PHILLIPS CURVE ESTIMATION: BASICS

Emi Nakamura Jón Steinsson

UC Berkeley

September 2021

BRIEF HISTORY OF THE PHILLIPS CURVE

- Phillips 58 points out empirical relationship between wage inflation and unemployment in UK 1861-1957
- Samuelson-Solow 60 popularize idea in US

- Phillips curve viewed as a menu of options
- Policy makers can lower unemployment if they are willing to tolerate more inflation

Friedman 68 and Phelps 67:

- Policymakers cannot exploit a stable Phillips curve forever
- Workers will demand wage increases in excess of expected inflation
- As inflation rises, expectations of inflation will rise
- Changes in expected inflation will shift the Phillips curve

FRIEDMAN AND PHELPS WERE RIGHT!

$$\pi_t = \beta E_t \pi_{t+1} + \kappa (\mathbf{y}_t - \mathbf{y}_t^n) + \eta_t$$

- Three drivers of inflation:
 - Expected inflation: $E_t \pi_{t+1}$
 - Output relative to potential: $y_t y_t^n$
 - Cost-push shocks: η_t
- Specific form above based on Calvo 83 sticky-price assumptions Details vary across specifications (e.g., sticky information yields *E*_{t-1}π_t)
- Structural equation originating from firm's price setting decision

$$\pi_t = \beta E_t \pi_{t+1} + \kappa (\mathbf{y}_t - \mathbf{y}_t^n) + \eta_t$$

Object of interest: Slope coefficient κ

 How much does an increase in "demand" / "tightness" / "output gap" affect inflation

$$\pi_t = \beta E_t \pi_{t+1} + \kappa (\mathbf{y}_t - \mathbf{y}_t^n) + \eta_t$$

Object of interest: Slope coefficient κ

 How much does an increase in "demand" / "tightness" / "output gap" affect inflation

Tricky identification issues:

- Expected inflation unobserved
- "Natural rate of output" (i.e., supply shocks) unobserved
- Cost push shocks (e.g., variation in desired markups) unobserved

All three may cause omitted variables bias

• Pre Friedman/Phelps Phillips curve: Change in output gap needed to change inflation

$$\pi_t = \mu + \kappa (\mathbf{y}_t - \mathbf{y}_t^n)$$

 Same is true for accelerationist Phillips curve (i.e., Phillips curve with adaptive expectations)

$$\pi_t = \pi_{t-1} + \kappa (\mathbf{y}_t - \mathbf{y}_t^n)$$

• Pre Friedman/Phelps Phillips curve: Change in output gap needed to change inflation

$$\pi_t = \mu + \kappa (\mathbf{y}_t - \mathbf{y}_t^n)$$

• Same is true for accelerationist Phillips curve (i.e., Phillips curve with adaptive expectations)

$$\pi_t = \pi_{t-1} + \kappa (\mathbf{y}_t - \mathbf{y}_t^n)$$

 Sargent 82: Hyperinflations end abruptly with little or no output cost Clear violation of aforementioned Phillips curves

GERMAN HYPERINFLATION

Fig. 2.4

Wholesale prices in Germany.

Source: Sargent (1982)

Nakamura-Steinsson (Berkeley)

- In Calvo model, perfectly credible, unexpected disinflation can occur without any effect on output gap
 - Expected inflation does all the work
- Theoretical victory: Potential explanation for Sargent facts

- In Calvo model, perfectly credible, unexpected disinflation can occur without any effect on output gap
 - Expected inflation does all the work
- Theoretical victory: Potential explanation for Sargent facts
- Empirical headache:
 - Movements in inflation potentially completely unrelated to output gap
 - Even if output gap moves during disinflation, not clear what fraction of disinflation was due to shift in expected inflation
- Measurement of expected inflation crucial but hard

- Estimation of Phillips curve slope also complicated by classic simultaneity problem
- Need to isolate demand variation to estimate slope
- Supply shocks yield "stagflation" (i.e., positive correlation between unemployment and inflation)
- Bias slope estimates towards zero (or "wrong" sign)

INFLATION EXPECTATIONS + SUPPLY SHOCKS

Phillips curve often pronounced dead

• Many economists think Phillips curve is an empirical disaster

• Prominent episodes:

- Missing inflation in late 1990s
- Missing disinflation in the Great Recession
- Missing reinflation in the subsequent recovery
- Missing disinflation in the COVID crisis
- Seems like inflation is always going missing...

MISSING INFLATION IN LATE 1990S

MISSING DISINFLATION IN THE GREAT RECESSION

MISSING REINFLATION SINCE GREAT RECESSION

- Are Phillips Curves Useful for Forecasting Inflation?
 - Answer: No
- Methodology:
 - Compare forecasts from Phillips curve models with "naive" no-change model
 - Metric of fit: root mean squared error (RMSE)
 - "Online" estimation using data from January 1959 onward

Naive model:

$$E_t \pi_{t+12}^{12} = \pi_t^{12}$$

Original Phillips curve:

$$E_t \pi_{t+12}^{12} = \beta (u_t - \bar{u})$$

NAIRU Phillips curve:

$$E_t \pi_{t+12}^{12} = \pi_t^{12} + \beta (u_t - \bar{u})$$

• Stock and Watson's (1999) NAIRU Phillips curve:

$$E_t \pi_{t+12}^{12} = \pi_t^{12} + \alpha + \beta(L)u_t + \gamma(L)(\pi_t - \pi_{t-1})$$

(Their nomenclature)

Why Use the NAIRU Phillips Curve?

Ratios of Errors of NAIRU and Naive Model* Forecasts of Inflation for 1984–99, Made With Alternative Indicators and Measures

Inflation Indicator	Inflation Measure [†]	Range of Ratio of NAIRU/Naive RMSEs**		
		Minimum	Maximum	
Unemployment Rate	PCE Deflator	1.02	1.34	
	CPI	.99	1.32	
	Core CPI	1.06	1.94	
Activity Index [‡]	PCE Deflator	1.04	1.23	
	CPI	1.06	1.32	
	Core CPI	1.33	1.81	

Stock and Watson (1999) NAIRU Phillips curve vs. Naive model with different lag lengths from 1 to 12 for both $\beta(L)$ and $\gamma(L)$.

Nakamura-Steinsson	(Berkeley)
--------------------	------------

WHY SO HARD TO FORECAST? (IN LEVELS)

WHY SO HARD TO FORECAST? (IN LEVELS)

Unomployment Pate (9/ of Labor Earon)

WHY SO HARD TO FORECAST? (IN CHANGES)

Chart 3 The Steep Negative Relationship in 1960-83 . . .

WHY SO HARD TO FORECAST? (IN CHANGES)

Chart 4 . . . Flattened in 1984–99

Nakamura-Steinsson (Berkeley)

FORECASTING AND THE PHILLIPS CURVE

- Theory does not suggest that the Phillips curve would necessarily be useful for forecasting
- Phillips curve is a supply curve
- Useful for forecasting only if (when) demand variation is dominant (and inflation expectation stable)
- Clearly not true in 1970s and 1980s
- Same as any other market
 - Supply curve for oil not necessarily useful to forecast price of oil

THREE STRANDS OF PHILLIPS CURVE LITERATURE

- 1. Aggregate Variation with Adaptive or Survey Expectations
 - Stock-Watson (2010, 2019), Ball-Mazumder (2011, 2019), Coibion-Gorodnichenko (2015)
- 2. Aggregate Variation with Rational Expectations
 - Gali-Gertler (1999), Sbordone (2002), Mavroeidis-Plagborg-Muller-Stock (2014)
- 3. Cross-Sectional Variation
 - Fitzgerald-Nicolini (2014), McLeay-Tenreyro (2019), Hazell-Herreno-Nakamura-Steinsson (2021)

- Has the Phillips curve flattened?
- Is there missing disinflation / reinflation?
- Does "anchoring" of inflation expectations explain stability of inflation?
- Is there a stable Phillips curve?

FLATTENING PHILLIPS CURVE

- Inflation fell and prices became more sticky (as menu cost model would predict)
- Inflation expectations became better anchored
 - Output gap and change in inflation expectations correlated in 1970s and 1980s (biased estimates of Phillips curve slope)
- Some other structural change to the economy

- To "see" the Phillips curve, must control for:
 - Changes in inflation expectations
 - Supply shocks
- Stock and Watson (2010):
 - The history of the Phillips curve "is one of apparently stable relationships falling apart upon publication."

• Empirical specification:

$$\pi_t = \pi_t^e + \alpha (\mathbf{u}_t - \mathbf{u}_t^*) + \epsilon_t$$

- Focus on post-1985 period
- Use "non-standard series":
 - Median inflation
 - Long-run inflation expectations
 - Short-term unemployment
- Ignore endogeneity

- Basic idea to get away from supply shocks
- More common to use core
 - Supply shocks important in food and energy
- Ball and Mankiw (1995):
 - Relative price changes (due to supply shocks) can affect aggregate inflation in a menu cost model
 - Firms in sectors with large shocks will adjust, while others will not
- Ball and Mazumder (2011, 2019): median inflation filters out movements in headline inflation due to large relative price movements in all sectors (not just food and energy)

MEDIAN INFLATION

Phillips Curve

- Literature uses various different "slack" measures
- Rationale for short-run unemployment:
 - Long-term unemployed are on the margins of the labor force
 - Don't put pressure on wages
- Largely co-linear with total unemployment prior to Great Recession
- Not so during Great Recession

(smaller rise results in smaller fitted fall in inflation)

SHORT-RUN UNEMPLOYMENT RATE

- Which inflation expectations should be used?
- Ball and Mazumder (2019) use long-run SPF inflation forecasts
- Doesn't New Keynesian model say one should use one-period-ahead inflation expectations?
- Can one just pick whatever one want's?
- We will come back to this (when discussing cross-sectional papers)

LONG-RUN INFLATION EXPECTATIONS

TABLE 1

AN EXPECTATIONS-AUGMENTED PHILLIPS CURVE, 1985-2015

 $\begin{tabular}{c} \hline \pi_t = \pi_t^e + \alpha(\overline{u}_{t-1}^{s,*} - \overline{u}_{t-1}^{s,*}) + \epsilon_t \\ \hline \alpha & -0.756 \\ 0.077) \\ DW & (0.077) \\ SE \ of \ Reg. & 0.383 \\ \hline R^2 & 0.824 \\ \hline \end{tabular}$

Note: OLS with Newey–West (1987) standard errors in parentheses. π_t is median CPI inflation, π_t^e is the average forecast of long-term CPI inflation from the Survey of Professional Forecasters, \overline{u}_{t-1}^s is the average of the short-term unemployment rate from t-1 to t-4, and \overline{u}_{t-1}^{s*} is the average of the natural rate of short-term unemployment from t-1 to t-4.

GOOD FIT!

Phillips Curve

GOOD FIT!

TABLE 2

STABILITY OF THE EXPECTATIONS-AUGMENTED PHILLIPS CURVE

	$\pi_t = \pi_t^e + \alpha(\overline{u}_{t-1}^s - \overline{u}_{t-1}^{s,*}) + \epsilon_t$		
	1985Q1–1997Q4	1998Q1-2007Q4	2008Q1-2015Q4
α	-0.702	-0.781	-0.795
	(0.094)	(0.228)	(0.109)
DW	1.492	1.043	1.286
SE of Reg.	0.361	0.436	0.353
\overline{R}^2	0.764	0.316	0.755
<i>p</i> -Value for stability		0.813	

Note: OLS with Newey–West (1987) standard errors in parentheses. π_t is median CPI inflation, π_t^e is the average forecast of long-term CPI inflation from the Survey of Professional Forecasters, \overline{a}_{t-1}^r is the average of the short-term unemployment rate from t - 1 to t - 4, and \overline{a}_{t-1}^{es} is the average of the natural rate of short-term unemployment from t - 1 to t - 4. The reported *p*-value is for a Wald test of the hypothesis that α is equal in the three subsamples.

• Anchored Expectations:

$$\pi_t^e = 2.5 + \epsilon_t$$

Backward-Looking Expectations:

$$\pi_t^e = \frac{1}{1 - \gamma^{40}} [(1 - \gamma)\pi_{t-1} + \gamma(1 - \gamma)\pi_{t-2} + ... + \gamma^{39}(1 - \gamma)\pi_{t-40}] + \epsilon_t$$

- Nested Specification:
 - Weighted average with weight λ
- Ball-Mazumder estimate this allowing for a break in λ
- Estimated break date is 1998Q1

TABLE 4

ANCHORED VS. BACKWARD-LOOKING EXPECTATIONS

$\pi_t^e = \lambda 2.5 + (1-\lambda) \frac{1}{1-\gamma^{40}} \left[(1-\gamma)\pi_{t-1} + \gamma(1-\gamma)\pi_{t-2} + \ldots + \gamma^{39}(1-\gamma)\pi_{t-40} \right] + \epsilon_t$				
	1985Q1–2015Q4 (with 1998Q1 Break in λ)			
$\lambda^{prebreak}$	0.067	0		
$\lambda^{postbreak}$	0.773	1		
γ	(0.066) 0.875	0.859		
DW	(0.018) 0.357	(0.017) 0.312		
$\frac{SE}{R^2}$ of Reg.	0.189 0.940	0.203 0.930		
$\frac{DW}{SE}$ of Reg. \overline{R}^2	0.557 0.189 0.940	0.31 0.20 0.93		

NOTE: NLLS with Newey–West (1987) standard errors in parentheses, π_t^F is the average forecast of long-term CPI inflation from the Survey of Professional Forecasters, and π_t is median CPI inflation. The break date of 1998Q1 is the quarter that produces the largest Wald statistic for the hypothesis that $\lambda prebreak \geq_prostbreak$.

ANCHORING OF EXPECTATIONS

..... Fitted Values with Pre- and Postbreak Weights on Anchored Expectations set at 0 and 1, respectively

COUNTERFACTUAL WITH NO ANCHORING

- Focus on "missing disinflation" during Great Recession
- Argue that population explanations insufficient
 - Anchored inflationary expectations
 - Movements in natural rate
 - Flattening of the Phillips curve
- New explanation:
 - Household inflation expectations rose in 2009-2013
 - If firm's expectation the same, this can explain missing disinflation

$$\pi_t = \beta E_t \pi_{t+1} + \kappa (\mathbf{y}_t - \mathbf{y}_t^n) + \eta_t$$

Baseline assumptions:

• Output gap measure: Unemployment rate

$$y_t - y_t^n = u_t$$

(Ignore natural rate u_t^n)

Expectations of inflation: backward looking

$$E_t \pi_{t+1} = \frac{1}{4} (\pi_{t-1} + \pi_{t-2} + \pi_{t-3} + \pi_{t-4})$$

(Ignore discounting: $\beta = 1$)

$$\pi_t - E \pi_{t+1}^{\mathsf{Back}} = \kappa u_t + \eta_t$$

- Estimate by OLS for sample 1960Q1-2007Q4
 - Implicitly assuming that $\eta_t \perp u_t$ (i.e., ignoring supply shocks)
- Consider alternative specifications later
- See whether Great Recession "sticks out"

MISSING DISINFLATION: CPI

Panel A. CPI inflation and US unemployment

Source: Coibion and Gorodnichenko (2015)

Nakamura-Steinsson (Berkeley)

MISSING DISINFLATION

Panel B. CPI inflation and predicted inflation from the Phillips Curve

FIGURE 1. THE MISSING DISINFLATION

Source: Coibion and Gorodnichenko (2015)

Source: Coibion and Gorodnichenko (2015)

- Survey expectations
- CBO estimates of natural rate
- Oil shocks

Help address alternative explanations:

- Anchoring of inflation expectations
- Movements in natural rate
- Role of supply shocks

Panel E. SPF inflation (CPI) forecasts Panel F. Controlling for oil prices 4 partial out oil price changes 09Q4 4 no03 1183 2 2 $E\pi_{\rm t}^{\rm SPF}$ ${\sf E} \pi_{\rm t}^{\rm BACK}$ 0 _____Q_QQ ,⁺ 2 -2 0 1002 F. -4 _4 0.00 -6 -6 3 Δ 5 6 8 9 10 11 -2 0 2 6 Unemployment rate, Unemployment rate partial out oil price changes

Source: Coibion and Gorodnichenko (2015) – SPF forecast over next four quarters.

MISSING DISINFLATION: NATURAL RATE

Source: Coibion and Gorodnichenko (2015)

Nakamura-Steinsson (Berkeley)

MISSING DISINFLATION: NATURAL RATE

Panel B. Changes in natural rate of unemployment needed to explain missing disinflation

- Expectations typically measured by SPF forecasts
- But is this the way to go?
- Perhaps firm expectations exhibit similar biases to household expectations
- Show that household expectations (Michigan survey) have quite different properties from SPF
 - Overreact to gasoline prices

Panel A. Inflation expectations for different economic agent

Source: Coibion and Gorodnichenko (2015)

Panel B. Phillips Curve with household inflation expectations

Source: Coibion and Gorodnichenko (2015)

Three differences versus SPF:

- No evidence of flattening
- Flatter throughout
- No evidence of missing disinflation!

- Large variation across sectors in correlation between inflation and cyclical component of real activity
- Stronger correlation for well-measured, domestic components
- In particular housing
- Median inflation measure used by Ball-Mazumder 19 ends up placing a lot of weigh on housing

- Inflation measure for owner-occupied housing changed in 1983
 - pre-83: Changes in house prices and mortgage costs (interest rates)
 - o post-83: Changes in rents
- Makes a BIG difference for properties of CPI
- CPI Research Series uses modern methodology back in time (as do PCE and GDP deflators)

WHAT IF WE USE OLD METHOD FOR RECENT PERIOD?

Nakamura-Steinsson (Berkeley)

Sept 2021 68/68