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Abstract

In standard models, economic activity fluctuates symmetrically around a “natu-
ral rate” and stabilization policies can dampen these fluctuations but do not affect
the average level of activity. An alternative view—labeled the “plucking model” by
Milton Friedman—is that economic fluctuations are drops below the economy’s full
potential ceiling. We show that the dynamics of the unemployment rate in the US
display a striking asymmetry that strongly favors the plucking model: increases in
unemployment are followed by decreases of similar amplitude, while the amplitude
of a decrease does not predict the amplitude of the following increase. In addition,
business cycles last seven years on average and unemployment rises much faster dur-
ing recessions than it falls during expansions. We augment a standard labor search
model with downward nominal wage rigidity and show how it can fit the plucking
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1 Introduction

In the workhorse models currently used for most business cycle analysis, economic ac-

tivity fluctuates symmetrically around a “natural rate” and stabilization policy does not

appreciably affect the average level of output or unemployment. At best, stabilization

policy can reduce inefficient fluctuations around the natural rate. As a consequence, in

these models the welfare gains of stabilization policy are trivial (Lucas, 1987, 2003).

An alternative view is that economic contractions involve drops below the econ-

omy’s full-potential ceiling or maximum level. Milton Friedman proposed a “plucking

model” analogy for this view of business cycles: “In this analogy, [...] output is viewed

as bumping along the ceiling of maximum feasible output except that every now and

then it is plucked down by a cyclical contraction” (Friedman, 1964, 1993).1 In the pluck-

ing model view of the world, improved stabilization policy that eliminates or dampens

the “plucks”—i.e., contractions—increases the average level of output and decreases the

average unemployment rate. Stabilization policy can therefore potentially raise welfare

by substantial amounts (De Long and Summers, 1988; Benigno and Ricci, 2011; Schmitt-

Grohe and Uribe, 2016).

We show that the dynamics of the US unemployment rate strongly favor the plucking

model of business cycles. An implication of the plucking model—highlighted by Fried-

man (1964)—is that the dynamics of unemployment should display the following asym-

metry: economic contractions are followed by expansions of a similar amplitude—as if

the economy is recovering back to its maximum level—while the amplitude of contrac-

tions are not related to the previous expansion—each pluck seems to be a new event. We

refer to this asymmetry as the plucking property. We present strong evidence that the US

unemployment rate displays the plucking property: The increase in unemployment dur-

ing a contraction forecasts the amplitude of the subsequent expansion one-for-one, while

the fall in unemployment during an expansion has no explanatory power for the size of

1The term “plucking” originates in Friedman’s image of a string (output) attached to the underside of
a board (potential output): “Consider an elastic string stretched taut between two points on the underside
of a rigid horizontal board and glued lightly to the board. Let the string be plucked at a number of points
chosen more or less at random with a force that varies at random, and then held down at the lowest point
reached.” (Friedman, 1964)
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the next contraction.

To match the facts about plucking that we document in the data, we introduce

downward nominal wage rigidity into a tractable version of the Diamond-Mortenson-

Pissarides model with endogenous separations analyzed by Fujita and Ramey (2012). We

show that the model can quantitatively match the plucking dynamics of US unemploy-

ment. Our model reproduces the plucking property because good shocks mostly lead

to increases in wages, while bad shocks mostly lead to increases in unemployment. The

dynamics of the unemployment rate thus become asymmetric; the unemployment rate

rises far above its steady state level in response to adverse shocks, but falls much less in

response to favorable shocks.

The plucking dynamics of our model imply that fluctuations in unemployment are

fluctuations above a resting point of low unemployment, not symmetric fluctuations

around a natural rate. As a consequence, a reduction in the volatility of aggregate shocks

not only reduces the volatility of the unemployment rate, but also reduces its average

level, as in the models of Benigno and Ricci (2011) and Schmitt-Grohe and Uribe (2016).

Eliminating all aggregate shocks in our calibrated model reduces the average unemploy-

ment rate from 5.7% to 2.9%.

An alternative interpretation of the “plucking” property of unemployment is that it

derives from exogenous shocks to the unemployment rate that themselves have this prop-

erty. We have chosen to model the exogenous shocks in our model as symmetric for two

reasons. First, we are interested in exploring the ability of the DMP model to generate

asymmetry within the labor market. Second, prior empirical work has found asymme-

tries to be more pronounced in the unemployment rate than in other macroeconomic data

suggesting that the source of asymmetry is the labor market (e.g., McKay and Reis, 2008).

While our baseline model fits the plucking property, it fails to fit some other salient fea-

tures of unemployment dynamics. Empirically, business cycles last around 7 years from

peak to peak, and the unemployment rate raises much more rapidly during downturns

than it falls during expansions. Our baseline model fails to fit these facts. In principle,

search models such as the one we introduce provide an intuitive mechanism for slow re-

coveries: firms can shed workers rapidly, but it takes time due to search and matching
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frictions to expand employment. In practice, however, the large number of workers who

flow between employment and unemployment in every month implies that the model

does not have appreciable internal propagation (see, e.g., Cole and Rogersion, 1999). As

a result, unemployment falls quickly once negative shocks dissipate. Our baseline model

inherits this feature of standard search models, generating short business cycles with con-

tractions that are only slightly faster than expansions.

To fit the asymmetry in the duration of expansions versus contractions in the data, and

the overall duration of unemployment cycles, we propose a new illustrative model with

several non-standard features. The model features insecure short-term jobs, decreasing

returns to labor and a hump-shaped driving process for productivity shocks (an AR(2)

process). The presence of insecure short-term jobs implies that most new matches turn

out to be poor matches and separate quickly; however, some survive and become stable

matches. As a consequence, workers who become unemployed cycle through several jobs

before finding stable employment, a pattern emphasized by Hall (1995). This, in combina-

tion with the AR(2) shock process generates substantial internal propagation despite the

large amount of churning observed in the data, allowing us to fit the duration of business

cycles and the asymmetry in the speed of contractions versus expansions.

Our work is related to several strands of existing literature. Petrosky-Nadeau, Zhang,

and Kuehn (2018) show how a DMP model features asymmetries that can generate

business-cycles disasters—large drops in production—despite symmetric shocks. We

show in section 4.3 that our baseline model with constant returns to labor can generate

some plucking absent DNWR for these reasons, but that this is driven by recessions more

extreme than we have seen in our post-WWII sample. We also show that these asymme-

tries in the standard DMP model are much smaller where there are decreasing returns to

labor. Kim and Nelson (1999) and Sinclair (2010) are two of the very few modern attempts

to assess the specific asymmetry emphasized by Friedman (see also Caballero and Ham-

mour, 1998; Bordo and Haubrich, 2012; Fatás and Mihov, 2015). Ferraro (2017) provides

an alternative explanation for the speed asymmetry in the unemployment rate.

The paper proceeds as follows. Section 2 presents our empirical results on the asym-

metric dynamics of the unemployment rate. Section 3 lays out our plucking model of
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business cycles. Section 4 shows how this model can match the plucking property, and

demonstrates that stabilizing fluctuations can reduce the average level of unemployment.

The baseline model nevertheless fails to match the asymmetry in the duration of reces-

sions versus recoveries and overall duration of business cycles. Section 5 proposes a new

model with non-standard features that can fit these facts. We analyze the quantitative

implications of this model in section 6. Section 7 concludes.

2 The Plucking Property and the Dynamics of Unemploy-

ment Cycles

We start by demonstrating Friedman’s plucking property for post-WWII US unemploy-

ment data; namely, the amplitude of a contraction forecasts the amplitude of the subse-

quent expansion, while the amplitude of an expansion does not forecast the amplitude

of the subsequent contraction. We also demonstrate a speed asymmetry in unemploy-

ment: the unemployment rate rises more quickly than it falls, implying that the duration

of recoveries is typically much longer than the duration of recessions, as emphasized by

Neftçi (1984) among others. Finally, we review the empirical evidence on wage rigidity,

and show that the incidence of wage rigidity is countercyclical.

To implement our empirical analysis, we define business cycle peaks and troughs such

that they line up exactly with peaks and troughs of the unemployment rate. This yields

business cycle dates that are very similar to but not identical to those identified by the

NBER Business Cycle Dating Committee. Figure 1 plots the unemployment rate over

our sample period—which runs from January 1948 to February 2020—with vertical lines

indicating the times that we identify as business cycle peaks and troughs. For details on

our algorithm, see Appendix A.2

2We identify ten peaks and ten troughs. To these we add a peak at the beginning of our sample. One
might worry that the contraction at the beginning of our sample may have started earlier. We are however
reassured on this point by the fact that the NBER identified November 1948 as a peak. We end our sample
at the onset of the Covid-19 recession, another clear peak in the data.
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2.1 The Plucking Property

Figure 2 presents scatter plots illustrating the plucking property for the unemployment

rate. The left panel plots the amplitude of a contraction on the x-axis and the amplitude

of the subsequent expansion on the y-axis. The amplitude of contractions is defined as

the percentage point increase in the unemployment rate from the business cycle peak to

the next trough. The amplitude of expansions is defined analogously. There is clearly a

strong positive relationship between the amplitude of a contraction and the amplitude of

the subsequent expansion in our sample period. In other words, the size of a contraction

strongly forecasts the size of the subsequent expansion.

Table 1 reports the estimated coefficient from an OLS regression of the size of the sub-

sequent expansion on the size of a contraction. The relationship is roughly one-for-one.

For every percentage point increase in the amplitude of a contraction, the amplitude of the

subsequent expansion increases by 1.1 percentage points on average. Despite the small

number of data points, the relationship is highly statistically significant. Furthermore, the

explanatory power of the amplitude of the previous contraction is large. The R2 of this

simple univariate regression is 0.59.

The right panel of Figure 2 plots the amplitude of an expansion on the x-axis and

the amplitude of the subsequent contraction on the y-axis. In sharp contrast to the left

panel, there is no relationship in this case. The size of an expansion does not forecast

the size of the next contraction. In Friedman’s language, each contractionary pluck that

the economy experiences is independent of what happened before. Table 1 reports the

estimated coefficient from a linear regression of the size of the subsequent contraction on

the size of an expansion. The relationship is actually slightly negative, but is far from

statistically significant. Moreover, the R2 of the regression is only 0.22.3

3Jackson and Tebaldi (2017) suggest that the duration (not size) of an expansion is predictive of the size
of the following contraction. They motivate this idea by analogy to forest fires: the longer the expansion,
the more “underbrush” builds up—e.g., low quality matches and entrants—that becomes fuel in the sub-
sequent contraction. We find no evidence of the forest fire theory at the aggregate level: the duration of
an expansion is no more predictive of the size of the following contraction than the size of the expansion
is. The relationship is actually negative (but not significantly so), driven by the fact that the three longest
post-WWII expansions (1961-1968, 1982-1989, 1992-2000) were followed by relatively mild recessions. Tasci
and Zevanove (2019) confirm these results and also present state level results for the plucking model and
forest fire theory. Their state level results are similar to our results at the aggregate level: There is strong
evidence for the plucking property but no evidence for the forest fire theory.
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2.2 The Speed Asymmetry

Unemployment rises more quickly during contractions than it falls during expansions,

a point made quantitatively in early work by Neftçi (1984).4 Table 1 reports the average

speed of expansions and contractions to illustrate this asymmetry. We measure the change

in unemployment (in percentage points) over the spell and the length of time the spell

lasts for. The speed for a expansion or contraction is the ratio of those two numbers. We

then take a simple average across all expansions and separately a simple average across

all contractions.

We find that the unemployment rate rises roughly twice as quickly during contractions

(1.9 percentage points per year) as it falls during expansions (0.9 percentage points per

year). This difference is highly statistically significant. We run a regression of the absolute

value of the speed of expansions and contractions on a dummy variable for a spell being

a contraction and find that the p-value for the dummy is 0.002.

Looking back at Figure 1, we can clearly see that when the unemployment rate starts

falling, it usually falls relatively steadily for a long time. As a consequence, expansions

are quite long. The average length of expansions in our sample is roughly 59 months, or

almost five years. Contractions are also quite persistent, but less so. The average length

of contractions in our sample is roughly 27 months, a bit more than two years. Perhaps

most strikingly, in a few cases—the 1960s, 1980s, 1990s, and 2010s—the unemployment

rate has fallen steadily for six to ten years without reversal.

2.3 Wage Rigidity

A large literature has presented microeconomic evidence of downward nominal wage

rigidity in US data.5 Olivei and Tenreyro (2010) present evidence that such wage rigidity

4Sichel (1993) refers to this asymmetry as the “steepness” asymmetry, while McKay and Reis (2008)
refer to it as the greater “violence” of contractions, in reference to Mitchell (1927). Given that contractions
and expansions are of about the same average size (3.7 percentage points), the fact that contractions are
“steeper” or “more violent” than expansions is equivalent to the fact that they are briefer. Awareness of
this asymmetry dates back at least to the 1920s. Mitchell (1927) notes that “business contractions appear to
be briefer and more violent than business expansions.”

5See, in particular, McLaughlin (1994); Kahn (1997); Card and Hyslop (1997); Bewley (1999); Altonji and
Devereux (2000); Kurmann and McEntarfer (2017); Hazell and Taska (2018); Grigsby, Hurst, and Yildirmaz
(2018). Correcting for measurement error might reveal an even higher prevalence of wage rigidity. Early
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matters for real outcomes. A large theoretical literature has studied the implications of

downward nominal wage rigidity for business cycles.6

An intuitive fact about the data is that wage rigidity has been countercyclical in recent

US business cycles—i.e., wage freezes tend to occur during recessions. Figure 3 plots the

fraction of “Wage Freezes” from the San Francisco Fed’s Wage Rigidity Meter for the pe-

riod 1997-2019 along with the unemployment rate (Left Panel) and the non-employment

rate for the working age population (Right Panel).7 The correlation is striking. The frac-

tion of wage freezes rises rapidly in each of the three recessions that occur in this sample

period. Before 1997 the data are less complete, and the correlation is weaker because of

the confounding effects of changes in trend inflation.

3 A Plucking Model with Downward Nominal Wage

Rigidity

Next, we present a model designed to fit the plucking property discussed in section 2.

This model augments the workhorse DMP model with endogenous separation developed

by Fujita and Ramey (2012) with downward nominal wage rigidity.

work using data from the Panel Study of Income Dynamics (PSID) and the Current Population Survey (CPS)
includes McLaughlin (1994), Kahn (1997), and Card and Hyslop (1997). Altonji and Devereux (2000) report
larger amounts of downward nominal wage rigidity and virtually no wage cuts in the PSID after correcting
for measurement error. Gottschalk (2005) and Barattieri, Basu, and Gottschalk (2014) report similar findings
based on their adjustments for measurement error in the Survey of Income and Program Participation.

6Prominent contributions include, e.g., Akerlof, Dickens, and Perry (1996); Kim and Ruge-Murcia
(2009); Benigno and Ricci (2011); Abbritti and Fahr (2013); Schmitt-Grohe and Uribe (2016); Chodorow-
Reich and Wieland (2018). The importance of wage rigidity for generating realistic fluctuations in unem-
ployment has been stressed by Shimer (2005), Hall (2005), Gertler and Trigari (2009), and Gertler, Huckfeldt,
and Trigari (2016).

7The Wage Freeze measure reports the fraction of job-stayers whose wages are unchanged ver-

sus one year prior (Daly, Hobijn, and Wiles, 2011; Daly, Hobijn, and Lucking, 2012; Daly and Hobijn,

2014). See https://www.frbsf.org/economic-research/indicators-data/nominal-wage-

rigidity/.
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3.1 Search and Matching with Endogenous Separation

The model consists of an infinite mass of atomistic firms, and a mass of workers with

inelastic labor supply normalized to one. At the beginning of a period, workers are either

already matched with a firm, or looking for a job.8 If a firm and a job-seeker match in

period t, we assume the worker starts working right away.9 To match with a new worker,

a firm must post a vacancy, at a cost c per period in which the vacancy remains open.

An open vacancy fills with probability qt, which is taken as exogenous by the firm. In the

aggregate, the probability qt is determined by a matching function qpθtq, where θt � Vt{U0,t

denotes labor market tightness. Labor market tightness is the ratio of the number of

vacancies posted Vt to the number of job-seekers U0,t at the beginning of the period. The

matching function also determines the probability for a job-seeker of finding a job: it is

equal to the ratio of matches qpθtqVt to job-seekers U0,t, fpθtq � qpθtqVt{U0,t � θtqpθtq.

When a worker and a firm are matched together, they produce output Atxt, where At

and xt are aggregate and match-specific productivity factors. We assume that both follow

AR(1) exogenous processes in logs,

logpAtq � ρa logpAt�1q � εat , (1)

logpxtq � ρx logpxt�1q � εxt , (2)

where εat and εxt are Gaussian shocks with standard deviations σa
ε and σx

ε . All new matches

start at the same match productivity level xhire, which we take to be average match pro-

ductivity x � 1.10

8Only unemployed workers look for jobs. Fujita and Ramey (2012) also develop a version of the model
with on-the-job search. We consider their model with endogenous separation but no on-the-job search.

9This timing of the labor market follows, e.g., Blanchard and Gali (2010), but differs from Fujita and
Ramey (2012). It is not important for our results, but avoids the unpalatable assumption that the number
of job-seekers U0,t at the beginning of period t (which includes at least all the workers who separated from
their jobs at the end of t � 1) is the same as the number of unemployed workers Ut in period t, even when
search frictions shrink to zero and the job finding rate is 1.

10Because Fujita and Ramey (2012) also consider a model with on-the-job search, they assume that new

matches start at the highest productivity level to make sure all job offers are accepted. Since we do not

consider on-the-job search, job offers are accepted even if the productivity in new matches is not the highest

productivity level. Our process for match-specific shocks is also a more standard AR(1) process than the

memoryless Poisson process with infrequent large shocks assumed in Fujita and Ramey (2012).
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An on-going match continues into the next period unless it is exogenously

terminated—which occurs with probability δ—or endogenously terminated. Let Jtpxtq

be the value to a firm of an on-going match with match-specific productivity xt.11 The

firm can terminate the match if it yields a negative value. This implies that Jtpxtq is given

by:

Jtpxtq � maxtJ c
t pxtq, 0u (3)

where J c
t is the value of the match to the firm if it is continued, which solves the recursion

J c
t pxtq � xtAt � wtpxtq � βp1� δqEt pJt�1pxt�1qq , (4)

where wtpxtq is the real wage paid in the match at period t.

Let Wtpxtq be the value to a worker of a match with match-specific productivity xt,

and Ut be the value to a worker of being unemployed. Since the worker can terminate the

match if it yields it a negative value, the value of being employed in a match at xt is given

by

Wtpxtq � maxtW c
t pxtq, 0u (5)

where W c
t is the value if the match is continued, which solves the recursion

W c
t pxtq � wtpxtq � ζ � βEt

�
p1� δqWt�1pxt�1q � δp1� ft�1qUt�1 � δft�1Wt�1px

hireq
�
, (6)

where ζ is the dis-utility cost of working relative to being unemployed. The value of being

unemployed solves the recursion

Ut � b� βEt

�
p1� ft�1qUt�1 � ft�1Wt�1px

hireq
�
, (7)

where b is unemployment benefits. Subtracting (7) from (6), the value of being employed

relative to being unemployed, Vt � Wt � Ut, solves the recursion

V c
t pxtq � wtpxtq � z � βp1� δqEt

�
Vt�1pxt�1q � ft�1Vt�1px

hireq
�
, (8)

11We make explicit the dependence of Jt and other value functions only in the idiosyncratic state xt. The
dependence of Jt on the aggregate state is kept implicit in the t time-index of Jt.
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where

Vtpxq � maxtV c
t pxq, 0u (9)

and z � b� ζ is the flow value of unemployment in terms of both unemployment benefits

and leisure.

Assuming free entry, in equilibrium the cost of posting a new vacancy must be equal

to the benefit to the firm of posting a new vacancy. This equates the value of a new hire

to the firm to the expected cost of a new hire:

Jtpx
hireq �

c

qt
. (10)

The model is closed with an assumption on wage-setting. Fujita and Ramey (2012)

assume that wages are set according to Nash-bargaining, as is standard in search mod-

els. Define the total value of a continuing match to be Sc
t pxtq � J c

t pxtq � V c
t pxtq. Under

Nash-bargaining, V c,Nash
t � γSc,Nash

t , where γ P r0, 1s is the bargaining power of workers.

Combining equations (4) and (8) and the Nash-bargaining assumption gives

J c,Nash
t pxtq � p1� γqpAtxt � zq � βp1� δqEt

�
JNash
t�1 pxt�1q � fNash

t�1 γJNash
t�1 pxhireq

�
. (11)

Equations (10) and (11) allow us to solve for qt and J c,Nash
t pxtq, as detailed in Appendix B.

Combining (4) and (11) allows us to recover the Nash wage as

wNash
t pxtq �

�
γAtxt � p1� γqz



� βp1� δqEt

�
γfNash

t�1 JNash
t�1 pxhireq



. (12)

3.2 Downward Nominal Wage Rigidity

We extend the Fujita-Ramey model to allow for Downward Nominal Wage Rigidity

(DNWR).12 Given the presence of match heterogeneity, this entails both DNWR for on-

going and new matches—two distinct assumptions. For an on-going match at time t, the

nominal wage is either the flexible nominal wage—which we assume to be the wage that

12We assume DNWR by directly specifying the wage-rule. Other work directly specifying a wage rule

in a search and matching framework includes Blanchard and Gali (2010); Shimer (2010); Michaillat (2012).

This approach has the advantage that we can more easily investigate what features the wage process needs

to generate realistic unemployment dynamics.
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would obtain under Nash bargaining—or, if this requires the nominal wage to fall, the

nominal wage in the match in the previous period, i.e.:

wtpxt, wt�1q � max

"
wNash

t pxtq,
wt�1

Π̄t

*
. (13)

For new matches, we assume that the hiring wage at time t is either the flexible

nominal wage—which we again assume to be the wage that would obtain under Nash

bargaining—or, if this requires the nominal hiring wage to fall, the nominal hiring wage

in the previous period, i.e.:

wnew
t pxhire, wnew

t�1 q � max

"
wNash

t pxhireq,
wnew

t�1

Π̄t

*
. (14)

To generate fluctuations in firms’ hiring decisions, wage rigidity in new matches is par-

ticularly important, as emphasized by Pissarides (2009). Assumption (14) is therefore es-

sential to introducing DNWR in a search and matching model with match heterogeneity.

Hazell and Taska (2018) document such DNWR in new hires’ wages.13

In both equations (13) and (14), inflation relaxes the constraint on downward real wage

adjustments: it greases the wheels of the labor market. We specify monetary policy as

directly setting a path for the inflation rate Πt, which we take to be constant at some

target value Π. Equations (10) and (11) still hold under DNWR, except that the firm’s

value function now depends on lagged wages. We first solve the model under Nash-

bargaining to recover the Nash wage (12), then use equations (10) and (11) to solve for J c
t

and qt, as detailed in Appendix B.

3.3 Worker Flow Accounting

Let st be the destruction rate, defined as the fraction of matches that get destroyed at the

beginning of period t. Because matches can be endogenously terminated, the destruc-

tion rate st depends on the cross-sectional distribution of employment across the state of

matches. Under Nash-bargaining, the state of a matches reduces to match productivity

13Our model does not feature preemptive wage moderation of the type that is present in the wage setting
models (e.g., Kim and Ruge-Murcia, 2009; Elsby, 2009; Benigno and Ricci, 2011). Yet this does not mean
firms in our model are myopic. They rationally maximize intertemporal profits. What they preemptively
moderate in anticipation of a fall in productivity is hires, not wages. Either wages or hires can respond to
concerns about the future. In our model it is hires that are moderated, because wages are not set by firms.
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xt. Fujita and Ramey (2012) show how to keep track of the distribution of employment

across matches to calculate the destruction rate in this case. Under DNWR, the state of

a matches includes both match productivity xt and the lagged wage wt�1. Appendix B

shows how to keep track of the joint distribution of employment across the joint state

pxt, wt�1q and calculate the destruction rate under DNWR.

Workers’ job-finding rate ft is a direct function of the vacancy-filling rate qt through

the matching function and can therefore be easily recovered from qt. Since we assume that

job-seekers who match with a firm at the beginning of period t start working at t, workers

who separate from a firm between t� 1 and t and join the pool of job-seekers may find a

new job at t without spending time unemployed, instead transitioning directly from job

to job. The exit rate from employment to unemployment is therefore distinct from the

destruction rate st and equal to

s̄t � p1� ftqst. (15)

The law of motion of the unemployment rate Ut is

Ut � p1� ftqUt�1 � s̄tp1� Ut�1q. (16)

3.4 Calibration

Table 2 provides a summary of our calibration. We calibrate the model to a monthly fre-

quency. We set the discount factor β to correspond to an annual interest rate of 4%. We

assume a Cobb-Douglas matching function qpθq � µθ�η and set the elasticity of the match-

ing function to η � 0.5, in the middle of the range reported in Petrongolo and Pissarides

(2001)’s survey. We calibrate the flow value of unemployment following Hagedorn and

Manovskii (2008) to z � 0.95, so that the model generates significant fluctuations in the

job-finding rate under Nash bargaining, which we will consider as a benchmark.14 This

14Fujita and Ramey (2012) show that their model under Nash bargaining can generate fluctuations in

the unemployment rate away from a high calibration of z by making unemployment fluctuate through

fluctuations in separation. As they show however, away from a high calibration of z, it cannot generate

fluctuations in the job-finding rate.
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calibration also generates the realistic prediction that firms’ surplus is increasing in pro-

ductivity under DNWR, as explained in Appendix F.4. We calibrate the exogenous de-

struction rate δ to match the average monthly share of quits in the non-farm sector in

JOLTS between January 2000 and February 2020 of 1.9%.

The parameters µ and c jointly determine hiring costs. One of the two is redundant

as only the composite parameter cµ
�1
1�η is relevant for the equilibrium. (See Appendix B.1

for further discussion of this point.) We normalize µ to 1. We calibrate c so that the cost of

hiring a worker c
q
� J is 10% of monthly wages (almost equivalently, of monthly output)

in a steady state with u � 5.7% and s̄ � 2%, in line with what Silva and Toledo (2009)

report based on the Employer Opportunity Pilot Project survey in the US. This yields

c � 0.30.

We set the auto-regressive root of the aggregate productivity process ρa to 0.98 fol-

lowing Shimer (2010). We set the auto-regressive root of the match-specific productivity

process ρx to 0.98, following Foster, Haltiwanger, and Syverson (2008)’s estimates of the

persistence of plants’ TFP (0.8 on an annual basis). When we consider the model under

downward nominal wage rigidity, we set inflation to 2% per year. Inflation is immaterial

in the version of the model without DNWR.

This leaves γ, σa
ε and σx

ε . We pick them to match the average level of the unemploy-

ment rate (5.7% in the data), the standard deviation of the unemployment rate (1.6% in

the data), and the average of the rate of exit from employment s̄ (2% as reported by Fujita

and Ramey (2006, 2012)). We choose to match the standard deviation of unemployment

exactly (as opposed to calibrating to the standard deviation of productivity in the data) so

that we can apply our definition of expansions and contractions to our simulated samples

in the same way as we do to the real world data. These choices yield γ � 0.58, σa � 1.4%

and σx � 1.9% under Nash bargaining, and γ � 0.39, σa � 1.6% and σx � 1.9% under

DNWR.
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4 Quantitative Analysis of the Baseline Model

Given the asymmetries and non-linearities our model is intended to capture, we rely on

global methods to numerically solve for the equilibrium. Appendix B discusses the algo-

rithm we use in detail. We simulate 5000 samples of 866 periods (the length of our sample

of real-world data) and calculate the statistics reported in the empirical Table 1 in each of

these simulated samples. We then report the median estimate across samples for each

statistic as a point estimate and the standard deviation of the estimates across samples in

parentheses below each point estimate.

Table 3 reports the results. The first column presents the data statistics for comparison.

The next two columns report the results for the model under DNWR and flexible wages

(Nash bargaining) respectively.

We start by evaluating the model’s ability to fit the plucking property. Table 3 shows

that, under DNWR, the model is able to generate substantial plucking. As in the data—

large contractions strongly predict large expansions but not the opposite. The regression

coefficient for the size of expansions on the previous contraction is 0.75 versus -0.08 for

contractions on the previous expansion. Moreover, the former regression has much more

explanatory power (0.61 vs 0.02). The model with Nash bargained wages also displays

some degree of plucking, though it is substantially less than under DNWR.

Figure 4 illustrates these results graphically for the model with DNWR. The figure

presents a scatter plot of the amplitude of subsequent expansions on the amplitude of

contractions (left panels) and of the amplitude of subsequent contractions on the ampli-

tude of expansions (right panels)—the direct model counterpart of Figure 2 in the data.

Figure 5 presents two time series graphs of simulations from the model with DNWR.

The top panel presents the simulated unemployment rate. The figure demonstrates a

substantial degree of skewness in the unemployment rate, in line with Sichel’s (1993) ob-

servation that, “troughs [in unemployment] are deeper than peaks are tall” (Sichel, 1993).

Another important property of the model is that, while we set the average unemployment

rate to 5.7% (its empirical counterpart), the steady-state unemployment rate in the model

without fluctuations is far lower at 2.9%, due to the plucking property of the model.
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The bottom two panels of Figure 5 give simulated paths for the job-finding rate ft and

the rate of exit from employment s̄t in our model. Both the hiring and separation margins

contribute to the sharp rise in unemployment during recessions, consistent with evidence

documented by Elsby, Michaels, and Solon (2009) for US data.15 Negative shocks decrease

the job-finding rate and increase the rate of exit from employment, while positive shocks

mostly lead to increases in wages.

We quantify the relative importance of hiring versus separations by calculating their

contributions to the volatility of unemployment. For the contribution of the job-finding

rate f , we simulate the unemployment rate from equation (16) with s̄ is fixed at its mean,

then calculate the standard deviation of the resulting counterfactual unemployment rate,

and divide it by the standard deviation of actual unemployment. Analogously, for the

employment exit rate, we do the same analysis with the job-finding rate fixed at its mean.

According to this metric, fluctuations in the job-finding rate explain 41% of fluctuations

in unemployment, while fluctuations in the employment exit rate explain 55%.

4.1 Mechanisms for Plucking

Two features of the model contribute to the plucking property. The first is DNWR. Be-

cause wages are downward rigid, negative shocks typically result in higher unemploy-

ment while positive shocks yield wage increases. As a result, unemployment sometimes

rises far above its steady state, but rarely falls below.

The second channel is non-linearity in the worker-flow equations (15)-(16). Figure 6

plots the steady-state relationship between the job finding rate and unemployment im-

plied by the worker-flow relationship (15)-(16) taken in steady-state.16 The relationship

is convex because it gets harder and harder to lower the unemployment rate the lower it

gets, as we discuss in Appendix F.

15The separation margin is not necessary to replicate the plucking property however. Appendix F
presents a simplified version of the model introduced in section 5 with a constant exogenous separation
rate, and shows that it, too, generates the plucking property (see Table F.4.)

16The analytical expression is u � s{ps � pf{p1 � fqq under our assumption that workers who separate
from a firm get a chance to find a new job right away and spend no time unemployed. Assuming instead
that workers must necessarily spend one period unemployed before finding a new job, the relationship
would be u � s{ps � fq. In this case too, the steady-state worker-flow relationship is convex but the non-
linearities it induces are quantitatively small.
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Several papers emphasize that the asymmetries implied by the worker-flow relation-

ship can generate business-cycles disasters—large drops in production—despite symmet-

ric shocks (Petrosky-Nadeau and Zhang, 2017; Petrosky-Nadeau, Zhang, and Kuehn,

2018).17 However, Figure 6 shows that this mechanism applies only to very large out-

put drops. The worker-flow relationship is close to linear over unemployment rates be-

tween 2.5% and 10.8%—the range of the US unemployment rate over the sample period

1948-2019. Table 3 provides results for a “top-truncated” sample that only includes ex-

pansions and contractions that are less than 6.5 percentage points in size—i.e., the size

of the 2009-2019 expansion which is the largest one in our sample. The Nash bargaining

model generates almost no plucking in this case, demonstrating that non-linearities in the

worker-flow equation cannot be the main source of the plucking property in the sample

we study.

4.2 Stabilization Policy and Output Gaps in the Plucking Model

In a thought-provoking exercise, Lucas (1987, 2003) showed that, in a simple benchmark

model, the welfare benefits of eliminating all economic fluctuations were trivially. Cru-

cially, Lucas assumed in this thought experiment that the average level of economic activ-

ity was unaffected by the elimination of business cycles. However, our plucking model

violates this assumption.

In a plucking model, recessions are asymmetrically periods when the economy drops

below potential. Eliminating these business cycle fluctuations raises the average level of

economic activity. For the model presented in this section, eliminating all fluctuations

reduces the average unemployment rate from 5.7% to 2.9%. Conversely, increasing the

standard deviation of aggregate shocks by 50% (from 1.6% to 2.4%) increases the average

unemployment rate to 12.5%. Figure C.1 in Appendix C plots the average level of the

unemployment rate in our plucking model as a function of the volatility of aggregate

shocks.

The plucking model also implies that standard measures of the output gap are biased.

17Hairault, Langot, and Osotimehin (2010), Jung and Kuester (2011), and Lepetit (2018) also emphasize
this source of non-linearity.
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Aiyar and Voigts (2019) show that common estimation methods of the output gap implic-

itly assume a zero-mean output gap. In the plucking model, however, output does not

fluctuate symmetrically around a natural rate. Standard methods systematically under-

estimates the amount of slack because the output gap is on average negative.

4.3 Shortcomings of the Baseline Model

While the model presented in this section fits the plucking property of unemployment,

it clearly fails to fit the speed and duration of contractions versus expansions. Table 3

demonstrates these shortcomings in the second and third panels. The model generates

unemployment cycles that are far too short. The average duration of expansions is 25.1

months versus 59.1 in the data, and the average duration of contraction is 16.1 months,

versus 26.9 in the data. The model generates some asymmetry in the duration of contrac-

tions versus expansions, but much less than in the data.

5 A New Model with Decreasing Returns to Labor, Inse-

cure Jobs, and AR(2) Shocks

We next propose a model with several “non-standard” features, that can fit the duration of

expansions and contractions, in addition to the plucking property. The non-standard fea-

tures are: 1) decreasing returns to labor, 2) insecure short-term jobs and 3) AR(2) shocks.

Our model builds on Michaillat (2012), who also emphasizes the importance of decreas-

ing returns in understanding unemployment dynamics.

The new features come at a cost. We are no longer able to solve the model with match-

specific productivity shocks of the type we had in section 3, limiting the model’s realism

with regard to the hiring and separation margins. We do, however, incorporate sectoral

heterogeneity in productivity which implies that downward nominal wage rigidity binds

in sectors with stagnant productivity, even if aggregate productivity growth is positive.
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5.1 Decreasing Returns to Labor and Heterogeneous Labor Inputs

The model consists of a continuum of sectors i P r0, 1s, each employing a distinct type of

labor i. In each sector, firms have access to a decreasing-returns production function that

uses labor i as its single input,

Y i
t � Ai

tF pN
i
t q, (17)

where Y i
t is output, N i

t is employment, and Ai
t is an exogenous productivity shifter. For

simplicity, we restrict sectoral heterogeneity to labor markets: consumers perceive goods

produced in different sectors as identical and therefore value them equally. All goods are

sold in a competitive product market at a common price Pt.

A given worker provides a particular type of labor, and can therefore only seek to

work at a firm in one sector. This implies that there is a distinct labor market for every

type of labor and workers cannot flow across labor markets. We think of these labor types

as occupations in a particular location, e.g., lawyers in Houston. Switching occupations

is difficult due to occupation-specific human capital. Mobility constraints limit the will-

ingness of workers to switch locations.18

5.2 Labor Demand with Insecure Short-Term Jobs

A firm in sector i starts period t with the stock of workers it inherits from the previous

period, denoted by M i
t . These are workers securely attached to the firm: at the end of

each period only a small fraction δ P p0, 1q of them separate from the firm for exogenous

reasons. Before starting production, the firm typically hires workers, in number H i
t . These

workers start working at time t, so that the level of employment at the firm at t is

N i
t �M i

t �H i
t . (18)

Newly-hired workers separate from the firm at the end of period t at a higher rate

d ¥ δ. If they do not separate at the end of period t, however, they join the pool of

18The assumption of such differentiated labor inputs is standard in the New-Keynesian literature. There,
differentiated labor inputs are an important source of strategic complementarity in price setting. See, e.g.,
Woodford (2003, ch. 3).
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securely attached workers and face the low exogenous separation rate δ from period t� 1

onward. The stock of workers attached to the firm at the beginning of the next period is

then

M i
t�1 � p1� δqM i

t � p1� dqH i
t if H i

t ¥ 0. (19)

The difference between the separation rates of securely attached workers and newly-

hired workers captures the fact that many newly formed matches turn out to be poor

matches for various reasons and are therefore terminated quickly. An unemployed

worker will typically transition between several jobs with intervening unemployment

spells before one of these jobs turns out to be a good match and thus turns into a long-

term, secure position. The fact that newly hired workers face much higher separation

rates than workers with longer tenure has been emphasized by Hall (1995), Pries (2004),

Krolikowski (2017), Jung and Kuhn (2019), Jarosch (2021), and Hall and Kudlyak (2021),

among others. The fact that there are effectively only two types of jobs in our model—

very short-term jobs that last one period and very secure jobs—is a simplifying assump-

tion that we make for tractability. This assumption alleviates the need to keep track of the

stock of short-term workers working at the firm.

We allow the firm not to hire in period t and instead endogenously lay off securely-

attached workers, above and beyond the fraction δ that exogenously left at the end of

period t � 1. In this case, H i
t   0 and all the workers N i

t who work at the firm in period t

are securely attached, so that the firm starts the next period with a number of workers

M i
t�1 � p1� δqN i

t if H i
t ¤ 0. (20)

We assume that the firm pays its securely attached and newly-hired workers the same

wage, for instance, because paying them differently would adversely affect morale at the

firm (Bewley, 1999). We denote the real wage in sector i by wi
t. To hire workers, the firm

must post vacancies. Posting a vacancy costs cAi
t units of goods, where c is a constant.19

19We make the cost of posting a vacancy proportional to productivity as in e.g. Blanchard and Gali

(2010), because it allows us to consider non-stationary sectoral productivity shocks without increasing the

size of the state-space beyond what is computationally feasible.
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A vacancy translates into a hire if it matches with a job-seeker. A match happens with

probability qit, which firm i takes as given. Hiring one worker has the expected cost Ai
tc{q

i
t.

Firm i’s real profits at time t are revenues net of the cost of labor and hiring costs

Ai
tF pN

i
t q � wi

tN
i
t �

Ai
tc

qit
H i

tI|Hi
t¥0. (21)

Like all agents in the model, the firm is risk-neutral and discounts the future with a fac-

tor β P p0, 1q. The firm is forward-looking and chooses how many workers to hire to

maximize intertemporal real profits

Πi
tpM

i
t q � max

Hi
t

tAi
tF pM

i
t �H i

tq � wi
t � pM i

t �H i
tq �

Ai
tc

qit
H i

t1Hi
t¥0 � βEtpΠ

i
t�1pM

i
t�1qu, (22)

subject to the law-of-motion of its workforce M i
t�1pN

i
t q given by equations (19)-(20).

In this model with decreasing returns to labor, the level of employment at the firm N i
t

affects the marginal productivity of all workers and therefore the bargaining position of

the firm when negotiating wages with all its workers. The firm can therefore in principle

internalize the effect of its chosen employment level on the wage it will be able to bargain

with its workers, leading to intrafirm bargaining (Stole and Zwiebel, 1996; Brügemann,

Gautier, and Menzio, 2019). With DNWR however, intrafirm bargaining becomes much

harder to solve. We therefore abstract from intrafirm bargaining and assume that firms

do not internalize the effect of their chosen employment level of the wage they will be

able to bargain.20

Let J i�
t pM

i
t q �

BΠi
tpM

i
t q

BM i
t

denote the equilibrium marginal value to the firm of a long-

term worker inherited from the previous period. For a level of employment N i
t—not

necessarily equal to M i
t—the marginal value to the firm of a worker already attached to

20Absent DNWR, the bargaining between the firm and its worker yields a differential equation for the

wage that can be solved in closed form for a constant-elasticity production function (Cahuc, Marque, and

Wasmer, 2008; Elsby and Michaels, 2013). Under DNWR however, the derivative of the wage is discontin-

uous at employment levels at which the DNWR constraint starts binding, preventing a simple closed-form

solution. Cahuc, Marque, and Wasmer (2008) and Elsby and Michaels (2013) show that the Nash-bargained

wage taking into account intrafirm bargaining only differs from the Nash-bargained wage that abstracts

from it (32) by a multiplicative coefficient in front of the marginal product of labor F 1pNq.
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the firm is

J i
t pN

i
t q � Ai

tF
1pN i

t q � wi
t � βp1� δqEt

�
J i�
t�1pM

i
t�1pN

i
t qq
�

(23)

and the marginal value to the firm of a newly-hired worker is

J i,new
t pN i

t q � Ai
tF

1pN i
t q � wi

t � βp1� dqEt

�
J i�
t�1pM

i
t�1pN

i
t qq
�
. (24)

Each is equal to the marginal product of labor net of the real wage, plus the continuation

value discounted with the appropriate separation rate. When already-hired workers and

newly-hired workers face the same separation rate δ � d, then J i,new
t � J i

t and the model

reduces to its version without insecure short-term jobs which we consider in Appendix F.

Consider the demand for labor of a firm that starts off period t with M i
t workers inher-

ited from the previous period. If at the inherited level of employment M i
t , the marginal

value of a newly-hired worker is greater than the hiring cost J i,new
t pM i

t q ¡
Ai

tc

qit
, the firm

will hire additional workers N i
t ¡M i

t up to a point where

J i,new
t pN i

t q �
Ai

tc

qit
. (25)

If at the inherited level of employment M i
t , the marginal value of an already-attached

worker is positive but the marginal value of a newly-hired worker is less than the hiring

cost, i.e., J i
t pM

i
t q ¥ 0 and J i,new

t pM i
t q ¤

Ai
tc

qit
, the firm will freeze employment

N i
t �M i

t . (26)

If at the inherited level of employment M i
t , the marginal value of an already-attached

worker is negative J i
t pM

i
t q   0, the firm will endogenously fire some of its existing work-

ers N i
t  M i

t up to

J i
t pN

i
t q � 0. (27)

Appendix D.1 provides a derivation. Note that firms cannot simultaneously hire and fire

endogenously at a sectoral level, since we do not allow for match heterogeneity.
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5.3 Workers

There is a fixed supply of workers in each sector, common across sectors. Workers supply

an exogenous quantity of labor which we normalize to 1. Workers in sector i can be in

one of three states at t. A number N i
0,t � minpN i

t ,M
i
t q are employed in a secure job. A

number N i
t �N i

0,t are newly employed. The remaining U i
t � 1�N i

t are unemployed. We

denote U i
t,0 � 1�N i

t,0 the number of workers who are either unemployed or employed in

a short-term job, and refer to it as the “broad” unemployment rate. U i
t,0 is also the number

of job-seekers (see below). The N i
t employed workers—either in short-term jobs or secure

jobs—earn the real wage wi
t and forego leisure relative to being unemployed, which they

value as Ai
tζ units of consumption. Unemployed workers earn unemployment benefits

Ai
tb.21

Unemployed workers transition to being newly employed with the job-finding prob-

ability f i
t , and remain unemployed with probability 1 � f i

t . We assume that employed

workers who lose their jobs between periods t � 1 and t get a chance to find a new job

at the beginning of period t and therefore to work in period t, spending no time unem-

ployed. Securely employed workers separate from their jobs with a probability δit, which

may be higher than δ due to endogenous layoffs. They therefore transition to unemploy-

ment with a probability δitp1 � f i
t q, transition to being newly hired with probability δitf

i
t ,

and remain securely employed with a probability p1� δitq. Newly employed workers sep-

arate from their jobs with a probability dit, which can be higher than d due to endogenous

layoffs. They therefore transition to being securely employed with a probability 1 � dit,

transition to unemployment with a probability ditp1� f i
t q, and remain newly employed—

in a new job—with probability ditf
i
t .

Workers, like firms, are risk-neutral. The values they derive from being unemployed

21Making unemployment benefits and the utility of leisure proportional to productivity allows us to
consider non-stationary sectoral productivity shocks without increasing the size of the state-space beyond
what is computationally feasible.
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U i
t , securely employed W i

t , and newly employed W i,new
t solve the recursive equations

U i
t � Ai

tb� βEt

�
p1� f i

t�1qU
i
t�1 � f i

t�1W
i,new
t�1



, (28)

W i
t � wi

t � Ai
tζ � βEt

�
δit�1p1� f i

t�1qU
i
t�1 � δit�1f

i
t�1W

i,new
t�1 � p1� δit�1qW

i
t�1



, (29)

W i,new
t � wi

t � Ai
tζ � βEt

�
dit�1p1� f i

t�1qU
i
t�1 � dit�1f

i
t�1W

i,new
t�1 � p1� dit�1qW

i
t�1



. (30)

5.4 Matching Function

The probability of filling a vacancy qit is determined in equilibrium by a matching func-

tion qpθitq, where θit � maxp0, H i
t{q

i
tq{U

i
0,t denotes labor market tightness in labor-market

i. Labor market tightness is the ratio of the number of vacancy posted maxp0, H i
t{q

i
tq to

the number of job-seekers at the beginning of the period. Our assumption that workers

who separate from their jobs at t � 1 get a chance to find a new job at the beginning of

t implies that the pool of job-seekers at the beginning of period t is all workers not se-

curely employed at t, U i
0,t. The matching function also determines the probability for an

unemployed worker of type i of finding a job: it is equal to the ratio of hires to job-seekers

fpθitq � maxp0, H i
tq{U

i
0,t � θitqpθ

i
tq.

When firms hire in sector i, they do not endogenously lay off workers so N i
0,t � M i

t

and the number of job-seekers is equal to U i
0,t � 1 �M i

t . The job-finding rate in sector i

is therefore the following function of employment N i
t and the inherited stock of employ-

ment M i
t

f i
t � max

�
0,

N i
t �M i

t

1�M i
t



. (31)

Appendix D.2 provides details on worker flow accounting in the model.

5.5 Wage-Setting

Downward nominal wage rigidity is defined relative to a flexible-wage benchmark de-

fined as the wage bargained by the firm and a securely attached worker, assuming Nash

bargaining prevails today and in all subsequent periods. Appendix D.3 shows that this
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wage satisfies

wi
Nash,t � Ai

t

�
γF 1pN i

Nash,tq � p1� γqz



� βEt

�
p1� δqp1� γqf i

Nash,t�1V
i,new
Nash,t�1



, (32)

where γ P r0, 1s parameterizes the bargaining power of workers.

We assume that the nominal wage is set to the flexible wage—given by equation (32)—

except if this requires the nominal wage to fall. Expressed in terms of real wages, the

wage-setting equation is

wi
t � max

"
wi

Nash,t,
wi

t�1

Πt

*
. (33)

5.6 Equilibrium

We again specify monetary policy as setting inflation to some target value Π. An equilib-

rium is given by a processes for employment N i
t , labor market tightness θit, and the real

wage wi
t for each sector i P r0, 1s such that in all sectors i, firm i is on its labor demand

schedule—equation (25), (26), or (27) depending on the situation—the job-finding rate

satisfies equation (31), and wages are set according to equation (33).

We assume that sectoral productivity logpAi
tq in sector i is the sum of a time trend g,

an aggregate component logpAtq, and an idiosyncratic component logpZi
tq:

logpAi
tq � g � t� logpAtq � logpZi

tq, (34)

where all these processes are independent: logpAtq KK logpZi
tq, logpZ

i
tq KK logpZj

t q for i � j.

We assume the idiosyncratic component follows an AR(1) in growth rates

∆ logpZi
tq � ρ∆z∆ logpZi

t�1q � ε∆z,i
t (35)

with Gaussian innovations: ε∆z,i
t � N p0, σ∆z

ε q. We assume the aggregate component fol-

lows an AR(2) in levels

logpAtq � pI � ρa1Lq
�1pI � ρa2Lq

�1εat , (36)

with Gaussian innovations: εat � N p0, σa
ε q. Here, we are motivated by the DSGE literature,

which often includes equations that yield AR(2) dynamics–e.g., investment adjustment
24



costs, habits in consumption, and lagged terms in the price and wage Phillips curves com-

bined with AR(1) shocks. This feature of our model generates high persistence at busi-

ness cycle frequencies without extreme levels of persistence at very low frequencies, and

also helps fit the fact that the dynamic responses of economic activity to many shocks is

hump-shaped (e.g. Romer and Romer, 2004; Christiano, Eichenbaum, and Evans, 2005).22

6 Quantitative Analysis of New Model

Given the complexity of the model presented in section 5, we focus on an illustrative

example as opposed to a full quantitative analysis. Appendix E describes the calibration

we rely on. Like in the previous section, we rely on global methods to numerically solve

for the equilibrium. Appendix D.5 discusses the algorithm we use in detail.

Table 3 presents our results for the new model in the rightmost column. The first panel

shows that the new model fits the plucking property, as did the previous model. We show

in Appendix F that the plucking property is more robust in the new model because it is

no longer sensitive to large recessions in the sense we described in section 4.3. This is

because under decreasing returns to labor, labor demand is no longer primarily shaped

by the convexities arising from search frictions but by the decreasing marginal returns to

labor.

The second and third panels of Table 3 show the new model generates realistically

slow unemployment cycles. Moreover, the model is much more successful in fitting the

asymmetric duration of recessions versus expansions, which the workhorse DMP model

failed to fit. The average duration of expansions is 68.0 months in the new model, while

the average duration of contractions is 38.5 months. As in the data, expansions are twice

as long as contractions. The unemployment rate rises much more quickly than it falls: on

average, it rises by 0.84 percentage points per year and falls by 1.53 percentage points per

year—against 0.87 and 1.89 in the data. Figure 7 plots a simulated path for the unemploy-

ment rate Ut, as well as the for “broad” unemployment U0
t (i.e., all workers not in secure

22Fujita and Ramey (2007) explore an alternative mechanism for increasing the propagation of shocks in
the labor market. They assume that the cost of opening a vacancy is non-zero and increasing in the number
of new vacancies opened. This makes vacancy creation sluggish.
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jobs).

The long duration of unemployment cycles, and the speed asymmetry between ex-

pansions and contractions, arises from a combination of the AR(2) driving process, the

presence of short-term insecure jobs, and downward nominal wage rigidity. The AR(2)

process generates high persistence at business cycle frequencies without extreme levels of

persistence at very low frequencies (unlike an AR(1) model). This helps to “slow down”

unemployment fluctuations to the frequencies we see in the data. The AR(2) is a symmet-

ric process however and does not generate asymmetry between the speed of expansions

and the speed of contractions on its own.

The speed asymmetry requires DNWR and short-term insecure jobs. With DNWR,

a string of negative labor demand shocks eventually results in significant endogenous

separations of securely attached workers—i.e., a burst of separations. These bursts of

separations are short-lived and modest in size. But they contribute to speeding up unem-

ployment contractions.23

These laid-off workers then cycle through several short-term jobs before they eventu-

ally find new stable employment. This process of cycling through short-term jobs con-

tributes to preventing the unemployment rate from quickly returning to its steady state

level. It slows the return of “broad” unemployment to steady-state even more, as can be

seen on Figure 7. The slow speed of recoveries is also due to slow underlying dynamics

in labor demand and gradual dissipation of constraints on wages.

As Benigno and Ricci (2011) emphasize, sectoral shocks are an important source of

volatility in labor demand. The fact that sectoral shocks are non-stationary allows the

Nash wage to rise for many consecutive periods in a sector, to a high level that then

durably constrains wages when sectoral productivity falls for many consecutive periods.

Decreasing returns to labor make firms able to withstand such large and persistent shocks

without being willing to lay off all their workers, as we explain in Appendix F.4. These

factors together imply that the DNWR constraint continues to bind in the presence of

23These bursts of separations do not arise in a model with only symmetric wage rigidity. In a version
of the model with symmetric real wage rigidity shown in appendix F, the monthly rate of separation from
secure employment rises above 0.5% once every 43,300 months (3,600 years). With DNWR, this rate rises
above 0.5% once every 253 months (21 years).
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sectoral shocks despite the combined effect of inflation (2% per year) and growth (2.3%

per year) that “grease the wheels of the labor market”.

7 Conclusion

We build a plucking model of the business cycle that captures the asymmetry in the pre-

dictive power of contractions and expansions emphasized by Milton Friedman. We show

that a workhorse labor search model augmented with downward nominal wage rigidity

can fit these facts. In this model, eliminating business cycles lowers the average unem-

ployment rate. Since output is more often below than above the natural rate, standard

methods systematically underestimate the amount of slack in the economy.

While our benchmark model model with match heterogeneity and downward nom-

inal wage rigidity succeeds in fitting the plucking property, it fails to match the overall

duration of unemployment cycles, and the fact that expansions are on average twice as

long as contractions. We therefore introduce a second model with several non-standard

features—decreasing returns to labor, insecure jobs and AR(2) shocks—on top of down-

ward nominal wage rigidity. These new features interact to slow down unemployment

cycles, and explain why unemployment rises faster than it falls. However, they come at

the cost of a less realistic hiring and separation margin since we are no longer able to solve

the model with match-specific productivity shocks. A full integration of these features is

a promising topic for future research.
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Figure 1: Peaks and Troughs in the Unemployment Rate

Note: The unemployment rate is plotted in blue. Business cycle peaks are denoted by dashed red
vertical lines, while business cycle troughs are denoted by solid red vertical lines.

33



0 2 4 6
Amplitude of a contraction

0

1

2

3

4

5

6

7

A
m

pl
itu

de
 o

f t
he

 s
ub

se
qu

en
t e

xp
an

si
on

  1949

  1954
  1958

  1961

  1970

  1975

  1982

  1992

  2003

  2009

0 2 4 6
Amplitude of an expansion

0

1

2

3

4

5

6

7

A
m

pl
itu

de
 o

f t
he

 s
ub

se
qu

en
t c

on
tr

ac
tio

n

  1953
  1957

  1960

  1968

  1973

  1979

  1989
  2000

  2006

Figure 2: The Plucking Property of the Unemployment Rate

Note: The points in the left panel are labeled with the year the contraction in question ended and
expansion in question began. The points in the right panel are labeled with the year the expansion
in question ended and contraction in question began. OLS regression lines are plotted in each
panel.
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Figure 3: San Francisco Fed Wage Rigidity Meter

Note: The figure plots the share of wage freezes of all job-stayers (paid by the hour or not) with
respect to the wage one year prior, with no correction for measurement errors. This series is con-
structed by the Federal Reserve Bank of San Francisco using data used from the Current Population
Survey.
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Figure 4: Plucking Scatter Plots

Note: The figure displays the scatter plots associated to the plucking regressions for the DNWR
model of section 3 (panel a) as well as for the same model under flexible wages (panel b). The
plots feature all the expansion/contraction pairs obtained by pooling together 500 samples of 866
months. OLS regression lines are plotted in each panel.
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Figure 5: Simulated Paths for the Unemployment Rate, Job-Finding Rate and Employ-

ment Exit Rate

Note: The figure plots sample path of 72 years (the same length as our empirical sample) for the
unemployment rate u, the job-finding rate f and employment exit rate s̄ in the Fujita-Ramey model
with downward nominal wage rigidity of section 3. The dashed lines indicate the steady-state level
of each variable.
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Figure 6: Steady-State Worker-Flow Relationship

Note: The figure plots the steady-state relationship between the job-finding rate and the unemploy-
ment rate implied by the worker-flow equation (15)-(16). In plain line the relationship is plotted
over the range of unemployment rates observed in the US between 1948 and 2019: from 2.5% to
10.8%.
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Figure 7: Simulated Paths for the Unemployment Rate: New Model

Note: The figure plots sample paths of 72 years (the same length as our empirical sample) for the
unemployment rate and broad unemployment rate in our model with downward nominal wage
rigidity, secure and insecure jobs, multiple sectors and an AR(2) aggregate productivity process.
The solid vertical lines identify business-cycle troughs, while the dashed vertical lines identify
peaks.
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Table 1: Plucking Property of Unemployment and Speed Asymmetries

β R2

Subsequent expansion on contraction 1.12 0.59
(0.33)

Subsequent contraction on expansion -0.38 0.22
(0.27)

Speed of expansions (pp/year) 0.87
Speed of contractions (pp/year) 1.89
P-value for equal speed 0.002

Duration of expansions (months) 59.1
Duration of contractions (months) 26.9

Note: The first row reports the coefficient in an OLS regression of the size of the
subsequent expansion (percentage point fall in unemployment rate) on the size
of a contraction (percentage point increase in unemployment rate). The second
row reports the coefficent in an analogous regression of the size of the subsequent
contraction on the size of an expansion. The speed of expansions and contractions
in the third and fourth rows is measured in percentage points of unemployment
per year.
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Table 2: Calibration

β 0.961{12

η 0.5
c 0.30
z 0.95
δ 1.9%
ρa 0.98
ρx 0.98

Flexible Wages DNWR
Π – 1.021{12

γ 0.58 0.39
σa
ε st. σa � 1.4% st. σa � 1.6%

σx
ε st. σx � 2.1% st. σx � 2.1%

Note: The abbreviation “st.” stands for “such that.”
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Table 3: Simulation Results: Plucking Property, Speed, and Duration

Data Fujita-Ramey Model New Model
All Cycles Top-Truncated Cycles

DNWR Nash DNWR Nash DNWR
Subsequent expansion 1.09 0.75 0.49 0.61 0.39 0.76

on contraction, β (0.23) (0.47) (0.27) (0.47) (0.33)

Subsequent contraction -0.38 -0.08 -0.06 -0.05 -0.03 -0.14

on expansion, β (0.20) (0.50) (0.29) (1.31) (0.55)

Subsequent expansion 0.58 0.61 0.29 0.39 0.19 0.68

on contraction, R2 (0.26) (0.30) (0.23) (0.27) (0.30)

Subsequent contraction 0.22 0.02 0.08 0.03 0.10 0.07

on expansion, R2 (0.06) (0.19) (0.10) (0.23) (0.20)

Speed of expansions 0.87 3.33 1.20 3.08 1.18 0.84

(pp / year) (0.88) (0.52) (0.84) (0.49) (0.22)

Speed of contractions 1.89 5.75 1.20 5.11 1.18 1.53

(pp / year) (1.44) (0.60) (1.42) (0.58) (0.38)

Duration of expansions 59.1 25.1 45.8 24.8 44.7 68.0

(months) (4.6) (15.2) (5.3) (15.6) (15.6)

Duration of contractions 26.9 16.1 46.0 15.8 45.0 38.5

(months) (3.7) (15.0) (3.6) (15.4) (11.9)

Note: The table compares data from the Fujita-Ramey model of section 3, both with Nash bargain-
ing and with downward nominal wage rigidity (DNWR), and from the new model of section 5.
The first (third) row reports the coefficient (R2) in an OLS regression of the size of an expansion
(percentage point fall in unemployment rate) on the size of the previous contraction (percentage
point increase in unemployment rate). The second (fourth) row report the coefficient (R2) in an
analogous regression of the size of a contraction on the size of the previous expansion. The next
two rows report the average speed of expansion and contractions, measured in percentage points
of unemployment per year. The final two rows report the average duration of expansions and con-
tractions, measured in months. For the models, the reported point estimate is the median value of
the statistic over 5000 samples of 866 periods each (the length of our sample of real-world data).
The standard error reported in parentheses is the standard deviation of the estimates across the
5000 samples. For the Fujita-Ramey model we also report the results for the “top-truncated” sam-
ples that only include expansions and contractions of less than 6.5 percentage points.
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A Defining Expansions and Contractions

A.1 Defining Expansions and Contractions

Since our empirical analysis is based on the amplitude and speed of cyclical movements

in unemployment, we define business cycle peaks in troughs in such a way that they line

up exactly with peaks and troughs of the unemployment rate. This yields business cycle

dates that are very similar to but not identical to those identified by the NBER Business

Cycle Dating Committee (because the NBER Business Cycle Dating Committee uses a

wide variety of cyclical indicators beyond unemployment to date turning points).

We develop a simple algorithm that defines business cycle peak and trough dates for

the unemployment rate. The basic idea is to find local minima and maxima of the un-

employment rate. However, we ignore small “blips” or “wiggles” in the unemployment

rate and focus instead on delineating substantial swings in the unemployment rate in a

similar manner as the peaks and troughs identified by the NBER Business Cycle Dating

Committee.

Table A.1 presents the peak and trough dates we identify and compares them with the

peak and trough dates identified by the NBER.

A.2 An Algorithm for Defining Expansions and Contractions

Let ut denote the unemployment rate at time t. The algorithm begins by taking the first

month of our sample as a candidate for a business cycle peak, cp. If, in all the following

months until unemployment becomes X percentage points higher than ucp, unemploy-

ment is higher than ucp, we confirm that cp is a business cycle peak. If, instead, the un-

employment rate falls below ucp before it is confirmed as a peak, the month in which this

happens becomes the new candidate peak. Once we have identified a peak, we switch to

looking for a trough (in the analogous manner) and so on until we reach the end of the

sample. Formally, starting with t � 1 the algorithm is:

1. Set cp � t and set t � t� 1 (i.e., move to the next time period).

2. If ut   ucp go back to step 1
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3. If ucp ¤ ut   ucp �X set t � t� 1 and go back to step 2

4. If ut ¥ ucp �X add cp to the set of peaks

5. Set ct � t and set t � t� 1

6. If ut ¡ uct go back to step 5

7. If uct ¥ ut ¡ uct �X set t � t� 1 and go back to step 6

8. If ut ¤ uct �X add ct to the set of troughs, and go back to step 1

We set X � 1.5 percentage points. With this value, our algorithm generates the same

set of expansions and contractions as the NBER Business Cycle Dating Committee with

one exception: Our algorithm considers the 1979-1982 double-dip recession as a single

contraction as opposed to two contractions interrupted by a brief and small expansion

(unemployment decreased by 0.6 percentage points in 1980-1981). Values for X between

0.8 and 1.5 percentage points identify exactly the same cycles. Values of X larger than 1.5

drop the 1970-1973 expansion.

An advantage of our algorithm is that it does not impose a duration upon expansions

and contractions but only a size X , in contrast to other algorithms based on turning points

like the Bry and Boschan (1971) routine. Our algorithm can therefore also be used to

define expansions and contractions in our model simulations, even for models that do

not match the duration of expansions and contractions in the real-world data.

A.3 Peak and Trough Dates from 1948 to 2020

Table A.1 presents the peak and trough dates we identify. For comparison purposes, we

also present the peak and trough dates identified by the NBER. We identify the same

set of expansions and contractions as the NBER Business Cycle Dating Committee with

one exception: we consider the 1979-1982 double-dip recession as a single contraction as

opposed to two contractions interrupted by a brief and small expansion (unemployment

decreased by 0.6 percentage points in 1980-1981). The exact timing of the NBER peaks

and troughs do not line up exactly with ours for the reasons discussed above. However,
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Table A.1: Business Cycle Peaks and Troughs

Unemployment NBER
Peak Trough Peak Trough

1 [1/1948] 10/1949 11/1948 10/1949
2 5/1953 9/1954 7/1953 5/1954
3 3/1957 7/1958 8/1957 4/1958
4 2/1960 5/1961 4/1960 2/1961
5 9/1968 12/1970 12/1969 11/1970
6 10/1973 5/1975 11/1973 3/1975
7a 5/1979 1/1980 7/1980
7b 11/1982 7/1981 11/1982
8 3/1989 6/1992 7/1990 3/1991
9 4/2000 6/2003 3/2001 11/2001
10 10/2006 10/2009 12/2007 6/2009
11 9/2019 2/2020

Note: Business cycle peaks and troughs defined solely based on the unemployment
rate and, for comparison, business cycle peaks and troughs as defined by the Busi-
ness Cycle Dating Committee of the National Bureau of Economic Research.

in most cases, our dates are quite similar to theirs. The NBER peaks tend to lag our peaks

by a few months and the NBER troughs tend to precede our troughs by a few months.

This implies that our estimate of the average duration of contractions is about one year

longer than what results from the NBER’s dating procedure. We identify September 2019

as a peak as opposed to February 2020 because the unemployment rate first hit 3.5%

in September 2019. When several months are tied for the lowest unemployment rate at

the end of an expansion, our algorithm picks the first of these months as the peak (and

similarly for troughs). Table A.2 lists the duration of all expansions and contractions over

our sample period.

B Solution Method

B.1 Normalization of µ

Recall that the matching function is Cobb-Douglas. The vacancy-filling rate is therefore

qt � µθ�η. Furthermore, the job finding rate is ft � θtqpθtq. Combining these equations
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Table A.2: The Duration of Expansions and Contractions

Dates Length in Months
Peak Trough Expansion Contraction

1 [1/1948] 10/1949 21
2 5/1953 9/1954 43 16
3 3/1957 7/1958 30 16
4 2/1960 5/1961 19 15
5 9/1968 12/1970 88 27
6 10/1973 5/1975 34 19
7 5/1979 11/1982 48 42
8 3/1989 6/1992 76 39
9 4/2000 6/2003 94 38

10 10/2006 10/2009 40 36
11 9/2019 119

Mean 59.1 26.9

allows us to express the vacancy-filling rate as a function of the job-finding rate:

qt � µ
1

1�η pftq
�η
1�η . (B.1)

We can now see that there is a one-to-one mapping between the cost of hiring a worker

Ct � c{qt and the job-finding rate ft:

Ct �
c

qt
�
�
cµ

�1
1�η

	
pftq

η
1�η . (B.2)

This mapping can be used to write the equilibrium conditions of the model in terms of

either the cost of hiring a worker or the job-finding rate, without reference to the other

(and without reference to labor market tightness). When the model is written in this

way (e.g., in terms of the cost of hiring a worker), the parameters c and µ only enter the

model though the composite term cµ
�1
1�η . This implies that we can normalize either c or

µ without loss of generality. We choose to normalize µ � 1. Intuitively, only the cost of

hiring a worker matters to a firm. It is immaterial to the firm whether this cost consists

of posting few vacancies that fill with a high probability but are expensive to post, or of

posting many vacancies that fill with a low probability but are inexpensive to post.
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B.2 Solving for the Policy Functions

To solve for the policy function under Nash-bargaining, we follow the solution method

of Fujita and Ramey (2012) to solve for the functions JNashpA, xq and qpAq. The state-

space consists of the two exogenous states A and x. We discretize the AR(1) process for

At using the Rouwenhorst (1995) method with 11 grid points, and the AR(1) process for

xt using the Tauchen (1986) method with 201 grid points. Combining equations (10) and

(11), we can solve for the functions JNash and 1{q by iteration on the policy functions.

Specifically, given guesses on the functions J and 1{q (and therefore f ), we use these

guesses to calculate the expected terms on the RHS of equation (11) and update JNash.

We then update 1{q using equation (10). We iterate until convergence.

Under DNWR, we first solve for the Nash wage as a function of the state pA, xq by

solving the model under Nash-bargaining. This gives the Nash wage under the assump-

tion that wages will be flexible at all future dates, including wages in new matches that

are relevant to determine the outside option of workers. Under DNWR, the value func-

tion J depends on the two exogenous states x and A, and the new endogenous state of the

lagged real wage w�1, JpA, x, w�1q. Under the assumption on the Nash-bargained wage,

J is independent of the state wnew
�1 , so that for numerical considerations, the state-space is

only three-dimensional.

The recursion on J is the same as (4), up to the new dependence of the value function

on the new state w�1:

JpA, x, w�1q � maxtJ cpA, x, w�1q, 0u, (B.3)

where J c is the value if the match is continued, which solves the recursion

J cpA, x, w�1q � xA� wpA, x, w�1q � βp1� δqE pJpA1, x1, wqq , (B.4)

where the real wage w is given by equation (13). Equations (B.3)-(B.4) allow to solve for

J by iteration. We again use 11 points on the A dimension, 201 on the x dimension, and

401 grid points on the new endogenous dimension w�1. When iterating on equation (B.4),

calculating the expected term on the RHS requires to evaluate the value function J at

values of the endogenous state w that are not on the grid. We rely on linear interpolation

to do so.
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Once J is solved for, we can obtain 1{qpA,wnew
�1 q from J and the free-entry condition

(10) which now depends on the new state wnew
�1 ,

JpA, xhire, wnew
�1 q �

c

qpA,wnew
�1 q

. (B.5)

B.3 Calculating Separation

Because matches can be endogenously terminated, the destruction rate st depends on

the cross-sectional distribution of employment across matches’ states. Calculating the

destruction rate in simulations of the model therefore requires us to keep track of the dis-

tribution of employment across matches’states. Under Nash-bargaining, matches’ states

reduce to match productivity xt. We follow the method in Fujita and Ramey (2012) to

keep track of the distribution of employment across xt and calculate the destruction rate,

only adapting it to any Markovian process for x so that it can accommodate our AR(1)

assumption (2) on xt.

Define ntpxq the number of employed workers at productivity x, and nt the vector of

ntpxq. (Note that our nt is the density of the distribution of employment, while Fujita-

Ramey’s et on p.75-77 is the CDF.) We therefore have:

ut � 1�
¸
x

ntpxq. (B.6)

Define n0
t pxq the number of workers employed at productivity x at the beginning of period

t, after shocks and exogenous separation have occurred, but before endogenous separa-

tion has occurred. Denote n0
t the vector of n0

t pxq. We have:

n0
t � p1� δqpT xq1nt�1 (B.7)

where T x is the transition matrix of the Markovian process of x. Define firedt the number

of workers fired at t. It solves:

firedt �
¸
x

n0
t pxq1Jtpxq�0. (B.8)

The job-destruction rate st is given by:

st � δ �
firedt
1� ut�1

. (B.9)
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The new distribution of employment at t solves the recursion:

ntpxq � n0
t pxq1Jtpxq¡0 � ftpst � p1� stqut�1q1x�xhire . (B.10)

Under DNWR, calculating the destruction rate requires to keep track of the distri-

bution of employment along both match productivity x and wages w. We do so in the

following way. Let mt�1px
�, w�q � P pxt�1 � x�, wt�1

Π
¤ w�q be the number of matches at

t�1 with idiosyncratic productivity xt�1 � x� and a real wage less than Πw�. Considering

the number of real wages below Πw� instead of below w� is for convenience: This way

it gives the number of matches with real wages below w� at the beginning of period t,

after inflation from t � 1 to t has eroded lagged real wages. Note that mt�1px
�,8q is the

number of firms with idiosyncratic productivity xt�1 � x� at t� 1, and
°

x� mt�1px
�,8q is

employment at t� 1.

Denote m0
t px

�, w�q � P pxt � x�, wt�1

Π
¤ w�q the number of matches with idiosyncratic

productivity xt � x� and inherited real wage w� at the beginning of period t, after match-

specific productivity shocks and exogenous separation shocks have hit but before any

wage-adjustment. It is given by

m0
t � p1� δqT 1

xmt�1 (B.11)

where Tx is again the transition matrix of the Markovian process of x.

We now keep track of how wage adjustments change the distribution of wages under

DNWR. Denote m1
t px

�, w�q the distribution of wages after wage adjustments. It is the

same as m0
t , except that all wages below wNash

t px�q are reset to wNash
t px�q, i.e.

m1
t px

�, w�q � 0 for all w� ¤ wNash
t px�q. (B.12)

We now calculate the number of endogenously terminated matches, and keep track of

how it affects the distribution of wages. Denote wthreshpx�q the threshold on wages above

which matches with productivity x� are terminated. It is defined as the lowest wage w

such that Jpx�, wq � 0. The number firedtpx
�q of matches with productivity x� that are

terminated is m1
t px

�,8q �m1
t px

�, wthreshpx�qq. Knowing the number of exogenously and

endogeneously separated matches we can calculate the separation rate as:

st �

°
x firedtpxq

Nt�1

� δ. (B.13)
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Denote m2
t px

�, w�q the distribution of wages after endogenous separation. It is the same

as m1
t , except that it no longer includes wages above wthreshpx�q, i.e.

m2
t px

�, w�q � m1
t px

�, wthreshpx�qq for all w� ¥ wthreshpx�q. (B.14)

We now keep track of how new hires affect the distribution of wages. Denote

m3
t px

�, w�q the distribution of wages after hiring. It is the same as m2
t , except that it adds

the number of new hires at productivity xhire and hiring wage whire
t , i.e.

m3
t px

hire, w�q � m2
t px

hire, w�q � ftp1� p1� stqNt�1qfor allw� ¥ whire
t pxhireq. (B.15)

This is the distribution of effective real wage in period t. Employment at t is therefore

given by
°

x� m
3
t px

�,8q.

Finally, we keep track of the eroding effect of inflation and growth from t to t � 1 to

get mtpx
�, w�q and be able to start the whole process in period t� 1. We have that

mtpx
�, w�q � m3

t px
�,Π� w�q. (B.16)

We calculate it by linear interpolation.

C The Volatility of Aggregate Shocks and the Average

Level of Unemployment

Figure C.1 plots the average level of the unemployment rate in our plucking model as a

function of the volatility of aggregate shocks. Both models have the property that average

unemployment increases with the volatility of the aggregate shocks, from a steady-state

level of 2.9% in the model of section 3 and 4.2% in the model of section 5. Average unem-

ployment increases less steeply with the volatility of shocks in the new model of section

5 because decreasing returns to scale make firms able to withstand larger shocks under

DNWR without being willing to lay off all their workers, as explained in Appendix F.4.
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(b) New Model of Section section 5

Figure C.1: Average Unemployment and the Volatility of Aggregate Shocks

Note: The figure gives the average rate of unemployment as a function on the standard deviation
of aggregate shocks in the DNWR model of section 3 (panel a) and the the DNWR model of section
5 (panel b).

D Appendix for the Model in Section 5

D.1 Labor Demand

The employment decision of the firm is

Πi
tpM

i
t q � max

Hi
t

tAi
tF pM

i
t �H i

tq � wi
tpM

i
t �H i

tq �
Ai

tc

qit
H i

t1Hi
t¥0 � βEtpΠ

i
t�1pM

i
t�1qu, (D.1)

subject to the law-of-motion of its workforce M i
t�1pN

i
t q given by equations (19)-(20).

The envelope condition is

J i�
t pM

i
t q � Ai

tF
1pN i�

t q � wi
t � βp1� δqEt

�
J i�
t�1pM

i
t�1pN

i�
t qq

�
. (D.2)

where we define J i�
t pM

i
t q �

BΠi
t

BM i
t
pM i

t q, the equilibrium marginal value to the firm of a

securely attached worker inherited from the previous period.

The first-order conditions give:

• If H i�
t ¡ 0 (i.e., if the firm hires):

Ai
tc

qit
� Ai

tF
1pN i�

t q � wi
t � βp1� dqEt

�
J i�
t�1pM

i
t�1pN

i�
t qq

�
. (D.3)

This happens when Ai
tF

1pM i
t q � wi

t � βp1� dqEt

�
J i�
t�1pM

i
t�1pM

i
t qq
�
¡

Ai
tc

qit
.
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• If H i�
t   0 (i.e., if the firm fires):

0 � Ai
tF

1pN i�
t q � wi

t � βp1� δq
�
J�t�1pM

i
t�1pN

i�
t qq

�
. (D.4)

This happens when Ai
tF

1pM i
t q � wi

t � βp1� δqEt

�
J i�
t�1pM

i
t�1pM

i
t qq
�
  0.

• When neither condition is satisfied, i.e. when

Ai
tF

1pM i
t q � wi

t � βp1� dqEt

�
J i�
t�1pM

i
t�1pM

i
t qq
�
¤

Ai
tc

qit
, (D.5)

Ai
tF

1pM i
t q � wi

t � βp1� δqEt

�
J i�
t�1pM

i
t�1pM

i
t qq
�
¥ 0, (D.6)

then the firm freezes hires H i�
t � 0.

To simplify and interpret this labor demand schedule, equation (B.3) defines the

marginal value to the firm of a worker already attached to the firm and equation (24)

defines the marginal value to the firm of a newly-hired worker. The labor-demand sched-

ule can then be rewritten as in equations (25)-(27).

In equilibrium, because all firms in sector i are identical, if firms are freezing employ-

ment then Ai
tc{q

i
t � 0. Therefore, the aggregate labor demand schedule in sector i is:

• If J i,newpM i
t q ¡ 0, then firms hire up to:

J i,newpN i�
t q �

Ai
tc

qpN i�
t q

. (D.7)

• If J ipM i
t q   0 then firms fire up to:

J ipN i�
t q � 0. (D.8)

• If J ipM i
t q ¥ 0 ¥ J i,newpM i

t q firms freeze employment:

N i�
t �M i

t . (D.9)

D.2 Worker Flow Accounting

From economy-wide worker flows, we can define the economy-wide rate of job destruc-

tion st, the economy-wide rate of inflow from employment into unemployment s̄t, and
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the economy-wide rate of outflow from unemployment to employment ft (equal to the

economy-wide job-finding rate). In sector i at time t, there are N i
0,t � minpN i

t ,M
i
t qworkers

who work in the same job as at time t � 1. The number of workers who find a new job

at the beginning of time t in sector i is therefore N i
t � N i

0,t. In the overall economy it is

Nt�N0,t, where the aggregates Nt and N0,t are defined as sums across sectors, Nt �
³
i
N i

tdi

and N0,t �
³
i
N i

0,tdi. The economy-wide job-finding rate is therefore

ft �
Nt �N0,t

1�N0,t

. (D.10)

The number of workers who separate from their jobs between t� 1 and t in sector i is

N i
t�1 �N i

0,t. In the total economy it is Nt�1 �N0,t. The economy-wide job destruction rate

is therefore:

st �
Nt�1 �N0,t

Nt�1

. (D.11)

Our assumption that a worker who separates from his job at the end of period t � 1

has a chance ft of finding a new job at the beginning of period t implies that the job-

destruction rate st is not equal to the rate of inflow from employment into unemployment

s̄t, or employment exit rate. Among the workers who separates from their jobs at the end

of t � 1, the fraction ft that starts a new job at the beginning of t does not transition from

employment to unemployment but from job to job. Only the fraction 1� ft transitions to

unemployment. The economy-wide rate of inflow from employment into unemployment

is therefore:

s̄t � p1� ftqst. (D.12)

From combining equations (D.10), (D.11), and (D.12), the law of motion of economy-

wide unemployment Ut � 1�Nt is still given by equation (16).

D.3 The Nash-Bargained Wage

We solve for the Nash-bargaining equilibrium in order to obtain the Nash wage. We

take the Nash wage to be the one that prevails when wages are Nash-bargained between

the firm and securely attached workers, both today and in all subsequent periods. For
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workers, we get from equations (28)-(30) that the values of having a secure job relative

to being unemployed V i
t � W i

t � U i
t and the value of having a short-term job relative to

being unemployed V i,new
t � W i,new

t � U i
t solve:

V i,new
t � wi

t � Ai
tz � βEt

�
p1� dit�1q

�
V i
t�1 � f i

t�1V
i,new
t�1




, (D.13)

V i
t � wi

t � Ai
tz � βEt

�
p1� δit�1q

�
V i
t�1 � f i

t�1V
i,new
t�1




, (D.14)

where z � b � ζ is the flow value of unemployment in terms of both unemployment

benefits and more leisure.

For firms, we get from equations (B.3)-(24) that:

J i,new
t � Ai

tF
1pN i

t q � wi
t � βEtpp1� dqJ i

t�1q, (D.15)

J i
t � Ai

tF
1pN i

t q � wi
t � βEtpp1� δqJ i

t�1q. (D.16)

Summing up to get the total surpluses of a secure job Si
t � J i

t � V i
t and of a temporary

job Si,new
t � J i,new

t � V i,new
t :24

Si,new
t � Ai

tpF
1pN i

t q � zq � βEtpp1� dqpSi
t�1 � f i

t�1V
i,new
t�1 qq, (D.17)

Si
t � Ai

tpF
1pN i

t q � zq � βEtpp1� δqpSi
t�1 � f i

t�1V
i,new
t�1 qq. (D.18)

Nash-bargaining between the firm and long-term workers implies that J i
t � p1� γqSi

t

and J i
t�1 � p1� γqSi

t�1. Combined with equation (D.18) this implies:

J i
Nash,t � p1� γqAi

tpF
1pN i

Nash,tq � zq � βEt

�
p1� δqJ i

Nash,t�1 � p1� γqp1� δqf i
Nash,t�1V

i,new
Nash,t�1q



.

(D.19)

Combining equations (D.16) and (D.19) to eliminate J i
Nash,t gives the expression of the

wage given in equation (32).

Injection of the expression for the Nash wage—equation (32)—into equation (D.15)

gives:

J i,new
Nash,t � p1� γqAi

tpF
1pN i

Nash,tq � zq � βEt

�
p1� dqJ i

Nash,t�1 � p1� γqp1� δqf i
Nash,t�1V

i,new
Nash,t�1



.

(D.20)

24We use the fact that whenever δit�1 � δ and dit�1 � d there are endogenous layoffs so Si
t�1 � J i

t�1 � 0

and f i
t�1 � 0, so we can replace δit�1 with δ and dit�1 with d.
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Injecting the expression for the Nash wage (32) into equation (D.13) gives:

V i,new
Nash,t � γAi

tpF
1pN i

Nash,tq � zq � βEt

�
p1� dq

γ

1� γ
J i
Nash,t�1 �

�
γp1� δq � δ � d



f i
Nash,t�1V

i,new
Nash,t�1



.

(D.21)

An equilibrium under Nash bargaining is then processes for N i
t , J i

t , J
i,new
t and V i,new

t that

solve (D.19), (D.20) and (D.21), and the labor demand schedule (25)-(27), and where f i
t is

the function of N i
t given by equation (31). This can be calculated recursively as follows.

Given J i
t�1, f i

t�1 and V i,new
t�1 the expressions (D.19) and (D.20) solve for employment N i

t

when intersected with the labor demand schedule (25)-(27), and so for f i
t . Equations

(D.19) and (D.21) then allow us to calculate J i
t and V i,new

t . The Nash wage can then be

recovered, e.g., by equation (D.16).

D.4 Steady-State

In a non-stochastic steady-state equilibrium with with At � 1 and ∆ logpZi
tq � 0, equa-

tions (B.3) and (24) reduce, for J̃ � J i{Ai, J̃new � J i,new{Ai, and w̃ � wi{Ai, to

J̃pN, w̃q �
1

1� βegp1� δq
pF 1pNq � w̃q, (D.22)

J̃newpN, w̃q � p1� βegpd� δqqJ̃pN, w̃q. (D.23)

In steady-state, firms hire workers such that the law of motion of the stock of attached

workers is given by equation (19). Combined with the definition of hires—equation (18)—

this gives the steady-state relationship between M and N

MpNq �
1� d

1� d� δ
N. (D.24)

Combined with equation (31), this gives fpNq as a function of N alone, and through

equation (B.1) it gives the hiring costs c{qpNq as a function of N alone.

In steady-state, firms hire workers such that labor demand is given by equation (25).

Combined with equation (D.23), this gives

c

qpNq
� p1� βegpd� δqqJ̃pN, w̃q. (D.25)
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To calibrate the model, we assume that hiring costs c
q

are 10% of J̃ , and obtain the steady-

state wage as the only one consistent with equations (D.25)-(D.22) and a level of employ-

ment N � 1� U � 1� 5.7%.

In steady-state, the wage is equal to the Nash-bargained wage. (Under downward

nominal wage rigidity, we consider cases where logpΠ̄q � g ¥ 0 to make sure this can be

the case.) We back out the value of a workers’ bargaining power γ as the only value that

make the steady-state Nash wage equal to the steady-state wage we have obtained.

D.5 Solution Method

The hiring decision of a firm in sector i is a function of four or five state variables depend-

ing on the process for aggregate productivity. These are: aggregate productivity A (and

lagged aggregate productivity A�1 if aggregate productivity follows an AR(2)), idiosyn-

cratic productivity growth ∆Zi, the lagged wage wi
�1, and the stock of workers inherited

from the previous period, M i. We have introduced sectoral heterogeneity in such a way

that a firm does not need to forecast any endogenous aggregate variable in order to decide

how many workers to hire. Therefore, we do not need to keep track of the endogenous

aggregate state of the economy in order to solve for the hiring decision of a firm.

A solution to the model can be described as a pair of policy functions for N i and

J̃ i � J i{Ai over this (four or) five dimensional state space. We make the following change

of variables. First, we define the AR(1) process:

ηt � p1� ρa2Lq
�1εat , (D.26)

so that:

logpAt�1q � ρa1 logpAtq � ηt�1. (D.27)

Second, we define ζ i�1 � wi
�1{A

i the ratio of the lagged wage to current total pro-

ductivity. Given these definitions, the five-dimensional state can be parameterized as

(logpAq, η,∆ logpZiq, ζ i�1,M
iq.

We form a discrete grid of the state-space with 11 points along the exogenous dimen-

sions (logpAq, η,∆ logpZiq) and 21 along the endogenous dimensions (ζ i�1,M
iq). We ap-

proximate the AR(1) processes for the exogenous variables ηt and ∆ logpZi
tq using the
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Rouwenhorst (1995) discretization method. The Rouwenhorst method is more accurate

than the Tauchen (1986) method for persistence processes. Petrosky-Nadeau and Zhang

(2017) emphasize this point in the context of the DMP model. Our approach to adapting

the Rouwenhorst method to an AR(2) process is close to the one used by Galindev and

Lkhagvasuren (2010), who consider the more general case of a VAR(1).

We solve for the policy functions at each point on the grid by policy function iteration.

Specifically, we start from an initial guess for the policy functions for N i and J̃ i. At each

point of the grid, we then use this guess to calculate the expectation term in equation (B.3)-

(24). In calculating the expectation term, we need to evaluate the policy function for J̃ i at

points that are not on the grid. We do so through linear interpolation. Having calculated

values for the expectation term, we compute the values of N i and J̃ i that solve equations

(25)-(27), (D.10), and (B.1), and store the resulting values in new policy functions. Once

this has been done for all points on the grid, we have a new set of guesses for the policy

functions. We repeat this process until the policy functions converge. In simulating the

heterogeneous model, we assume 1000 sectors.

In solving for the model under wage-rigidity, we need to first solve for the Nash wage

for each point of the grid. We do so by first solving the model under the assumption of

Nash-bargaining using the same iterative method. The policy function under Nash bar-

gaining does not depend on ζ i�1. In additional results shown in appendix F, we consider

the model under the alternative of symmetric real wage rigidity. Under symmetric real

wage rigidity, wages in a sector may be so low relative to productivity in that sector that

firms are willing to hire more workers than there are in the sector. We deal with such

cases by assuming that firms hire all workers but no more.

E Calibration of the Model in Section 5

The rightmost column of Table E.3 provides a summary of the calibration we use for the

new model of section 5. The second column also provides the calibration we rely on in the

simpler version of it for which we show results in Appendix F. The simpler version has no

short-term insecure jobs (δ � d), no sectoral shocks, and an AR(1) process for productivity.
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The first and third columns provide the calibration we rely on when we show results for

both versions of the model under symmetric real wage rigidity in Appendix F.

We calibrate the model to a monthly frequency. We set the discount factor β to corre-

spond to an annual interest rate of 4%. We set the growth rate of productivity g to 2.3%

annually, the average growth of US labor productivity from 1948 to 2018. We deviate from

this in one case: in the simple version of the model under DNWR, we set g � 0. For the

cases we consider with downward nominal wage rigidity, we set inflation to 2% per year.

We assume a constant-elasticity production function F pNq � Nα and set α � 2{3.

We assume a Cobb-Douglas matching function qpθq � µθ�η and set the elasticity of the

matching function to η � 0.5, in the middle of the range reported in Petrongolo and

Pissarides (2001)’s survey. We calibrate the flow value of unemployment z to 70% of the

wage (specifically, 70% of the labor share α) following Hall and Milgrom (2008): 25%

through unemployment benefits b and 45% through less foregone leisure ζ .

We calibrate the monthly separation rates δ and d so that, based on steady-state re-

lationships, the average separation rate is s � 4.95%. This is the separation rate con-

sistent in steady-state with an unemployment rate of 5.7% and an average job-finding

rate f of 45%, as estimated by Shimer (2012) based on CPS data, since in steady-state

1{s � p1{u � 1qp1{f � 1q. In the simple version of the model, this means we set

δ � d � 4.95%. In the full model, the average separation rate in steady-state satisfies

s � δ
δ�1�d

. In the full model, the average separation rate in steady-state satisfies s � δ
δ�1�d

.

We set δ � 0.2%, implying d � 96.2%. This calibration allows us to generate a slow re-

building of long-term firm-worker relationships during expansions, even though insecure

short-term jobs last only a month.

The parameter µ is still redundant and normalized to 1 (See Appendix B.1 for further

discussion of this point.) In the simple model, we set c so that the cost of hiring a worker
c
q
� J is 10% of the monthly steady-state wage w̄ in a steady state with u � 5.7%, in

line with what Silva and Toledo (2009) report based on the Employer Opportunity Pilot

Project survey in the US. This yields c � 0.15. In the full model, we calibrate c so that the

total steady-state cost of hiring a worker in a long-term job J is still 10% of the monthly

steady-state wage. This is the case for c � 6.2� 10�3.
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Table E.3: Calibration

β 0.961{12

α 2/3
η 0.5
z 0.47

Simple DRL Model Full Model
δ 5.0% 0.2%
d 5.0% 96.2%
c 0.15 6.2� 10�3

ρ1a 0.98 0.985
ρ2a – 0.88
ρ∆z – 0.98
σz
∆ε – 7� 10�4

SRWR DNWR SRWR DNWR
g 0.023{12 0 0.023{12 0.023{12

Π – 1.021{12 – 1.021{12

ρ 0.9 – 0.9 –
γ 0.87 0.80 0.99 0.97
σa
ε st. σa � 2.0% st. σa � 3.1% st. σa � 3.4% st. σa � 5.6%

Note: “DRL” stands for “Decreasing Returns to Labor”. The abbreviation
“st.” stands for “such that.”

In the simpler version of the model with AR(1) aggregate shocks, we set the auto-

regressive root of the aggregate productivity process ρa1 to 0.98 following Shimer (2010).

In the full version with AR(2) aggregate shocks, we estimate the two roots of the aggregate

productivity process from the BLS quarterly series on labor productivity. We first apply

a three-period moving-average filter to smooth out high-frequency variations including

measurement errors. We then detrend the series by removing a quadratic trend. The

quadratic trend allows to capture the productivity slowdown from the 1980s onward. We

then estimate an AR(2) on the cycle component of labor productivity. After converting

the roots to a monthly frequency, this yields ρa1 � 0.985 and ρa2 � 0.88.25 We calibrate the

volatility of the aggregate shocks to match the volatility of the unemployment rate—see

25The autoregressive coefficients of the AR(2) estimation are ϕa
1 � 1.64 and ϕa

2 � �0.65. They are related
to the roots ρa1 and ρa2 through the equation I � ϕa

1L� ϕa
2L

2 � pI � ρa1LqpI � ρa2Lq. This gives roots 0.96 and
0.68 on a quarterly frequency. The monthly roots are the quarterly roots raised to the power 1{3.
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below.

Our full model also features sectoral productivity shocks. We calibrate the persistence

of the idiosyncratic productivity process based on KLEMS annual data on US sectoral pro-

ductivity from 1947 to 2010 (Jorgenson, Ho, and Samuels, 2012). The KLEMS dataset pro-

vides labor productivity series (value added per hour) for 31 sectors. We take logpZi
tq to

be the log difference between the sectoral labor productivity series and the BLS series for

aggregate labor productivity. Here again, we first apply a three-period moving-average

filter to the level of these series to smooth out high-frequency variations in logpZi
tq. We

then first-difference the resulting series and estimate AR(1) models for ∆ logpZi
tq in each

sector. The average estimated autoregressive root across sectors is ρ∆z � 0.62 at an an-

nual frequency. We therefore calibrate ρ∆z � 0.62
1
12 � 0.96 in our monthly calibration.

We calibrate the volatility of idiosyncratic productivity growth σ∆z
ε to roughly match the

average of the fraction of constrained firms in the data as measured by the San Francisco

Fed’s Wage Rigidity Meter: 13% (see Figure 3). The value we use is σ∆z
ε � 7� 10�4.

We are left with calibrating the bargaining power of workers γ and the standard devi-

ation of innovations to the aggregate productivity process σa
ε . We calibrate them so that

the average and standard deviation of the unemployment rate in simulations of the model

match their values in the data (5.7% and 1.6 percentage points). Like for the model of sec-

tion 3, we choose to match the standard deviation of unemployment exactly (as opposed

to calibrating to the standard deviation of productivity in the data) so that we can apply

our definition of expansions and contractions to our simulated samples in the same way

as we do to the real world data.

The resulting values for the four versions of the model we present results for are listed

in Table E.3. Note that the resulting bargaining power of workers γ is quite high in the full

model. This implies the Nash-bargained wage is high in the bargaining set but also flexi-

ble, so that (when combined to our calibration of z to 70% of wages) the model is subject

to the unemployment volatility puzzle absent wage-rigidity. In Appendix F we there-

fore consider as a benchmark without DNWR not Nash bargaining but symmetric real

wage rigidity (F.9), which can generate realistically large fluctuations in unemployment.

For the cases we consider with symmetric real wage rigidity, we calibrate the persistence
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parameter in the wage process ρ to 0.9, following Shimer (2010).

The resulting values for the standard deviation of the productivity process σa for the

four versions of the model we present results for range from 2.0% to 5.6% (see Table E.3).

F Role of Decreasing Returns to Labor

As highlighted in section 4.3, one shortcoming of the model of section 3 is that it has the

potential to generate plucking for the wrong reasons: by relying on the convexity of the

worker-flow relationship (15)-(16), even though this convexity becomes significant only

for counter-factually large recessions. In this appendix, we show that the assumption of

decreasing returns to labor that we make in the new model of section 5 bypasses this

shortcoming, by making labor demand close to linear and therefore not relying on the

convexity of the worker-flow relationship. The asymmetry of the model then reduces

to downward nominal wage rigidity alone, a non-linearity that generates plucking in-

cluding for recessions of empirically reasonable sizes. The appendix also discusses how

decreasing returns to labor make firms able to withstand more downward nominal wage

rigidity without being willing to fire all their workers when hit by large and/or persistent

negative shocks.

F.1 A Simple Version of the Model with Decreasing Returns to Labor

Only

To distinguish the role of decreasing returns to labor from the other features of our new

model, we consider a version of it stripped down of insecure short-term jobs (by setting

d � δ), AR(2) aggregate shocks (replacing them with AR(1) shocks (1)), sectoral shocks

and trend growth. The model then only differs from the baseline DMP model with exoge-

nous separation through decreasing returns to labor. Relative to the model of section 3, it

also differs by having no match-specific shocks. The calibration we use for this version of

the model is given in appendix E.

Besides the DNWR wage-setting equation (33), the components of the model are the
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labor-demand schedule of individual firms—equations (25)-(27)—the relationship be-

tween the vacancy-filling probability qt and the job-finding probability ft implied by the

matching function, and the worker-flow relationship (15)-(16). It is useful to combine

these three relationships into an aggregate labor demand schedule.

To this end, notice that in this simple version of the model with a single type of job

δ � d, and with a separation rate δ calibrated to match the large inflows of workers into

unemployment each month, firms virtually never lay off workers above and beyond the

workers who leave through exogenous separation. As a result, a very good approxima-

tion is to assume that hires Ht are positive in all periods, so that the law of motion of

employment is equation (19) in all periods, i.e. with δ � d

M i
t�1 � p1� δqN i

t (F.1)

Given this, equation (D.10) gives the job-finding rate as a function of past and present

employment

ft �
Nt � p1� δqNt�1

1� p1� δqNt�1

. (F.2)

Combining this equation with equation (B.2) yields hiring costs as

CpNt, Nt�1q �
c

qt
� cµ

�1
1�η

�
Nt � p1� δqNt�1

1� p1� δqNt�1


 η
1�η

. (F.3)

Besides, since δ � d and firms never endogenously lay off workers, labor demand

reduces to equations (24) and (25), which can be combined into

cAt

qt
� AtF

1pNtq � wt � βp1� δqEt

�
cAt�1

qt�1



. (F.4)

Equations (F.4) and (F.3) can be combined to obtain the aggregate labor demand sched-

ule of the model

wt

At

� F 1pNtq � CpNt, Nt�1q � βp1� δqEt

�
At�1

At

CpNt�1, Ntq



. (F.5)

The difference between the individual labor demand schedule—equations (25)-(27)—

and the aggregate labor demand schedule (F.5) captures the fact that in the search model,

search costs are external labor adjustment costs. Therefore, a given firm sees the cost of
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hiring a worker as constant, but in equilibrium the marginal cost of hiring a worker is

increasing in employment because of search externalities.

Because our model features hiring costs, the aggregate labor demand schedule—

equation (F.5)—is forward-looking: what matters to the hiring decision of a firm is not

only today’s real wage and today’s marginal productivity of a worker, but also the ex-

pected future value of these variables. One way to see this formally is to iterate equation

(F.5) forward:

CpNt, Nt�1q � Et

�
8̧

k�0

βkp1� δqk
At�k

At

�
F 1pNt�kq �

wt�k

At�k


�
. (F.6)

However, it is well known that the baseline DMP model has minimal internal prop-

agation. It is therefore useful to abstract initially from the intertemporal dimension of

hiring by considering the steady-state aggregate labor demand schedule induced by the

model. This corresponds to the demand for labor should the real wage remain constant

and productivity grow deterministically. It is given by:

w

A
� F 1pNq �KpNqp1� βegp1� δqq (F.7)

where

KpNq � CpN,Nq � cµ
�1
1�η

�
δN

1� p1� δqN


 η
1�η

. (F.8)

Equation (F.7) makes apparent the two reasons why labor demand is downward slop-

ing in the model. First, there are decreasing returns to labor in production— the first term

F 1pNq on the right-hand-side of equation (F.7). This is what makes labor demand down-

ward sloping in a model without search frictions. Second, the marginal search cost is

increasing in employment—the second term in KpNq on the right-hand-side of equation

(F.7). This is the motive that is specific to a search model—and the only one in a search

model with constant returns to labor in production as the model of section (3).

These two motives shape the aggregate demand schedule in very different ways. With

a constant-elasticity production function, the first term F 1pNq in equation (F.7) is log-

linear. In contrast, the second term KpNq that arises from search costs makes the log of

employment a convex function of the log of the real wage. The convexity arises primarily

from the worker-flow relationship (15)-(16). Indeed, while the function KpNq combines
63



both the matching function and the worker-flow relationship, our assumption of a Cobb-

Douglas matching function with η � 0.5 implies that the relationship between the cost

of hiring c{qt and the job-finding rate ft is linear (see equation (B.2)). The worker-flow

relationship in contrast is fairly convex, as shown on Figure 6.

F.2 Decreasing vs. Constant Returns to Labor

How convex the aggregate labor demand schedule is therefore depends on which of the

two motives dominates. The left panel of Figure F.2 plots the steady state labor demand

schedule (F.7).26 It is virtually as linear as the labor demand schedule with no search

frictions F 1pNq plotted on the same figure. Search frictions only add a minimal amount

of convexity.

The near-linearity of the labor demand schedule disappears under constant returns to

labor however. The steady-state labor demand schedule under linear technology α � 1

is plotted on the right panel of Figure F.2. Absent decreasing returns to labor, the steady-

state labor demand schedule (F.7) is entirely shaped by search costs KpNq, and inherits

much of the convexity of the worker-flow relationship plotted on Figure 6. As discussed

in section 4.3 however, the worker-flow relationship is close to linear when restricting it to

the range in which unemployment has fluctuated in the US since 1948. As a result, while

it allows us to generate a significant amount of plucking, it does so primarily through

counter-factually large recessions.

To show that the difference between CRL and DRL obtains away from steady-state as

well, on both panels of Figure 6 we also include a scatter plot of the relationship between

the log of the wage-to-productivity ratio and unemployment in simulations of the model.

In order to capture only the non-linearities arising from the aggregate demand sched-

ule and not from DNWR, we simulate the model under a symmetric wage-setting rule.

Since we calibrate the model of section 5 away from the Hagedorn-Manovskii calibration,

we cannot assume Nash bargaining, as it would fail to generate fluctuations in unem-

26We plot these relationships with unemployment on the y-axis. But the results are virtually indistin-
guishable with � logpNq on the y-axis, because the linear approximation u � � logpNq holds well over the
range of values we consider.
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ployment (Shimer, 2005). We therefore assume symmetric real wage rigidity. Following

Shimer (2010), we assume the real wage is a weighted average of the past real wage and

the present flexible-wage target given by equation (32):

logpwi
tq � ρ logpegwi

t�1q � p1� ρq logpwi
Nash,tq, (F.9)

where ρ P r0, 1s is a weight that we set to 0.9 following Shimer (2010), and g is the rate

of trend growth in productivity.27 Apart from the labor-returns parameter α, we use the

same calibration under CRL and DRL, except that we recalibrate the bargaining power

of workers γ and the volatility of aggregate shocks σa so that the average level of unem-

ployment in the CRL version of the model still equals the average level of unemployment

in the data (5.7%) and the standard deviation of unemployment in the model still equals

its value in the data (1.6 percentage points). The scatter plots in Figure F.2 show again

much more convexity in the aggregate labor demand schedule under CRL than under

DRL, consistent with the result in steady-state.

F.3 Sources of the Plucking Property under Decreasing Returns to La-

bor

To further show that the convexity of the labor demand schedule plays very little role

in generating the plucking property in the new model of section 5, Table F.4 provides

the same statistics as in Table 3 in simulations of the model under symmetric real wage

rigidity (F.9). This allows to assess the extent of plucking in the model absent DNWR,

when the only possible source of plucking is the (weak) convexity of the labor demand

schedule. The table provides these results both for the simple version of the model with

only DRL, and for the full version of the model with DRL, insecure short-term jobs, AR(2)

aggregate shocks and sectoral shocks.

The results in Table F.4 show that the model under symmetric real wage rigidity only

displays modest plucking. In the full version of the model for instance, the regression co-

efficient for the size of subsequent expansions on the size of contractions is only slightly
27Since we assume a symmetric process for the logarithm of Ai

t, we take the average to be geometric—
arithmetic for the logarithm of wages—in order not to introduce an ad hoc source of asymmetry in the
model.
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Figure F.2: Aggregate Labor Demand Schedule under Constant vs. Decreasing Returns

to Labor

Note: The left panel of the figure plots the relationships between the log of the wage-to-productivity
ratio (normalized by the steady-state wage w�) and unemployment in a simple version of the model
of section 5 with decreasing returns to labor but no insecure short-term jobs, no sectoral hetero-
geneity, and AR(1) productivity shocks. The right panel considers the same model in the case of
constant returns to labor. In both cases, the model is simulated under the assumption of symmetric
real wage rigidity (F.9) to focus on the non-linearities of the aggregate labor demand schedule.

larger (0.39) than the regression coefficient for the size of subsequent contractions on the

size of expansions (0.16). This difference is far smaller than in the data (1.12 vs. -0.38).

Similarly, the former regression has slightly more explanatory power than the latter re-

gression: the R2 is 0.18 versus 0.07. Again, this difference is much smaller than in the data

(0.59 vs. 0.22). In contrast, the full model under DNWR generates much more plucking.

The regression coefficient for the size of subsequent expansions on the size of contractions

is much larger (0.76) than the regression coefficient for the size of subsequent contractions

on the size of expansions (-0.14). Similarly, the former regression has much more explana-

tory power than the latter regression: the R2 is 0.68 versus 0.07. The same is true for the

simple version of the model.
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Table F.4: Plucking Property, Speed, and Duration: New Model, Additional Results
Data Simple DRL Full

SRWR DNWR SRWR DNWR
Subsequent expansion on contraction, β 1.12 0.36 0.84 0.39 0.76

(0.23) (0.22) (0.34) (0.33)

Subsequent contraction on expansion, β -0.38 0.17 -0.06 0.16 -0.14

(0.21) (0.17) (0.39) (0.55)

Subsequent expansion on contraction, R2 0.59 0.13 0.68 0.18 0.68

(0.14) (0.27) (0.22) (0.30)

Subsequent contraction on expansion, R2 0.22 0.04 0.02 0.07 0.07

(0.09) (0.04) (0.16) (0.20)

Speed of expansions (pp/year) 0.87 3.58 3.92 1.46 0.84

(0.36) (0.52) (0.21) (0.22)

Speed of contractions (pp/year) 1.89 3.40 4.07 1.46 1.53

(0.32) (0.55) (0.21) (0.38)

Duration of expansions (months) 59.1 15.0 13.3 36.3 68.0

(1.8) (1.7) (7.0) (15.6)

Duration of contractions (months) 26.9 15.6 16.8 35.7 38.5

(1.9) (2.5) (6.6) (11.9)

Note: The table compares real world data with data from four versions of the model of section 5. The first
column—labeled “Data”—reports empirical results based on data from the U.S. economy from section
2. The second and third columns—labeled “Simple DRL”—report results for the simple version of the
model with decreasing returns to labor but a single type of job (δ � d), no sectoral heterogeneity, and
aggregate productivity following an AR(1) process. The second column reports results under symmetric
real wage rigidity (“SRWR”) and the third column reports results under downward nominal wage rigidity
(“DNWR”). The fourth and fifth columns—labeled “Full”—report results for the full model with decreas-
ing returns to labor, two types of jobs (δ   d), sectoral heterogentiy, and aggregate productivity following
an AR(2) process. The fourth column reports results under symmetric real wage rigidity (“SRWR”) and
the fifth column reports results under downward nominal wage rigidity (“DNWR”). The first (third) row
reports the coefficient (R2) in an OLS regression of the size of an expansion (percentage point fall in unem-
ployment rate) on the size of the previous contraction (percentage point increase in unemployment rate).
The second (fourth) row report the coefficient (R2) in an analogous regression of the size of a contraction
on the size of the previous expansion. The next two rows report the spell-weighted average speed of
expansions and contractions, measured in percentage points of unemployment per year. The final two
rows report the average duration of expansions and contractions, measured in months. For the models,
the reported point estimate is the median value of the statistic over 5000 samples of 866 periods each (the
length of our sample of real-world data). The standard error reported in parentheses is the standard de-
viation of the estimates across the 5000 samples. The full model is simulated with 1000 sectors.
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F.4 Role of Decreasing Returns to Labor in Accommodating More

DNWR

Decreasing returns to labor also make firms able to withstand larger and more persistent

negative shocks under DNWR without being willing to lay off all their workers. Under

linear technology, a firm’s flow value is A � w—production net of the wage. It is inde-

pendent of the number of employees working at the firm. As a result, if a firm is faced

with too large or too persistent a negative shock that makes wages too high for too long,

it has strong incentives to lay off not just a few workers but all of them. With decreasing

returns to labor in contrast, a firm’s flow value is AF 1pNq�w. As a result, laying off some

workers (or simply not replacing those who leave exogenously) decreases the workforce

at the firm, which increases the marginal productivity of those workers left, removing

incentives to the firm to lay off more workers. The firm keeps most of its workers, at a

wage that remains frozen at the DNWR constraint.

Relatedly, decreasing returns to labor removes constraints on the calibrations of the

values of unemployment z that can generate meaningful fluctuations in unemployment

under DNWR. As is well-known, the DMP model under Nash bargaining requires a large

value of unemployment z in order not to fall into Shimer (2005)’s unemployment volatil-

ity puzzle (Hagedorn and Manovskii, 2008). A high value of z guarantees that the value

function of firms increases with productivity, creating incentives for firms to hire more

when productivity is higher. For a low value of z, firms’ value function is little increasing

in productivity, and hiring is therefore close to acylical. Under linear technology, a low

value of z creates the same problem under DNWR, and can even make it worse, making

hiring counter-cyclical. Higher productivity has indeed two effects under DNWR: it in-

creases the current flow value to firms A � w, but it also increases wages, increasing the

probability that the DNWR constraint will bind tomorrow and reduce the firm’s future

surplus. For a low value of z, the first effect is very small—the root of the Shimer puzzle

under Nash bargaining. The second effect can then dominate, so that firms’ value func-

tions can decrease with productivity. A high value of z, as in our calibration of the model

of section 3, strengthens the first effect and makes hiring procyclical, like it does under
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Nash bargaining.

Under decreasing returns to labor however, even at a low value of unemployment z

firms’ value function remains increasing in aggregate productivity. Decreasing returns

bring a third effect. While higher productivity today still increases wages and makes it

more likely that the DNWR constraint will bind tomorrow, the flow value of firms is now

AF 1pNq � w. If the DNWR constraint will be binding tomorrow, employment N will also

be lower tomorrow, raising the marginal productivity F 1pNq of workers. The job-finding

rate is therefore procyclical in our calibration of the model of section 5 with decreasing

returns to labor, even though we calibrate the value of unemployment to the same value

as Hall and Milgrom (2008) (70% of wages).
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