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1 Romer, 1.11. Embodied technological

progress

(a) We modify �rst the Solow model so that Y (t) = [A(t)K(t)]�L(t)1�� and
the growth rate of A is now �. We now have to establish the convergence
to the balanced growth path and �nd the growth rates of K and Y on the
balanced growth path.

Method 1: Using the hint, we de�ne k = K

A�L
; y = Y

A�L
, where � = �

1��
.

Then

y =
A�K�L1��

A
�

1��L
=

K�

A
�2

1��L�
=

�
K

A
�

1��

L

��
= k�

We know that as before _K = sY � �K. Using this fact and taking logs
and derivatives of the de�nition of k with respect to time, we get

_k

k
=

_K

K
� �

_A

A
�

_L

L
=

sA�K�L1��

K
� � � �� � n =

=
sA�L1��

K1��
� (� � ��� n) =

s

k1��
� (n+ ��+ �);

_k = sk� � (n+ ��+ �)k:

So, on the balanced growth path sk� = (n+��+ �). Now we show using the
diagram that the economy actually converges to the balanced growth path
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(see Figure 1). Our function satis�es all the properties to insure that. If
k < k�, then _k > 0 and k converges to k�. If k > k�, then _k < 0 and k also
converges to k�.
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Figure 1: Convergence to the BGP.

From the de�nitions of k and y we know that when k is constant, on the
balanced growth path, y is constant and K and Y grow at the same rate of
��+ n.

Method 2: we can calculate growth rates without using k.

_Y

Y
= �

_A

A
+ �

_K

K
+ (1 � �)

_L

L
;

gY = �� + �gK + (1� �)n:
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Then, if the balanced growth path exists, the growth rates gY ; gK should be
constant. Wee also know form the equation of motion of capital that

_K

K
= gK = s

Y

K
� �:

For gK to be constant the ratio Y
K

must be constant, which implies that
gY = gK on the balanced growth path. So we can derive that

gY = gK =
�

1� �
� + n = ��+ n:

(b) Now Y (t) = J(t)�L(t)1�� and _J(t) = sA(T )Y (t)� �J(t). We will use
method 1 to show the convergence to the balanced growth path.

�J =
J

A
; j =

�J

A�L
=

J

A
1

1��L

y =
J�L1��

A
�

1��L
= j�;

we see that our production function satis�es all the important assumptions.
Taking logs and derivatives of the de�nition of j we �nd that

_j

j
=

_J

J
�

1

1� �

_A

A
�

_L

L
=

=
s

j1��
� � �

1

1 � �
�� n;

_j = sj� � (
1

1� �
�+ n+ �)j:

By analogy with part (a) we can conclude that the economy converges to its
balanced growth path determined by the following condition:

sj� = (
1

1� �
� + n+ �)j = (1 + �)�+ n+ �)j:

On the balanced growth path, j and y are constant and thus J grows at the
constant rate of (1 + �)�+ n and Y grows at the constant rate ��+ n.
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(c) We can determine from the result in (b) that

j� =

"
s

(1 + �)�+ n + �)

# 1

1��

and that

y� = j�� =

"
s

(1 + �)�+ n + �)

# �

1��

;

which is the same as in Solow model except for the technological growth rate
term. Thus, as in Solow model, the elasticity of y� with respect to s will be
equal to �

1��
.

(d) As we did in section, consider the �rst order approximation of _y around
the BGP y = y� noting that since y = j�, _y = �j��1 _j:

_y �=
@ _y

@y
jy=y�(y � y�);

_y = �j��1[sj� � (n+ � + �(1 + �)j)] =

= �sj2��1 � �j�(n + � + �(1 + �)) =

= �sy
2��1

� � �y(n+ � + �(1 + �));

@ _y

@y
jy=y�(y � y�) = (2� � 1)sy�

��1

� � �(n + � + �(1 + �)) =

= (2� � 1)(n + � + �(1 + �))� �(n+ � + �(1 + �)) =

= �(1� �)(n+ � + �(1 + �));

_y �=

�z }| {
�(1� �)(n+ � + �(1 + �))(y � y�):

If we assume that � = g, then this speed of convergence � is higher than in
Solow model, because � = �

1��
is positive.

2 Natural resources

In this version of Solow model Y = F (Z;R) is CRS.
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" =
@ ln(FZ

FR
)

@ ln(Z
R
)

� = �
1

"
=) " = �

1

�
:

(a) The factor shares are de�ned as usual:

�R =
FRR

FZZ + FRR
; �Z =

FZZ

FZZ + FRR
:

Then �Z

�R
= FZ

FR

Z

R
and ln �Z

�R
= ln FZ

FR
+ ln Z

R
. The elasticity is then

"� =
@ ln �Z

�R

@ ln Z

R

=
@ ln FZ

FR

@ ln Z

R

+ 1 = "+ 1 = 1�
1

�

@ ln �Z

�R

@ ln Z

R

= 1�
1

�

(b) We are given that _(ln Z

R
) = 0:02, therefore we can write that Z

R
(50) =

e0:02�50Z
R
(0), which is equivalent to

Z

R
(50)
Z

R
(0)

= e1, or taking logs, � ln Z

R
= 1.

We can rewrite the result in (a) in discrete terms now:

� ln
�Z

�R
= (1 �

1

�
)� ln

Z

R
:

We are given that � = 0:8, therefore 1� 1
�
= �0:25. Also, because �R = 0:15

we can calculate ln �Z

�R
(0) = ln 0:85

0:15 = ln 5:6 = 1:72. Substituting, we get that

� ln
�Z

�R
= �0:25 =) ln

�Z

�R
(50) = 1:72 � 0:25 = 1:47:

Thus, �Z

�R
= 4:36 and, solving for �R, we get that �R �= 0:3 = 30%.

(c) (i) � = 0:6, therefore 1� 1
�
= �0:66

ln
�Z

�R
(50) = 1:72 � 0:66 = 1:06 =) �R �= 0:53 = 53%:
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(ii) � = 1:25, therefore 1� 1

�
= 0:2

ln
�Z

�R
(50) = 1:72 + 0:2 = 1:92 =) �R �= 0:17 = 17%:

As the elasticity of substitution between factors increases, which means that
scarce factor is easier to substitute for, the share of this factor grows slower
and slower. This is the result we would expect to see.

3 Romer, 2.3. Log utility

We have to �nd the path of consumption per worker in the Ramsey model
given that u(C) = lnC.

The Household is maximizing (2.1) in the book subject to (2.5) in the
book. We will normalize the number of households to 1 for simplicity. We
also know that the budget constraint is binding for the maximizing household.

max
Z
1

0
e��t lnC(t)L(t)dt

s.t.

Z
1

0
e�R(t)C(t)L(t)dt =

Wz }| {
K(0) +

Z
1

0
e�R(t)A(t)w(t)L(t)dt;

Where W is wealth plus the present value of the labor income. Then we
have to �nd C(W;R(t); �; initial conditions). As this problem is the special
case of the one considered in class (with � = 1), we can use Lagrangian to
solve it. I will use Hamiltonian to show you the method. But �rst we have
to rewrite the life-time budget constraint as a period budget constraint. We
can do this simply by di�erentiating.

First, rewrite budget constraint as of time s:
Z
1

s
e�(R(t)�R(s))C(t)L(t)dt = K(s) +

Z
1

s
e�(R(t)�R(s))A(t)w(t)L(t)dt:

Now de�ne k = K
AL
; c = C

A
and divide through by A(s)L(s):

Z
1

s
e�(R(t)�R(s))+(n+g)(t�s)c(t)dt = k(s) +

Z
1

s
e�(R(t)�R(s))+(n+g)(t�s)w(t)dt:
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We will di�erentiate this with respect to s, but notice �rst that

@(R(t)�R(s))

@s
= �r(s);

from the de�nition of R(t), and thus the result of the di�erentiation is (recall
Leibniz Rule):

�c(s) +
Z
1

s
(r(s)� n� g)e�(R(t)�R(s))+(n+g)(t�s)c(t)dt =

_k(s)� w(s) +
Z
1

s
(r(s)� n� g)e�(R(t)�R(s))+(n+g)(t�s)w(t)dt:

We can now take the constants out of the integral (note that r(s) is constant
with respect to t) and replace the remaining integrals with k(s), because that
is what they are. We get

_k(s) = w(s)� c(s) + r(s)k(s)� (n+ g)k(s);

which is the period constraint we are going to use in our maximization.
But before writing down the Hamiltonian we have to rewrite the objective
function in terms of \per unit of e�ective labor". Note that lnC(t) = ln c(t)+
lnA(t) = ln c(t) + lnA(0)egt = ln c(t) + lnA(0) + gt. I will also divide the
maximand by the constant L(0).

max
c(t)

Z
1

0
e�(��n)t(ln c(t) + lnA(0) + gt)dt

s.t.
_k(t) = w(t)� c(t) + r(t)k(t)� (n+ g)k(t):

The present value Hamiltonian is then

H = e�(��n)t[ln c(t) + lnA(0) + gt+ �(w(t)� c(t) + r(t)k(t)� (n+ g)k(t))]

and the �rst order conditions are

@H

@c
= 0 =)

1

c(t)
= �; for all t;

�
@H

@k
= _�� (�� n)� = ��(r(t)� n� g) =) _� = �(� + g � r(t)):
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If we di�erentiate the �rst one and plug it in the second one, we get

_c(t)

c(t)
= r(t)� �� g

which implies that
c(t) = c(0)eR(t)�(�+g)t

and gives us the path of consumption per unit of e�ective labor. But we are
interested in the consumption per person:

C(t) = c(t)A(t) = A(t)c(0)eR(t)�(�+g)t = A(0)c(0)eR(t)�(�+g�g)t = C(0)eR(t)��t:

The only thing we are left to determine is C(0). We will use the life-time
budget constraint to �nd it. Rewrite the budget constraint substituting the
expression for C(t):

Z
1

0
e�R(t)+R(t)�(��n)tC(0)L(0)dt = W:

Note that the solution exists for � > n. Taking this integral we �nd

C(0)L(0)
1

� � n
= W =) C(0) =

W

L(0)
(�� n):

Finally, we can substitute it into our equation for C(t) to get

C(t) =
W

L(0)
(�� n)eR(t)��t:

We see that consumption increases if the interest rate is higher than the
intertemporal discount rate and its level is larger the larger the lifetimewealth
and the smaller is the initial size of the family.
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4 Romer, 2.6. Playing with the phase

diagram

We will use our equations for the dynamics of k and c:

_c = c
f 0(k)� �� �g

�
_k = f(k) � (n+ g)k � c:

(a) When � goes up, the _k equation is una�ected and thus the locus _k = 0
is una�ected. In the equation for _c the increase in � will decrease the RHS,
so for the _c to be zero, f 0(k) must increase for every c which means that k

must decrease for every c. Therefore the only change to the graph is the shift
of _c = 0 locus to the left (see Figure 2). The new steady state values of k
and c are lower then initial.
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Figure 2: � goes up

(b) When the production function shifts downward, the _k = 0 locus shifts
down, because for k to be constant, c must go down for every k. Also, for
a given k, f 0(k) is now lower and therefore the _c = 0 locus shifts to the left
(see Figure 3). As a result, the new steady state values of k and c are lower
then initial.
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Figure 3: Production function shifts down OR Rate of depreciation is positive

(c) Now the depreciation rate is positive. This increases the break-even
investment and the equations of motion change. In the equation of motion
for c, � is not part of �, but it enters the _k equation in the same manner as
(n+ g). The new equation of motion will be:

_c = c
f 0(k)� �� �g � �

�
_k = f(k)� (n+ g + �)k � c:

To keep _k = 0 now, c must fall for every k, therefore _k = 0 locus shifts down.
To keep _c = 0, f 0(k) must increase for every c, therefore k must fall and _c = 0
locus shifts to the left (see Figure 3).
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