HIGH FREQUENCY IDENTIFICATION OF MONETARY NON-NEUTRALITY: THE INFORMATION EFFECT

Emi Nakamura and Jón Steinsson

Columbia University

January 2018

How large are the effects of monetary policy on the real economy?

- Empirical challenge:
 - Monetary policy is endogenous
 - Example: Fed may wish to counteract a shock to the financial sector by lowering interest rates

How large are the effects of monetary policy on the real economy?

- Empirical challenge:
 - Monetary policy is endogenous
 - Example: Fed may wish to counteract a shock to the financial sector by lowering interest rates
- Most common existing approach to identification:
 - Controlling for confounding variables (e.g., Romer-Romer 04, Christiano-Eichenbaum-Evans 99)
- Worry: Some endogeneity bias may remain (e.g., 9/11)

- Discrete amount of monetary news at time of FOMC announcements
- Allows for discontinuity based identification

HIGH FREQUENCY IDENTIFICATION

- Discrete amount of monetary news at time of FOMC announcements
- Allows for discontinuity based identification
- We study the response of **real** interest rates to monetary news in the 30-minute window around FOMC announcements
 - Real yields and forwards (from TIPS)

HIGH FREQUENCY IDENTIFICATION

- Discrete amount of monetary news at time of FOMC announcements
- Allows for discontinuity based identification
- We study the response of **real** interest rates to monetary news in the 30-minute window around FOMC announcements
 - Real yields and forwards (from TIPS)
- Identifying assumption:
 - Unexpected changes in interest rates at these times are due to actions and statements of the Fed
 - Not a response to other events that occurred in this narrow window

- What can response of real rates tell us?
 - Real rates affect output in all models (RBC and NK)
 - Controversy is over whether monetary policy affect **real** (as opposed to only nominal) rates
- Response of real interest rates measurable at high frequency
 - High frequency data key for discontinuity-based identification
 - Allows for greater precision than for variables that do not respond at high frequency (e.g., output and inflation)

- 1. Nominal and real rates move one-for-one several years into the term structure
- 2. Small response of break-even inflation

We show how under conventional interpretation of monetary shocks:

• Implies prices are very sticky (flat Phillips curve)

- 1. Nominal and real rates move one-for-one several years into the term structure
- 2. Small response of break-even inflation

We show how under conventional interpretation of monetary shocks:

- Implies prices are very sticky (flat Phillips curve)
- 3. But: Tightening of policy raises expected output growth (Blue Chip)
 - Inconsistent with standard models of monetary policy
 - Need new model of monetary policy with "information effects"

FED INFORMATION MODEL

- FOMC announcements affect private sector beliefs...
 - Not only about monetary policy (conventional view)
 - But also about exogenous fundamentals (e.g. productivity) (as in Romer-Romer 00)

FED INFORMATION MODEL

- FOMC announcements affect private sector beliefs...
 - Not only about monetary policy (conventional view)
 - But also about exogenous fundamentals (e.g. productivity) (as in Romer-Romer 00)
- New model of "Fed Information"
- Estimate large information effect
 - 2/3 of shocks are changes in beliefs about exogenous fundamentals

FED INFORMATION MODEL

- FOMC announcements affect private sector beliefs...
 - Not only about monetary policy (conventional view)
 - But also about exogenous fundamentals (e.g. productivity) (as in Romer-Romer 00)
- New model of "Fed Information"
- Estimate large information effect
 - 2/3 of shocks are changes in beliefs about exogenous fundamentals
- Fed has great deal of power over private sector beliefs
- Fed "fights against itself" by increasing pessimism when it unexpectedly loosens policy

• Fed information effect

- Empirical: Romer-Romer 00, Faust-Swanson-Wright 04, Campbell et al. 12
- Theoretical: Cukierman-Meltzer 86, Ellingen-Soderstrom 01, Berkelmans 11, Melosi 16, Tang 15, Frankel-Kartik 15, Andrade et al. 16
- High-frequency identification of monetary shocks
 - Cook-Hahn 89, Kuttner 01, Cochrane-Piazzesi 02, Gurkaynak-Sack-Swanson 05, Hansen-Stein 15, Gertler-Karadi 15.
- New Keynesian models of monetary policy:
 - Rotemberg-Woodford 97, Clarida-Gali-Gertler 99, Woodford 03, Christiano-Eichenbaum-Evans 05

High Frequency Estimation of the Effects of Monetary Shocks

- Fed uses post-meeting statements to manage expectations about what it is going to do in the future
- Example: January 28, 2004
 - No change in Fed Funds Rate, fully anticipated
 - Unexpected change in Fed Funds Rate: 0 bp
 - However, FOMC statement dropped the phrase:
 "policy accommodation can be maintained for a considerable period"
 - Two- and five-year yields jumped 20-25 bp

(Discussed in Gurkaynak-Sack-Swanson 05)

Implication:

Measures of monetary shock should incorporate "forward guidance"

We follow GSS 05 in basing policy indicator on changes in 5 interest rate futures:

- Fed Funds future for current month (scaled)
- Fed Funds future for month of next FOMC meeting (scaled)
- 3-month Eurodollar futures at horizons of 2Q, 3Q, 4Q

Policy News Shock:

 First principle component of change in these 5 interest rate futures over 30 minute window around scheduled FOMC announcements (also consider 1-day window)

(Similar to GSS 05 "path factor")

- Nominal Treasury zero-coupon yields (Gurkaynak-Sack-Wright 07)
- Real TIPS zero-coupon yields (Gurkaynak-Sack-Wright 10)
 - TIPS started trading in 1997
- Daily data for sample period Jan-2000 to Mar-2014
 - Baseline sample drops 2008:07 2009:06
 - Results robust to including apex of crisis or ending sample in 2007

EFFECTS OF POLICY NEWS SHOCK

-	ABLE 1		
Response of Interest Rates and Inflation to the Policy News Shock			
	Nominal	Real	Inflation
2Y Treasury Yield	1.10	1.06	0.04
	(0.33)	(0.24)	(0.18)
5Y Treasury Yield	0.73	0.64	0.09
	(0.20)	(0.15)	(0.11)
10Y Treasury Yield	0.38	0.44	-0.06
	(0.17)	(0.13)	(0.08)
2Y Treasury Inst. Forward Rate	1.14	0.99	0.15
	(0.46)	(0.29)	(0.23)
3Y Treasury Inst. Forward Rate	0.82	0.88	-0.06
	(0.43)	(0.32)	(0.15)
5Y Treasury Inst. Forward Rate	0.26	0.47	-0.21
	(0.19)	(0.17)	(0.08)
10Y Treasury Inst. Forward Rate	-0.08	0.12	-0.20
	(0.18)	(0.12)	(0.09)

- 1. "Background noise"
- 2. Risk premia vs. Expected future short rates

BACKGROUND NOISE

TABL		
Allowing For Background Noise in Interest Rates		
	10-Year	Forward
	Nominal	Real
Policy News Shock, 30-Minute Window:		
OLS	-0.08	0.12
OLS	[-0.43, 0.28]	[-0.12, 0.36]
Dirahan	-0.12	0.11
Rigobon	[-0.46, 0.24]	[-0.13, 0.35]
Policy News Shock, 1-Day Window:		
OLS	0.05	0.15
OLS	[-0.20, 0.29]	[-0.10, 0.39]
Dirahan	-0.51	-0.04
Rigobon	[-1.93, -0.08]	[-0.51, 0.45]
2-Year Nominal Yield, 1-Day Window		
OLS	0.18	0.20
OLS	[0.01, 0.35]	[0.02, 0.38]
Biasher (00% CI)	-0.51	-0.04
Rigobon (90% CI)	[-10.00, -0.21]	[-4.57, 0.38]

TADLE 2

- Simple view: Effect of policy news shock on long-rates reflects change in future expected interest rates ("forward guidance")
- Could these instead be "risk premium" effects?
 - We argue not (see also Piazzesi-Swanson 08)

Three modes of attack:

- 1. Look directly at survey expectations (Blue Chip)
 - Not affected by risk premia since direct measure of expectations
- 2. Affine term structure model (Abrahams et al. 15)
 - Provides a decomposition into changes in expected future short rates and risk premia
- 3. Mean reversion
 - Do effects on long-term yields appear to mean revert over longer windows

Three modes of attack:

- 1. Look directly at survey expectations (Blue Chip)
 - Not affected by risk premia since direct measure of expectations

SURVEY EVIDENCE ON RISK PREMIA

TABLE D.1				
Effects of Monetary Shocks on Survey Expectations				
	Nominal	Real	Inflation	
1 quarter	1.05	1.17	-0.12	
	(0.73)	(0.78)	(0.24)	
2 quarters	1.18	1.63	-0.44	
-	(0.75)	(0.60)	(0.31)	
3 quarters	0.99	1.29	-0.30	
	(0.72)	(0.78)	(0.24)	
4 quarters	0.86	1.17	-0.32	
	(0.71)	(0.77)	(0.23)	
5 quarters	0.73	0.59	0.14	
	(0.89)	(0.94)	(0.21)	
6 quarters	1.84	1.60	0.23	
	(0.89)	(0.88)	(0.24)	
7 quarters	4.45	4.29	0.17	
	(1.91)	(1.99)	(0.27)	

Three modes of attack:

- 1. Look directly at survey expectations (Blue Chip)
 - Not affected by risk premia since direct measure of expectations
- 2. Affine term structure model (Abrahams et al. 15)
 - Provides a decomposition into changes in expected future short rates and risk premia

AFFINE TERM STRUCTURE MODEL

	TABL	E D.2		
Response of Expected Future Short Rates and Risk Premia				
	Expected Futu	re Short Rates	Risk Premia	
	Nominal	Real	Nominal	Real
2Y Treasury Yield	1.01	0.86	0.09	0.20
	(0.27)	(0.17)	(0.10)	(0.18)
5Y Treasury Yield	0.76	0.60	-0.04	0.04
	(0.16)	(0.12)	(0.11)	(0.14)
10Y Treasury Yield	0.50	0.40	-0.12	0.04
	(0.11)	(0.08)	(0.14)	(0.14)
2Y Treasury Forward Rate	0.79	0.73	0.35	0.26
	(0.24)	(0.22)	(0.26)	(0.21)
3Y Treasury Forward Rate	0.61	0.56	0.21	0.32
·	(0.19)	(0.17)	(0.29)	(0.25)
5Y Treasury Forward Rate	0.36	0.33	-0.11	0.14
	(0.08)	(0.08)	(0.17)	(0.17)
10Y Treasury Forward Rate	0.10	0.09	-0.18	0.04
	(0.02)	(0.02)	(0.18)	(0.12)

Decomposition of real and nominal term structure from Abrahams et al. (2015)

Three modes of attack:

- 1. Look directly at survey expectations (Blue Chip)
 - Not affected by risk premia since direct measure of expectations
- 2. Affine term structure model (Abrahams et al. 15)
 - Provides a decomposition into changes in expected future short rates and risk premia
- 3. Mean reversion
 - Do effects on long-term yields appear to mean revert over longer windows

MEAN REVERSION

TABLE D.3 Mean Reversion			
Horizon		Real Yields	
(Trading Days)	2-Year	3-Year	5-Year
1	1.06	1.02	0.64
	(0.28)	(0.31)	(0.19)
5	1.01	0.93	0.52
	(0.64)	(0.68)	(0.38)
10	1.35	1.20	0.28
	(0.55)	(0.57)	(0.53)
20	0.88	0.43	0.04
	(0.95)	(0.94)	(0.79)
60	1.96	1.72	-0.10
	(2.13)	(1.92)	(1.13)
125	6.16	5.22	2.47
	(2.86)	(2.50)	(1.44)
250	9.58	8.22	4.13
	(2.92)	(2.97)	(1.84)

Policy news shock has:

• Large and persistent effects on real rates

...that do not appear to arise from risk premia

• Small effects on expected inflation

Interpretation

Fed affects nominal rates

- $\rightarrow \,$ change in nominal rates affects real rates
- $\rightarrow\,$ change in real rates affects output and inflation

Fed affects nominal rates

- \rightarrow change in nominal rates affects real rates
- $\rightarrow\,$ change in real rates affects output and inflation

- 2nd step (real rates \rightarrow output) common to RBC and NK models
- 1st step (nominal rates \rightarrow real rates) more controversial
- Our results provide direct evidence on 1st step

• Euler equation:

$$\hat{y}_t = E_t \hat{y}_{t+1} - \sigma(\hat{\imath}_t - E_t \hat{\pi}_{t+1})$$

$$\rightarrow \hat{x}_t = E_t \hat{x}_{t+1} - \sigma(\hat{\imath}_t - E_t \hat{\pi}_{t+1} - \hat{r}_t^n)$$

where $\hat{x}_t = y_t - y_t^n$

Phillips curve:

$$\hat{\pi}_t = \beta \boldsymbol{E}_t \hat{\pi}_{t+1} + \kappa \zeta \hat{\boldsymbol{X}}_t$$

Solve forward Euler equation (assuming r_t^n unchanged) to get

$$\hat{x}_t = -\sigma \sum_{j=0}^{\infty} E_t \hat{\imath}_{t+j} - E_{t+j} \hat{\pi}_{t+j+1} = -\sigma \hat{r}_t^{\ell}$$

Solve forward the Phillips curve:

$$\hat{\pi}_t = \kappa \zeta \sum_{j=0}^{\infty} \beta^j \boldsymbol{E}_t \hat{\boldsymbol{x}}_{t+j}$$

Combine these two:

$$\hat{\pi}_t = -\kappa \zeta \sigma \sum_{j=0}^{\infty} \beta^j E_t \hat{r}_{t+j}^{\ell}$$

$$\hat{\pi}_t = -\kappa \zeta \sigma \sum_{j=0}^{\infty} \beta^j \boldsymbol{E}_t \hat{\boldsymbol{r}}_{t+j}^{\ell}$$

1. Small response of inflation relative to response of real rates implies:

- Large amounts of nominal and real rigidities (small $\kappa\zeta$)
- Small value of intertemporal elasticity of substitution (small *σ*) (or both)

$$\hat{\pi}_t = -\kappa \zeta \sigma \sum_{j=0}^{\infty} \beta^j \boldsymbol{E}_t \hat{\boldsymbol{t}}_{t+j}^{\ell}$$

1. Small response of inflation relative to response of real rates implies:

- Large amounts of nominal and real rigidities (small $\kappa \zeta$)
- Small value of intertemporal elasticity of substitution (small *σ*) (or both)
- 2. Output should fall!

OUTPUT EXPECTATIONS ACTUALLY RISE!

	TAI	BLE 3		
Response of Expected Growth over Next Year for Different Sample Periods				
	1995-2014	2000-2014	2000-2007	1995-2000
Policy News Shock	1.01	1.04	0.95	0.79
	(0.32)	(0.35)	(0.32)	(0.63)
Observations	120	90	52	30

Greenbook

SCATTER PLOT: EXPECTED GROWTH

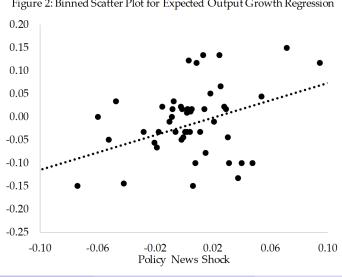


Figure 2: Binned Scatter Plot for Expected Output Growth Regression

Nakamura and Steinsson (Columbia)

- Maybe not
- When Fed raises rates, people may conclude that economy is stronger than they thought

- Maybe not
- When Fed raises rates, people may conclude that economy is stronger than they thought
- Fed has little private data, but hundreds of PhD economists
- Following Romer-Romer 00, we call this the Fed Information Effect

• Fed conveying information only about its own future policy

- Fed conveying information only about its own future policy
 - Public learning about policy maker's preferences
 - Public learning about how policy maker thinks the world works (but not updating own beliefs about how world works)

- Fed conveying information only about its own future policy
 - Public learning about policy maker's preferences
 - Public learning about how policy maker thinks the world works (but not updating own beliefs about how world works)

Fed information view:

• Fed conveys information about its own future policy but also about current and future exogenous shocks

- Fed conveying information only about its own future policy
 - Public learning about policy maker's preferences
 - Public learning about how policy maker thinks the world works (but not updating own beliefs about how world works)

Fed information view:

- Fed conveys information about its own future policy but also about current and future exogenous shocks
 - Suppose Fed tightens policy ...
 - Public infers that Fed is more optimistic about economic outlook ...
 - Public updates its own assessment of economic outlook in response

- Which fundamentals should Fed be modeled as affecting beliefs about?
- Prior literature assumes Fed signals through actions
 - Very limited signal space
 - Literature about limits to Feds ability to signal

- Which fundamentals should Fed be modeled as affecting beliefs about?
- Prior literature assumes Fed signals through actions
 - Very limited signal space
 - Literature about limits to Feds ability to signal
- Recent empirical evidence makes clear that Fed can signal with statements (forward guidance)
 - Could signal about anything at any horizon
 - Very high dimensional!
- Crucial to find a parsimonious specification

Conventional view of monetary policy shocks:

Fed conveying information about future monetary policy

$$\hat{x}_t = -\sigma \sum_{j=0}^{\infty} E_t (\hat{\imath}_{t+j} - \hat{\pi}_{t+j+1} - \hat{\imath}_{t+j}^n)$$

Fed Information Case:

 Fed conveys information about future monetary policy but also about current and future natural rates of interest

$$\hat{x}_t = -\sigma \sum_{j=0}^{\infty} E_t (\hat{\imath}_{t+j} - \hat{\pi}_{t+j+1} - \hat{\imath}_{t+j}^n)$$

Conventional view of monetary policy shocks:

Fed conveying information about future monetary policy

$$\hat{x}_t = -\sigma \sum_{j=0}^{\infty} E_t (\hat{\imath}_{t+j} - \hat{\pi}_{t+j+1} - \hat{\imath}_{t+j}^n)$$

Fed Information Case:

 Fed conveys information about future monetary policy but also about current and future natural rates of interest

$$\hat{x}_t = -\sigma \sum_{j=0}^{\infty} E_t (\hat{\imath}_{t+j} - \hat{\pi}_{t+j+1} - \hat{\imath}_{t+j}^n)$$

In simple model: $r_{t+j}^n = \sigma^{-1}(E_t y_{t+j+1}^n - y_{t+j}^n)$

Why model Fed info this way?

- Tractable with forward guidance shocks
- Optimal monetary policy for Fed to track natural rate of interest
- Natural to think of monetary policy as revealing information about natural rate of interest

Estimation

FED INFORMATION MODEL

• Augmented New Keynesian model:

- Internal habit
- Lagged term in Phillips curve
- Monetary policy with Fed information:

$$\hat{\imath}_t - \boldsymbol{E}_t \hat{\pi}_{t+1} = \boldsymbol{\bar{r}}_t + \phi_\pi \hat{\pi}_t$$

where \bar{r}_t follows AR(2)

• Strength of Fed Information:

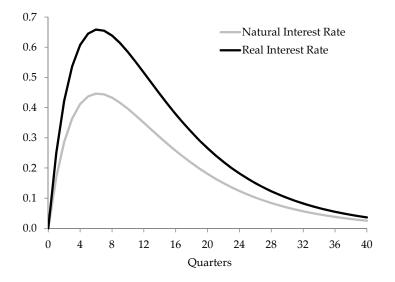
$$E_t \hat{r}_{t+j}^n = \psi E_t \overline{r}_{t+j}.$$

Here ψ governs strength of Fed information

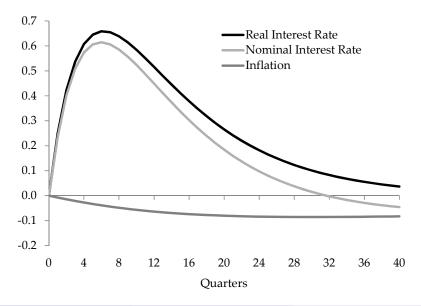
Nakamura and Steinsson (Columbia)

ESTIMATION APPROACH

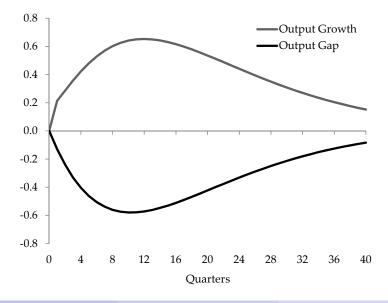
- Simulated method of moments
- High frequency moments:
 - Real yields and forwards (2, 3, 5, and 10-year)
 - Break-even inflation (2, 3, 5, and 10-year)
 - Output growth expectations from Blue Chip (monthly responses of 0 qtr to 7 qtr ahead output growth)
- Weighting matrix:
 - Diagonal: Inverse of standard deviations of moments
 - Off-Diagonal: Zero
- Bootstrap standard errors


- Estimate key parameters:
 - Slope of Phillips curve ($\kappa\zeta$)
 - Information content of shocks (ψ)
 - Dynamics of shock (*r*_t assumed to be AR(2))
- Fix other parameters:
 - $\beta = 0.99, \sigma = 0.5, b = 0.9, \omega = 2$ (standard values)
 - $\phi_{\pi} = 0.01$ (guarantees determinacy)

- What identifies parameters?
 - Path of
 *î*ⁿ_{t+j} (and thereby strength of Fed information effects)
 pinned down by survey data on *E*_t*y*_{t+j}
 - Nominal/real rigidity pinned down by response of inflation (π_t) relative to $(r_t r_t^n)$


$$\hat{\pi}_{t+i} = -\kappa \zeta \sigma \sum_{j=0}^{\infty} \beta^j \boldsymbol{E}_{t+i} (\hat{r}_{t+i+j}^{\ell} - \hat{r}_{t+i+j}^{n\ell})$$

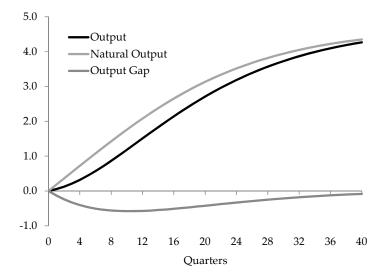
Results


LARGE INFORMATION EFFECT

MODEL MATCHES INTEREST RATES AND INFLATION

EXPECTED GROWTH RISES

• Lots of rigidity: Phillips curve very flat (in line with recent estimates...)

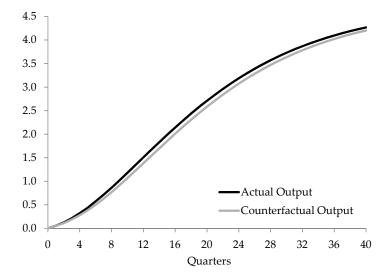

• $\kappa \zeta \approx 10^{-4}$

 Shutting down information effect leads to underestimate of slope of the Phillips curve

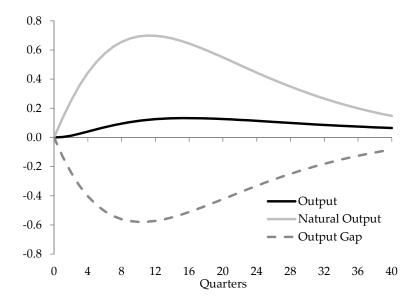
$$\hat{\pi}_{t+i} = -\kappa \zeta \sigma \sum_{j=0}^{\infty} \beta^j E_{t+i} (\hat{r}_{t+i+j}^{\ell} - \hat{r}_{t+i+j}^{n\ell})$$

Table

MASSIVE EFFECTS ON EXPECTED OUTPUT



- Fed action signals high future growth
- But this doesn't mean Fed causes high future growth


- Fed action signals high future growth
- But this doesn't mean Fed causes high future growth
- Changes in non-monetary fundamentals would have occurred anyway!
- To assess the causal effect of monetary policy on output, we need to think carefully about the counterfactual

- Fed action signals high future growth
- But this doesn't mean Fed causes high future growth
- Changes in non-monetary fundamentals would have occurred anyway!
- To assess the causal effect of monetary policy on output, we need to think carefully about the counterfactual
- Proposed counterfactual:
 - People learn about productivity changes when they happen
 - Expect productivity to follow random walk

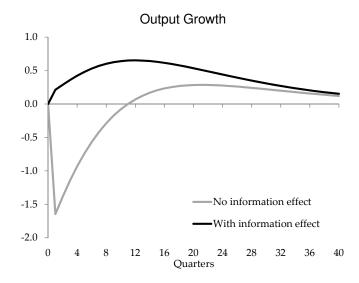
OUTPUT: ACTUAL AND COUNTERFACTUAL

CAUSAL EFFECT WITH FED INFORMATION

- Fed information can have a causal effect on output
- But it differs from effect on expected output (most of which would have occurred anyway)

Causal effect of information:

- Good news about future boosts demand today
- Due to internal habit (capital another channel)
- Leads natural rate of output to rise


- We estimate strong support for two channels of monetary policy:
 - Conventional channel: high interest rate gap lowers output
 - Information channel: Positive news about the future raises output
- Information effect outweighs conventional channel for our shocks
- Unexpected monetary contraction can raise output
 - Fed fighting against itself

IS MONETARY ECONOMICS BACKWARDS?

• If monetary contractions are expansionary and vice versa then is monetary economics turned on its head?

- If monetary contractions are expansionary and vice versa then is monetary economics turned on its head?
 - No!
- Most monetary policy is systematic
 - Rules based on public information
 - No information effect

"CONTRACTIONARY" SHOCK: INFO VS. NO INFO

TABLE 5Response of Stock Prices				
	Stock Prices			
Response in the Data	-6.5 (3.9)			
Response in the Model				
Baseline	-6.8			
No Fed Information Effect	[-11.5, -1.6] -11.1 [-19.4, -2.5]			

Fed has enormous power over real interest rate

- Nominal and real rates move together several years into term structure
- But output growth expectations rise in response to tightening!

Evidence for two channels:

- Conventional sticky price channel
- Information effect

Extra Slides

Policy news shock (Δi_t) and other variables of interest (Δs_t) affected by monetary shock (ϵ_t) and other shocks (η_t)

$$\Delta i_t = \alpha_i + \epsilon_t + \beta_i \eta_t$$

$$\Delta \boldsymbol{s}_t = \alpha_{\boldsymbol{s}} + \gamma \boldsymbol{\epsilon}_t + \beta_{\boldsymbol{s}} \eta_t$$

Two regimes:

- "Treatment" sample: FOMC announcements (R1)
- "Control" sample: Other 30-minute/1-day windows (R2)

Identification assumption:

$$\sigma_{\epsilon,R1} > \sigma_{\epsilon,R2}$$
 while $\sigma_{\eta,R1} = \sigma_{\eta,R2}$

$$\Delta i_t = \alpha_i + \epsilon_t + \beta_i \eta_t$$
$$\Delta s_t = \alpha_s + \gamma \epsilon_t + \beta_s \eta_t$$

Given this identification assumption, we have:

$$\gamma = \frac{\operatorname{cov}_{\mathsf{R1}}(\Delta i_t, \Delta s_t) - \operatorname{cov}_{\mathsf{R2}}(\Delta i_t, \Delta s_t)}{\operatorname{var}_{\mathsf{R1}}(\Delta i_t) - \operatorname{var}_{\mathsf{R2}}(\Delta i_t)}$$

- If no background noise, you could just run a regression
- Intuitively, OLS adjusted for "normal" covariance between Δs_t and Δi_t

Back

 If Fed information is important, contractionary monetary policy shocks should occur when Fed is more optimistic than private sector

policy news shock_t =
$$\alpha + \beta \left(\Delta y_{t,q}^{GB} - \Delta y_{t,q}^{BC} \right) + \varepsilon_t$$
,

 If Fed information is important, contractionary monetary policy shocks should occur when Fed is more optimistic than private sector

policy news shock_t =
$$\alpha + \beta \left(\Delta y_{t,q}^{GB} - \Delta y_{t,q}^{BC} \right) + \varepsilon_t$$
,

 If private sector learns from Fed, this difference should narrow after announcement

$$\begin{bmatrix} \left(\Delta y_{t+1,q}^{GB} - \Delta y_{t+1,q}^{BC} \right) - \left(\Delta y_{t,q}^{GB} - \Delta y_{t,q}^{BC} \right) \end{bmatrix} \\ = \alpha + \beta \text{policy news shock}_t + \varepsilon_{t+1}$$

TABLE G.1								
	Greenbook versus Blue Chip Forecasts							
Horizon (q):	0	1	2	3	4	5	6	7
Does Fed Relative Optimism Explain Monetary Shocks?								
β	1.19	1.01	1.21	1.00	1.20	1.89	3.10	1.88
	(0.55)	(0.74)	(0.69)	(0.77)	(0.90)	(1.10)	(1.14)	(1.64)
Ν	90	90	90	90	90	66	42	22
Does Fed Relative Optimism Reverse in Response to Monetary Shocks?								
β	-4.07	-0.45	-0.87	-0.46	-1.66	-3.58	-1.34	-3.04
	(1.80)	(1.53)	(1.30)	(1.08)	(1.11)	(1.31)	(1.30)	(2.44)
Ν	89	89	89	89	76	55	32	8
. <u></u>								

Back

	Estimates of Structural Parameters				
	Ψ	κζ x 10 ⁻⁵	ρ_1	ρ_2	
Baseline	0.68	11.2	0.90	0.79	
	[0.33, 0.84]	[0.0, 60.2]	[0.83, 0.96]	[-0.69, 0.89]	
No Information	0.00	3.4	0.90	0.79	
$(\psi = 0)$		[0.0, 24.1]	[0.83, 0.96]	[-0.69, 0.89]	
Full Information	0.99	563	0.90	0.79	
$(\psi = 0.99)$		[0, 12538]	[0.82, 0.96]	[-0.67, 0.89]	
Lower IES	0.67	13.7	0.90	0.79	
$(\sigma = 0.25)$	[0.25, 0.89]	[0.0, 94.6]	[0.83, 0.96]	[-0.69, 0.89]	
Higher IES	0.68	8.2	0.90	0.79	
$(\sigma = 1)$	[0.42, 0.81]	[0.0, 44.0]	[0.83, 0.96]	[-0.69, 0.89]	
No Habits	1.00	1000	0.90	0.79	
(b = 0)	[0.92, 1.00]	[0, 43236]	[0.83, 0.96]	[-0.69, 0.89]	

TABLE 4 Estimates of Structural Parameters

Back