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A Appendix Figures and Tables

Figure A.1: A Comparison of Real Wage Measures in England, 1250-1860
Note: The figure presents four estimates of the real wages in England. Three are from Clark (2010): builders,
farmers, and craftsmen. The remaining series is from Allen (2007). The builders series is the series we use in
our main analysis. The builders series is normalized to 100 in 1860. The levels of the farmers and craftsmen
series indicate differences in real earnings relative to builders. The Allen (2007) series is normalized to equal
the builders series in 1770.
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Figure A.2: Probability of Breaks Dates for Different Specifications
Note: The figure plots our estimate of the probability that a structural break occurred in the parameters µ, σ1,
and σ2 in different decades between 1550 and 1800 for various specifications of our model.

Figure A.3: Prior Densities for Standard Deviations
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Figure A.4: Capital and Rents
Note: The figure plots our estimates of the evolution of the logarithm of capital, kt, and rents, st. They are
normalized to 0 in 1250. The black line is the mean of the posterior for each period and the gray shaded area
is the 90% central posterior interval.

Figure A.5: Productivity using Alternative Wage Series
Note: The figure compares our baseline estimates of the evolution of the permanent component of productivity
m̃t with estimates using different wage series. The “Farmers” series is the farm worker series from Clark
(2010), the “Craftsmen” series is the building craftsmen series from Clark (2010), the “Allen (2007)” series uses
Allen’s (2007) series from 1770 onward (but our baseline wage series before that). Finally, we present estimates
of productivity based on the assumption that the builders, farmers, and craftsmen series are all noisy signals
of the true underlying wage. These estimates are labeled “3 series”.
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Figure A.6: Productivity using Different Population Data
Note: The figure compares our baseline estimates of the evolution of the permanent component of productivity
m̃t with estimates using data on the population of England prior to 1540 from Broadberry et al. (2015).

Figure A.7: Productivity Allowing for Different Break Dates
Note: The figure compares estimates of the evolution of the permanent component of productivity m̃t when
we allow for different dates for the first productivity break. B1 and B2 stand for break 1.
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Figure A.8: Productivity using Different Priors
Note: The figure compares our baseline estimates of the evolution of the permanent component of productivity
m̃t with estimates using different prior distributions. The “Productivity shocks” series changes the prior
on σε1 to be IΓ(3, 0.005), i.e., the same as the prior on the other productivity and population shocks. The
“Population level” series changes the prior on ψ to beN (10.86, 10.0).

Figure A.9: Population Shocks
Note: The figure plots our estimates of the population shocks hitting the English economy over our sample
period, i.e., ξ1t + ξ2t. The black line is the mean of the posterior for each period and the gray shaded area is
the 90% central posterior interval.
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Figure A.10: Measurement Error in Population Data
Note: The figure plots our estimate of the measurement error in our population data ιnt .
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Table A.1: Parameter Estimates—changing α, β

Mean St Dev 2.5% 97.5%
Main Parameters

α 0.54 0.05 0.44 0.62
β 0.23 0.07 0.11 0.37
γ 0.03 0.05 -0.06 0.12
ω 0.03 0.02 -0.01 0.08

Productivity Shock Parameters
σε1,1 0.03 0.01 0.02 0.05
σε1,2 0.02 0.01 0.01 0.03
σε1,3 0.02 0.01 0.01 0.04
σε2,1 0.06 0.01 0.04 0.08
σε2,2 0.04 0.01 0.02 0.05
σε2,3 0.04 0.01 0.02 0.06

Population Parameters
πt<1680 0.26 0.14 0.03 0.49
πt≥1680 0.10 0.09 0.00 0.35

µξ1 0.82 0.08 0.59 0.90
νξ1 7.18 29.07 1.04 36.32
σξ2 0.06 0.01 0.04 0.08

Population Measurement Error Parameters
σn,t<1540 0.04 0.01 0.02 0.06
σn,t≥1540 0.03 0.00 0.02 0.04
νn,t<1540 18.45 1127.28 1.14 42.78
νn,t≥1540 74.50 1984.14 2.13 258.69

Note: The table presents the mean, standard deviation, 2.5% quantile, and 97.5% quantile
of the posterior distribution we estimate for , using the three procedures described in sec-
tions 2–3. Note: The table presents the mean, standard deviation, 2.5% quantile, and 97.5%
quantile of the posterior distribution we estimate for the parameters of the production func-
tion α, β, the elasticity of population growth to income γ, the subsistence wage parameter
ω, the standard deviation of the permanent and transitory productivity shocks ε1t and ε2t in
the three regimes, the probability of a plague shock π, the mean of the plague shock µξ1 , the
pseudo sample size of the plague shocks νξ1 , the standard deviation of the normal popula-
tion shock σξ2 , the scale and degrees of freedom parameters of the population measurement
error shocks, σn and νn, respectively.
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B Clark’s Population Series

As we discuss in the main text, Clark (2007b) uses unbalanced panel data on the population of

villages and manors from manorial records and penny tithing payments to construct estimates of

the population prior to 1540. Clark starts by running a regression of this data on time fixed effects

and manor/village fixed effects. He refers to the time fixed effects from this regression as as a

population trend series.

Clark’s population trend series does not provide information on the overall level of the popu-

lation prior to 1540, only changes in the population (i.e., a normalization is needed). In addition,

Clark’s microdata is sufficiently unreliable for the 1530s that he does not make use of his estimated

population trend for that decade. Clark uses the following procedure to surmount these problems.

First, he regresses his population trend on real wages from 1250 to 1520, and separately regresses

the Wrigley et al. (1997) population series on wages from 1540 to 1610. He observers that the R2

in both regressions are high and that they yield similar slope coefficients. He concludes from this

that (i) the English economy moved along stable labor demand curves during both subsamples

and (ii) these two labor demand curves had similar slopes.

Clark next makes the assumption that there was no productivity growth between 1520 and

1540—the labor demand curve did not shift during this time. This allows him to extrapolate the

relationship that he finds in the post-1540 data to the earlier sample, and infer both the population

in 1530 and the missing normalization from the level of real wages. Clark also uses the fitted

values for the population from his labor demand curve as an alternative estimate of the population

and averages this with the trend series to get what he calls the “best” estimate of population before

1540.

C CES Production Function

Consider the production function

Yt = At

[
α′

1
σZ

σ−1
σ + (1− α′)

1
σ (Lt)

σ−1
σ

] σ
σ−1

,
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where σ denotes the elasticity of substitution between land and labor in production. Optimal

choice of labor by land owners gives rise to the following labor demand curve

Wt = (1− α′)
1
σAt

[
α′

1
σ

(
Z

Lt

)σ−1
σ

+ (1− α′)
1
σ

] 1
σ−1

.

A log-linear approximation of this equation yields

wt = φ− αlt + at,

where

α =

[
σ

(
1 +

(
1− α′

α′

) 1
σ
(
L

Z

)σ−1
σ

)]−1

and L is the level of labor we linearize around. Notice that α→ α′ when σ → 1.

It is furthermore easy to show that with the CES production function given above, the labor

share of output is

L̄S = 1−

[
1 +

(
1− α′

α′

) 1
σ
(
L

Z

)σ−1
σ

]−1

.

Combining these last two equations, we get that

α =
1− L̄S
σ

.

This implies that the land share is σα in this case.

D More General Production Function for Pre-Industrial Era

Consider the concave production function

Yt = AtF (Z,Lt,Kt) (23)

The first-order conditions are

Wt = AtFL(Z,Lt,Kt)

rt + δ = AtFK(Z,Lt,Kt)
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where δ is the depreciation rate of capital.

Taking logs in the FOC

wt = at + log (FL(Z,Lt,Kt)) ≈ φ̃
′
+ at +

LFLL
FL

lt +
KFLK
FL

kt (24)

log(rt + δ) = at + log (FK(Z,Lt,Kt)) ≈ φ̃
′′

+ at +
LFLK
FK

lt +
KFKK
FK

kt (25)

Solving for kt in equation (25)

kt = φ̃
′′′

+
FK

KFKK
(log(rt + δ)− at)−

LFLK
KFKK

lt (26)

Substituting into equation (24)

wt ≈ φ̃+

(
1− FKFLK

FLFKK

)
at +

L

FLFKK

(
FLLFKK − F 2

LK

)
lt +

FKFLK
FLFKK

log(rt + δ)

Which can be rewritten

wt ≈ φ̃+
(

1 + β̃
)
at − α̃lt − β̃ log(rt + δ) (27)

where

α̃ = − L

FLFKK

(
FLLFKK − F 2

LK

)
β̃ = −FKFLK

FLFKK

Equation (27) shows that at is identified up to a first-order approximation. This result does not

require a Cobb-Douglas production function, not even constant returns to scale.

E Identification of αt and βt

Consider the demand curves for labor, land, and capital in the early-industrial era:

Wt = (1− αt − βt)AtZαtKβt
t L
−αt−βt
t , (28)

St = αtAtZ
αt−1KβtL1−αt−βt

t , (29)

rt + δ = βtAtZ
αtKβt−1

t L1−αt−βt
t . (30)
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We begin by dividing land demand and capital demand by labor demand:

St
Wt

=
αt

1− αt − βt
Lt
Z
, (31)

rt + δ

Wt
=

βt
1− αt − βt

Lt
Kt
. (32)

Manipulating equation (31) yields

αt = Xt −Xtβt, (33)

where

Xt =
St/Wt

(Lt/Z) + (St/Wt)
.

Manipulation equation (32) yields

αt = Yt − Ytβt, (34)

where

Yt =
(rt + δ)/Wt

(Lt/Kt) + ((rt + δ)/Wt)
.

Solving equations (33) and (34) for αt and βt yields

αt = Xt
1− Yt

1−XtYt
, (35)

βt = Yt
1−Xt

1−XtYt
, (36)

and we then also have that

1− αt − βt =
(1−Xt)(1− Yt)

1−XtYt
. (37)

Consider a case were St (land rents) goes up while all other variable remain constant. This

increase Xt but leaves Yt unchanged. As a consequence, αt increases and both βt and 1 − αt − βt
decrease.21

Next, consider a case were rt (rental rate of capital) goes up while all other variables remain

constant. This increases Yt but leaves Xt unchanged. As a consequence, βt increases and both αt

and 1− αt − βt decrease.

Finally, consider a case where Wt (wage) goes up while all other variables remain constant.

21The derivative of (1−Xt)/(1−XtYt) with respect to Xt is −(1− Yt)/(1−XtYt)2, which is negative.
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This decreases bothXt and Yt. As a consequence, bothαt and βt decrease and 1−αt−βt increases.22

F The Malmquist Productivity Index

The concept of productivity is meant to measure the ratio of output to inputs (Diewert and Naka-

mura, 2007). In situations with more than one inputs (or outputs), the exact way in which this

basic concept is operationalized is ambiguous. In some special cases, all reasonable measures of

productivity will agree. This is, for example, the case if production is assumed to take the follow-

ing form Yt = AtF (Xt), where Yt denotes output and Xt denotes a vector of inputs. In this case,

At is the natural measure of productivity. In the more general case of Yt = Ft(Xt) the definition of

productivity is less clear cut.

Caves, Christensen, and Diewert (1982) introduce the notion of a Malmquist productivity in-

dex for a quite general case of production technologies, based on ideas in Malmquist (1953).

The discussion below builds on the exposition of these concepts in Färe et al. (1994). Con-

sider a production technology St that transforms inputs Xt ∈ RN+ into output Yt ∈ R+: St =

{(Xt, Yt) : Xt can produce Yt}. Written in terms of a production function Yt = Ft(Xt), we have

St = {(Xt, Yt) : Yt ≤ Ft(Xt)}. In other words, St defines the set of all feasible input-output vectors.

Caves, Christensen, and Diewert (1982) define the Malmquist productivity index in terms of

the distance function Dt(Xs, Ys) = inf{θ : (Xs, Ys/θ) ∈ St}. The distance Dt(Xs, Ys) is then the

minimum multiplicative proportion by which Ys needs to be scaled down for the input-output

vector (Xs, Ys) to be feasible with time t technology. For example, if period s is a later period than

period t and technology is “more advanced” at this later period, (Xs, Ys) may be feasible using

technology Ss, but Ys/Dt(Xs, Ys) with Dt(Xs, Ys) > 1 may be the largest output that is feasible

given input use Xs and the inferior technology St.

Given the definition of St, the distance is the smallest θ such that Ys/θ ≤ Ft(Xs), which means

Dt(Xs, Ys) = Ys/Ft(Xs). Under our maintained assumptions in this paper, Dt(Xt, Yt) = 1, i.e.,

the output actually produced at time t with inputs Xt is exactly feasible. (More generally, one can

imagine production at time t being inside the technical frontier at time t. In this case, Dt(Xt, Yt) <

1.)

Next consider Dt(Xt+1, Yt+1), i.e., the distance of the input-output vector at time t + 1 from

22The total derivative of 1− αt − βt with respect to Wt is: −
(
(1− Yt)2 × ∂Xt/∂Wt + (1−Xt)2 × ∂Yt/∂Wt

)
/(1−

XtYt)
2. Since Xt and Yt are both decreasing in Wt, this derivative is positive. For 1− αt − βt to increase, αt or βt must

decrease. Manipulating equations (31) and (32), we have: αt/βt = St/(rt + δ) × Z/Kt. Since the ratio of αt over βt is
constant and at least one of them decreases, both must decrease.
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the technical frontier at time t. Applying the definition of the distance function we have that

Yt+1/Dt(Xt+1, Yt+1) = Ft(Xt+1), which implies

Dt(Xt+1, Yt+1) =
Yt+1

Ft(Xt+1)
=
Ft+1(Xt+1)

Ft(Xt+1)
.

This is very intuitive: The distance of the time t+ 1 technology from the time t technology evalu-

ated at the time t+1 input-output vector is simply the output at time t+1, i.e., Ft+1(Xt+1), divided

by what output would be if the input vector at time t + 1 were used with the time t technology,

i.e., Ft(Xt+1).

A Malmquist index for productivity growth between periods t and t+ 1 that uses the produc-

tion technology of time t as a reference technology is then defined as

M t
t,t+1 ≡

Dt(Xt+1, Yt+1)

Dt(Xt, Yt)
=
Ft+1(Xt+1)/Ft(Xt+1)

1
=
Ft+1(Xt+1)

Ft(Xt+1)
.

We can also consider Dt+1(Xt, Yt), i.e., the distance of the input-output vector at time t from

the technical frontier at time t + 1. Applying the definition of the distance function, we have that

Yt/Dt+1(Xt, Yt) = Ft+1(Xt), which implies

Dt+1(Xt, Yt) =
Yt

Ft+1(Xt)
=

Ft(Xt)

Ft+1(Xt)
.

A Malmquist index for productivity growth between periods t and t+ 1 that uses the produc-

tion technology of time t+ 1 as a reference technology is then defined as

M t+1
t,t+1 ≡

Dt+1(Xt+1, Yt+1)

Dt+1(Xt, Yt)
=

1

Ft(Xt)/Ft+1(Xt)
=
Ft+1(Xt)

Ft(Xt)
.

Caves, Christensen, and Diewert (1982) recommend defining the Malmquist index as the geo-

metric average of M t
t,t+1 and M t+1

t,t+1. In this case the Malmquist index becomes

Mt,t+1 ≡
(
Dt(Xt+1, Yt+1)

Dt(Xt, Yt)

Dt+1(Xt+1, Yt+1)

Dt+1(Xt, Yt)

)1/2

=

(
Ft+1(Xt+1)

Ft(Xt+1)

Ft+1(Xt)

Ft(Xt)

)1/2

.

This definition avoids favoring the technology in one of the two periods over the other.

13



F.1 Normalization and the Malmquist Index

As we discuss in footnote 13 in the body of the paper, one symptom of At not being a good

measure of productivity in the case where the functional form of the production function changes

over time is that the growth rate of At will be sensitive to the choice of normalization of the inputs

to production. This is not the case for the Malmquist index.

To illustrate this, consider again the change in the unit in which labor is expressed that we

discussed in footnote 13: L̈t ≡ ψLt. In this case we have that

Ft(Z,Kt, Lt) ≡ AtZαtKβt
t L

1−αt−βt
t = ÄtZ

αtKβt
t L̈

1−αt−βt
t ≡ F̈t(Z,Kt, L̃t), (38)

where

Ät ≡
At

ψ1−αt−βt

Clearly, if αt or βt vary over time, the growth rates of At and Ät will not be the same.

The Malmquist index, however, suffers no such issue. Since, by equation (38), Ft(Z,Kt, Lt) =

F̈t(Z,Kt, L̃t), this equation immediately implies that the Malmquist index remains the same. In

fact, any rewriting of the production function that leaves the mapping from input to output un-

changed, i.e. that does not change the production possibility frontier, implies the same Malmquist

index because the formula for the Malmquist index only depends on output for some quantities

of inputs.

We can illustrate this point by deriving an expression for the Malmquist index in terms of the

observables in our model—equation (18)—for both Ft and F̈t and denoting the associated indices

as mt and m̈t:

m̂t = ât + α̂t logZ + β̂tk̄t − (α̂t + β̂t)l̄t

= ât + (α̂t + β̂t) logψ + α̂t logZ + β̂tk̄t − (α̂t + β̂t)(l̄t + logψ)

= ˆ̈at + α̂t logZ + β̂tk̄t − (α̂t + β̂t)
¯̈
lt

= ˆ̈mt.

Recall that hats denote deviations from the previous period, x̂t = xt − xt−1, and bars denote the

average of period t − 1 and period t, x̄t = (xt−1 + xt)/2. To go from the first to the second line,

we added and subtracted the normalization that transforms lt into l̈t: (α̂t + β̂t) logψ. In the third

line, this time-varying normalization is absorbed by the A residual, ˆ̈at, and l̄t + logψ is converted
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to ¯̈
lt. From this we see that while the A residual is normalization-dependent the Malmquist index

is not.

G Model Equations

We reproduce the equations and distributional assumptions of our full model here for conve-

nience:
wt = φt + 1

1−βtat −
αt

1−βt (dt + nt)− βt
1−βt log (rt + δ)

φt = log βt + log (1− αt − βt) + αt
1−βt z − (αt + βt)λ

st = wt + nt + dt − z + logαt − log(1− αt − βt)

kt = wt + nt + dt − log(rt + δ) + log βt − log(1− αt − βt)

nt = nt−1 + ω + γ(wt−1 + dt−1) + ξ1t + ξ2t

m̂t = ât + α̂tz + β̂tk̄t −
(
α̂t + β̂t

)
(d̄t + n̄t)

mt = m̃t + ε2t

m̃t = µ+ m̃t−1 + ε1t

exp(ξ1t) ∼

 β(β1, β2), with probability π

1, with probability 1− π

ε1t ∼ N (0, σ2
ε1), ε2t ∼ N (0, σ2

ε2), ξ2t ∼ N (0, σ2
ξ2)

Before 1760, αt and βt are assumed to be constant. This implies that the sixth equation collapses

to ât = m̂t before 1760. As a result, rents st and the capital stock kt only appear in the equations

that define them (the third and fourth equations). This is also the period for which we do not have

data on st and kt. For this period, we therefore use the third and fourth equations to estimate st

and kt.

Below we reproduce the assumptions we make about measurement error and normalizations

15



in our data:
wt = ϕw + w̃t

nt = ψ + ñt + ιnt

dt = d̃t + ιdt

rt = r̃it + ιrit

st = ϕs + s̃t + ιst ,

kt = ϕk + k̃t + ιkt ,

Here, the variables with tilde’s are the measured variables, while the variables without tilde’s are

the true variables, ϕw ∼ N (0, 1002), ϕs ∼ N (0, 1002), and ϕk ∼ N (0, 1002) are normalization

constants, and ιnt ∼ tνn(0, σ2
n), ιdt ∼ tνd(0, σ̃

2
d), ιrit ∼ tνir(0, σ̃

2
ir), ιst ∼ tνs(0, σ̃

2
s), and ιkt ∼ tνk(0, σ̃2

k)

capture measurement error. A few additional details regarding missing observations are given in

the main text.

H A Comparison with Clark (2010, 2016)

Our approach to estimating productivity in England from the 13th to 19th centuries yields quite

different results than the most comprehensive existing estimates by Clark (2010, 2016). Here, we

consider from where the differences arise. We break this discussion into three parts. First, we

discuss Clark’s dual approach and differences between his 2010 series and his 2016 series. Second,

we discuss how Clark’s dual approach relates to our Malmquist approach. Third, we discuss

differences that arise from the fact that our approach has different implications for the evolution

of factor prices and factor output elasticities than Clark’s approach.

A summary of our conclusions is as follows. First, Clark (2010) made an error in calculating

the growth rate of his index from 1540 to 1550 which contributes to the difference between this

series and our series. Clark (2016) corrects this error. Second, using the average of factor output

elasticites at time t and t − 1 when calculating changes in productivity between time t and t −

1 explains an important part of difference in our results, especially prior to 1600. Conditional

on doing this Clark’s dual approach is approximately equal to our Malmquist approach. Third,

differences in the factor prices and factor output elasticites implied by our approach, relative to

those used by Clark, explain the remaining differences in the evolution of productivity.
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H.1 Clark’s Dual Approach and Differences Between Clark (2010) and Clark (2016)

Clark (2010, 2016) employs a “dual approach” to estimating productivity. Specifically, his estimate

of the growth rate of productivity is

Et
Et−1

=

(
St
St−1

)sZ,t−1
(

rt + λ

rt−1 + λ

)sK,t−1
(

Wt

Wt−1

)sL,t−1 1− τt−1

1− τt
. (39)

where we useEt (for efficiency) to denote the dual estimate of productivity, λ is a risk premium, τt

is the share of national income paid in indirect taxes, and sZ,t−1, sK,t−1, and sL,t−1 are time-varying

estimates of the elasticity of output with respect to land, capital, and labor, respectively.23

Clark’s 2016 productivity series is an updated version of his better known 2010 productivity

series for the sample period 1250-1600. Clark has shared with us the file he used to construct his

2016 series by private correspondence. This file extends his 2016 series from 1600 to 1860 and

contains the component series Clark uses to construct this series. Our discussion here is based

on these series. For the period after 1600, the new productivity series coincides with Clark’s 2010

series.

Figure H.1 plots Clark’s 2010 productivity series (solid gray line) and Clark’s 2016 productivity

series extended to 1860 using the file Clark shared with us (broken black line). We refer to the

extended 2016 series as “Clark (2016)*”. These series differ for two reasons. First, Clark’s 2010

series contains an error in the growth rate from 1540 to 1550. This error creates a 25 log point

spurious drop in the 2010 series. Clark’s 2016 series corrects this error. Second, Clark´s 2016 series

incorporates a new land rent series for the period 1250-1600. Both of these changes make Clark’s

2016 series more similar to our baseline productivity estimate (solid black line in Figure H.1) than

his 2010 series.

The Malmquist index we use for our baseline estimates uses average factor output elastici-

ties rather than lagged factor output elasticities. Using average factor output elasticities is also

recommended by Barro and Sala-i-Martin (2004, p. 435). We can modify Clark’s dual approach—

equation (39)—to use average factor output elasticities as follows:

Et
Et−1

=

(
St
St−1

)s̄Z,t ( rt + λ

rt−1 + λ

)s̄K,t ( Wt

Wt−1

)s̄L,t 1− τt−1

1− τt
. (40)

23The discussion in Clark (2010, 2016) suggests that Clark estimates the level of productivity rather than its growth
rate. However, data Clark has shared with us (discussed below) makes clear that he, in fact, estimates growth rates of
productivity. This distinction is important as the level formula Clark discusses in his 2010 and 2016 papers does not
provide a valid measure of productivity when factor shares are allowed to vary over time. See footnote 13 in the main
text for more detail on this point.
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Figure H.1: A Comparison between Clark (2010) and Clark (2016)
Note: The Figure plots four productivity series. The solid black line is our baseline Malmquist index. The solid
gray line is Clark’s (2010) original productivity series. The broken black line—labeled “Clark (2016)*”—is
Clark’s (2016) productivity series extended to 1860. We obtained this series from Clark in private correspon-
dence. The broken gray line is an estimate of productivity using equation (39) with decadal data, i.e., this
series moves to average output elasticities and time aggregates relative to the Clark (2016)* series. The latter
three series are normalized to be equal to the Malmquist index in 1600.

As in the main text, the bar on top of each s signifies an average between t − 1 and t: s̄Z,t =

(sZ,t−1 + sZ,t)/2 and similarly for s̄K,t and s̄L,t.

The fourth line plotted in Figure H.1 is productivity growth estimated using equation (40)

and Clark’s data series for factor prices and factor output elasticities (broken gray line). This line

also differs from the two Clark series because of time aggregation. Clark estimates productivity

using equation (39) at an annual frequency and then averages over decades. To be consistent

with our approach in the rest of the paper, we average the data over each decade and then use

equation (39) to estimate productivity at a decadal frequency. We see that moving from lagged to

average factor output elasticities and decadal time aggregation results in estimates of productivity

that are lower early in the sample. This difference is mostly due to the switch to average factor

output elasticities—time aggregation only makes a small difference. These changes result in a

productivity series that is closer to ours between 1350 and 1600.
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H.2 The Dual Approach versus the Malmquist Approach

We next show that our Malmquist index and the dual approach are equivalent up to a first-order

approximation. To see this, we go back to equation (18), which we reproduce here for convenience:

m̂t =ât + α̂t logZ + β̂tk̄t − (α̂t + β̂t)lt.

In this equation, bars denote arithmetic averages across period t− 1 and t and hats denote differ-

ences between the two periods. Rearranging this equation yields24

m̂t = ŷt − β̄tk̂t − (1− ᾱt − β̄t)l̂t. (41)

The right-hand side is the primal measure of the growth rate of productivity, i.e., the Solow resid-

ual (Solow, 1957). Here, weights are given by the arithmetic average of the factor output elastic-

ities across the two periods. To go from the primal measure to the dual measure, we can follow

Hsieh (2002) and start from the fact that the value of output must equal payments to factors:

Yt = StZ + (rt + δ)Kt +WtLt. Taking a log-linear approximation of this expression at times t− 1

and t around a situation where factor output elasticities are the averages of the two periods yields

the following expression:

ŷt = ᾱtŝt + β̄t

(
log

(
rt + δ

rt−1 + δ

)
+ k̄t

)
+ (1− ᾱt − β̄t)

(
ŵt + l̂t

)
,

24The derivation is

m̂t =at − at−1 +
1

2
(αt logZ + βtkt + (1− αt − βt)lt − (αt−1 logZ + βt−1kt−1 + (1− αt−1 − βt−1)lt−1))

− 1

2
(αt−1 logZ + βt−1kt + (1− αt−1 − βt−1)lt − (αt logZ + βtkt−1 + (1− αt − βt)lt−1))

=at + αt logZ + βtkt + (1− αt − βt)lt − (at−1 + αt−1 logZ + βt−1kt−1 + (1− αt−1 − βt−1)lt−1)

− 1

2
(αt logZ + βtkt + (1− αt − βt)lt − (αt−1 logZ + βt−1kt−1 + (1− αt−1 − βt−1)lt−1))

− 1

2
(αt−1 logZ + βt−1kt + (1− αt−1 − βt−1)lt − (αt logZ + βtkt−1 + (1− αt − βt)lt−1))

=ŷt − β̄tk̂t − (1− ᾱt − β̄t)l̂t.

For the first equality, we just use the definition of the bar and hat symbols. For the second equality, we add and subtract
the expression contained in the line that follows the second equal sign. The third equality is again a straightforward
use of the bar and hat symbols.
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where we have dropped higher order terms. Combining this equation and equation (41), we

obtain

m̂t = ᾱtŝt + β̄t log

(
rt + δ

rt−1 + δ

)
+ (1− ᾱt − β̄t)ŵt. (42)

This equation shows that the log-change in the Malmquist index is equal to the dual measure of

productivity growth up to a first order approximation.

The productivity measures in equation (42) differ in some details from the ones plotted in

Figure H.1. First, the left-hand-side of equation (42) is m̂t, the change in mt. The productivity

measure plotted as our baseline estimate in Figure H.1 (solid black line) is m̃t rather than mt.

Recall that m̃t is the permanent component of productivity (see equations (19)–(20)). Our base-

line estimate in Figure H.1, thus, filters out some high frequency variation in productivity, which

makes it smoother than estimates based on the dual approach.

Clark’s dual approach also differs in a few details from the right-hand side of equation (42).

Clark’s dual approach does not incorporate capital depreciation (δ), but it includes a risk premium

(λ) and taxes (τt) that are not incorporated into equation (42). The similarity (and difference in

details) between the right-hand side of (42) and Clark’s dual approach can be more easily seen by

taking logarithms of equation (40):

êt = s̄Z,tŝt + s̄K,t log

(
rt + λ

rt−1 + λ

)
+ s̄L,tŵt − log

(
1− τt

1− τt−1

)
(43)

Comparing this equation to equation (42), notice that in our model, αt, βt, and 1− αt − βt are the

land, capital, and labor output elasticities, while in equation (43) these are denoted by sZ,t, sK,t

and sL,t, respectively. The two formulas are, thus, the same apart from δ being replaced by λ, and

the presence of τt in equation (43).

These details turn out not to make much of a difference. To see this, Figure H.2 plots a dual

measure of productivity using the formula in equation (40) but with our factor price and factor

output elasticities series (broken black line). In other words, this measure of productivity, differs

from ours only in terms of method, not data. We see that the resulting productivity series tracks

our baseline productivity series very closely. The only difference is that our measure is smoother

at high frequency reflecting the fact that it filters out high-frequency movements in productivity.
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Figure H.2: Our Productivity Measure Compared with the Dual Approach
Note: The Figure plots three productivity series. The solid black line is our baseline Malmquist index. The
solid gray line is the index constructed with Clark’s factor prices and factor shares using equation (40). This
is the same line as the one we label “Clark (Time Aggregation/Average Shares)” in Figure H.1. The dashed
black line is the index constructed with our factor prices and factor shares using equation (40). The latter two
series are normalized to be equal to the Malmquist index in 1600.

H.3 Factor Prices and Factor Output Elasticities

We now turn to the role played by differences in the factor price and factor output elasticity series

used by Clark relative to those implied by our analysis. Since we have shown above that the dual

approach and the Malmquist approach are virtually equivalent, we will carry out the rest of the

analysis using the dual approach for concreteness. In particular, we will calculate productivity

using equation (40) with different combinations of Clark’s and our factor price and factor output

elastiticy series. (Clark refers to factor output elasticities as factor shares.) In the case of Clark’s

series, we will use Clark’s 2016 series extended to 1860. We have already plotted two such cases in

Figure H.2. The solid gray line uses Clark’s factor price and factor output elasticity series, while

the broken black line uses our factor price and factor output elasticity series. Next, we consider

intermediate cases.

A complication that arises if we seek a decomposition of the remaining difference between our

productivity index and Clark’s—the solid gray line and the broken black line in Figure H.2—into

the share explained by factor prices and the share explained by factor output elasticities is that

the productivity indexes we are considering are non-linear. This implies that the difference in
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Figure H.3: Contribution of Factor Prices to Differences in Productivity Estimates
Note: The Figure plots three productivity series. The solid black line is our baseline Malmquist index. The
solid gray line is the index constructed with Clark’s factor prices and factor shares using equation (40). The
dashed gray line is the index constructed with Clark’s factor prices and Clark factor shares using equation (40).
The latter two series are normalized to be equal to the Malmquist index in 1600.

question is not simply the sum of the effect of changing the factor prices, on the one hand, and

the effect of changing the factor output elasticities, on the other hand. Rather, there is also an

interaction term, which is non-trivial.

With this in mind, we begin by considering how changing the factor price series alone affects

the productivity series. Figure H.3 plots a dual estimate of productivity using Clark’s factor output

elasticity but our factor price series (broken black line). The difference between the solid gray line

and the broken black line in Figure H.3 is thus due to moving from Clark’s factor price series

to our factor price series. Focusing on the period after 1600, we see that this change explains a

sizable portion of the difference between our results and the series using Clark’s factor prices and

factor output elasticities, especially during the 17th and early 18th centuries. Prior to 1600, moving

to Clark’s factor price series raises productivity which helps explain the difference between our

results and Clark’s early in the sample, but makes this difference larger between 1350 and 1600.

Figure H.4 plots Clark’s factor price series (solid gray lines) and our factor price series (solid

black lines). In the case of land rents, we also plot the series used in Clark (2010) (broken gray

line). Our real wage series looks similar to Clark’s. The raw real interest rate date we use is also

similar to that used by Clark. However, we allow for measurement error in real interest rates and
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Figure H.4: A Comparison of Price Series
Note: The top two panels plots the wage and interest rate series used in our analysis and used by Clark (2016).
The bottom two panels plot the land rent series used by Clark (2010, 2016) and the land rents that are implied
by our analysis.

make use of two return series (rates of return on land and rent charges). This implies that our real

interest rate series is substantially smoother in the early part of our sample and around 1600. In

particular, Clark’s interest rate series is constant between 1370 and 1540, reflecting Clark’s choice

of how to interpolate over a period of relatively sparse data, while our series falls more gradually

over the early part of this period.

For land rents, we use the same data as Clark after 1760 but choose to infer land rents from

the model prior to 1760. Our inferred series differs quite a bit from Clark’s series, especially early

in the sample. Clark’s data is quite noisy over this early period. But measuring land rents prior

to 1650 is difficult due to the complexity of the relationship between landlords and tenants in a

feudal era. It is also notable that Clark’s 2016 series for land rents differs quite substantially from

his earlier 2010 land rent series for the period prior to 1500. From 1250 to 1500, the 2016 series

increases by 45%, while the 2010 series falls by 32%.

Turning to factor output elasticities, Figure H.5 plots a dual estimate of productivity using

Clark’s factor prices but our factor output elasticity series (broken black line). The difference
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Figure H.5: Contribution of Factor Shares to Differences in Productivity Estimates
Note: The Figure plots three productivity series. The solid black line is our baseline Malmquist index. The
solid gray line is the index constructed with Clark’s factor prices and factor shares using equation (40). The
dashed gray line is the index constructed with Clark’s factor prices and our factor shares using equation (40).
The latter two series are normalized to be equal to the Malmquist index in 1600.

between the solid gray line and the broken black line in Figure H.5 is thus due to moving from

Clark’s factor output elasticity series to our factor output elasticitiy series. For the period after

1600, this change has a minimal effect. Prior to 1600, the differences are larger. Shifting to our

factor output elasticity results in a sharp rise of the productivity series from 1250 to 1400. This

reflects the increase in Clark’s 2016 rent series (which both the solid gray and broken black lines are

using). It also results in high volatility and a substantial increase in the 16th century. Figures H.1,

H.2, H.3, and H.5 taken together indicate that the difference between Clark’s series and our series

before 1600 is a complicated combination of the effects of factor prices, factor output elasticities,

their interaction, time aggregation, and average versus lagged factor output elasticities.

Figure H.6 compares our estimates of factor output elasticities (black lines) with Clark’s (gray

lines). The largest difference is for the output elasticity of land. We estimate a substantially larger

output elasticity of land than Clark. Recall that our estimate of the output elasticity of land is de-

rived from our estimate of the slope of the labor demand curve. Clark constructs his estimate from

estimates of factor shares. His basic approach is to calculate payments to factors by multiplying

factor prices with the quantity of those factors. A challenge with this approach is that Clark does

not have much data on factor quantities. This forces him to make strong assumptions (educated
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Figure H.6: Factor Shares
Note: The figure presents the factor shares implies by our analysis (black lines) and those used by Clark (2016)
extended to 1860 (gray lines). We obtained the latter series from Clark in private correspondence.

guesses) about the factor quantities.

For instance, Clark’s estimate of payments to labor is: Wt×300× νNt, where Wt is the average

daily wage, 300 is the assumed number of days worked, Nt is population, and ν is the fraction of

the population that is economically active, which he assumes to be 34%. Clark’s assumption that

days worked are constant over the entire sample period contrasts sharply with the estimates of

Humphries and Weisdorf (2019). Also, it is not clear why he choses 300 days. Earlier work often

chose 250. Finally, the notion that the fraction of the population that was economically active

was constant over our sample is also a strong assumption. In particular, an important literature

has highlighted variation in marriage patterns over our sample and associated variation in the

employment of women (De Moor and van Zanden, 2010, Voigtländer and Voth, 2013).

Similarly, to construct payments to capital, Clark makes educated guesses on the stock of hous-

ing, improvements to land, livestock, etc. He estimates payments to land by multiplying the rent

index with a fixed stock of land (28.24 million acres) before the 1840s and direct estimates from tax

returns after this date. With factor payments estimated in this manner, each factor’s share can be

obtained by dividing payments accruing to that factor by payments accruing to all factors. Clark’s

estimates of factor share are, thus, based on a number of strong empirical conjectures. A curious

aspect of his estimates is that he estimates a large capital share in the 13th century that then falls
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by about half in the 14th century (mostly before the Black Death).

I Impulse Response Functions

I.1 Dynamics After Change in Productivity Growth

Our Malthusian model implies that an increase in productivity growth will result in higher steady

state wages. To see this, we first abstract for notational simplicity from all the shocks in our model.

More precisely, we set the value of all shocks equal to their mean. The mean value of ε1t, ε2t, and

ξ2t is zero. The mean value of ξ1t, however, is Eξ1t = π(ψβ1) − ψ(β1 + β2)), where ψ(·) is the

digamma function. We furthermore, assume that days worked and the interest rate are constant

at d∗ and r∗.

Given these assumptions, our model simplifies to:

wt = φ+
1

1− β
ãt −

α

1− β
(nt + d∗)− β

1− β
log (r∗ + δ) (44)

nt − nt−1 = ω + γ(wt−1 + d∗) + Eξ1t (45)

ãt = µ+ ãt−1. (46)

We can use equation (44) to eliminate wt in equation (45). This yields:

nt − nt−1 = ω + γφ+
γ

1− β
ãt−1 −

αγ

1− β
nt−1 −

βγ

1− β
log (r∗ + δ) + γ

1− α− β
1− β

d∗ + Eξ1t.

This equation can be rewritten as

nt+1 =

(
1− γα

1− β

)
nt +

γ

1− β
ãt−1 + constant. (47)

Next, we subtract α times the second-to-last equation from equation (46) and rearrange. This

yields:

ãt − αnt = µ− κ+
1− αγ − β

1− β
(ãt−1 − αnt−1) , (48)

where

κ = α

(
ω + γφ+ γ

1− α− β
1− β

d∗ − βγ

1− β
log(r∗ + δ) + Eξ1t

)
.

This shows that ãt−α×nt follows anAR(1) and therefore settles down to a steady state in the long
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Figure I.1: Real Wage Growth After an Increase in Productivity Growth
Note: Each line plots the growth rate of real wages over time after an increase in productivity growth from
µ = 0 to a higher value. These impulse responses are calculated assuming that all model parameters are at
their posterior mean values and α is equal to our pre-Industrial estimate of 0.49.

run as long as |(1−αγ − β)/(1− β)| < 1. The steady state value of ãt −αnt is (µ− κ)(1− β)/(αγ)

and (using equation (44)) the steady state real wage is

w∗ =
µ

αγ
− d∗ − ω

γ
− Eξ1t

γ
(49)

We see from this that the steady state real wage in our Malthusian economy is increasing in the

productivity growth rate µ and the extent to which this is the case is influenced by the strength of

the Malthusian population force as summarized by αγ.

Figures I.1 and I.2 present impulse responses to a change in productivity growth that show

quantitatively how much changes in productivity growth increase wages over time according to

our model when α is set to our pre-Industrial estimate (α = 0.49). For each impulse response,

we start the economy off in a steady state with zero productivity growth (µ = 0). At time zero

in the figures, productivity growth increases. In Figure I.1, we show the evolution of the growth

rate of wages (log change) over the subsequent 500 years. In Figure I.2, we show the evolution of

the level of wages relative to its earlier steady state level over the subsequent 1000 years. In both

figures, we assume that all other shocks are constant at their mean values.

In Figure I.1, we see that the growth rate of wages is initially equal to the change in produc-
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Figure I.2: Evolution of Real Wages After an Increase in Productivity Growth
Note: Each line plots the evolution of real wages over time after an increase in productivity growth from µ = 0
to a higher value. These impulse responses are calculated assuming that all model parameters are at their
posterior mean values and α is equal to our pre-Industrial estimate of 0.49.

tivity. As wages rise and the Malthusian population force kicks in, the growth rate of wages falls.

This process takes a very long time due to the weakness of the Malthusian population force. As

we discussed above, the half-life of wage growth is roughly 115 years when the land share is at

its pre-1760 value. The fact that wage growth continues for hundreds of years after a change in

productivity implies that the cumulative increase in wages is substantial. In Figure I.2, we can

read off the long-run effect of higher productivity growth on wages. For a “modern” productivity

growth rate of µ = 0.1, we find that the long-run effect on the level of wages is an increase of a

factor of 20.

I.2 Dynamics after Change in α

We now study the impulse response function of our Malthusian economy to a change in α. The

thought experiment is the following: before time 0, the economy is on a balanced growth path

with α constant and equal to αH . At time 0, the value of α falls to αL. β is constant at all times.

Like before, we shut shocks down by setting them equal to their expected value. The permanent
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component of the Malmquist index follows its law of motion throughout the experiment:

m̃t = µ+ m̃t−1. (50)

Since the economy is on the balanced growth path before time 0, the derivations of section I.1

apply and we have for all t < 0:

wt =
µ

αHγ
− d∗ − ω

γ
− Eξ1t

γ

ãt − αHnt =
(µ− κH)(1− β)

αHγ
,

where κH is the value of κ when α = αH . Similarly, since α is constant for t ≥ 1, equations (44)–

(46) hold and so does equation (48). Therefore, the convergence result for at − αLnt and wt, t > 0,

apply with α = αL.

At time 0, things are more subtle as the change in α implies that equation (46) is replaced by

equation (50). Combining equation (45) at time 0 and the formula for wt with t < 0, we know n0:

n0 = n−1 +
µ

αH
.

Invoking equation (18), we can solve for a0:

ã0 = ã−1 + µ+ (αH − αL) (logZ − d∗ − n̄0 − λ) , (51)

where we have used the fact that β is constant, at = ãt, mt = m̃t, and ˆ̃mt = µ. Finally, w0 is given

by equation (44) with α = αL.

We show the impulse response functions of Wt and Nt in Figures I.3 and I.4. We set αH , the

value of α before time 0, to 0.49, which is the posterior mean before 1770 and show the results

for various values of αL. The lowest one, 0.22, is the posterior mean for αt in the last decade

of the sample. For simplicity, we set µ = 0 so that population has a well-defined steady state.

Both variables are expressed as a multiple of their steady state value with α = αH . Note that, by

assumption, the variables are in the latter steady state before time 0.

Real wages jump on impact. Since productivity, defined as the Malmquist index, is held con-

stant throughout, there is no change in output at time 0 and this jump is entirely explained by the
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Figure I.3: Response of Wt to a Change in α
Note: The figure plots the response of the real wage (Wt) to a drop in α from its posterior mean before 1770
(0.49) to the value in the legend. Wt is expressed in multiple of its steady state value before the drop.

increase in the labor share.25 Indeed, a drop in α from 0.49 to 0.22 implies a 92% increase in the

labor share, which is exactly the increase in Wt on impact. From time 1 onward, population in-

creases which pushes the wage down to the old steady state—without growth (µ = 0), the steady

state wage doesn’t depend on α.

Population is predetermined at time 0, so it does not change on impact. As income rose in

period 0, however, it starts increasing in period 1 and slowly converges to a permanently higher

level. With a larger labor share, a bigger population can be sustained in steady state.

25Formally, the change in output is:

ŷ0 = ˆ̃a0 + α̂0 logZ + βk̂0 − α̂0(n−1 + d∗ + λ) =
1

1− β

(
ˆ̃a0 + α̂0 (logZ − (n−1 + d∗ + λ))

)
= 0,

where we used the fact that n0 = n−1 when µ = 0 in the first equality, the capital demand in the second one, and
equation (51) in the third one.
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Figure I.4: Response of Nt to a Change in α
Note: The figure plots the response of population (Nt) to a drop in α from its posterior mean before 1770 (0.49)
to the value in the legend. Nt is expressed in multiple of its steady state value before the drop.
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