ → [0, 1]S represent the average strategy of each type in the n-player
game. Formally, for all θ ∈ Θ and s ∈ S,

σnθ (ξ;α)(s) =

∑n
i=11 {θi(ξ) = θ}αni (ξ)(s)∑n

i=11 {θi(ξ) = θ} (7)

whenever
∑n

i=11 {θi(ξ) = θ} > 0, and arbitrary otherwise. We call any element σ :

Θ → [0, 1]S an average strategy profile and say that σ is increasing if s′ > s implies
σθ(s

′) > σθ(s) for every type θ ∈ Θ.

Definition 6. An average strategy profile σ∗ : Θ → [0, 1]S is a limit ε-equilibrium if
there exists an asymptotically interior ε-equilibrium mapping α such that

limn→∞ ‖σn(ξ;α)− σ∗‖ = 0 for a.e. ξ ∈ Ξ. An average strategy profile σ∗ is a
limit equilibrium if it is a limit ε-equilibrium for all ε > 0.

The following result characterizes limit equilibria.

Theorem 2. σ∗ is a limit equilibrium if and only if there exists a cutoff ω∗ ∈ (−1, 1)

such that κ(ω∗;σ∗) = ρ and σ∗θ(s) = F (vθ (s;ω∗)) for all θ ∈ Θ and s ∈ S.
33Our result that a limit equilibrium is a fixed point of a particular correspondence remains true

under the stronger requirement that strategies constitute an equilibrium. But the converse result,
that any fixed point is also a limit equilibrium, relies on the notion of ε equilibrium.
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The intuition of Theorem 2 is as follows. Suppose that there is a sequence of
average strategy profiles σn that converges to an increasing profile σ∗.34 Then the
probability that a randomly chosen player votes for R in state of the world ω converges
to κ(ω;σ∗). By standard asymptotic arguments, the proportion of votes for R in
state ω becomes concentrated around κ(ω;σ∗). So, for states where κ(ω;σ∗) > ρ, the
probability that R is elected converges to 1. Similarly, for states where κ(ω;σ∗) < ρ,
the probability that R is elected converges to 0. Since σ is increasing, then there
is at most one (measure zero) state ω∗ such that κ(ω∗;σ∗) = ρ, so that the election
outcome is characterized by an election cutoff ω∗. Moreover, the fact that the election
outcome is characterized by a cutoff means that the beliefs of player i, defined by ∆i

in equation (4), can be approximated by the belief function vθ defined in equation
(1), where θ is the type of player i. Thus, the optimal strategy of a player of type θ
who observes signal s is σ∗θ(s) = F (vθ (s;ω∗)).

5.3 Vanishing perturbations

We now consider sequences of equilibria where the perturbations vanish. We index
games by a parameter η that indexes the cdf F η

θ from which perturbations are drawn.

Definition 7. A family of perturbations {Fη}η∈N, where Fη = {F η
θ }θ∈Θ, is vanishing

if for all θ ∈ Θ and η: assumption A5 is satisfied and

lim
η→0

F η
θ (ν) =

0 if ν < 0

1 if ν > 0

Under a vanishing family of perturbations, the payoff perturbations converge to
zero and we recover the original, unperturbed game. The next two results provide a
foundation for the notion of RVE introduced in Section 3.

Theorem 3. (i) Suppose that there exists a vanishing family of perturbations {Fη}η
and a sequence (ση, ωη)η such that limη→0(ση, cη) = (σ∗, ω∗) and where ση is a limit

34We show in the Online Appendix that optimal strategies are increasing when the number of
players is sufficiently large.
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equilibrium and ωη its corresponding cutoff for all η. Then (σ∗, ω∗) is a retrospective
voting equilibrium.

(ii) Suppose that (σ∗, ω∗) is a retrospective voting equilibrium with ω∗ ∈ (−1, 1).
Then there exists a vanishing family of perturbations {Fη}η and a sequence (ση, ωη)η

such that limη→0(ση, cη) = (σ∗, ω∗) and where ση is a limit equilibrium and ωη its
corresponding cutoff for all η.

The first part of Theorem 3 follows by standard continuity arguments and the
second part by construction.35

We conclude by making three observations. First, situations where one alternative
is never chosen are easily justified: if an alternative is never chosen, then beliefs about
its performance can be arbitrary. Our solution concept in Section 3 considers, say,
ω∗ = 1 (i.e., Right is never chosen) to be an equilibrium cutoff only if equilibrium
beliefs are such that Right yields the payoff at state ω = 1 and Left yields the
unconditional payoff. The formal justification is that, if players follow symmetric
increasing strategies such that the probability of Right being elected converges to
zero, then the probability of state ω = 1 conditional on Right being elected converges
to 1. Second, our game-theoretic foundation uses assumption A6, which is stronger
than A2 in Section 3. In particular, A2 allows for the case where voters have no
private information. We can provide a foundation for such a case by considering
a sequence of voting games indexed by r ∈ N, where zr > 0 denotes the constant
defined in assumption A6, and where limr→∞ zr = 0. Therefore, the case of no
private information must be viewed as the limiting case of an information structure
that satisfies A6 but where informativeness vanishes. Finally, in Section 3 we assumed
that Θ was a compact interval, rather than a finite set, in order to obtain uniqueness of
equilibrium and facilitate the application of the framework. However, we can view the
case where Θ is a compact interval as the limiting case of a sequence of environments
where the finite number of elements in Θ goes to infinity.

35As shown in the proof, the argument holds for any family of perturbations if ω∗ is the unique
equilibrium cutoff and φ {(θ : cθ(s) = ω∗, s ∈ Sθ)} = 0.
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6 Conclusion

We provided a framework that formalizes a previously ignored feature of many elec-
tions: voters learn to make decisions by observing past outcomes, but they cannot
observe the consequences of outcomes that are never chosen. Voters hold systemati-
cally biased beliefs, but these beliefs arise endogenously from the biased sample that
derives from the aggregate behavior of all voters. The framework is easy to apply and
yields several new insights about large elections. When embedded into a setting of
two-party competition, the model predicts that parties with differentiated platforms
will tend to exacerbate their differences. This polarization, however, increases the
welfare of the median voter.

The model can be generalized in several nontrivial directions: considering ways
in which voters could account for selection (for example, by conditioning on vote
shares); allowing for more than two alternatives and letting voters be strategic, as in
Myatt, 2007; considering nonstationary environments; and relaxing the monotonicity
assumptions on preferences and information that drive our characterization results.
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7 Appendix

Proof of Lemma 1. κ̄(·) is left-continuous: By the Dominated Convergence The-
orem, it suffices to show left-continuity of qθ (cθ(s) < ω | ω) ≡ ∑{s:cθ(s)<ω} qθ (s | ω)

for all θ ∈ Θ. Fix any θ ∈ Θ. Since there are a finite number of personal cutoffs
for type θ (defined by equation (2)), then for each c ∈ (−1, 1) there exists ω′θ < c

such that all personal cutoffs of θ are outside the interval [ω′θ, c). Then, for all ω̂,
qθ (cθ(s) < ω | ω̂) = qθ (cθ(s) < c | ω̂) for all ω ∈ [ω′θ, c]. In addition, qθ(s | ·) is
continuous by A3(iii). Therefore, limω↑c qθ (cθ(s) < ω | ω) = qθ (cθ(Sθ) < c | c).

κ̄(·) is increasing over (c, c): Let c < ω < ω′ < c. Then
ˆ

Θ

∑
{s:cθ(s)<ω′}

qθ (s | ω′)φ(dθ) ≥
ˆ

Θ

∑
{s:cθ(s)<ω}

qθ (s | ω′)φ(dθ)

≥
ˆ

Θ

∑
{s:cθ(s)<ω}

qθ (s | ω)φ(dθ), (8)

where the last inequality follows because, since cθ(·) is nondecreasing, the event
{cθ(s) < ω} is equivalent to {s ≤ sθ(ω)} for some threshold sθ(ω), and, therefore,
MLRP implies that

∑
{s:cθ(s)<ω} qθ (s | ω′) ≥∑{s:cθ(s)<ω} qθ (s | ω) (see (Milgrom, 1981)).

Next, we show that the inequality in (8) holds strictly. This is trivially true if there
exists a positive φ-measure of types with personal cutoffs in [ω, ω′), so suppose that
is not the case. Since, by A4, cθ(sL) is continuous in θ and Θ is a compact interval,
the union of cθ(sL) over all θ ∈ Θ is a compact interval. Given that there is no
positive measure of types with personal cutoffs in [ω, ω′), then, the facts that φ has
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full support and ω′ < c implies that, for all θ ∈ Θ, cθ(sL) ≥ ω′ > ω and, therefore,
{cθ(s) < ω} 6= S. Then, because MLRP holds strictly (by A2), the second inequality
in (8) is strict.

Finally: If ω ≤ c, then {cθ(s) < ω} = ∅ for all θ, so that κ̄(ω) = 0. Similarly, if
ω > c, then {cθ(Sθ) < ω} = S for all θ, so that κ̄(ω) = 1. �

Proof of Theorem 1. The proof relies on the following claim.

Claim 1.1 Suppose that σ is optimal given election cutoff ω∗. Then

κ(ω;σ) =

ˆ
Θ

 ∑
{s:cθ(s)<ω∗}

qθ(s | ω) +
∑

{s:cθ(s)=ω∗}
qθ(s | ω)σθ(s)

φ(dθ) (9)

for all ω ∈ Ω. In addition, κ̄(ω) ≥ κ(ω;σ) for ω > ω∗ and κ̄(ω) ≤ κ(ω;σ) for
ω < ω∗.

Proof. Since σ is optimal given ω∗, then

σθ(s) =

0 if cθ(s) > ω∗

1 if cθ(s) < ω∗
(10)

and equation (9) follows. In addition, for all ω > ω∗,

κ(ω;σ) ≤
ˆ

Θ

∑
{s:cθ(s)≤ω∗}

qθ(s | ω)φ(dθ)

≤
ˆ

Θ

∑
{s:cθ(s)<ω}

qθ(s | ω)φ(dθ) = κ̄(ω).

Similarly, for all ω < ω∗, κ(ω;σ) ≥ κ̄(ω).

We now prove Theorem 1. Fix ρ ∈ (0, 1) and let

ω∗ ≡ κ−1(ρ) = inf{ω : κ̄(ω) ≥ ρ}. (11)

Note that, by Lemma 1, ω∗ ∈ [c, c]. We begin by showing that there exists σ∗ such
that (σ∗, ω∗) is a voting equilibrium. Let σ∗ satisfy (10). It remains to specify σ∗θ(s)
for (θ, s) such that cθ(s) = ω∗. First, suppose that ω∗ /∈ {−1, 1}. If ω∗ is the
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election cutoff, then (θ, s) such that cθ(s) = ω∗ is indifferent between R and L, and,
therefore, σ∗θ(s) = α is optimal for any α ∈ [0, 1]. Let σ∗α denote the strategy profile
constructed above. We now pick α such that ω∗ is an election cutoff given σ∗α. Let
κ̂(α) ≡ κ(ω∗;σα). By Claim 1.1,

κ̂(α) =

ˆ
Θ

 ∑
{s:cθ(s)<ω∗}

qθ(s | ω∗) +
∑

{s:cθ(s)=ω∗}
qθ(s | ω∗)α

φ(dθ),

which is continuous in α. First, we establish that κ̂(0) ≤ ρ. Suppose not, so that
κ̂(0) = κ̄(ω∗) > ρ. Since κ̄ is left-continuous (Lemma 1), then there exists ω′ < ω∗

such that κ̄(ω′) > ρ. But then (11) is contradicted. Second, we establish that κ̂(1) ≥
ρ. Suppose not, so that κ̂(1) = limω↓ω∗ κ̄(ω) < ρ. Then, there exists ω′′ > ω∗ such
that κ̄(ω′′) < ρ. But, since κ̄(·) is increasing (Lemma 1), then (11) is contradicted.
Since κ̂(0) ≤ ρ and κ̂(1) ≥ ρ, by continuity of κ̂ there exists α∗ such that κ̂(α∗) =

κ(ω∗;σ∗α∗) = ρ. Since κ(·;σ∗α∗) is nondecreasing (because σ∗α∗ is nondecreasing), then
ω∗ is an election cutoff given σ∗α∗ . Hence, (σ∗α∗ , ω

∗) is a voting equilibrium. Next,
suppose that ω∗ = −1 (the case ω∗ = 1 is similar and, therefore, omitted). Now
let α∗ = 1; in particular, σ∗α∗ is optimal given ω∗ (note it would not necessarily
be optimal for a different value of α∗). In addition, we just established above that
κ̂(1) = κ(ω∗;σ∗α∗) ≥ ρ. Since κ(·;σ∗α∗) is nondecreasing, it follows that κ(ω;σ∗α∗) ≥ ρ

for all ω, implying that ω∗ = −1 is a cutoff given σ∗α∗ .
Finally, we show that, for all ω 6= ω∗, there exists no σ such that (σ, ω) is a voting

equilibrium. Suppose, in order to obtain a contradiction, that (σ, ω) is a voting
equilibrium, where ω < ω∗ (the case ω > ω∗ is similar and, therefore, omitted) . Let
ω′ ∈ (ω, ω∗). Then κ̄(ω′) ≥ κ(ω′;σ) ≥ ρ, where the first inequality follows from Claim
1.1 and the second from the fact that ω is an election cutoff given σ. But then (11)
is contradicted. �

Proof of Lemma 2. The equilibrium cutoff under j = NE,RV E is unique and
given by ωj(L,R) = inf{ω ∈ Ω : κ̄j(ω) ≥ 1/2}, where κ̄j(ω) = φ({θ : cθ,j < ω}), and
where cθ,NE = arg minω∈[−1,1] |uθ(R,ω)− uθ(L, ω)| and cθ,CRV is the personal cutoff
defined in (2). By Theorem 1, the above statement is correct for j = RV E. For
the case of Nash equilibrium, j = NE, the statement follows from full information
equivalence (Feddersen and Pesendorfer, 1997): at each state, the proportion of peo-
ple voting for an alternative is given by the proportion of people that prefer that
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alternative at the given state. By B1-B2, vθ(ω) and uθ(R,ω) − uθ(L, ω) are contin-
uous in ω and increasing in θ and ω; thus cθ,j is continuous, nonincreasing, and it
is decreasing for all θ such that cθ,j ∈ (−1, 1). Therefore, because θM is the median
voter, it follows that ωj(L,R) = cθM ,j = inf{ω ∈ Ω : φ({θ : cθ,j < ω}) ≥ 1/2}.
The last statement in the lemma follows because vθM is increasing. For example, if
ω∗ ≡ ωRV E(L,R) ∈ (−1, 1), then, since vθM is increasing, it follows that vθM (ω∗) = 0.
Thus, W θM (L,R) = E (uθM (R,W )|W ≥ ω∗) = E (uθM (L,W )|W ≤ ω∗). �

Lemma 3. There exists a policy profile (L,R) that maximizes W θM under RVE.

Proof. By B1, vθ is continuous and, therefore, the Theorem of the Maximum implies
that ωRV E(L,R) is continuous for all (L,R) 6= (0, 0). Then, B1, Lemma 2, and the
Dominated convergence theorem imply thatW θM is continuous for all (L,R) 6= (0, 0).
In addition, WθM (0, 0) = 0 and, for all R,

lim sup
L→0

E (uθM (L,W ) | W ≤ ωRV E(L,R)) ≤ lim
L→0

uθM (L,−1) = 0

where the first inequality follows because uθM (L, ·) is decreasing (assumption B1)
and the last equality because uθM (·,−1) is continuous. A similar result holds for
E (uθM (R,W ) | W ≥ ωRV E(L,R)). Thus

lim sup
(L,R)→(0,0)

WθM (L,R) ≤ 0.

Therefore, WθM is upper semi-continuous. Since [−1, 0]× [0, 1] is compact, then the
maximum of WθM is attained.
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Esponda and Demian Pouzo.

1.1 Full information equivalence

Throughout the paper, we have used Feddersen and Pesendorfer’s (1997) result that
the symmetric Nash equilibrium as the number of players goes to infinity is charac-
terized by full information equivalence. In this section, we formally state this result
and show how to provide the appropriate limiting counterparts for the setting with
endogenous policies.

Feddersen and Pesendorfer (1997, Theorem 3) and Lemma 4 in this paper imply
the following result: Let ω∗ denote the election cutoff under Nash equilibrium (or
RVE), defined in Lemma 2. For all ε > 0, there is an nε such that for all n′ > nε, the
following holds: if ω < ω∗ − ε, then L is elected with probability greater than 1− ε;
if ω < ω∗ + ε, then R is elected with probability greater than 1− ε.

The following result provides a limiting foundation for Proposition 1. For simplic-
ity, we assume that parties can choose from a finite number of policies that includes
the neutral policy and at least one polarized right R > 0 and one polarized left L < 0

policies.

Proposition 3. There exists n such that for all n′ > n, the Neutral policy (0, 0) is
the unique policy equilibrium when voters play NE, but it is not an equilibrium when
voters play naive behavioral equilibrium.

Proof. Consider first the case of NE and let ωNE(L,R) denote the election cutoff. De-
finemL ≡ minL<0,R≥0G (ωNE(0, R))−G (ωNE(L,R)) andmR ≡ minL≤0,R>0G (ωNE(L,R))−
G (ωNE(L, 0)). By B1, the finiteness of the policy space, the continuity of payoff func-
tions in the state, and the fact that infΩ g(ω) > 0, it follows thatmL > 0 andmH > 0.
Let m ≡ min{mL,mR} > 0. First, fix R and compare the probability that party Left
gets elected with a policy L < 0 vs. L = 0. Let ε < m/(1 + m) and consider an
election with n′ > nε voters, where nε is defined directly above the proposition. By
full information equivalence, the highest probability of electing Left under (L,R) is
G (ωNE(L,R)) + ε (1−G (ωNE(L,R))) and the lowest probability of electing Left
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under (0, R) is (1−ε)G (ωNE(0, R)). The latter probability is strictly higher than the
former if G (ωNE(0, R)) − G (ωNE(L,R)) > ε/(1 − ε), which is the case here by our
choice of ε.36 Thus, it is a strictly dominant strategy for party Left to choose the
Neutral policy. A similar proof establishes that it is a strictly dominant strategy for
party Right to choose the Neutral policy.

Next, consider the case of a naive behavioral equilibrium. Suppose that (L,R) =

(0, 0) and consider a deviation by party Left to policy L̄ defined in assumption
B3. By assumption, E

(
u(L̄,W ) | W < 0

)
> 0 and, therefore, the election cutoff

ωRV E(L̄, 0) > 0. Let k ≡ G
(
ωRV E(L̄, 0)

)
− G (0) and note that k > 0 by absolute

continuity of G. Let ε < k/(1+k) and consider an election with n′ > nε voters, where
nε is defined directly above the proposition. By the statement directly above the
proposition, the highest probability of electing Left under (0, 0) isG (0)+ε (1−G (0))

and the lowest probability of electing Left under (L̄, 0) is (1 − ε)G
(
ωRV E(L̄, 0)

)
.

The latter probability is strictly higher than the former if G
(
ωRV E(L̄, 0)

)
−G (0) >

ε/(1− ε), which is the case here by our choice of k. Thus, Left has strict incentives
to deviate from the Neutral policy.

1.2 Foundation for voting equilibrium: Proofs

Here we prove the statements in Section 5.

1.2.1 Preliminary lemma

The proof of Theorem 2 relies on the following lemma.

Lemma 4. Let α be such that limn→∞ ‖σn(ξ;α)− σ∗‖ = 0 for a.e. Ξ, where σ∗ is
increasing. Then there exists ω∗ ∈ arg minω∈Ω |κ(ω;σ∗)− ρ| such that for all ε > 0

and a.e. ξ ∈ Ξ,
lim
n→∞

inf
ω∈Ω:ω≥ω∗+ε

P n(α(ξ))(o = R | ω) = 1 (12)

and
lim
n→∞

sup
ω∈Ω:ω≤ω∗−ε

P n(α(ξ))(o = R | ω) = 0. (13)

36Note that we use the finite number of policies to get uniformity of nε in the policy profile (L,R).
The proof with a continuous policy space is more tedious, but it can be shown that uniformity holds
under continuity assumptions on the payoff functions. In that case, however, the result is that the
equilibrium must be in a neighborhood of (0, 0), and this neighborhood decreases in size as the
number of players increases.
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Moreover, if ω∗ ∈ (−1, 1), then for a.e. ξ ∈ Ξ and for all ε > 0 there exists nξ,ε such
that for all n ≥ nξ,ε, ∥∥∆i(P

n(α(ξ)), ·)− vθi(ξ) (·;ω∗)
∥∥ ≤ ε (14)

for all i = 1, ..., n.

Proof. We use the following notation. Let xi ∈ {R,L} denote the vote of player i,
let κni (ω; ξ) ≡ P n (xi = R | ω) be the probability that player i = 1, ..., n votes for R
conditional on the state being ω, and let κn(ω; ξ) ≡ 1

n

∑n
i=1 κ

n
i (ω; ξ) be the average

over all players.
First, note that, for a.e. ξ ∈ Ξ, for all ω ∈ Ω,

lim
n→∞

κn(ω; ξ) = lim
n→∞

1

n

n∑
i=1

∑
θ∈Θ

∑
s∈S

qθ(s|ω)1{θi(ξ) = θ}αni (ξ)(s)

= lim
n→∞

∑
θ∈Θ

∑
s∈S

qθ(s|ω)

{
1

n

n∑
i=1

1{θi(ξ) = θ}αni (ξ)(s)

}

=
∑
θ∈Θ

∑
s∈S

qθ(s|ω)

{
lim
n→∞

σnθ (ξ;α)(s)×
(

lim
n→∞

1

n

n∑
i=1

1{θi(ξ) = θ}
)}

=
∑
θ∈Θ

∑
s∈S

qθ(s|ω)σ∗θ(s)φ(θ) = κ(ω;σ∗), (15)

where we have used the assumption that limn→∞ ‖σn(ξ;α)− σ∗‖ = 0 a.s.-Ξ and the
strong law of large numbers applied to 1

n

∑n
i=1 1{θi(ξ) = θ}. Note also that, for all

ω, ω′ ∈ Ω,

|κn(ω; ξ)− κn(ω′; ξ)| ≤
∑
θ∈Θ

∑
s∈S
|qθ(s|ω)− qθ(s|ω′)|

{
σnθ (ξ;α)(s)×

(
1

n

n∑
i=1

1{θi(ξ) = θ}
)}

≤max
θ∈Θ

max
s∈S
|qθ(s|ω)− qθ(s|ω′)|

and since |Θ| < ∞ and |S| < ∞, this display and A3(iii) imply that the family
{κn(·; ξ) : Ω → [0, 1] : n = 1, 2, ...} is equicontinuous for all ξ ∈ Ξ. This result, the
one in (15) and the fact that Ω is compact, implies that

lim
n→∞

sup
ω∈Ω
|κn(ω; ξ)− κ(ω; ξ)| = 0 (16)
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a.s.-Ξ.
Second, let Y n(ω; ξ) ≡ n−1/2

∑n
i=1 (1{xni = R} − κni (ω; ξ)). It follows that for all

δ > 0 and for a.e. ξ, there exists n′(δ, ξ) such that, for all n ≥ n′(δ, ξ),

P n(α(ξ))(o = R | ω) = P n(α(ξ))
(
Y n(ω; ξ) ≥ √n(ρ− κn(ω; ξ)) | ω

)
≤ P n(α(ξ))

(
Y n(ω; ξ) ≥ √nδ | ω

)
≤ (n2δ2)−1

n∑
i=1

E
[
(1{xni = R} − κni (ω; ξ))2 | ω

]
≤ 4(nδ2)−1,

for all ω ∈ {ω ∈ Ω : κ(ω;σ) ≤ ρ − δ}, where the second line follows from (16) and
the third from the Markov inequality.

Third, the facts that κ(·;σ∗) is increasing (because σ∗ is increasing) and continuous
(by A3(iii)) imply that there exists ω∗ ∈ [−1, 1] such that ω∗ ∈ arg minω∈Ω |κ(ω;σ∗)− ρ|
and that, for any ε > 0, there exists a δ > 0 such that κ(ω;σ∗) ≤ ρ−δ for all ω ≤ ω∗−ε.
Hence, {ω ∈ Ω : ω ≤ ω∗−ε} ⊆ {ω ∈ Ω : κ(ω;σ∗) ≤ ρ−δ}, and the previous argument
implies that

lim
n→∞

sup
ω∈Ω:ω≤ω∗−ε

P n(α(ξ))(o = R | ω) = 0. (17)

By employing a similar argument, it follows that limn→∞ infω∈Ω:ω≥ω∗+ε P n(α(ξ))(o =

R | ω) = 1 a.e. ξ ∈ Ξ.
We now establish the second part of the lemma. Suppose that ω∗ ∈ (−1, 1). First

note that the previous part of the proof implies that, for any ω ∈ Ω

lim
n→∞

P n(α(ξ))(o = R | ω) = 1{ω > ω∗}. (18)

Second, note that, for all n and all ω ∈ Ω,

P n(α(ξ))(o = R | ω) =
∑
s∈S

P n(ξ)(o = R | ω, Si = s)qθi(ξ)(s|ω) (19)

for all i ≤ n. By (18), (19), and A3(ii), for a.e. ξ ∈ Ξ and all s ∈ S,

lim
n→∞

P n(α(ξ))(o = R | ω, Si = s) = 0 (= 1) (20)
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for ω < ω∗ (ω > ω∗), where convergence is uniform in i ≤ n.37 Therefore, for a.e.
ξ ∈ Ξ and all s ∈ S, limn→∞EPn(α(ξ))

(
uθi(ξ)(R,W ) | o = R, Si = s

)
=

= lim
n→∞

´
Ω
P n(α(ξ)) (o = R | W,Si = s) qθi(ξ)(s | W )uθi(ξ)(R,W )G(dW )´

Ω
P n(α(ξ)) (o = R | W,Si = s) qθi(ξ)(s | W )G(dW )

=

´
Ω

limn→∞ P n(α(ξ)) (o = R | W,Si = s) qθi(ξ)(s | W )uθi(ξ)(R,W )G(dW )´
Ω

limn→∞ P n(α(ξ)) (o = R | W,Si = s) qθi(ξ)(s | W )G(dW )

=

´
Ω

1{W ≥ ω∗}qθi(ξ)(s|W )uθi(ξ)(R,W )G(dW )´
Ω

1{W ≥ ω∗}qθi(ξ)(s|W )G(dW )

= E
(
uθi(ξ)(R,W ) | W ≥ ω∗, Si = s

)
, (21)

where convergence is uniform in i ≤ n. The first and fourth lines in (21) follow
by definition, the second line follows from the dominated convergence theorem and
the fact that uθi is bounded (and the denominator being greater than zero, as es-
tablished next), and the third line follows from (20) and the fact that G is abso-
lutely continuous, so we can ignore the case {W = ω∗} (also, note the importance
of ω∗ < 1 for the denominator to be well-defined). A similar argument holds for
EPn(α(ξ))

(
uθi(ξ)(L,W ) | o = L, Si = s

)
, thus establishing the lemma.

1.2.2 Proof of Theorem 2

Proof. Only if : Let σ∗ be a limit equilibrium, so that σ∗ is a limit ε-equilibrium for
all ε > 0. Lemma OA in the Online Appendix, Section 1.2.4, shows that σ∗ must be
increasing. Fix any ε > 0 and let α be the corresponding ε-equilibrium mapping that
is asymptotically interior. Because α is asymptotically interior, then ω∗ ∈ (−1, 1)

and, therefore, (14) holds by Lemma 4. Then, for all θ ∈ Θ, there exists ξ ∈ Ξ and
37Formally, suppose that ω < ω∗. Then for all ε > 0 there exists nξ,ω,ε such that, for all n ≥ nξ,ω,ε,

Pn(α(ξ))(o = R | ω, Si = s)qθi(ξ)(s|ω) ≤ ε for all i ≤ n and s ∈ S.
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n′ such that for all n ≥ n′,

‖σ∗θ − Fθ(vθ(·;ω∗))‖ ≤ ‖σ∗θ − σnθ (ξ;α)‖

+

∥∥∥∥∑n
i=11 {θi(ξ) = θ}αni (ξ)(s)∑n

i=11 {θi(ξ) = θ} −
∑n

i=11 {θi(ξ) = θ}Fθ (∆i(P
n(α(ξ)), s))∑n

i=11 {θi(ξ) = θ}

∥∥∥∥
+

∥∥∥∥∑n
i=11 {θi(ξ) = θ}Fθ (∆i(P

n(α(ξ)), s))∑n
i=11 {θi(ξ) = θ} − Fθ (vθ (·;ω∗))

∥∥∥∥
≤ ε+ ε+ ε,

where the last inequality follows because: (i) σ∗ being a limit equilibrium implies that
limn→∞ ‖σn(ξ;α)− σ∗‖ = 0 for a.e. ξ ∈ Ξ; (ii) α is an ε-equilibrium mapping; and
(iii) equation (14) and continuity of Fθ (A5). Since the above relationship holds for
every ε > 0, then ‖σ∗θ − Fθ(vθ(·;ω∗))‖ = 0 for all θ.

If : Consider the strategy mapping α defined by letting players of type θ always
play σ∗θ–i.e., for all ξ, s, n, and i ≤ n, αni (ξ)(s) = σ∗θi(ξ)(s). First, note that σn = σ∗

converges trivially to σ∗, and σ∗ is increasing because Fθ and vθ(·;ω∗) are increas-
ing (by A1-A3 and A5). Moreover, ω∗ ∈ (−1, 1) by assumption. Then, equations
(12) and (13) in Lemma 4 and the dominated convergence theorem imply that α is
asymptotically interior. In addition, for a.e. ξ ∈ Ξ and for every ε > 0, there exists
nξ,ε such that for all n ≥ nξ,ε,∥∥αni (ξ)− Fθi(ξ) (∆i(P

n(α(ξ)), ·))
∥∥ =

∥∥σ∗θi(ξ) − Fθi(ξ) (∆i(P
n(α(ξ)), ·))

∥∥
=
∥∥Fθi(ξ) (vθi(ξ) (·;ω∗)

)
− Fθi(ξ) (∆i(P

n(α(ξ)), ·))
∥∥ ≤ ε

for all i = 1, ..., n, where the first line follows by construction of the strategy and
the second line follows by (14) and continuity of Fθ (A5). Thus, (σ∗, ω∗) is a limit
equilibrium.

1.2.3 Proof of Theorem 3

Proof. Part (i): Theorem 2 implies that σ∗θ(s) = limη→0 σ
η
θ (s) = limη→0 F

η
θ (vθ(s;ω

∗))

for all θ ∈ Θ and s ∈ S. Since Fη is vanishing, then σθ(s) = 1 if vθ(s;ω∗) > 0 and
σθ(s) = 0 if vθ(s;ω∗) < 0. Therefore, σ∗ is optimal given ω∗. Next, fix any ω′ < ω∗.
Since ωη → ω∗, there exists η̄ such that, for all η < η̄, ω′ < ωη, and, by Theorem
2, κ(ω′;ση) ≤ ρ. Since ση → σ∗, continuity of κ(ω′; ·) implies that κ(ω′;σ∗) ≤ ρ .

6



1.2 Foundation for voting equilibrium: Proofs Online Appendix

Similarly, κ(ω′′;σ∗) ≥ ρ for all ω′′ > ω∗. Therefore, ω∗ is an election cutoff given σ∗.
Part (ii): For any family of vanishing perturbations {Fη}η, define

κ̄η(ω) ≡
∑
θ∈Θ

φ(θ)
∑
s∈S

qθ(s | ω)F η
θ (vθ(s;ω)) .

Let (σ∗, ω∗) be a voting equilibrium with ω∗ ∈ (−1, 1). Because ω∗ ∈ (−1, 1) is an
election cutoff given σ∗ and κ(·;σ∗) is continuous, then κ(ω∗;σ∗) = ρ. We split the
proof into two cases: Either it is the case that all players vote for the same alternative
(which may be different for each player) irrespective of their private information–so
that κ(·;σ∗) is a constant function–or not–so that κ(·;σ∗) is increasing.

Case 1 (κ(·;σ∗) is increasing): Rewrite κη as

κ̄η(ω) =
∑
θ∈Θ

φ(θ)

 ∑
s:cθ(s)<ω∗

qθ(s | ω)F η
θ (vθ(s;ω)) +

∑
s:cθ(s)=ω∗

qθ(s | ω)F η
θ (vθ(s;ω))

+
∑

s:cθ(s)>ω∗

qθ(s | ω)F η
θ (vθ(s;ω))

 ≡ T η1 (ω) + T η2 (ω) + T η3 (ω).

Since vθ(s; ·) is increasing and ω∗ ∈ (−1, 1), then: for all (θ, s) such that cθ(s) ≥ ω∗,
vθ(s;ω) < 0 for all ω < ω∗ and, for all (θ, s) such that cθ(s) ≤ ω∗, vθ(s;ω) > 0

for all ω > ω∗. Therefore, since {Fη}η is vanishing, limη→0 T
η
2 (ω) + T η3 (ω) = 0 for

all ω < ω∗ and limη→0 T
η
1 (ω) + T η2 (ω) =

∑
θ∈Θ φ(θ)qθ(cθ(Sθ) ≤ ω∗ | ω) ≥ κ(ω;σ∗)

for all ω > ω∗. In addition, T η1 (ω) ≤ κ(ω;σ∗) and T η3 (ω) ≥ 0 for all ω. Therefore,
limη→0 κ̄

η(ω) ≤ κ(ω;σ∗) < κ(ω∗;σ∗) = ρ for all ω < ω∗ and limη→0 κ̄
η(ω) ≥ κ(ω;σ∗) >

κ(ω∗;σ∗) = ρ for all ω > ω∗. Consequently, by continuity of κη(·), there exists (ωη)η

such that ωη → ω∗ ∈ (−1, 1) and κ̄η(ωη) = ρ for all sufficiently small η. By letting
σηθ (s) = F η

θ (vθ(s;ω
η)) for all θ, s, it follows that κ(ωη;ση) = κ̄η(ωη) = ρ for all

sufficiently small η and, by Theorem 2, that ση is a limit equilibrium and ωη its
corresponding cutoff for all sufficiently small η. Finally, it remains to establish that
ση → σ∗. Consider a type and signal such that cθ(s) < ω∗, so that vθ(s;ω∗) > 0.
By continuity of vθ(s; ·) and the fact that ωη → ω∗, it follows that vθ(s;ωη) > 0 for
all sufficiently small η and, therefore, because {F η}η is vanishing, it also follows that
limη→0 σ

η
θ (s) = 1 = σ∗θ(s), where the last equality follows since σ∗ is optimal given

ω∗–see equation (10). A similar argument establishes that limη→0 σ
η
θ (s) = 0 = σ∗θ(s)

7
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for types and signals such that cθ(s) > ω∗. Therefore, if {s : cθ(s) = ω∗} = ∅ for
all θ, we have shown that, for any family of vanishing perturbations, there exists a
sequence of limit equilibria that converge to a voting equilibria. In the case where
{s : cθ(s) = ω∗} 6= ∅ for some θ, we construct a specific family of perturbations

{
F̂η
}
η

with the property that limη→0 F̂
η
θ (vθ(s;ω

η)) = σθ(s) for all (θ, s) such that cθ(s) = ω∗.
The details that show existence of such a family are tedious but straightforward
and are as follows.First, observe that ωη → ω∗ and thus, by continuity of vθ′(sθ′ ; ·),
it follows that vθ′(sθ′ ;ωη) → 0. Since there are a finite number of such (θ′, sθ′),
there exists a sequence (rη)η such that rη → 0 and |vθ′(sθ′ ;ωη)| ≤ rη uniformly over
(θ′, sθ′). Second, for each θ′ ∈ Θ, let F̂ η

θ′(0) = σθ′(sθ′) and for all t ∈ [−rη, rη],
F̂ η
θ′(t) = σθ′(sθ′) + t if σθ′(sθ′) + t ∈ (0, 1) and either 0 or 1 if σθ′(sθ′) + t ≤ 0 or
σθ′(sθ′) + t ≥ 1, respectively. For any t /∈ [−rη, rη] F̂ η

θ′(t) can be chosen arbitrarily,
provided it conforms with the properties of a cdf and F̂ η

θ′(t) → 0 and F̂ η
θ′(t) → 1 as

η → 0 for t < −rn and t > rn, respectively. Note that since rη → 0, for each fixed
t 6= 0, limη→0 F̂

η
θ′(t) = 1{t > 0}, and thus

{
F̂η
}
η
is vanishing.

Also note that, if σθ′(sθ′) ∈ (0, 1), F̂ η
θ′(vθ′(s;ω

η)) = σθ′(sθ′) + vθ′(s;ω
η) for suffi-

ciently small η and thus converges to σθ′(sθ′). If σθ′(sθ′) = 1, then 1 ≥ F̂ η
θ′(vθ′(s;ω

η)) ≥
1 + vθ′(s;ω

η) and it also converges to σθ′(sθ′) = 1. If σθ′(sθ′) = 0 a similar result ap-
plies.

Case 2 (κ(ω;σ∗) = ρ for all ω): Without loss of generality, suppose that Sθ ⊂
(0,∞) for all θ. Let TL = {(θ, s) : vθ(s;ω

∗) < 0 or (vθ(s;ω
∗) = 0 &σ∗θ(s) = 0)}, TR =

{(θ, s) : vθ(s;ω
∗) > 0 or (vθ(s;ω

∗) = 0 &σ∗θ(s) = 1)}, and T0 = {(θ, s) : vθ(s;ω
∗) =

0&σ∗θ(s) ∈ (0, 1)}. Note that, since (σ∗, ω∗) is a voting equilibrium, then σ∗θ(s) = 0

if (θ, s) ∈ TL and σ∗θ(s) = 1 if (θ, s) ∈ TR. Define XL ≡
∑

(θ,s)∈TL φ(θ)q(s | ω∗)s ≥ 0,
XR ≡

∑
(θ,s)∈TR φ(θ)q(s | ω∗)1

s
≥ 0, and X0 ≡

∑
(θ,s)∈T0 φ(θ)q(s | ω∗) ≥ 0. The proof

constructs a specific family of perturbations. For all η and all θ ∈ Θ and s ∈ Sθ and
for any (ζL, ζ0, ζR) let

F η
θ (vθ (s;ω∗)) =


ζLsη if vθ(s;ω∗) < 0 or (vθ(s;ω

∗) = 0 &σ∗θ(s) = 0)

σ∗θ(s) + ζ0η if {vθ(s;ω∗) = 0 &σ∗θ(s) ∈ (0, 1)}
1− ζR

s
η if vθ(s;ω∗) > 0 or (vθ(s;ω

∗) = 0 &σ∗θ(s) = 1)

By construction, for all ζj ∈ (0,∞),j = R,L and ζ0 ∈ [0,∞), and for all η sufficiently

8
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low, there exists a vanishing family {Fη}η that satisfies the above restrictions; note
that, by MLRP, for each θ there is at most one signal that satisfies vθ(s;ω∗) = 0.
Then, since ω∗ ∈ (−1, 1),

κ̄η(ω∗)− ρ = κ̄η(ω∗)− κ(ω∗;σ∗) =
∑
(θ,s)

φ(θ)q(s | ω∗) (F η
θ (vθ (s;ω∗))− σ∗θ(s))

= η (−ζRXR + ζLXL + ζ0X0) .

It is straightforward to check that we can always pick ζR, ζL, ζ0 such that −ζRXR +

ζLXL + ζ0X0 = 0 and, therefore, κ̄η(ω∗) = ρ for all η sufficiently small. As in Case 1,
by letting σηθ (s) = F η

θ (vθ(s;ω
η)) for all (θ, s), it follows that ση is a limit equilibrium

and ω∗ its corresponding cutoff for all sufficiently small η. The proof is completed by
noting that, by construction, limη→0 σ

η = σ∗.

1.2.4 Supplementary lemma: increasing strategies

Lemma OA. There exists ε such that for all ε < ε: If σ is a limit ε-equilibrium,
then it is increasing.

Proof: We use the following notation. Let xi ∈ {R,L} denote the vote of player i,
let κni (ω; ξ) ≡ P n (xi = R | ω) be the probability that player i = 1, ..., n votes for R
conditional on the state being ω, and let κn(ω; ξ) ≡ 1

n

∑n
i=1 κ

n
i (ω; ξ) be the average

over all players.
Throughout the proof let Ξ′ be the set in Definition 6 and fix ξ ∈ Ξ′ and a strategy

mapping α such that 1.-3. in Definition 6 are satisfied. We drop ξ and α from the
notation, let P n ≡ P n (α(ξ)) and, for each strategy αni , let P n

αi
≡ P n

(
αni , α

n
−i(ξ)

)
.

The proof relies on the following claims; the proofs of the first three claims appear at
the end of this section.

Claim OA.1: For all δ > 0 and ω ∈ Ω, there exits nδ,ω such that for all n ≥ nδ,ω,∣∣∣P n
αi

(o = R | ω, si)− P n
α′i

(o = R | ω, s′i)
∣∣∣ < δ uniformly over i, si, s′i, αni , α

′n
i .

Claim OA.2: For all δ > 0 there exist nδ such that for all n ≥ nδ, |∆i(P
n, si) −

∆i(P
n
αi
, si)| < δ uniformly over i, si, αni .

Claim OA.3: There exists c > 0 and nc such that for all n ≥ nc, ∆i

(
P n
αi
, s′i
)
−

∆i

(
P n
αi
, si
)
≥ c for all i and s′i > si such that αni (s′i) = αni (si).

9
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Claim OA: There exists c′ > 0 and nc′ such that for all n ≥ nc′ , ∆i (P
n, s′i) −

∆i (P
n, si) ≥ c′ for all i and s′i > si.

Proof of Claim OA. Fix any αni such that αni (s′i) = αni (si). By Claims OA.2 and
OA.3, for all n ≥ max {nc, nδ}

∆i (P
n, s′i)−∆i (P

n, si) ≥
(
∆i

(
P n
αi
, s′i
)
− δ
)
−
(
∆i

(
P n
αi
, si
)

+ δ
)

≥ c− 2δ.

The claim follows by setting δ = c/4 and c′ = c/2 > 0.

Proof of Lemma OA. The definition of ε-equilibrium implies that for all i, s′i > si,
n ≥ nε,

αni (s′i)− αni (si) ≥ Fθi (∆i (P
n, s′i))− Fθi (∆i (P

n, si))− 2ε.

+ Fθi (∆i (P
n, si) + c′)− Fθi (∆i (P

n, si) + c′) , (22)

where we have added and subtracted the same term to the RHS. Let c′ > 0 be as
defined in Claim OA. Since Fθi is absolutely continuous, then

Fθi (∆i (P
n, si) + c′)− Fθi (∆i (P

n, si)) =

ˆ ∆i(P
n,si)+c

′

∆i(Pn,si)

fθi (t) dt ≥ c′′ > 0,

where the inequality follows from A5 and the fact that c′ > 0. Hence, the sum of the
second and fourth terms in the RHS of (22) is at least c′′ > 0. By Claim OA, the sum
of the first and last terms in the RHS of (22) is positive. Therefore, for all i, s′i > si,
n ≥ nε,

αni (s′i)− αni (si) ≥ c′′ − 2ε > 0.

Since σnθ (ξ, α) are averages of the strategies, then for all θ, s′ > s, and n ≥ nε, it
follows that σnθ (s′)−σnθ (s) ≥ c′′−2ε. Since limn→∞ ‖σn − σ‖ = 0, then it follows that
σθ(s

′)− σθ(s) ≥ c′′− 2ε > 0, thus establishing that limit ε-equilibrium are increasing
as long as 0 < ε < ε ≡ c′′/2 > 0.

10
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Proof of Claim OA.1. The proof is divided into 3 steps.

Step 1. We first show that the probability of being pivotal goes to zero; i.e., for
all ω ∈ Ω, for all i, limn→∞ Pivnω,i = 0, where

Pivnω,i ≡ P n
1 (o = R | ω)− P n

0 (o = R | ω) ,

where the “1” and “0” are understood as vectors of the same dimension as αi. The
sub-index “i” indicates that agent i is the one being pivotal.

By simple algebra,

Pivnω,i = P n

(
√
nKn

ω +
κniω − 1

V n
ω

√
n

+
Zn
iω√
n
≤
∑n

j=1 Z
n
jω√

n
<
√
nKn

ω +
κniω

V n
ω

√
n

+
Zn
iω√
n
| ω
)
,

where Zn
jω ≡

{1{xnj =R}−κnjω}
V nω

, V n
ω ≡

√
1
n

∑n
j=1 κ

n
j,ω

(
1− κnj,ω

)
, and Kn

ω ≡ ρ−κnω
V nω

. Note
that, for a given n, {Zn

jω}j are independent, they have zero mean and unit variance.
Moreover, by Step 3 below, lim infn→∞ V n

ω > 0, so that

n∑
j=1

E

[∣∣∣∣Zn
jω√
n

∣∣∣∣3
]
≤ 2√

n (V n
ω )3 → 0 as n→∞,

Hence by Lindeberg-Feller CLT, it follows that, given ω,
∑n

j=1

Znjω√
n
⇒ N(0, 1) as

n→∞.
Note also that, Z

n
iω√
n
→ 0 a.s. as n→∞ and this limit is uniform on i.

We divide the remainder of the proof in 3 cases: (a)
√
nKn

ω → −∞, (b)
√
nKn

ω →
K ∈ (−∞,∞) or (c)

√
nKn

ω →∞ (if necessary, we take a subsequence that converges,
which exists since (V n

ω (ξ))n and (κnω(ξ))n are uniformly bounded).
We first explore case (a) (case (c) is symmetrical). Note that, since lim infn→∞ V n

ω >

0, then κniω
V nω
√
n
→ 0. Therefore,

√
nKn

ω +
κniω

V nω
√
n

+
Zniω√
n
→ −∞, (and this limit holds uni-

formly for i = 1, ..., n) so that we can take n ≥ nM,ε such that
√
nKn

ω +
κniω

V nω
√
n

+
Zniω√
n
≤

−M, where LN(−M) < 0.5ε (where LN is the standard Gaussian cdf) for any ε.
Therefore, for all ε > 0 there exists nε,ω such that for all n ≥ max{nε,ω, nM,ε}:

Pivnω,i ≤P n

(∑n
j=1 Z

n
j,ω√

n
< −M | ω

)
≤ 0.5ε+ LN(−M) < ε

11
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uniformly over i = 1, ..., n, where the first inequality follows from the fact that n ≥
nM,ε and the second follows from CLT and our choice of M .

For case (b) (i.e., K finite). Let δ > 0 be such that LN(K+δ)−LN(K−δ) < 0.5ε.
Note that since limn→∞(V n

ω

√
n)−1 = 0, there exists a nδ,ω such that (V n

ω

√
n)−1 < 0.5δ

for all n ≥ nδ,ω; also since Zniω√
n
→ 0 a.s. as n → ∞, we can take nδ,ω such that∣∣∣Zniω√n ∣∣∣ < 0.5δ (note that nδ,ω does not depend on i since convergence is uniform on i).

Then, it follows for all ε > 0, there exists nε,ω such that for all n ≥ max{nε,ω, nδ,ε}:

Pivnω,i ≤P n

(
√
nKn

ω −
1

V n
ω

√
n

+
Zn
iω√
n
≤
∑n

j=1 Z
n
jω√

n
<
√
nKn

ω +
1

V n
ω

√
n

+
Zn
iω√
n
| ω
)

≤P n

(
K − δ <

∑n
j=1 Z

n
jω√

n
≤ K + δ | ω

)
≤0.5ε+ LN(K + δ)− LN(K − δ) < ε,

where the third inequality follows from the CLT. We showed that for any convergent
subsequence (Kn

ω)n, the associated subsequences of probabilities converge to zero,
thus this result must hold for the whole sequence.

Step 2. Note that:

P n
αi

(o = R | ω, si) =αni (si)P
n
1 (o = R | ω) + (1− αni (si))P

n
0 (o = R | ω)

=P n
0 (o = R | ω)

+ αni (si) (P n
1 (o = R | ω)− P n

0 (o = R | ω))

≡P n (o = R | ω) + αni (si)Piv
n
ω,i

Therefore

|P n
αi

(o = R | ω, si)− P n
α′i

(o = R | ω, s′i) | ≤ |αni (si)− α
′n
i (si)| · |Pivnω,i|.

By step 1, it follows that for all n ≥ nδ,ω: |Pivnω,i| ≤ δ. Since |αni (si) − α′ni (si)| ≤ 1

the desired result follows.

Step 3. We now show that for all ω ∈ Ω,

lim inf
n→∞

1

n

n∑
j=1

κnjω
(
1− κnjω

)
> 0. (23)

12
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Fix any n and j ≤ n. By assumption, αnj (sj) ∈ [Fj (−2K) , Fj (2K)] ⊂ (0, 1) for all
sj. Therefore, 0 < κnjω < 1 for all ω, thus implying equation (23).

Proof of Claim OA.2. We prove that

lim
n→∞

(
EPn (uθi(R,W ) | o = R, S = si)− EPnαi (uθi(R,W ) | o = R, S = si)

)
= 0;

the proof for o = L is similar and therefore omitted. We first show that, for all i, si, αi,

EPnαi (uθi(R,W ) | o = R, S = si) =

´
Ω
P n
αi

(o = R | W, si) qθi(si | W )uθi(R,W )G(dW )´
Ω
P n
αi

(o = R | W, si) qθi(si | W )G(dW )

is well-defined for sufficiently large n. Fix any i. A3(ii) and the fact that α is
asymptotically interior imply that there exists n such that for all n ≥ n, there exists
s∗i such that

P n(o = R, s∗i ) =

ˆ
Ω

P n(o = R | W, s∗i )qθi (s∗i | W )G(dW ) ≥ c > 0,

which implies that
´

Ω
P n(o = R | W, s∗i )G(dW ) ≥ c > 0. By Claim OA.1, for each

si, α
n
i , P n (o = R | ω, s∗i ) − P n

αi
(o = R | ω, si) converges to zero as n → ∞. Since

both probabilities are bounded by one, then the dominated convergence theorem
implies that

´
Ω

(
P n (o = R | W, s∗i )− P n

αi
(o = R | W, si)

)
G(dW ) → 0 as n → ∞,

uniformly over αi. Therefore, there exists n.5c such that supαi |
´

Ω
[P n (o = R | W, s∗i )−

P n
αi

(o = R | W, si)]G(dW )| < .5c for all n ≥ n.5c. So for all n ≥ max n̄, n.5c ≡ nc,

ˆ
Ω

P n
αi

(o = R | W, si) qθi (si | W )G(dW ) ≥ d

ˆ
Ω

P n
αi

(o = R | W, si)G(dW ) > .5dc > 0.

Hence, EPnαi (uθi(R,W ) | o = R, S = si) is well defined.
By simple algebra, and letting ∆P n

αi
(R,ω, si) ≡ P n (o = R | ω, si)−P n

αi
(o = R | ω, si),

13
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∣∣∣EPn (uθi(R,W ) | o = R, S = si)− EPnαi (uθi(R,W ) | o = R, S = si)
∣∣∣

≤
∣∣´

Ω
∆P n

αi
(R,W, si)qθi(si | W )uθi (R,W )G(dW )

∣∣´
Ω
P n
αi

(o = R | W ) qθi(si | W )G(dW )

+

∣∣´
Ω

∆P n
αi

(R,W, si)qθi(si | W )G(dW )
∣∣ ´

Ω
P n (o = R | W ) qθi(si | W )uθi (R,W )G(dW )´

Ω
P n (o = R | W ) qθi(si | W )G(dW )

´
Ω
P n
αi

(o = R | W ) qθi(si | W )G(dW )

To establish the desired result, it is sufficient to show that each of the two absolute
value terms in the numerator of the second and third line converge to zero as n→∞.
However, this result follows by the dominated convergence theorem since |uθi(R,ω)| <
K, qθi(s|ω) ≤ 1, and pointwise convergence (for each ω) is obtained by Claim OA.1.

Proof of Claim OA.3. For each O ∈ {R,L}: Let Gn
αi

(ω | O, si) ≡ P n
αi

({W ≤ ω} | o =

O, si) denote the cdf of ω conditional on o = O and si, and let gnαi(ω | O, si) ≡ P n
αi

(dω |
o = O, si) denote the density. Let ∆gnαi(ω | O, s′i, si) ≡ gnαi(ω | O, s′i) − gnαi(ω | O, si)
and ∆Gn

αi
(ω | O, s′i, si) ≡ Gn

αi
(ω | O, s′i)−Gn

αi
(ω | O, si).

Then

∆i

(
P n
αi
, s′i
)
−∆i

(
P n
αi
, si
)

=

ˆ
Ω

(
uθi(R,W )∆gnαi(W | R, s′i, si)− uθi(L,W )∆gnαi(W | L, s′i, si)

)
dW

=

ˆ
Ω

(
duθi
dω

(R,W )∆Gn
αi

(W | R, si, s′i)−
duθi
dω

(L,W )∆Gn
αi

(W | L, si, s′i)
)
dW

≥
ˆ

Ωn⊂Ω

duθi
dω

(R,W )∆Gn
αi

(W | R, si, s′i)dW

≥ cM

ˆ
Ωn⊂Ω

duθi
dω

(R,W )dW

≥ cm · cM inf
W∈Ω̄

duθi
dω

(R,W )

≡ c > 0

for all n ≥ n′ (where Ωn, cm · cM > 0, and n′ are all defined in Claim OA.3.1 below),
where the first line follows by definition, the second by integration by parts (note
how the signals are inverted), the third by Claim OA.3.1(i) (see below) and the facts
that that duθi

dω
(R,ω) > 0 and duθi

dω
(L, ω) < 0 for all ω, the fourth by Claim OA.3.1(ii).

14
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Finally, for the fifth line, let Ω̄ = Ω \ ∪Ni=1(ωi − ε, ωi + ε) where (ω1, ..., ωN) are the
discontinuity points of duθi

dω
(R, ·); by assumption there are finitely many, so N < ∞

and ε > 0 is chosen such that ε < mini 6=j |ωi − ωj|. It is easy to see that Ω̄ is
compact and over it, duθi

dω
(R, ·) is well-defined and continuous. Since cm · cM > 0

and infω∈Ω̄
duθi
dω

(R,ω) = minω∈Ω̄
duθi
dω

(R,ω) > 0 where (because uθi is continuously
differentiable in Ω̄ and duθi

dω
(R,ω) > 0 for all ω).

Claim OA.3.1: For all i and s′i > si such that αni (si) = αni (s′i): (i) For all n,
∆Gn

αi
(ω | O, si, s′i) ≥ 0 for all ω and O ∈ {R,L}; (ii) There exists n′, cM > 0,

and (Ωn) n with Ωn = [ln, un] ⊆ Ω and lim infn→∞ un − ln = β2 > 0 such that,
for all n ≥ n′ and all ω̃ ∈ Ωn \ {−1, 1},

∆Gn
αi

(ω̃ | R, si, s′i) ≥ cM .

Proof of Claim OA.3.1. There exists z > 0 such that for all n and all ω′ > ω,

gnαi(ω
′ | O, s′i)gnαi(ω | O, si)− gnαi(ω′ | O, si)gnαi(ω | O, s′i)

=
P n
αi

(O | ω′, si)P n
αi

(O | ω, si)g(ω′)g(ω)

P n
αi

(O, s′i)P
n
αi

(O, si)
[qθi (s′i | ω′) qθi (si | ω)− qθi (si | ω′) qθi (s′i | ω)]

≥ z
P n
αi

(O | ω′, si)P n
αi

(O | ω, si)g(ω′)g(ω)qθi (s′i | ω) qθi (si | ω) (ω′ − ω)

P n
αi

(O, s′i)P
n
αi

(O, si)

≥0 (24)

where the first line uses the fact that P n
αi

(O | ω̂, si) = P n
αi

(O | ω̂, s′i) for all ω̂ (because
of conditional independence and the fact that αni (si) = αni (s′i)), the second line follows
from A6, and the third line follows because z > 0 and ω′ > ω. Therefore, it follows
from Milgrom (1981, Proposition 1) that, for all n, ∆Gn

αi
(ω | O, si, s′i) ≥ 0 for all ω.

(ii) From the proof of Claim OA.2, there exists n′ and c′ > 0 such that, for all
n ≥ n′, ˆ

Ω

P n
αi

(o = R | W, si)G(dW ) ≥ c′

for all i, αi, si. For a ∈ (0, 1), let

ωna = min

{
ω′ :

ˆ
W≤ω′

P n
αi

(o = R | W, si)G(dW ) ≥ a · c′
}
∈ Ω.

15
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Fix any n ≥ n′. Then

c′/4 =

ˆ
ωn0.25≤W≤ωn0.50

P n
αi

(o = R | W, si)G(dW ) ≤ G (ωn0.50)−G (ωn0.25) .

Therefore, the fact that G has no mass points implies that there exists cL > 0 such
that ωn0.50 − ωn0.25 ≥ cL. A similar argument establishes that here exists cR > 0 such
that ωn0.75 − ωn0.50 ≥ cR.

Let Ωn = [ωn0.50 − cm/2, ωn0.50 + cm/2], where cm ≡ min{cL, cR} > 0. Then, un −
ln = cm > 0. In addition, fix any ω̃ ∈ Ωn. Then, by construction,

ˆ
ω<ω̃−cm/2

P n
αi

(o = R | W, si)G(dW ) ≥ c′/4 (25)

and ˆ
ω>ω̃+cm/2

P n
αi

(o = R | W, si)G(dW ) ≥ c′/4. (26)

By integrating each side of (24) twice, first with respect to G(dω) over ω ≤ ω̃ and
second with respect to G(dω′) over ω′ > ω̃, we obtain

∆Gnαi
(ω̃ | R, si, s′i) =

=
z

Pnαi
(R, s′i)P

n
αi

(R, si)

ˆ
W ′>ω̃

ˆ
W<ω̃

Pnαi
(R | ω′, si)Pnαi

(R |W, si)g(W ′)g(W )qθi
(
s′i |W

)
qθi (si |W ) (W ′ −W )dG(W )dG(W ′)

≥ z
ˆ
W ′>ω̃+ cm

2

ˆ
W<ω̃− cm

2

Pnαi
(R |W ′, si)Pnαi

(R |W, si)g(W ′)g(W )qθi
(
s′i |W

)
qθi (si |W ) (W ′ −W )dG(W )dG(W ′)

≥ z · cm · d2
ˆ
W ′>ω̃+ cm

2

Pnαi
(R |W ′, si)G(dW ′)

ˆ
W<ω̃− cm

2

Pnαi
(R |W, si)G(dW )

≥ z · cm · d2 ·
(
c′

4

)2

≡ cM > 0,

where the first inequality follows from P n
αi

(R, s′i)P
n
αi

(R, si) ≤ 1, the second from A3,
and the third from (25) and (26).
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