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1 Introduction

Roughly two thirds of the world’s population living below the poverty line work in agri-
culture (Castaneda et al., 2016). Policies aimed at raising agricultural productivity, such as
programs providing access, training and subsidies for modern inputs and production tech-
niques, have been a centerpiece in the fight against global poverty. To inform these poli-
cies using rigorous evidence, much of the recent literature uses randomized control trials
(RCTs) or natural experiments to generate exogenous variation in policy exposure across
households or local markets. While rightly credited for revolutionizing the field of devel-
opment economics, field and quasi-experiments often face the well-known limitation that
their estimates may not speak to the broader general equilibrium (GE) effects that emerge
once policies are scaled up to a broader segment of the population.

For example, a small-scale RCT of a fertilizer subsidy program may find that farmers
use more fertilizer, see higher yields, and enjoy higher revenues as a result. However, when
this program is implemented at scale, output prices may fall, input prices may rise, and
consumption bundles may shift. Though it is understood in a qualitative sense that this will
alter treatment effects, quantification and analysis of such differences have largely remained
outside the scope of policy evaluations in this space.1 How far off are small-scale experi-
mental estimates from the ultimate full-scale policy impacts they are designed to inform?
To what extent do GE effects alter the distributional implications at scale? For which types
of markets and households are GE forces most pronounced in shifting impacts at scale?

To shed light on these questions, we develop a theoretical framework and practical toolkit
for researchers conducting small-scale agricultural experiments who wish to quantify the
implied impacts of these policies at scale. We develop a rich but tractable model for quan-
tifying GE policy counterfactuals at the level of households in agricultural settings, which
we combine with estimates from local experiments and rich administrative microdata. We
then evaluate the local versus at-scale implications of one of the most widespread and costly
agricultural policies in low-income countries: a subsidy to modern inputs, including chem-
ical fertilizers and hybrid seed varieties. We do so in the context of Uganda, quantifying

1An earlier literature in agriculture and development used computable general equilibrium (CGE) analysis
to quantify GE implications. However, these studies often rely on less well-identified moments for parameter
estimation and largely abstract from modeling the granular economic geography of farm production, consump-
tion and trade costs that underlies the propagation of shocks and their incidence in GE. See e.g. de Janvry and
Sadoulet (1995) for a review of this literature.
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how the average treatment effect and distributional implications of the subsidy differ, for the
same group of households, if the policy is scaled up from a small-scale pilot to the national
level.

To achieve this, we must overcome two challenges that have limited the extent to which
quantitative models in trade and spatial economics can speak to the results from small-scale
agricultural experiments in low-income countries. The first is that models of a national
or regional economy frequently feature a level of aggregation that is much higher than the
individual household, the common unit of analysis in small-scale experiments. The second
is that these models typically abstract from some features of the agricultural setting that are
critical mediators for the propagation of shocks in GE. Motivated by cross-country trade
in manufacturing, a common assumption is differentiation of goods by origin in a setting
where all markets trade with each other, precluding a policy shock from changing which
markets are connected through trade.2 Further, trade costs are typically assumed to be ad-
valorem (“iceberg”), implying complete pass-through of local price changes across trading
pairs, an assumption that is not supported empirically in our setting. To bridge these gaps,
our theory features individual households that populate the economy, where farmers trade in
homogenous crops within and across markets subject to potentially both additive (per-unit)
and multiplicative (ad valorem) trade frictions.3

These features are fundamental for modeling a granular and realistic economic geogra-
phy that underlies the propagation of shocks across markets and households when an agri-
cultural policy is scaled up to a national level. However, as we show, incorporating these
features disrupts the convenient properties of “structural gravity,” including the use of “exact
hat algebra” as the conventional solution method for counterfactual analysis in the literature
(e.g., Costinot and Rodrı́guez-Clare (2014)). After laying out the model, we propose a new
quantitative approach in this environment that relies on rich but widely available microdata
on household location, production and consumption. We first show that we can use infor-
mation on trade costs between and within markets in combination with data on household

2Notable exceptions are Costinot and Donaldson (2016) and Sotelo (2020). Since the additional data pro-
posed to solve these models (on either production possibility frontiers or farm-gate prices) are rarely available,
especially at the household-level, we propose a new solution method that unlocks the scope for counterfactual
analysis in this environment.

3In addition to these features, we also allow for non-homothetic preferences, so that food price changes
can have distributional implications beyond affecting household incomes, and technology choice in crop pro-
duction similar to Farrokhi and Pellegrina (2022), such that the adoption of modern inputs can more flexibly
affect the production function with respect to other inputs.
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expenditure shares and agricultural production quantities to set up a price discovery prob-
lem. This entails solving for equilibrium farm-gate prices and trade flows that rationalize
the observed consumption and production decisions given a graph of trade costs connecting
households and markets. In turn, with knowledge of farm-gate prices and trade costs, we
can then follow an approach that combines exact hat algebra with mixed-complementarity
programming to solve for the counterfactual equilibrium. This approach has several advan-
tages. First, it allows us to solve the model without imposing structural gravity and, yet,
without introducing stark new data requirements – such as requiring data on the full set of
initial farm-gate prices. This includes solving for which trading pairs become active and
the direction of trade, adjustments on the extensive margin that are typically assumed to be
exogenous. Second, from a computational perspective, the solution method is capable of
handling high-dimensional GE counterfactuals at the level of individual households.

We then describe the use of small-scale experiments and administrative microdata to
quantify the model. To estimate the key demand and supply elasticities, we use exogenous
variation in consumer and producer prices from RCTs (Bergquist and Dinerstein, 2020,
Carter et al., 2020). On the supply side, we also make use of a natural experiment that ex-
ploits variation in how changes in crops’ world market prices propagate to local markets as a
function of trade costs to the nearest border crossing. To calibrate trade costs, we make use
of estimates from Bergquist et al. (2024), using Ugandan market and trader survey micro-
data to provide information on market-to-market trade flows and crop prices at origin and
destination. Finally, we use Ugandan administrative data on household location, production
and consumption to calibrate the model to the roughly 4.5 million households who populate
the country.

We use the quantified model to estimate the local and at-scale effects of a 75% cost
subsidy for modern inputs in Uganda, including chemical fertilizer and hybrid seeds. For
each of the roughly 4,500 rural parishes in Uganda, we randomly select 2.5 percent of the
local population (a sample of roughly 100,000 households nationwide). We estimate two
counterfactuals for these households. First, we solve for the household’s “local effect:” the
counterfactual changes in household welfare (real income in our model) due to an inter-
vention that targets the subsidy only at the randomly selected households in a single parish,
keeping the rest of Uganda unexposed – akin to implementing roughly 4,500 separate RCTs.
Second, we estimate the household’s “at-scale effect:” the welfare change experienced by
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the same household under an intervention that scales the subsidy to all rural households
in Uganda. We find that the average effect of the subsidy at small scale, pooling all local
randomized interventions, is a 4.4 percent increase in household real income. This is driven
by farmers saving on costs for the subsidized inputs and using more of them, while output
and other input prices remain mostly unaffected. However, at scale we find that the welfare
effect changes by as much as + or -5 percentage points across households. Over a third of
households experience a change greater than 50 percent of their local effect. On average, the
at-scale intervention produces a smaller welfare effect by about 20 percent (a 3.6 percentage
point gain). However, not all households are worse off at scale: about 20 percent experience
at-scale effects that exceed their gains from the local intervention.

We document important distributional implications underlying these comparisons. In
the local intervention, land-rich farmers experience an 8 percent real income gain, while
land-poor farmers experience only a 2.5 percent gain. In contrast, we find that the at-scale
intervention is significantly less regressive, as land-poor farmers do better at scale (their
gains increase from 2.5 to 4 percent) while the land-rich fare worse (their gains drop from
8 to 6 percent). This is driven mostly by income effects rather than differential price index
changes. Because the local subsidy increases returns to land without discernible effects on
output or input prices, income gains are concentrated among land-rich households – who,
in addition, also use modern inputs more intensively at baseline. At scale, however, GE
effects on average decrease the local producer price index and increase the price of local
labor. The resulting reduction in land revenues and increase in labor compensation benefit
households with higher initial reliance on wage labor relative to the land-rich. GE forces
therefore reduce the regressivity of the policy.

After documenting these changes in impact at scale, we use our framework to provide
additional insights for research at the intersection of agriculture and development. A grow-
ing literature employs “randomized saturation designs” that randomize not only treatment
across individuals, but also the saturation rate across geographic areas (“clusters”) (e.g.
Baird et al. (2011), Burke et al. (2019), Egger et al. (2022)). Due to constraints on statis-
tical power and feasibility of implementation, such designs often limit the comparison to
two discrete levels of saturation, implemented within clusters that are typically villages or
groups of villages.4 To identify the impact of policies at scale, one must thus typically ex-

4Variation in saturation can also stem from unit-level randomization and their proximity in space. See,
e.g., Egger et al. (2022) who combine both types of variation.
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trapolate from these discrete points of saturation, subject to two assumptions: that GE forces
are linear with respect to changes in the saturation rate; and that the GE forces experienced
at the level of local clusters are representative of the effects of saturation at a broader geo-
graphical scale (e.g., nationwide). We assess these assumptions by exploring how welfare
implications evolve as a function of saturation rates, and at different geographical scales.
At the nationwide level, we start with the local intervention that treats 2.5% of farmers in
each parish, and then estimate how treatment effects among that original sample of farm-
ers evolve as the program is sequentially scaled up in steps of 10% of the remaining rural
Ugandan population. We find that the average gains decline close to linearly as a function
of scale-up to the rest of the country, providing some reassurance about the lessons that can
be drawn from designs relying on two discrete saturation rates.

However, our results also suggest some caution about these designs. Experiments typi-
cally randomize saturation at some lower, sub-national level. We find that the geographical
scale of saturation meaningfully changes conclusions about the policy’s impact. In our set-
ting, increases in saturation in steps of 10% of the population within subcounties (a larger
than typical but feasible unit for randomized saturation), lead to almost no change in the
average welfare gains, even at 100% saturation within the subcounty, and different distribu-
tional implications compared to the intervention at national scale. We document that this
is not due to the absence of GE forces under subcounty saturation, but rather due to their
different nature compared to at national scale. These findings suggest some caution when
extrapolating from GE effects observed within smaller geographic units to the effects at a
broader scale of program rollout.

We proceed to conduct variance decompositions to identify which household and mar-
ket characteristics are the key drivers of changes in the policy’s impact at scale relative
to the local intervention. We find that initial household land income shares, which are at
the center of the distributional changes discussed above, are also the single most important
mediating factor explaining the extent of changes in the effect at scale, followed by initial
revenue shares of maize – the main staple crop in our setting and which also has a relatively
high average use of modern inputs at baseline – and the degree of market remoteness. We
then use these insights to understand how well the current body of agricultural RCTs map to
their likely impacts at scale. We conduct a meta-analysis of registered agricultural RCTs in
Sub-Saharan Africa over recent decades, documenting the prevalence of the key drivers of
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differences at scale across the study sites and overlaying the predicted changes in treatment
effects at scale. We also report computations related to publication bias and show that find-
ings from local experiments could affect learning about policy impacts disparately among
land-poor vs. land-rich households: namely, under-stating effectiveness for the poor, but
over-stating for the rich.

Finally, we present additional sensitivity and model validation exercises. These high-
light the important role that RCTs and natural experiments play in identifying impacts in a
given policy environment. They also point to some important limitations of our approach
and possible extensions to address some of these in other policy contexts. For example,
our baseline model does not allow the direct effect of the subsidy on yields to vary with
the scale of implementation. However, there can be scenarios in which these effects either
increase or decrease as a function of the scale of policy implementation.5 We follow recent
advances from modeling agglomeration and congestion effects in spatial economics to ex-
tend our framework and then document the implications for changes in impact at scale in
such scenarios.

We proceed as follows. Section 2 lays out the model and solution method. Section 3
describes the use of local experiments to estimate the key supply and demand parameters.
Section 4 describes the use of administrative microdata to calibrate a granular economic ge-
ography. Section 5 presents the counterfactual analysis comparing local and at-scale policy
impacts. Section 6 uses the framework to derive additional insights for research. Section 7
presents sensitivity and validation analyses and concludes with a discussion of the limita-
tions and potential extensions of our approach.

2 Model and Solution Method

We present the model in three layers. First, we introduce the farmers’ decisions about con-
sumption and production, taking all prices as given. Second, we describe how farmers trade
in village markets and how farm-gate prices are determined, taking village market prices as
given. Lastly, we study how village prices are determined through trade with other village
markets, cities, and the rest of the world. After laying out the model, we develop the solu-
tion method to quantify policy counterfactuals given a rich but realistic data environment.

5Complementarities at scale could arise from learning from others. Conversely, changes in the imple-
mentation protocols or oversight when scaling up could result in lower uptake or usage (Muralidharan and
Niehaus, 2017).
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Throughout, we provide intuition and discuss comparative statics with a focus on our ap-
plication to policies subsidizing the use of modern inputs. We provide proofs and model
extensions in Appendix 5. To sharpen the exposition, we present the model here using the
same functional forms for preferences and technology that we use in the counterfactual anal-
ysis, while the Technical Appendix provides a more general version that can be adapted to
other contexts.

2.1 Farmer Decisions

Farmers consume a bundle of homogeneous crops and a bundle of differentiated manufac-
turing products. At the farm-gate, price pk refers to good k indexing crops or manufacturing
products.6 Farmers have nested preferences. At the upper nest, farmers decide how much
to consume of the crop and manufacturing bundles subject to non-homothetic Stone-Geary
preferences, so that farmers must consume a minimum amount of the crop bundle C̄A for
utility to be positive. At the lower nest, both the crop bundle and the manufacturing bundle
are CES-aggregates with elasticities of substitution σ (crop bundle) and η (manufacturing
bundle). The expenditure share on good k is then

ξk =


(bkpk)1−σ

P 1−σ
A

∗
(
ζ + (1− ζ)PAC̄A

I

)
for crop k

(bkpk)1−η

P 1−η
M

∗ (1− ζ)
(

1− PAC̄A
I

)
for manufacturing product k

,

where I is income, PA =
(∑

k (bkpk)
1−σ) 1

1−σ is the price index of the crop bundle, and

PM =
(∑

k (bkpk)
1−η) 1

1−η is the price index of the manufacturing bundle. The term ζ +

(1 − ζ)PAC̄A
I

is the share of expenditure allocated to the crop bundle, while (bkpk)1−σ

P 1−σ
A

is

the share of that expenditure allocated to crop k. Similarly, (1 − ζ)
(

1− PAC̄A
I

)
is the

share of expenditure allocated to the manufacturing bundle and (bkpk)1−η

P 1−η
M

is the share of that
expenditure allocated to manufacturing product k. The term bk is a demand shifter for good
k. Holding prices constant, as income increases farmers reallocate their expenditure from
the crop bundle to the manufacturing bundle. As income grows very large, preferences
approach the Cobb-Douglas form with share ζ ∈ (0, 1) allocated to the crop bundle.

On the production side, farmers grow a bundle of crops using land, labor, and intermedi-
ate inputs. When producing crop k a farmer can choose between two techniques indexed by
ω: a traditional technique using traditional inputs (land and labor), and a modern technique

6We show below how farm-gate prices are determined in equilibrium but we can understand pk as the
shadow price of good k faced by a farmer even if it is not traded (i.e., under subsistence farming).
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that additionally requires an intermediate input such as chemical fertilizer or hybrid seeds.
The production function is Cobb-Douglas with crop-by-technique-specific cost shares αk,ω
for intermediates, βk,ω for labor, and δk,ω = 1− αk,ω − βk,ω for land. Letting pn and pl de-
note a farmer’s shadow prices for the intermediate input and labor, respectively, the shadow
return for an effective unit of land allocated to crop k with technique ω, denoted as rk,ω, is
determined from the condition that price equals unit cost,

pk = a−1
k,ωr

δk,ω
k,ω p

αk,ω
n p

βk,ω
l , (1)

where ak,ω is a productivity shifter.
A farmers’ optimization problem entails maximizing total land returns,

∑
k,ω rk,ωZk,ω,

by choosing the effective units of land cultivated with crop k and technique ω, Zk,ω for all
crops and techniques. We assume that the marginal productivity of physical units of land
allocated to a crop and technique is decreasing, so that the marginal effective unit of land
falls with a larger physical plot allocated to a crop-technique. In particular, the farmer’s
optimization problem is constrained by the following set of feasible allocations of effective
units of land: ∑

k

(∑
ω

Z
κ/(1−κ)
k,ω

)κ−1
κ

µ
1−µ


1−µ
µ

≤ Z,

whereZ is the farmer’s endowment of physical land.7 Farmers can substitute between crops
with elasticity µ in the upper nest and between techniques within a given crop choice with
elasticity κ in the lower nest.8 The solution to the farmer’s optimization problem is charac-
terized by the share of land income coming from crop k and technique ω for all crops and
techniques:

πk,ω ≡
rk,ωZk,ω∑
k,ω rk,ωZk,ω

=
rκk,ω∑
ω r

κ
k,ω

∗
(∑

ω r
κ
k,ω

)µ/κ∑
k

(∑
ω r

κ
k,ω

)µ/κ .
The first term on the right captures the share of land income coming from techniqueωwithin
total returns from crop k, while the second term captures the share coming from crop k in

7We abstract from trade in land. This is consistent with evidence that land markets in sub-Saharan Africa
and other low-income regions are generally thin, with sparse rental markets and limited land transactions
(Acampora et al. (2022); Holden et al. (2010)).

8This is a nested constant elasticity of transformation production function as in e.g. Powell and Gruen
(1968). The same expression can be obtained from an extension of the Roy-Frechet microfoundations in
Costinot and Donaldson (2016) and Sotelo (2020), but now allowing for a nested Frechet structure, as in
Farrokhi and Pellegrina (2022).
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the bundle of all produced crops. The land return per unit of physical land is

r =

∑
k

(∑
ω

rκk,ω

)µ/κ
1/µ

,

and physical output of crop k and technique ω is

qk,ω =
πk,ωrZ

δk,ωpk
.

The numerator is the value of the output of this crop-technique accruing to land, and the
land cost share in the denominator scales land value to the total value of that crop-technique.
Dividing by the farm-gate price of crop k transforms value into a physical quantity. Lastly,
farmer income is I = plL + rZ, where plL is income from the labor endowment, and rZ
is income from the land endowment.

Considering the effects of a subsidy for modern intermediate inputs, we can characterize
farmer adjustments through the implied changes in land returns given the wage and the
output price. First, holding the land allocation fixed, the subsidy increases land returns as
long as the modern technique is used. Second, within the land allocated to a given crop, the
subsidy induces farmers to shift land to the modern technique. Finally, as different crops
may require more or less use of modern intermediates relative to land, captured byαk,ω/δk,ω,
land returns increase more for some crops than others, inducing farmers to allocate more
land to intermediate-intensive crops. These changes in land allocation further increase land
returns and farmer income.

2.2 Local Markets, Trade Costs and Price Determination

After introducing how output prices and wages affect farmers’ consumption and production
decisions in the previous section, we now discuss how these farm-gate prices are determined
by farmers’ trading behavior in the village market. We define a village as a group of farmers
J(m) who have access to a local market m where crops, manufacturing products and labor
(all referred to as “goods” of type g below) are traded. We assume that all local trade is
conducted on the village market. We index a farmer by subscript i, such that farmer i’s land
endowment isZi, for example. Trade in good g from farmer i to marketm is subject to trade
costs which stand in for various frictions to trade across space, including of course physical
transportation costs. Trade costs can have both an additive component, tim,g, tmi,g > 0,
and an ad-valorem (iceberg) component, τim,g, τmi,g > 1: tim,g (tmi,g) is the trade cost for
farmer i when selling (buying) a unit of good g to (from) market m, while τim,g (τmi,g) is
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the number of units of good g that farmer imust ship (purchase) for one unit to arrive at the
destination. Additive trade costs are costs per unit shipped (e.g., per sack of maize), while
iceberg trade costs scale with the value of the goods.9

There are three cases for how farm-gate prices and market prices are related depending
on the direction of trade in a good. First, if farmer i buys good g from the market, she incurs
trade costs from market to farm-gate, and her farm-gate price is pi,g = τmi,gpm,g+tmi,g. Sec-
ond, if farmer i sells good g at the market, her farm-gate price is pi,g = (pm,g− tim,g)/τim,g.
Lastly, farmer i can decide not to trade good g on the market, neither as seller nor as buyer.
She is then in autarky (or subsistence) in this specific good and her farm-gate price must
lie between the seller and buyer prices, pi,g ∈ ((pm,g − tim,g)/τim,g, τmi,gpm,g + tmi,g). The
specific (shadow) price of good g in this interval is determined by equalizing own production
and consumption of good g in equilibrium.

To make the notation more compact, we use i and j to index “agents,” which include
farmers and markets. Denoting the trade flow in quantity of good g from agent i to agent j
with xij,g, we can then capture the previous three cases by

τij,gpi,g + tij,g ≥ pj,g ⊥ xij,g, ∀i, j.

The symbol ⊥ between a weak inequality and a variable indicates that the weak inequality
holds as equality if the variable is strictly positive. Thus, if agent j buys g from i then
xij,g > 0, implying that the price j faces is given by agent i’s price plus trade costs.10 If
xij,g = xji,g = 0, the agents are not trading good g and we only know that i’s and j’s prices
must be within intervals determined by trade costs and each others’ prices.

Before introducing trade across markets to close the full setup of the model below, we
can already see a rich set of farmer adjustments (within markets for now) to policy shocks
that our environment is able to capture. Given homogeneous goods and trading frictions, a
subsidy for intermediate inputs can lead to changes in farmers’ trading behavior. Suppose
the farmer initially buys a crop k. Now, the subsidy lowers production costs. The farmer
might stop buying and even start selling the crop. Similarly, if the farmer is initially in
autarky (subsistence) for crop k, then she might start selling it. In this sense, our model

9Additive trade costs are in units of a “transportation good” (e.g., fuel). We assume that this good is only
imported and that there are no trade costs for this good, so that all agents can access it at the same price.
Setting this price to one by choice of numeraire, tij,g becomes the additive trade cost from i to m for good g.
We thus model trade costs as exogenous (unaffected by GE price adjustments).

10xij,g > 0 implies xji,g = 0, since otherwise the expression above implies τji,gpj,g + tji,g = pi,g , which
cannot simultaneously hold with τij,gpi,g + tij,g = pj,g if any of the trade costs between i and j are positive.
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is able to capture the extent to which policies shift farmers out of subsistence farming and
into market sales. Furthermore, additive trade costs also change the degree to which a price
shock passes through to farmers. Since the proportion of the farm-gate price that covers
additive trade costs does not scale with the price, the pass-through of price shocks will be
incomplete, leading to weaker effects of the subsidy for remote farmers. These features we
describe here within markets will also carry over to adjustments in cross-market trading
connections, to which we turn below.

2.3 Urban Centers, Foreign Markets and the Trade Network

We now introduce urban centers and the rest of the world, as well as how trade patterns
connecting these and rural villages determine market-level prices. Given our focus on the
effects of agricultural policies, we follow a simple but standard setup for the urban sector.
Each urban center (city) is populated by a representative household h. Preferences remain
as described above. On the production side, each urban household is endowed with labor
units Lh and produces a differentiated manufacturing product g(h). The manufacturing
technology is linear in labor, so that the quantity of manufacturing product g(h) produced
by urban household h is ahLh,where ah is a positive constant. Given that urban labor supply
is fixed, we can treat ahLh as the urban household’s endowment of manufacturing product
g(h). The urban household’s income is Ih = ph,g(h)ahLh, where ph,g(h) is the price for urban
household h of manufactured good g(h) (i.e., its own manfacturing product variety).

The final type of agent we need to introduce is what we call Foreign, indexed by F ,
which stands for the rest of the world. Foreign produces manufacturing product g(F ), as
well as crops and the intermediate input. We assume that our model economy, Home, is
“small” relative to Foreign. Thus, agents in Home can buy or sell any amount of crop k
at exogenous price p∗F,k at a border crossing with Foreign. Similarly, agents in Home can
buy the Foreign manufacturing product at world-market price p∗F,g(F ) at a border crossing
with Foreign.11 In turn, Foreign’s demand for the manufacturing good produced by urban
household h is such that the value of exports of good g(h) is

XF,g(h) = DF,g(h)p
1−η
F,g(h),

where DF,g(h) is some non-negative constant.
For intermediate inputs, we assume that they are imported from Foreign at exogenous

11An agent buying or selling a good from Foreign would also pay the trade costs between their place of
residence and the border.
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prices pi,n that farmer i pays for the input. This provides the flexibility to consider counter-
factuals in which arbitrary subsets of farmers experience declines in fertilizer prices through
the implementation of a government program or RCT.12

We allow for trade across markets on a fully connected graph, which includes border
crossings with Foreign. There is an additive cost tmm′,g and an ad-valorem cost τmm′,g as-
signed to each direct road connection or border crossing between two markets m and m′.
The trade costs between any arbitrary two markets can then be computed from the addi-
tive and ad-valorem trade costs along the lowest cost sequence of markets that are directly
connected by a road or by a border crossing in the case of Foreign.

To illustrate how this works across rural markets, consider the case in which there are
only additive-trade costs. In this case, if farmer i in market m imports crop k from market
m′, her price must be

pi,k = pm′,k +
∑

m′′,m′′′∈{m′→m}

tm′′m′′′,k + tmi,k, (2)

where {m → m′} indicates the sequence of markets that is the lowest cost route between
market m′ and farmer i’s market m, while tmi,k covers the trade cost from market m to
i’s farm gate. Since agents can always export a crop to Foreign or import a crop from
Foreign, their export price cannot fall below p∗F,k net of any costs between farm gate and
border, while their import price cannot exceed p∗F,k plus trade costs from the border. In
this sense, p∗F,k provides an upper bound for any agent’s sale price of crop k and a lower
bound for the purchase price. The marketm price for crop k within this interval depends on
whether the market as a whole imports/exports the crop from/to other domestic markets or
Foreign, in the same way in which farm-gate prices depend on the direction of trade between
farm and market. In equilibrium, this price is therefore a function of the difference in local
consumption and production (excess demand), and the market’s access to other markets for
import/export (remoteness).

Following the convention in the trade literature, we assume that trade in manufacturing
incurs iceberg trade costs only (i.e., τij,g ≥ 1 and tij,g = 0 for all i, j and all manufacturing
goods g). Further, we assume that costs of selling or hiring labor across markets or with
Foreign are prohibitively high. While we thus abstract from commuting and migration in

12By assuming that agricultural inputs are all imported, we focus on the impact of input subsidies on farmers
and ignore potential knock-on effects on domestic production of those inputs. In the Ugandan case, fertilizer
is purely imported while hybrid seeds are mostly imported (IFDC, 2014).
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our application, the model can readily incorporate it (see Appendix 5.C).13

2.4 Equilibrium

In equilibrium, farmers and urban households maximize utility taking prices as given, prices
on the production side are subject to no-arbitrage conditions given trade costs within and
between markets, and all markets clear. To formalize the definition of the equilibrium, we
introduce excess demand function χi,g ({pi,g} ;Wi,g) to capture the difference between the
value of demand and supply of good g for agent i (see Appendix 5.A for detailed expres-
sions). The function’s arguments are the vector of endogenous prices {pi,g} and the vector
of exogenous variables

Wi,g =
{
Li, Zi, {ai,g,ω}, bi,g, {αi,g,ω}, {βi,g,ω}, p∗i,n, ah

}
.

The equilibrium is a set of prices, {pi,g} and trade flows {xij,g} measured in quantities at
the destination, such that excess demand is equal to the difference in the value of imports(∑

j xji,g

)
and exports

(∑
j τij,gxij,g

)
for each agent i and good g,

χi,g ({pi,g} ;Wi,g) = pi,g

(∑
j

xji,g −
∑
j

τij,gxij,g

)
∀i, g, (3)

and no-arbitrage conditions hold for all goods g,

τij,gpi,g + tij,g ≥ pj,g ⊥ xij,g, ∀i, j. (4)

Due to our assumption that crops are homogeneous goods, the direction of trade is de-
termined in equilibrium, so that prices and trade flows must both be part of the equilibrium
definition. This stands in contrast to work-horse models in international trade or economic
geography, which make assumptions to ensure that the direction of trade is predetermined
(e.g., by assuming goods are differentiated by origin of production), and a set of prices is
sufficient to characterize an equilibrium. Here we need to keep track of a much larger set of
equilibrium variables, as well as devise a new solution method to simulate policy interven-
tions using our the model.

2.5 Solution of Policy Counterfactuals

We are interested in solving for counterfactual equilibrium outcomes due to policy inter-
ventions. Policy interventions can be captured by changes in the vector of exogenous vari-

13Meaningful migration responses have not been found empirically in the context of the typical agricul-
tural policies we consider here (e.g. Huntington and Shenoy (2021)), or in the context of broader shocks to
agricultural productivity due to extreme weather events (e.g. Emerick and Burke (2016)).
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ables Wi,g or trade costs tij,g and τij,g for some set of agents, chosen by the policymaker or
researcher. Examples could be productivity shocks (ai,g,ω or ah), subsidies on modern in-
termediate input prices (p∗i,n), land reform (Zi), or infrastructure policies (tij,g and/or τij,g).
While our model thus allows for different types of interventions, we focus our exposition
here on a change in the exogenous price of intermediates, p∗i,n, consistent with the input
subsidy we implement in the application below. The counterfactual equilibrium consists
of a new set of prices

{
p′i,g
}

and trade flows
{
x′ij,g

}
which satisfy the equilibrium condi-

tions above. Letting x̂ = x′/x be the proportional change of any variable x from the initial
to the counterfactual equilibrium denoted with x′ (using ‘hat notation’), we can write the
conditions for the counterfactual equilibrium as

χi,g

(
{p̂i,gpi,g} ; Ŵi,gWi,g

)
= p̂i,gpi,g

(∑
j

x′ji,g −
∑
j

τij,gx
′
ij,g

)
∀i, g, (5)

τij,gp̂i,gpi,g + tij,g ≥ p̂j,gpj,g ⊥ x′ij,g, ∀i, j. (6)

The change in the price of the intermediate input, p̂∗i,n, leads to changes in land returns,
r̂i,k,ω, depending in part on the extent to which farmer i uses intermediates to produce crop
k with technique ω. Changes in land returns feed into the excess demand functions χi,g(•)
through changes in farmers’ production choices, while the no-arbitrage conditions continue
to hold in the counterfactual equilibrium. All prices, p̂i,g, adjust to bring the economy back
to equilibrium.

To solve systems such as this, the literature in international trade typically applies a
method called ‘exact hat algebra’ (Dekle et al., 2007). The idea is that once the endogenous
variables in a system of equations can be written entirely in hat notation, the researcher
can compute counterfactual equilibria by solving for a vector of endogenous price changes
without having to recover the vector of initial price levels and unobserved fundamentals
such as farmers’ productivities or preference shifters. The conventional assumptions about
the manufacturing sector that we have invoked here, specifically ad-valorem trade costs and
differentiated varieties across origins, imply that the counterfactual equilibrium conditions
for this sector satisfy the requirements for solving with exact hat algebra.14

In contrast, the agricultural sector features homogeneous goods such that prices are de-
14For more details on how we can use exact hat algebra to solve for the counterfactual equilibrium in the

manufacturing sector see Technical Appendix.



15

termined in combination with the direction of trade, which can change in the counterfactual
equilibrium. Additionally, allowing for additive trade costs leads to a pass-through that is
both imperfect and a function of the initial level of prices. Formally, we can directly ob-
serve that the right-hand side of equation (5) and the no-arbitrage conditions in (6) are in
terms of initial price levels and counterfactual trade flows, thus precluding us from apply-
ing exact hat algebra for the agricultural sector. To overcome this complication, we develop
a two-step procedure. In the first step (“Price Discovery”), we use the initial equilibrium
conditions in combination with rich but available microdata to solve for the full vector of
farm-gate prices in the observed (initial) equilibrium. In the second step, we then use the
recovered price levels to obtain the vector of price changes {p̂i,g} and counterfactual trade
flows

{
x′ij,g

}
as a solution to the above system of equations.

As we discuss in Section 4, from the microdata we can either observe or directly infer the
following variables: farmers’ and urban households’ expenditure shares on crops, ξi,k, ξh,k,
Foreign crop prices, p∗F,k, physical crop output, qi,k,ω, cost shares, αi,k,ω, βi,k,ω, labor endow-
ments, Li, income of urban households, Ih, and trade costs for crops and labor: tij,k, τij,k,
tij,l, and τij,l. We denote this set of observable variables used for the “Price Discovery” by

DA =
{
ξi,k, ξh,k, p

∗
F,k, qi,k,ω, αi,k,ω, βi,k,ω, Li, Ih, tij,k, τij,k, tij,l, τij,l

}
.

With these variables from the initial equilibrium in hand, we can recast the excess demand
functions for crops and labor of farmers, urban households and Foreign as functions of
prices, {pi,g}, and data DA.

15 We can then recover crop prices {pi,k} and wages {pi,l} in
the initial equilibrium as a solution to the following system of equations for crops and labor
only:

χ̃i,g ({pi,g} ;DA) = pi,g

(∑
j

xji,g −
∑
j

τij,gxij,g

)
∀i, ∀g ∈ {k, l} (7)

τij,gpi,g + tij,g ≥ pj,g ⊥ xij,g, ∀i, j,∀g ∈ {k, l}. (8)

Using the recovered baseline prices and data we can in turn compute farmer income {Ii}.
In Appendix 5.B, we describe how to transform this price discovery step into an equiva-

lent problem of finding the equilibrium of an exchange economy that is integrated as a small
open economy with the rest of the world. Importantly, price discovery is more general than
the full equilibrium formulation above, since we do not have to specify functional forms for

15We present these adjusted excess demand functions, χ̃i,g(•), in Appendix 5.A.
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crop supply and demand for this step but instead take production quantities and expenditure
shares as given in the data. Consequently, the set of baseline prices is consistent with alter-
native formulations of the production process and demand system. We then provide a proof
that, in the case of ad valorem trade costs, the goods in such an economy satisfy the con-
nected substitutes property in Berry et al. (2013), and hence there is a unique equilibrium in
which all agents are directly or indirectly connected through trade. This implies that there
is a unique (connected) solution to the price discovery step.16

3 Combining the Model with Local Experiments

While the interplay of forces governing how shocks propagate across households and mar-
kets described in the theory are difficult to capture in small-scale experiments alone, local
experiments can play a critical role in informing policy impacts at scale when combined
with the model. In this section we describe how we use treatment effects estimated in local
RCTs to identify the key elasticities governing demand (σ, ζ , η) and supply (κ, µ). To do so,
we use local experiments from a variety of East and Southern African countries: Uganda,
Kenya, and Mozambique.17 Appendix 1 provides additional details about the data used in
the estimation.

Demand Estimation

To estimate the elasticity of substitution between crops in consumption, σ, we bring to bear
a demand-side experiment conducted in Bergquist and Dinerstein (2020). This experiment
was conducted in open-air maize markets in rural western Kenya, 30 km from the Ugandan
border. In their experiment, individual consumers who approached maize traders to make a
purchase were offered a price discount, the size of which was randomized across ten possible
amounts. The value of the discount ranged from from roughly 0-15% of the baseline price.
To estimate σ in the model, we regress log quantity purchased by individual i from seller s

16The sufficient conditions in our proof of uniqueness in Appendix 5.B no longer hold in the presence of
additive trade costs because the demand for foreign goods is no longer strictly increasing with the price of
domestic goods. In lieu of an analytical proof of uniqueness, we explore it numerically by considering 100
different initial guesses for vectors of farm-gate prices drawn randomly along the range of possible prices
given exogenous international prices and trade costs. Reassuringly, we find the same equilibrium in all cases.

17Although these settings may differ in some dimensions, rural areas across the countries we include share
many features, including crops grown, farming methods (mostly rain-fed agriculture), and overall levels of
development.
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in market m on date d on log price,

log xi,m,sd = α + β log pi,m,sd + θm,sd + εi,m,sd,

instrumenting for price with the randomized subsidy amount. Because the subsidy was
randomized across consumers buying from the same seller in the same market-day, we run
specifications including either market-by-date fixed effects (θm,d) or seller-by-market-by-
date fixed effects (θm,sd), presented in Columns 2 and 4 of Table 1, respectively. Both
specifications yield estimates close to -1. We therefore calibrate our model with σ = 1.18

Table 1: Estimation of σ
(1) (2) (3) (4)

VARIABLES OLS IV OLS IV

Log P -4.81*** -0.95 -5.02*** -1.00*
(0.27) (0.62) (0.34) (0.55)

Observations 1,247 1,247 1,247 1,247
Market-Day FX Yes Yes No No
Market-Day-Seller FX No No Yes Yes
1st Stage F-Stat 321 659

Dependent Variable is Log Quantities (Instrument is Randomized
Subsidy Amounts). Standard errors clustered at level of communi-
ties. *** p < 0.01, ** p < 0.05, * p < 0.1

To calibrate the demand parameter ζ , that governs the degree of non-homotheticity in
food consumption, we use the following relationship that holds subject to utility maximiza-
tion under Stone-Geary:

Pi,AC̄A
Ii

=
ξi,A − ζ
(1− ζ)

,

where the left-hand side is the share of household income spent on subsistence food con-
sumption, and ξi,A is the observed share spent on total food consumption, ξi,A =

∑
k ξi,k.

Stone-Geary preferences imply that the share of income spent on subsistence approaches
zero for the richest households, so we calibrate ξA to the average share of expenditure spent
on total food consumption among the richest 5 percent of Ugandan households, which
is close to 0.1 in the Uganda National Panel Survey (UNPS). This yields an estimate of
ζ = 0.1, implying that the share spent on subsistence is on average 38 percent across Ugan-

18A possible limitation of this RCT is that the subsidies were fairly short-run in their duration. Bergquist
and Dinerstein (2020) (Appendix C) address this concern, exploiting the randomized order of their treatment
periods to test for evidence of inter-temporal dynamics in demand. They find no evidence of stockpiling, in
line with limited storage in this empirical setting (Burke et al., 2019). As part of the quantitative analysis, we
also explore the sensitivity of the counterfactuals to a range of higher or lower values for σ in Section 7.
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dan households. For the elasticity of substitution across manufacturing varieties we choose
η = 5, in line with the literature in international trade (see Head and Mayer (2014)).

Supply Estimation

To estimate the first key supply elasticity κ, that governs farmers’ choice of land allocation
across modern or traditional techniques within crops, we take advantage of the experiment
implemented by Carter et al. (2020). Randomly selected farmers in Mozambique were
offered fertilizer and improved seeds at a subsidized price. Data collected on farmers’ use
of modern inputs and output quantities by plot allow the estimation of the impact of changing
input prices (instrumented by treatment) on land allocations across production techniques.
We derive the following estimation equation from Section 2:

log

(
πi,k,1
πi,k,0

)
= −

(
κ
αi,k,1
δi,k,1

)
log pinputi,k + εi,k,

where we have the relative land allocations of modern vs. traditional production techniques
within maize production on the left-hand side, and the log price of intermediates (pinputi,k ) on
the right-hand side. The extent to which a price shock for modern inputs affects land allo-
cations across production techniques within crops will be a function of the supply elasticity
in the lower nest, κ, as well as the relative cost shares of intermediates and land in modern
production, αi,k,1 and δi,k,1 respectively.

Table 2: Estimation of κ
First Stage Reduced Form IV

(1) (2) (3) (4) (5) (6)
Cross-Section Panel Cross-Section Panel Cross-Section Panel

Treat -0.75∗∗∗ -0.75∗∗∗ 0.62∗ 0.64∗
(0.05) (0.05) (0.36) (0.36)

Log Input Price -0.83∗ -0.85
(0.49) (0.50)

Observations 63 127 63 127 63 127
Community FX Yes Yes Yes
Round FX Yes Yes Yes
F-Stat 204.57 204.51

Dependent Variable is logπi1|kt

πi0|kt
(Instrument is RCT Treat Indicator). Standard errors clustered at level of

communities. *** p < 0.01, ** p < 0.05, * p < 0.1

Using the data in Carter et al. (2020), we construct a price index for intermediates as the
weighted average of prices of chemical fertilizer and hybrid seeds, with weights proportional
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to their relative cost shares. We then instrument this price with the randomized subsidy
treatment.19 Table 2 presents the estimation results of the first stage, reduced form and the IV
point estimates. For each, we report results both from a single post-treatment cross-section
or using baseline and post-treatment panel data with survey-round and village fixed effects.20

The IV point estimates in columns 5 and 6 are 0.83 and 0.85. Using the ratio of cost shares
of land over fertilizer and hybrid seeds, this would imply that κ = 2.5. We use this estimate
of the lower-nest (within-crop) elasticity as our baseline. To address the somewhat wide
confidence intervals we find here, we explore the sensitivity of the counterfactual analysis
across a range of higher or lower values for κ in Section 7.

We complement this RCT with a natural experiment that we use in Uganda to estimate
the upper-tier supply elasticity in our model for substitution of land allocations across crops,
µ.21 The estimation equation derived from the model in Section 2 is:

log

∑
ω′

π−1
i,ω′,t|k

(
qi,k,ω′,t

l
βi,k,ω′

i,k,ω′,tm
αi,k,ω′

i,k,ω′,t

) 1
δi,k,ω′

κ
κ−1


κ−1
κ

=

(
µ− 1

µ

)
log πi,k,t+logZi,t+log b̃i,k,t

(9)
The left-hand side of (9) is farmer i’s harvest quantities (qi,k,t) for crop k aggregated across
both techniques in survey year t, adjusted in the denominator for the reported quantities of
labor (li,k,ω,t), modern intermediates (mi,k,ω,t) and the share of land allocated to technique
ω conditional on producing crop k (πi,ω,t|k). This represents an observable measure of land
productivity for a crop k and farmer i as the harvest amounts we observe under either pro-
duction technique are deflated by the inputs used across all plots of land allocated to crop
k. The first term on the right-hand side, log πi,k,t, is the land share for crop k (summed
over both techniques) used in producing the harvests on the left-hand. The final two terms
capture farmer-specific production shocks over time and across crops and farmer i’s land
endowment, which we capture by including crop-by-year fixed effects (θk,t), farmer-by-crop
fixed effects (φi,k) and an error term εi,k,t. Alternatively, to allow for region-specific shocks

19Given these data record just one snapshot of production, where some farmers were allocating 100% of
production to either modern or traditional techniques, we aggregate both left and right-hand sides to the level
of local villages broken up by treatment status, summing land allocations on the left and taking average prices
on the right. This is to avoid the assumption that those farmers could never make use of the other technology.

20Carter et al. (2020) also explore the spillover effects of the subsidy on non-treated farmers along the
personal networks of treated farmers. They report that such dynamic effects were not present in the first
post-treatment round that we use for estimation here.

21The experiment in Carter et al. (2020) did not induce changes in the allocation of land across crops that
one could use for estimating µ.
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across crops over time, we also replace θk,t with region-by-crop-by-year fixed effects (θr,k,t).
The regression coefficient of interest, µ−1

µ
, is thus estimated using changes in land alloca-

tions within farmer-by-crop cells controlling for average changes by crop across farmers
over time.

To estimate µ convincingly, we require plausibly exogenous variation in land allocations
(log πi,k,t) across crops over time by farmers that are not confounded with unobserved local
productivity shocks. To this end, we make use of the fact that additive trade costs imply
that shocks to world market prices across crops k should lead to a larger reallocation of
land shares for farmers closer to the border, as the percentage change in local producer
prices is ∆pworld

pworld,t0+bordercosti
. We use shocks to world prices for coffee, as world coffee prices

are both highly relevant (more than 90% of Ugandan coffee production is exported) and
likely exogenous to domestic production (Uganda accounts for less than 2% of world coffee
sales). We construct the instrument as the interaction of the log distance to the nearest border
crossing for farmer i, a dummy for whether crop k is coffee, and the log of the relative world
price of coffee relative to the average world price of the other eight crops. Note that the fixed
effects φik and θkt absorb all but the triple interaction term.22

Panel A of Table 3 presents the first-stage regression both before and after including
region-by-crop-by-technology-by-time fixed effects, and using all years of data (2005, 2009,
2010, 2011 and 2013) or just using long changes 2005-2013. The negative point estimate
on our instrument implies that negative relative world price changes for coffee decrease land
allocation to coffee more for farmers closer to the border. In Panel B, we report estimation
results before adjusting farmer harvests (qi,k,t) by inputs used in production in the denom-
inator of the left-hand side. Panel C presents the second-stage estimation of equation (9).
We find significant point estimates in the range of 0.45-0.75.Recall that this point estimate
captures β = µ−1

µ
; this therefore implies estimates of µ in the range of 1.8-4. Reassuringly,

these are close to existing estimates reported in Sotelo (2020) (µ = 1.7). To be conservative,
we pick the low estimate of µ = 1.8 as our baseline calibration.23

22Appendix Figure A.2 documents that the relative world price of coffee dropped significantly over our
sample period 2005-2013. All else equal, land shares used for coffee production should have thus fallen more
strongly closer to the border.

23As we show in the sensitivity analysis in Section 7, this is conservative in terms of welfare impacts, and
in terms of the difference between local-vs-at-scale effects.



21

Table 3: Estimation of µ

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

All Years All Years All Years All Years 2005-13 2005-13 2005-13 2005-13

Panel A: First Stage

Instrument -0.464*** -0.366** -0.916*** -1.118***
(0.122) (0.172) (0.154) (0.261)

Panel B: Dependent Variable is Log Harvest
(
log(qi,k,t)

)
logπi,k,t 0.357*** 0.797* 0.357*** 0.633 0.415*** 0.925*** 0.425*** 0.904***

(0.016) (0.422) (0.016) (0.495) (0.034) (0.310) (0.033) (0.216)

Panel C: Dependent Variable is Log Adjusted Output

logπi,k,t 0.411*** 0.401 0.406*** 0.790 0.441*** 0.553 0.438*** 0.754**
(0.036) (0.542) (0.036) (0.725) (0.060) (0.421) (0.062) (0.315)

Observations 27,966 27,650 27,963 27,647 4,486 4,282 4,480 4,276
HH-Crop FX yes yes yes yes yes yes yes yes
Crop-Year FX yes yes . . yes yes . .
Region-Crop-Year FX no no yes yes no no yes yes
1st Stage F-Stat 14.60 4.543 35.52 18.33

Standard errors clustered at level of counties. *** p < 0.01, ** p < 0.05, * p < 0.1

4 Calibration of a Granular Economic Geography

The structure of the model allows us to combine the key elasticities that we estimate from lo-
cal experiments with rich household microdata to capture a granular and realistic economic
geography when evaluating effects at scale. In this section, we describe how we populate
the vector of observable data used in the price discovery and counterfactual solution laid
out in Section 2: DA =

{
ξi,k, ξh,k, p

∗
F,k, qi,k,ω, αi,k,ω, βi,k,ω, Li, Ih, tij,k, τij,k, tij,l, τij,l

}
.

Appendix 1 provides a summary and additional discussion of the administrative data
used below in the calibration. These data are increasingly available in many low and middle-
income countries. We consider the 9 most commonly grown crops in Uganda: matooke
(banana), beans, cassava, coffee, groundnuts, maize, millet, sorghum and sweet potatoes.
As documented in Appendix 2, they account for 99 percent of the land allocation for the
median farmer and for 86 percent of the aggregate land allocation. The intermediate input
used in production under the modern technique encompasses chemical fertilizer and hy-
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brid seed varieties in our empirical context. To estimate the cost shares of intermediates
(αi,k,ω), labor (βi,k,ω) and land (δi,k,ω) in the production function of each crop-technique-
location combination, we take the median of the cost shares observed across households
in the Uganda National Panel Survey (UNPS) microdata for each of the 4 regions of the
country (Appendix Table A.4).

To calibrate the model to the full set of local markets and households populating Uganda,
we require household-level information on pre-existing production quantities (qi,k,ω) and ex-
penditure shares across crops and sectors (ξi,k, ξh,k) for the full population of households
observed in the census microdata, which is generally not available as part of census data.24

Instead, we use the UNPS, which includes such detailed household-level information for
a nationally representative sample of Ugandan households, to project these outcomes on
a number of household and location characteristics that are also observed in the 100 per-
cent sample microdata from the 2002 population census. Outcomes of interest are total
harvest by production technique in each crop, expenditure share on food, expenditures by
crop within food and trade costs to the local market (that we estimate among UNPS house-
holds as discussed below). For each of these outcomes from the UNPS on the left-hand
side, we project them (using UNPS survey weights) on household and location characteris-
tics observed in both datasets and use the predictions for extrapolation to the 100% census
population. These characteristics are (in levels): age and education of the household head,
number of dependents, number of household members, an asset ownership index (using
the same assets reported in both datasets), potential yield given a farmer’s location from
the FAO/GAEZ database, dummies for subsistence farming and urban households, district
dummies and survey year fixed effects. For this estimation, we employ Poisson pseudo-
maximum likelihood, which has the nice property of preserving aggregates in the predicted
population data.

Geography and Trading Frictions

Households are located in roughly 4,500 rural parishes, which we treat as local markets
(“villages” in the model), and 70 urban centers (“cities” in the model). Figure 1 presents a
map of this setting.

24Household labor endowments (Li) are observed in the census data directly and equal to the number of
working-age household members in our calibration. Urban income (Ih) is computed by multiplying UNPS
average urban incomes with a city’s population. Foreign prices for crops and inputs are from the FAO database
we describe in Appendix 1.
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Figure 1: Ugandan Markets and Transportation Network

Figure displays local parish markets, urban markets, border crossings and the road network in Uganda.

To calibrate trade frictions across local markets, we use survey microdata collected by
Bergquist et al. (2024) on bilateral trade flows between Ugandan markets, in addition to
origin and destination prices. They collect trade flow data in a survey of maize and beans
traders located in 260 markets across Uganda. Traders are asked to list the markets in which
they purchased and sold each crop over the previous 12 months. They complement this data
with a panel survey, collected in each of the 260 markets every two weeks for three years
(2015-2018), in which prices are measured for maize and beans. Appendix 2 uses this
database to explore the nature of trade costs between rural markets. The estimates suggest
that trade costs are predominantly per-unit (additive) instead of being charged ad valorem
in our context. Using only bilateral price gaps from market pairs during months in which
we observe positive trade flows between the pair (following spatial arbitrage in the model),
with information on the road distance traveled between the markets from the transportation



24

network database in Figure 1, we estimate the following specification:

tij,g,t = (pj,g,t − pi,g,t) = α + β (RoadDistanceij) + εij,g,t,

where t indexes survey rounds and the error term εij,g,t is clustered at the level of bilateral
pairs (ij). RoadDistanceij is measured in road kilometers traveled along the transportation
network. We estimate a single function of per-unit trade costs with respect to road distances
across all crops, so that tij,g = tij .25 The estimated trade cost for an additional road kilo-
meter traveled between two markets is 1.2 Ugandan shillings (standard error 0.3), which
implies a cost of about US$0.5 per kilometer for one ton of shipments.26 If we replace the
specification above to be in logs on both left and right-hand sides, the distance elasticity
is 0.0258 (standard error 0.0057), which is close to existing evidence for within-country
African trade flows (e.g., Atkin and Donaldson (2015)). We use this distance elasticity to
calibrate ad valorem trade costs τij for trade in the manufacturing good.

To calibrate the local trading frictions between farmers and their local market (tim,g),
we implement a similar strategy, using gaps between selling farmers’ farm-gate prices and
local market prices as reported in the UNPS. We first estimate:

pi,g,t = pm,g,t − tim,g,t = θm,g,t − tim,g,t
where pi,g,t is the farm-gate price of good g of farmer i in marketm at year-month t and pm,g,t
is the local market price that we do not directly observe and capture with market-by-crop-by-
harvest time fixed effects (θm,g,t). The farmer-by-crop-by-time specific residual is −tim,g,t,
the negative of the local trade cost.27 The estimated average farmer-level trade friction to
their local markets ranges between 23 at the 1st and 90 shilling at the 99th percentile in the
population, with an average of about 66 Ugandan shilling per kilogram, which amounts to
roughly 8 percent of the average crop price. Finally, we use the UNPS microdata to estimate
the trading frictions farmers face when hiring or selling labor in the local market in the same
way as for crop trade costs. We replace pi,g,t on the left-hand side above with “farm-gate”
wages (paid by farmer i to hired labor, i.e., inclusive of transaction costs). On average,

25We do so for reasons of statistical power. The dataset covers two crops, maize and beans. Including a
crop-month FE in the regression above yields very similar results.

26Bergquist et al. (2024) document that fuel costs for a fully-loaded 5-ton is 0.3 Ugandan shillings per kg
per km (standard error 0.024). This would imply that fuel costs account for about 25% of total trade costs,
which is consistent with existing findings (e.g., Hummels (2007)).

27Since the distribution of trade costs is therefore mechanically centered at zero, after predicting trade costs
for the full Ugandan population discussed above, we shift the distribution rightwards such that a farmer in the
bottom 0.1 percentile faces trade costs to the local market that are close to zero (1 Ugandan shilling).
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hiring farmers is subject to labor trading frictions of 248 shilling (or 10 US cents) per day
for hiring a worker, or around 5% of the daily wage. Viewed through the lens of the “value
of travel time” (Becker, 1965), this would be consistent with average forgone wages due to
roughly 25 minutes of transit for hired labor on an 8-hour workday.

5 Counterfactual Analysis: Local vs. At-Scale Impacts

Bringing together the model and solution method from Section 2, the key parameters es-
timated from local experiments in Section 3, and the calibration to the granular economic
geography described in Section 4, we now proceed to quantify local vs. at-scale counterfac-
tuals for one of the most widespread agricultural support policies in low and middle-income
countries: a subsidy for modern inputs. In a survey of 10 African countries, Jayne and
Rashid (2013) find that input subsidy programs account for on average 30% of total public
expenditure on agriculture, and estimate that over 60% of Sub-Saharan Africa’s population
lives in a country with a major input subsidy program.28 In this section, we investigate how
the welfare impacts of such a policy differ between a local intervention and one at scale –
among the same sample of farmers – and quantify the underlying mechanisms. In doing so,
we also explore how GE forces shape the distributional effects of the policy.

Local Effects vs Scaling Up: Average and Distributional Effects

We focus on the effects of a 75 percent cost subsidy for modern inputs (chemical fertilizers
and hybrid seed varieties in the data).29 We run two types of counterfactuals in the calibrated
model. In the local intervention, we randomly select a 2.5 percent sample in each of the
4500 rural parishes (roughly 100,000 households nationwide). For each of the markets,
we then treat this random sample of households with the subsidy for modern inputs and
solve for the counterfactual equilibrium as stated in Section 2. This is akin to running 4500
separate small-scale RCTs. For the at-scale intervention, we offer the subsidy to all farming
households in the Ugandan economy, including the original 2.5 percent sample. In both
types of counterfactuals, we solve for changes in household-level outcomes across all 4.5
million Ugandan households. We then compare the changes in economic outcomes for

28In Section 7, we discuss other types of policy counterfactuals that can be studied using our approach, or
to which it could be extended.

29To simplify the exercise, we leave aside for the moment the public finance dimension of the subsidy (akin
to financing by international organizations or foreign donors). It would be straightforward to, e.g., have this
financed by a lump-sum tax in the model.
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the sample of households treated in the original, local-only intervention to their economic
outcomes when the intervention is scaled to the rest of the Ugandan countryside.

Figure 2: Difference in the Effect at Scale vs. Local Interventions
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Notes: Figure plots distribution of percentage point difference in welfare (real income) changes from at-scale
minus local interventions for sample of ∼100,000 rural households (left panel), and their averages across
parishes (right panel). Vertical bars indicate mean differences.

Figure 2 presents the difference in welfare effects between the at-scale and local inter-
ventions across all∼100,000 national sample households. Changes in welfare in the model
are changes in real incomes, with the price index defined as the ideal price index given by
the nested Stone-Geary preferences from Section 2. The left panel shows the at-scale impact
minus the local intervention’s impact, in percentage points, for these households. The right
panel aggregates to average effects at the level of parish markets, to facilitate comparison
between the average treatment effect that a given parish would experience at scale to the
average treatment effect that would be typically measured in a local experiment. The black
lines plot the distribution of these differences, with the vertical bar showing the average dif-
ference. To shed light on distributional impacts, the blue and red lines show the same effects
for the top and bottom quintiles (roughly 20,000 households each) of land shares in initial
household income ( riZi

Ii
in the model). Those in the bottom quintile – whom we refer to as
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“land-poor” – are smallholder farmers whose land profits from agricultural production are
relatively small and who therefore get a larger fraction of their income from labor (including
the implicit value used on their own farm, as well as any explicit value they receive from
selling their daily labor to other, larger farms). Those in the top quintile – whom we refer
to as “land-rich” – are larger landowners who have greater crop income and who tend to be
net buyers of labor.30

Two main insights emerge. First, the distribution is wide, with households experiencing
more than +/- 5 percentage point changes in their welfare impact when the intervention is
scaled-up, with the average household experiencing a decrease of about 1 percentage point,
or about 20% of the average local welfare effect (Table A.5 shows the point estimates of
local and at-scale effects across the different groups in Figure 2). Second, scaling up the
intervention has very different effects on land-rich vs. land-poor households. We see that
the mass of land-rich households lies to the left of zero, suggesting that they tend to lose
at scale relative to how they fare under the local intervention, while the mass of land-poor
households lies to the right, on average gaining at scale.

To further investigate the distributional implications of scaling in this context, Figure 3
presents the non-parametric estimates of the local and at-scale welfare effect as a function of
initial land income shares. We see in the top left panel that the local intervention is regres-
sive, benefiting land-rich households more than the land-poor by roughly 5.5 percentage
points moving from left to right in land income shares. However, the at-scale intervention
is substantially less regressive, reducing this gap by more than half, to 2 percentage points.
Driving this compression is the fact that land-poor households experience larger gains at
scale than under the local intervention, with the poorest households experiencing welfare
gains that are 1.5 percentage points larger at scale, as shown in the bottom left figure. In
contrast, land-rich households fare worse at scale, with the richest experiencing a 2 percent-
age point drop in their welfare gains relative to the local intervention. Qualitatively similar
differences are present in the right column when comparing land-rich and -poor households
within markets, after conditioning on parish market fixed effects, suggesting that these ef-
fects are not predominantly driven by differences across locations.

What drives differences in these impacts at scale, both the decrease in average effects
30Appendix Figure A.3 plots flexibly estimated relationships between our measure of land income shares

and households’ land ownership in acres or households’ calibrated total incomes. Fink et al. (2020) document
similar patterns in another African context (Zambia).
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Figure 3: Distributional Implications
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Notes: Figure plots local polynomial regressions of percentage point welfare changes of the at-scale and local
interventions (in the top row) and the difference in impact at scale (at-scale impact - local impact) in the bottom
row, both against initial household land income shares. Right column uses deviations from the parish means
on both axes to study within-market variation. Shaded areas indicate 95% confidence intervals.

and the attenuation of the policy’s regressivity? Figure 4 presents mechanisms, displaying
average treatment effects on welfare, income, and prices under the local intervention (in light
gray) and the at-scale intervention (in dark gray). We see that the local intervention drives
little movement in local market prices, with on average small changes in crop prices, minor
increases in local wages, and no effect on manufacturing prices. Cost savings on modern
inputs and greater usage of these techniques, without meaningful changes to output or other
input prices, translate to meaningful increases in farmer nominal incomes, which rise on
average by 4.3 percentage points, and almost no change in the consumer price index. As a
result, average welfare goes up by 4.4 percentage points. As these gains are concentrated
in land income, the local effect favors land-rich households. They also benefit more from
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Figure 4: GE Mechanisms
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Notes: Figure plots average impacts under the local intervention (in light gray) and under an at-scale interven-
tion (in dark gray) on the following outcomes: welfare, income, and prices, including wages, manufacturing
prices, and prices for each of the nine study crops. 95% confidence intervals are in black whiskers.

the local intervention in part because of higher pre-existing usage of modern technology
(Figure A.4).

When the intervention is scaled up to the national level, prices move substantially more.
Crop prices mostly fall due to increased supply; the drop is especially notable for maize,
the most commonly grown crop in Uganda that also has one of the highest pre-existing
production shares using the modern technology (Figure A.5). In contrast, prices for a few
relatively less modern input-intensive crops rise as farmers shift out of these crops. Wages
rise, due to increased demand for local labor, a force that is amplified by the (non-Hicks
neutral) nature of the increase in modern input usage. Finally, manufacturing prices rise as
demand for these goods increases, a channel that propagates the gains of the policy from
the countryside to urban centers. Average consumer prices on net fall, though these effects
are more muted, with the consumer price index decreasing by only 0.14 percentage points.
Together, this brings down average welfare gains by 18% relative to the local intervention,
from from 4.4 to 3.6 percentage points. The distributional changes at scale are driven by
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the fall in producer prices and the rise in local wages, both favoring land-poor households
who receive a larger share of their total income from labor relative to land.31

6 Insights for Research in Agricultural Development

In this section, we use the framework to provide additional insights for research at the inter-
section of agriculture and development. First, we investigate how the sign and extent of GE
forces differ as a function of saturation rates at different geographical scales, with implica-
tions for randomized saturation designs in the RCT literature. Second, we investigate the
types of households and markets in which GE forces are most critical in changing a policy’s
impact at scale. Third, we use these insights to discuss implications for the large number
of agricultural experiments in Sub-Saharan Africa conducted over the last 20 years, explor-
ing how consideration of GE forces interacts with study site selection, and implications for
publication bias.

GE Forces as a Function of the Intervention’s Scale

How do GE effects evolve as the intervention is scaled up to an increasingly large fraction of
households nationwide, and as the geographic scale of the cluster is varied? Both have im-
plications for the optimal design and lessons that can be learned from randomized saturation
designs, an experimental approach to capturing GE effects. In these designs, the fraction
of individuals treated (the “saturation”) is randomized across geographic areas or “clusters”
to study the market-level outcomes that emerge (see e.g., Baird et al. (2011); Burke et al.
(2019); Egger et al. (2022)). It is most common to use only two levels of saturation, due
to budget and logistical constraints, and clusters are often defined at the level of villages or
groups of villages. Extrapolating from results from the two saturation points in this design
to the impacts that would emerge under a full-scale, national policy would therefore require
two assumptions: i) that GE forces are linear with respect to changes in the saturation rate;
and ii) that the GE forces experienced at the level of local clusters are representative of
the effects of saturation at a broader geographical scale (e.g. nationwide). We can use our
approach to assess these two assumptions by computing counterfactuals to estimate how
impacts evolve as a function of saturation rates at different geographical scales.

31Appendix Figure A.6 further documents the impacts of these GE forces on different components of in-
comes and consumer price indices as a function of initial land income shares.
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Figure 5: GE Forces as a Function of Saturation
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Notes: Panel A plots average welfare effects for ∼100,000 sample against national saturation rates with 95%
confidence intervals. Panel B plots effects for subsample of ∼6500 located in 51 subcounties against either
national or subcounty saturation rates.

We start with the first question of linearity, presenting in Panel A of Figure 5 the impact
of the subsidy on the original national farmer sample as a function of the nationwide fraction
of the rural population that is also treated. The left-most point on the x-axis corresponds
to the local intervention, where only parish-level samples of 2.5% of the local population
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are treated in all parishes. The right-most point on the x-axis corresponds to the at-scale
intervention above where 100% of rural Ugandan households receive the subsidy treatment.
The point estimates going from left to right plot the average treatment effect on the same
initial 2.5% household sample across increases in the national saturation rate in steps of 10
percentage points of the rural population.32 The left figure in Panel A traces the average
welfare impact, while the right figure displays the average effect separately for the bottom
and top quintiles of the initial land income shares. We find that the extent of GE forces
appears to be a monotonic and roughly linear function of the national saturation rate, both
for the average effect in the left figure and the distributional implications of the policy on
the right in Panel A. These findings are reassuring, as they would in principle support com-
parisons between just two discrete levels of saturation, as has become common practice in
randomized saturation designs.

That said, Panel A varies the saturation at the national level. In practice, randomized
saturation designs typically randomize the saturation within some smaller geographic unit
(“cluster”). Panel B of Figure 5 explores the role played by the size of these clusters. To
illustrate, we consider the case of a study design that uses subcounties (of which there are
811 in Uganda during our study period) as the unit at which saturation is randomized. These
are relatively large geographical units compared to the typical “clusters” in the literature.33

Consider a design that randomly selects 51 subcounties in which to implement this design
(each randomly picked within one of the 51 districts of Uganda). First, just to demonstrate
that these 51 subcounties are not distinct in some important way, we replicate the exercise
from Panel A (increasing saturation rates nationwide) and plot results for this random subset
of subcounties (which includes roughly 6500 households of the same national 2.5% sample);
the blue line in Panel B shows results that closely mirror those in Panel A. In the orange line,
we consider the more feasible randomized saturation design in which we vary the saturation
rate within the 51 subcounties, but not the rest of Uganda.

Two main insights emerge from this exercise. First, in contrast to changes in national
saturation rates, for which we see the impact of the program decreasing monotonically with
scale, we find almost no changes in the average impact of the program as a function of

32We solve for counterfactual outcomes after randomly selecting additional fractions of households within
all parishes in increments of 10% until reaching full saturation. The first 10% national saturation treats an
additional 7.5% of the local population in all parishes.

33For example, Egger et al. (2022) randomize treatment saturation at the level of sublocations in Kenya
(groups of 10-15 villages), which are smaller than Uganda’s subcounties.
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subcounty-level saturation rates, even at 100% saturation within these areas (see left side of
Panel B). One might then incorrectly conclude there is no change to the program’s average
impact from scaling up. Second, one would also draw the wrong distributional implications
from a randomized saturation design at the subcounty level. While at the national level,
declines in the average welfare impact are predominantly driven by a reduction in welfare
gains among the top quintile of land-rich households, a design that randomizes saturation
at the sublocation level would find weaker reductions among the land-rich and stronger
increases in gains among the land-poor as a function of local saturation rates – offsetting one
another so that the average effect across farmers is close to constant. The forces behind these
trends are that farmers’ crop prices react differently to saturation rates at more or less local
geographical scales: increasing nationwide saturation rates has significant implications on
output prices (Figure 4), whereas changes in the saturation within subcounty populations
have much more muted implications on output prices on average. As a result, local increases
in saturation mainly imply that parts of the land revenue gains are capitalized into the local
non-traded factor of production (labor) – explaining why averages are close to unaffected,
while land-poor farmers gain more (and land-rich farmers lose less) as a function of local
saturation compared to nationwide saturation.

These results suggest some caution in extrapolating from the reduced-form results ob-
served in a randomized saturation design what welfare impacts would look like under a
nationwide program. Even when randomizing saturation at the subcounty level – which
in Uganda encompasses on average 32 villages and 30,000 individuals, and therefore is
larger than most units used in the existing randomized saturation literature – this may still
be too “local” in scale, and therefore unable to generate the type of GE forces that would
emerge under a nationwide roll-out. At the same time, the right graph of Panel B in Figure 5
shows that randomized saturation designs do capture an important subset of GE forces that
would be absent from small-scale field experiments, mainly related to knock-on effects of
increased production on local factor prices and the labor market. Those insights could then
be combined with approaches such as the one laid out here to assess impacts at a broader
geographical scale.

Where do GE Forces Drive the Biggest Changes in Impact at Scale?

Because of the granularity of our approach, which allows us to run counterfactuals akin to
4,500 RCTs across each parish of Uganda, we can identify for which types of households
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and markets GE forces most alter policy impacts at scale. This is relevant for understanding
where researchers and policymakers should exercise the most caution in extrapolating from
small-scale results and where approaches like ours could be most complementary.

In the previous section, we document the role of households’ pre-existing land income
shares as a significant driver of changes in the policy’s impact at scale, relative to the local in-
tervention. But, of course, other factors, such as types of crops, modern input usage, market
remoteness or expenditure shares, could act as additional mediators. To get a more complete
picture of the drivers of small-scale welfare impacts, impacts at scale, and their difference,
Table 4 presents variance decompositions. We include all farmer and market characteristics
that the model uses as information in the baseline equilibrium: a household’s initial produc-
tion by crop and technology regime (18 variables), trading frictions to other markets and
within the local market, and expenditure shares across the 9 crops and manufacturing. We
group these household and market characteristics into seven bins, as shown in Table 4. We
then report the percentage of the total explained variation (R-squared) in three outcomes –
the local effect, the at-scale effect, and the difference – that can be attributed to the group of
variables (via Shapley decompositions, regressing each outcome on all variables described
above for the roughly 100,000 household sample).34

Table 4: Variance decomposition
Land share Modern share Maize share Coffee share Other production Consumption Trade Costs

Local effect 4.28 39.97 0.13 12.76 28.10 10.40 4.37

At-scale effect 0.29 41.66 2.58 11.76 28.79 11.42 3.51

Scale-local effect 40.69 2.04 26.53 4.01 11.92 6.17 8.64

Notes: Table presents results of a Shapley decomposition, based on regressions of one of the three outcomes
listed in rows on the left of the table. The regressions have the roughly 100,000 sample households as unit
of observation. Each column corresponds to a group of right-hand-side variables included in the regression.
The listed numbers indicated percentages of the total explained variation, summing to 100 in each of the rows.

While initial production quantities across crops and modern technology usage are the
most predictive of the variation in the policy’s local effect and the effect at scale across
households, three characteristics stand out for explaining the difference between the local
and at-scale effects: the household’s initial land income share accounts for 41% of the total
explained variation, the initial revenue share of maize explains another 27% and trade costs
explain another 9%. In the previous section, we documented the mechanisms underlying the

34The R-squared exceeds 0.95 for both local and at-scale interventions and 0.7 for the difference.
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role of land income shares, which the variance decomposition here now shows quantitatively
accounts for a large part of the overall variation in this difference of impacts at scale. Turning
to the role of maize shares, Figure 4 above showed that maize, the most frequently grown
staple crop, experiences the largest average price decline in the at-scale intervention, in part
because it has among the highest pre-existing average usage of modern inputs (Figure A.5).
As a result, producer prices change more in maize-producing regions, driving a larger wedge
between the local and at-scale effects. The left panel of Figure 6 documents this mechanism,
showing that the average difference in impact at scale (relative to local) goes from a minimal
change for those with low initial revenues shares of maize to -4 percentage points among
those that mainly grow maize at baseline.

Figure 6: Drivers of Average Changes at Scale
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Notes: Figures are based on the roughly 100,000 household sample. Panels plot the difference of the effect
at scale relative to the local intervention as a function of initial maize revenue shares ( left) and log inverse
market access (right). Shaded areas indicate 95% confidence intervals.

The right panel documents the role of market remoteness. Because sub-Saharan Africa
has some of the highest transport costs in the world (e.g., Porteous, 2019), we expect re-
moteness to be a relevant mediator in our setting. Theory would predict that GE forces are
stronger in poorly-integrated markets, where local prices are less pinned-down by market
prices at the border or in larger cities due to higher trade cost wedges. Figure 6 confirms
this hypothesis, showing that more remote markets – measured by the log inverse market
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access of local parish markets (1/
∑

d 6=o
Popd

Distanceod
)) – experience more pronounced declines

in gains at scale compared to the local intervention. The reason is that agricultural producer
prices are on average more negatively affected by the at-scale intervention in more remote
market places.

Figure 7: Distributional Changes at Scale
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Figure 7 turns attention to drivers of the changes in distributional implications at scale.
First, in the solid line, the figure plots the average difference in impact at scale for all house-
holds as a function of the change experienced in the producer price index in their market
when the policy is implemented at scale. As discussed above, places that see more pro-
nounced drops in producer prices at scale experience larger reductions in the average wel-
fare gains of the policy. The two dashed lines then present this same relationship, but for
the bottom and top deciles of households in terms of initial land income shares (“land poor”
in long-dashed and “land rich” in short-dashed). On the left-most side of the figure, we see
that both groups are negatively impacted in locations with large declines in output prices,
as the returns to both land and labor go down with the declining overall returns in agri-
culture. However, in the right-most side of the figure, we see that in places where output
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price changes are more muted – perhaps in better connected markets – effects diverge for the
land-rich and land-poor. In these locations, crop production rises without the offsetting re-
ductions in prices. This puts upward pressure on wages in local labor markets, shifting gains
from land to labor, which benefits the land-poor and reduces the gains to the land-rich. In
contrast to the changes in average effect at scale, we therefore see that the most pronounced
redistribution of gains from the local intervention toward households at the bottom of the
distribution occur in markets where producer price changes are muted.

Implications for Study Selection and Publication Bias

We now put these insights into context with the existing body of closely related local ex-
periments. We begin by identifying all agricultural RCTs that have been conducted in Sub-
Saharan Africa and listed on the American Economic Association (AEA) Registry since its
launch in 2013. This search yielded 143 RCTs conducted across 23 countries. Using loca-
tion data, we merge in additional information about the three dominant drivers of changes
in impact at scale that we identified above: households’ average land income shares, shares
of maize in farmer revenues, and market remoteness.35

The three bottom panels in Figure 8 plot the distribution of these characteristics across
study sites (solid line) and across the entire population of possible study sites, weighted
by population (dashed line) in all rural regions of the same countries as a comparison to
indicate propensities relative to random sampling among the rural population. In the top
panels, we overlay the implications for how local effects change at scale, as estimated in the
Ugandan policy setting above.

We find the existing body of local field experiments tend to be located in rural regions
that have lower land income shares (p-value 0.12), lower maize revenue shares (p-value 0.32)
and which are less remote (p-value 0.00) relative to the rural population of these countries
as a whole. A comparison to the top panels suggests that these are the study sites and
populations for which GE forces are less pronounced, driving weaker differences between
the local and at-scale intervention on average. On the other hand, we found in Figure 6 that
those locations also experience the most meaningful changes in distributional implications
at scale relative to findings from local interventions.

35Appendix Appendix 4 describes the data sources and provides details on the computations for each study
location.
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Figure 8: Study Site Selection of Agricultural RCTs in Sub-Saharan Africa
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Notes: Three bottom panels plot in the black solid line the distribution of the 143 agricultural RCTs conducted
in Sub-Saharan Africa listed on the AEA RCT Registry since its launch in 2013 (see Appendix 4 for more
detail). To facilitate comparison to a representative set of possible rural study populations, the dotted gray
line presents the distribution of all rural grids or enumeration areas across the 23 relevant countries, weighted
by population (with the 2.5% of grids or enumeration areas representing urban areas (defined as populations
of over 300 people/sq km removed). From left to right, the plots present the distribution of the three charac-
teristics found to be most predictive of the difference in impacts between the local and at-scale intervention
in Table 4: households’ average land income shares, shares of maize in farmer revenues and market remote-
ness (as measured by log inverse market access). All variables are presented as z-scores, normalized by the
mean and standard deviation with the country in which the study was conducted. The top panel overlays the
difference between the at-scale - local treatment effect with respect to these three characteristics, as estimated
in our model.

It is possible that these study populations are in part intentionally chosen to avoid GE ef-
fects, which may be seen as identification threats given their potential to generate spillovers.36

Or, more plausibly, they may be chosen simply for convenience of access or other unrelated
reasons. Regardless, the end result is that the evidence we have on the impact of agricultural
policies on locations and populations likely to be strongly affected by GE forces is “doubly

36In practice, the lack of discernible price or wage effects due to the local intervention from our model
estimates in Figure 4 suggest that concerns of GE spillovers on control units may be overstated, at least at the
scale at which most local agricultural interventions are run.
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thin” – not only are they less studied, but when local studies are conducted among these
populations, measured effects diverge to a greater extent from those that would be seen at
scale.

Table 5: Implications for Publication Bias

Share detectable At-scale effect (non-detected) Share at-scale< local (detected) % change at scale (detected)

All households 0.33 1.31 0.82 -0.13

Bottom decile 0.20 2.34 0.07 0.29

Top decile 0.49 0.79 0.99 -0.26

Market level 0.35 1.30 0.88 -0.10

Notes: Table presents results based on the roughly 100,000 household sample. “Share detectable” in the
first column presents the fraction of households with welfare changes due to the local intervention ≥ 5 per-
centage points. The bottom row is based on market-level average treatment effects (fractions of market-level
RCTs rather than households). The second column shows the average at-scale treatment effects among the
“non-detected” households or markets. The third column shows the fraction of households or markets with
“detectable” local effects that have smaller effects at scale. The final column shows the average percentage
change in the effect at scale (relative to local) among the “detectable” cases.

Finally, we explore some potential implications for publication bias. In the first column
of Table 5, we compute the fraction of household- or average market-level local treatment
effects in our counterfactual analysis with (absolute) effect sizes greater or equal to 5 per-
centage points. One of the advantages of the model-based approach is that our counterfactu-
als isolate the pure effects of the single policy intervention, while keeping all other shocks
affecting households and markets constant. Field experiments estimate these effects in a
real-world scenario, and with frequently noisy survey data, such that defining “detectable”
effect size at a cutoff of 5 percentage points should likely be viewed as a lower-bound.37 We
find only 33% of the roughly 100,000 households experience real income gains under the
local intervention that would be detectable above that threshold and 35% when looking at
market-level average treatment effects.

However, column 2 suggests that one would be wrong to conclude that the remaining
two-thirds of potential study sites would experience zero effects if the policy were to be
scaled up: the average at-scale household benefit computed among this group in column 2
is 1.3 percentage points, with roughly one third of those households experiencing gains of
more than 2 percentage points, suggesting meaningful impacts at-scale. In a setting where

37E.g., based on estimated standard errors on treatment effects observed in the AEA RCT database we built,
the median study would be powered to detect increases in harvests of about 13% (with few studies reporting
estimates on household welfare).
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statistical zeros have lower propensities for eventual publication, columns 1 and 2 would
thus indicate that at-scale benefits could be obscured due to the combination of imprecise
estimation and publication bias against insignificant results.

Next, we turn attention to the “detectable” effects that exceed real income changes of
5 percentage points in the local intervention. According to our analysis in column 3, 82%
of the estimated effects in a local field intervention would over-estimate household benefits
compared to the same intervention at scale, and 88% when using market-level average treat-
ment effects. The average estimated local effect among this subset of markets and house-
holds is roughly 9.7%, so that the change in impact at-scale displayed in column 4 implies
that the average results from the detectable local interventions would be over-estimated by
slightly more than 1 percentage point.

The impact of publication bias is not symmetric across land-poor vs land-rich house-
holds, as documented in the second and third rows of Table 5. Because local interventions
have on average more positive effects among the land-rich, almost 50% of the land-rich
households would have their effects detected in local interventions, but only 20% of the
land-poor. However, in line with the asymmetric changes in impacts at scale we documented
above, land-poor households with non-detectable local effects would experience on average
more than 2.3 percentage point welfare gains from the at-scale intervention. These findings
imply that publication bias could hinder learning about policy effectiveness disproportion-
ately among land-poor households. In columns 3 and 4, we then focus on households and
markets that would be less likely subject to publication bias. Here, the estimated local ef-
fects would under-state the benefits of input subsidies among the land-poor, and they would
over-state the benefits among the land-rich, compared to the intervention at scale. They do
so by large magnitudes: column 4 suggests that on average local interventions would under-
state the benefits among the land-poor by roughly 30% (relative to a mean local effect of
almost 7 percentage points), and over-estimate the gains among the land-rich by on average
26% (relative to a mean effect of over 13%).

Our review of experiments listed in the AEA registry suggests that concerns around
publication bias are likely empirically relevant for the existing body of agricultural RCTs.
Even when we restrict attention to studies launched over five years ago, only 57% of studies
are published. Moreover, we find that the factor identified in Table 4 as most predictive
of larger local effects – the share of modern inputs used at baseline – is also predictive of
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publication status, suggesting that experiments with larger local effects may indeed be more
likely to be published (see Appendix Table A.7).

7 Sensitivity, Validation, Extensions and Limitations

In this final section, we present additional sensitivity analysis and model validation. We
conclude with a discussion of some important limitations of our approach as laid out above
and model extensions that can help address some of these in different research contexts.

Sensitivity Analysis and Validation

In Section 3, we emphasized the role that local experiments can play in rigorous identi-
fication of key elasticities. The more sensitive counterfactuals are to these elasticities, the
more critical clean identification becomes, as biased estimates generated from observational
variation could substantially distort the implied policy impacts. In this section, we explore
how alternative parameter estimates alter the implications of effects at-scale. This exercise
offers both greater intuition about how key elasticities drive impacts at scale, and guidance
on which parameters are most important to identify accurately with credible approaches.

We quantify the counterfactual results for the intervention at scale under alternative pa-
rameter assumptions on the supply side (κ and µ) and the demand side (σ) in Appendix
Figure A.7. We find that while results are less sensitive to the value of the demand elastic-
ity σ and the upper-tier supply elasticity µ (across crops), the magnitude of the lower-tier
supply elasticity (across traditional vs. modern technology), κ, is quite important for our es-
timates.38 Higher values of κ increase the estimated welfare effects at-scale, as farmers are
more responsive to price changes in how they allocate their land across technology choices
within a given crop. This may help explain why some RCTs have found larger effects over
the long-run, as greater time for adjustment may imply larger elasticities (Bouguen et al.,
2019). Higher values of κ also lead to larger differences between the local and at-scale in-
tervention in GE, as greater responsiveness on the part of others leads to larger output and
factor price changes at scale compared to local intervention (at original prices). This high-
lights the importance of careful identification of this parameter. Using exogenous variation
in prices coming from experiments, as we do here with an experimental fertilizer subsidy

38In our setting, estimates may be less sensitive to σ and µ because cost shares of modern inputs do not differ
substantially across crops, with the exception of maize. How households trade off these crops is therefore less
critical for the changes in the policy’s impact locally vs at scale. However, in other contexts (e.g. with an
intervention targeted at one particular crop), both σ and µ could play more important role at scale.
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(Carter et al., 2020), can increase our confidence in our estimate of this key parameter for a
given policy context.

One additional sensitivity check concerns our assumptions about the tradability of cer-
tain crops. For example, matooke, a local banana variety, is not commonly traded across the
Ugandan border with other countries. Looking at Uganda’s trade statistics, sorghum, sweet
potatoes and cassava have similar or lower shares of exports to domestic production. A natu-
ral question is how important the assumption of cross-border trading is for the counterfactual
analysis. In Appendix Figure A.8 we assess this sensitivity, presenting side-by-side results
from our baseline model and an alternative version in which we set cross-border trading
frictions for these four crops to prohibitively high levels, such that Uganda remains effec-
tively in autarky for them. Reassuringly, we find very similar results, with the gap in at-scale
effects now slightly stronger than in our baseline calibration. This makes sense following
the discussion of the drivers above, as higher trade costs (more remoteness) increase the
scope for GE price effects at scale, since market prices are less constrained (pinned-down)
by world market prices across the border.

Beyond sensitivity analyses, we present additional model validation results. One impor-
tant innovation of our theory is to use the model-based price discovery algorithm to solve
the model with the new economic features we allow for in this setting. This involves solving
for farm-gate prices (at the level of household locations) and trade flows that rationalize the
observed consumption and production decisions given a graph of trade costs. For model val-
idation, we are able use data on crop prices and trade flows between 260 Ugandan markets
in the trader surveys collected by Bergquist et al. (2024). Comparing these marketplaces in
our model and in the data, we can assess to what extent the model-based estimates of local
crop prices and predicted trading relationships between markets capture variation in prices
and trade flows of those same markets in the survey data.

Panel A of Figure 9 compares the variation in local market prices for maize and beans
across the Ugandan markets in data vs. model. For each of 38 months of the trader survey
data, we take the median market price for each crop and market in a given month. The
y-axis of the binned scatter plot shows the residuals from a regression of the log median
market prices in the trader surveys on month-by-crop fixed effects. The x-axis displays
mean deviations of log prices for the same two crops across the same markets in the baseline
equilibrium – the results from the price discovery algorithm. Reassuringly, the model-based
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Figure 9: Model Validation Using Price Data and Trade Flows from Trader Surveys
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dataset from Panel A into bilateral price pairs (counting each pair only once per month and crop), excluding
active trading pairs. Panel C compares the trade flows reported across the markets in the trader surveys for
each month of data to the bilateral trade flows from the models’ price discovery algorithm.

price variation – based entirely on observed information on crop production, consumption
and trade costs on a connected graph of household locations in Uganda – presents a rather
tight, positive and roughly linear relationship to observed price variation in the same crops
and markets pooled over the 38 months of survey data.39

But part of the price variation across markets in the trader survey data was used in our
39There are, of course, many reasons why price deviations can differ in data vs. model. On the survey data

side, there could be measurement error, unobserved variation in crop quality, or temporary shocks on the day
that information was collected across different markets. On the model side, household locations, expenditure
shares and crop production moments are partly extrapolated to the population with likely significant degrees
of measurement error. Parish markets in the model are based on centroids, whereas real-world marketplaces
that are assigned to the same parish identifier do not necessarily coincide geographically. All of these factors
would imply a somewhat noisy and attenuated relationship between model fundamentals and real-world data.
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calibration of trade costs – in particular price gaps between trading pairs. To ensure that
the model’s relationship to the survey data is not partly mechanical in that respect, Panel B
converts the data to bilateral origin-destination price gaps (with each bilateral pair counted
only once for a given crop and month of data). We then exclude all pairs with positive trade
flows, which were used to quantify trade costs in the model calibration. The remaining
bilateral price gaps in the data are then plotted against the same market-to-market price
gaps predicted by the price discovery algorithm. Panel B confirms a roughly linear and
rather tight positive relationship between price variation in the model to price variation in
the survey data, even when excluding any moments used in the calibration of trade costs in
the model.

Panel C of Figure 9 compares the observed active trading routes in the data to the ones
predicted by our model’s price discovery algorithm. Of the 1256 bilateral trade flows for
maize observed in the data (stacked across 12 months), the model captures 968 active trad-
ing relationships (77%). For beans, the model predicts 75% of the observed bilateral trading
relationships (392/522). The reverse proportions – the fraction of crop-by-market pair rela-
tionships predicted in the model that are captured in the trader surveys for the same markets
and crops – are somewhat lower (71% for maize and 37% for beans). One explanation for
this discrepancy is that the trader surveys are based on a sample of traders at a given point
in time (i.e, we might miss individual traders serving specific routes in reality, especially
for thinner markets such as for beans), whereas the model captures aggregate trade flows
between markets. Another possibility is that trade costs in our model are too stylized (i.e.,
linear in distance) and do not account for various real-life features in transportation such as
fixed costs, empty back-haul, or market sequencing. Hence, our model predicts many small
trade flows that might not be profitable in reality because of these factors. As we discuss
below, we regard the introduction of such features in the model as interesting avenues for
future research. That being said, we view the high proportion of observed bilateral trading
relationships that the model correctly predicts as a further reassuring piece of evidence that
the model-based price discovery algorithm reveals meaningful economic variation across
markets.

Finally, we can also use the AEA RCT database that we built to conduct some (arguably
ambitious) out-of-sample validation exercises. For each study, we collect information about
the intervention type, location, and treatment effects on harvests, agricultural revenues, and



45

total revenues when available. As discussed above and in Appendix 4, we add information
from a variety of other sources, including data from the FAO GAEZ database about local
agricultural practices. Using this information, we can compare the drivers of variation in the
local intervention’s treatment effect that we estimate in our quantitative model of the Ugan-
dan input subsidy application to those we observe across the realized field experiments. We
note upfront that this exercise suffers from two major caveats: (1) substantial heterogeneity
in setting and intervention details and (2) small sample sizes.40

With these caveats in mind, in Appendix Figure A.9 we overlay the estimated treatment
effects in the AEA registry studies and those estimated in our model, as a function of the
factor found to be the main driver of the local effect size in our variance decomposition
in Table 4: the initial farmer revenue share under the modern production technique. We
do this for all registered agricultural interventions with reported treatment effects for each
outcome, as well as restricted to experiments studying the same specific intervention we
study (input subsidies). Given the small sample sizes, the confidence intervals around the
AEA registry data are large (even when using point estimates of treatment effects as data
points, ignoring their own confidence intervals). Having said this, reassuringly we find
that our model’s estimates fall within these confidence intervals. Moreover, in both our
model and in the AEA registry data, we find a positive relationship between treatment effects
and the share of modern production techniques used. Such out-of-sample validation is, of
course, quite tentative. Nevertheless, this meta-analysis adds some further indication that
the economic forces captured in our model appear to be present across multiple different
empirical contexts.

Limitations, Extensions, and Avenues for Future Research

We now turn to some important limitations of our approach, as well as possible extensions
to address some of these depending on the policy context. We conclude by highlighting
avenues for future research.

One important limitation of our baseline model is that it does not allow the effect of the
subsidy on take-up or land productivity to vary with the scale of implementation. How-
ever, there can be scenarios in which the effectiveness of treatments either increases or

40Of the 143 studies identified in the review, only 115 have working papers and among these, only 53 report
harvest impacts, 37 agricultural revenue impacts, and 30 total household revenue impacts; further, only one-
third of experiments specifically study input subsidies, with only 21 reporting harvest impacts, 16 agricultural
revenue impacts, and 11 total household revenue impacts.
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decreases as a function of the scale of policy implementation: for example, complementar-
ities at scale could arise due to learning from others in the village (Beaman et al. (2021),
Chandrasekhar et al. (2022)) or shifting norms; conversely, changes in the implementation
protocols or oversight when scaling up could imply lower take-up or impact (Muralidharan
and Niehaus, 2017). We follow recent advances from modeling agglomeration and con-
gestion effects in spatial economics (e.g., Redding (2022)) to extend our framework in the
following way. We modify the production function of the modern technique by introducing
external returns to scale of modern technology adoption within the local market (parish).
Specifically, we posit that the productivity shifter ai,k,ω for farmer i producing crop k us-
ing technique ω, introduced in equation (1), follows āi,k,ωQς

m,k,ω for ω = {modern} and
āi,k,ω for ω = {traditional}, where Qm,k,ω =

∑
i∈J (m) qi,k,ω is the total output of crop k

produced by all farmers in villagem using the modern technique, and āi,k,ω is an exogenous
productivity shifter. The parameter ς > 0 (< 0) is the agglomeration (congestion) elastic-
ity. When ς > 0, then the productivity of a farmer using the modern technique increases
with the scale of local technology adoption, capturing potential at-scale complementarities,
for example, through learning or shifting norms. When ς < 0, on the other hand, the pro-
ductivity of the farmer using modern inputs decreases as the scale of local technology use
rises, allowing, for example, for decreased implementation efficiency at-scale.

Figure 10 presents the levels of the local and at-scale effects (left panel) and the dif-
ferences in at-scale vs. local effects (right panel) across alternative assumptions about the
extent of congestion or agglomeration that arise at scale, ranging from a congestion force
of ς = −0.1 to complementarities within the range of existing estimates of agglomeration
forces, ς = 0.1 and ς = 0.2. Given the small fraction of farmers affected, the level of
the local intervention effects (plotted in the solid line in the left panel) is not affected by the
presence of congestion or agglomeration forces. At scale, we see that the effects are roughly
shifted in parallel across the land income distribution, negatively compared to our baseline
estimates in case of congestion and positively in presence of agglomeration. As a result,
the differences in the effect at-scale are shifted in the same directions in the right panel. For
sufficiently large complementarities at scale, this can push average impacts at-scale to be
greater than those in the local intervention.
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Figure 10: Model Extension with At-Scale Complementarities
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Model extensions like the one above can serve as a reference for policy settings in which
implementation at scale alters treatment effectiveness. Another future extension would be
to relax some of the simplifying assumptions we make when taking the model to the data:
for instance, the assumption that bilateral trade frictions are a linear function of distance
on the existing road network in Section 4 could explain some of the unmatched parts of
the validation exercises on trade flows that we discuss above. It clearly leads to an approx-
imation of trade costs that we impose across bilateral connections in Uganda, relative to
actual trading frictions that may involve route-specific fixed costs and considerations about
route sequencing and dynamic costs due to empty backhauling. The increasing availability
of more granular and high-frequency transportation data in LMICs provides promising av-
enues for further improving the calibration of a granular economic geography in different
contexts.41

Lastly, in terms of types of policies, our approach is most directly tailored to three
41E.g., recent work on India’s road transportation by Barnwal et al. (2024) make use of high-frequency GPS

records, trucking logs, and a survey of truck drivers.
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common types of interventions: (1) shocks to agricultural productivity (b̂j,k,ω) due to, e.g.,
climate change, new seed varieties, irrigation technology or input subsidies as we lay out
above; (2) demand-side shocks, including cash transfers, other income shocks (including
those in cities or other regions) or changes in preferences due to nutritional information
campaigns (âj,k); and (3) policies affecting trade costs (τ̂od,k and t̂od,k in our model), such
as road building or trade reforms. Of course, there is a range of agricultural policies for
which our current model would need to be tailored or extended to speak to effects at-scale.
For example, an important set of policy counterfactual that our current model would need
to be extended for are land market reforms such as those that title land rights (e.g. Ali et al.
(2015)). We abstract from trade in land in Section 2, in part because land markets have
been found to be generally thin in our empirical setting (Acampora et al., 2022, Holden
et al., 2010). But this market would be straight-forward to incorporate as an additional
module to analyze policy counterfactuals aimed at land reform. Our current (static) model
would also need to be modified to be applied to dynamic policies that aim to reduce risk
(e.g. Donovan (2021)) or alleviate the impact of inter-temporal shifts in preferences (Duflo
et al., 2011) or prices (Burke et al., 2019).

We consider the approach that we develop here as a first step to unlock quantitative
analysis of the at-scale impacts of agricultural policies evaluated under local interventions,
with these and other extensions as promising avenues for future research in this area.
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Scaling Agricultural Policy Interventions: Online Appendix

Appendix 1 describes the datasets used in the estimation. Appendix 2 uses the data to
document stylized facts that inform our theory in Section 2. Appendix 3 provides additional
figures and tables referenced in the main text and in the stylized facts below. Appendix 4
describes the data collection and construction of the AEA Registry data on agricultural
RCTs, as well as additional results using the data. Appendix 5 lays out additional model
details and proofs. Finally, the Technical Appendix provides a more general version of the
model that can be adapted to other contexts.

Appendix 1 Data

Our analysis makes use of six main datasets. This appendix provides additional details and
descriptive statistics.

Uganda National Panel Survey (UNPS) The UNPS is a multi-topic household panel col-
lected by the Ugandan Bureau of Statistics as part of the World Bank’s Living Standards
Measurement Survey. The survey began as part of the 2005/2006 Ugandan National House-
hold Survey (UNHS). Then starting in 2009/2010, the UNPS set out to track a nationally
representative sample of 3,123 households located in 322 enumeration areas that had been
surveyed by the UNHS in 2005/2006. The UNPS is now conducted annually. Each year, the
UNPS interviews households twice, in visits six months apart, in order to accurately collect
data on both of the two growing seasons in the country. In particular, the main dataset that
we assembled contains 77 crops across roughly 100 districts and 500 parishes for the peri-
ods 2005, 2009, 2010, 2011 and 2013. It includes detailed information on agriculture, such
as crop production, the amount of land allocated to each crop, labor and non-labor inputs
used in each plot and technology used at the household-parcel-plot-season-year. Data on
consumption of the household contains disaggregated information on expenditures broken
up across crops and other consumption.

Uganda Population and Housing Census 2002 The Ugandan Census has been con-
ducted roughly every ten years since 1948. Collected by the Ugandan Bureau of Statistics,
it is the major source of demographic and socio-economic statistics in Uganda. Over the
span of seven days, trained enumerators visited every household in Uganda and collected
information on all individuals in the household. At the household level, the Census collects
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the location (down to the village level), the number of household members, the number of
dependents, and ownership of basic assets. Then for each household member, the Census
collects information on the individual’s sex, age, years of schooling obtained, literacy sta-
tus, and source of livelihood, among other indicators. We have access to the microdata for
the 100 percent sample of the 2002 Census.

GIS Database and Border Prices We use several geo-referenced datasets. We use data
on administrative boundaries and detailed information on the transportation network (cover-
ing both paved and non-paved feeder roads) from Uganda’s Bureau of Statistics. We com-
plement this database with geo-referenced information on crop suitability from the Food
and Agricultural Organization (FAO) Global Ago-Ecological Zones (GAEZ) database. This
dataset uses an agronomic model of crop production to convert data on terrain and soil con-
ditions, rainfall, temperature and other agro-climatic conditions to calculate the potential
production and yields of a variety of crops. We use this information as part of the projec-
tion from the UNPS sample to the Ugandan population at large. Finally, we use information
on world prices of crops and intermediate inputs at Uganda’s border from the FAO statistics
database.

Survey Data on Cross-Market Trade Flows and Trade Costs The survey data collected
by Bergquist et al. (2024) captures cross-market trade flows and can be used to calibrate
between-market transportation costs. They collect trade flow data in a survey of maize and
beans traders located in 260 markets across Uganda (while not nationally representative,
these markets are spread throughout the country). Traders are asked to list the markets in
which they purchased and sold each crop over the previous 12 months. This information can
be used to limit the calibration of cross-market trade costs to market pairs between which
there were positive trade flows over a given period. They complement this data with a panel
survey, collected in each of the 260 markets every two weeks for three years (2015-2018),
in which prices are measured for maize, beans, and other crops. A greater description of
the data collection can be found in Bergquist et al. (2024).

Demand Estimation To estimate the slope of the demand curve for crops, we bring to bear
transaction-level microdata from maize markets in rural Kenya that was collected as part of
an experiment in Bergquist and Dinerstein (2020). Though for our purposes these subjects
would ideally be representatively drawn from the same area in which the at-scale policy
will be implemented, rural areas across East Africa share many features, including crops
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grown, farming methods (mostly rain-fed agriculture), and overall levels of development.
This is especially true for the rural area of western Kenya studied in Bergquist and Dinerstein
(2020), which takes place 30km from the Ugandan border. In their experiment, which took
place in open-air maize markets, individual consumers who approached maize traders to
make a purchase were offered a surprise price discount, the size of which was randomized
across ten possible amounts. The value of the discount ranged from from roughly 0-15% of
the baseline price and was randomized across customers within a given market-day. Using
the subsidy as exogenous variation in consumer prices, the experiment measured resulting
quantities purchased. We use these experimental data to estimate our key demand elasticity.

Supply Estimation To estimate the key supply elasticity governing farmers’ choice of
land allocation across modern or traditional planting technologies, we exploit experimental
variation from Carter et al. (2020). In this RCT, randomly selected farmers in Mozambique
were offered fertilizer and improved seeds at a subsidized price. Data collected on farmers’
use of modern technologies and output by plot allows estimation of the impact of chang-
ing input prices (instrumented by treatment) on land allocations across technologies. We
complement this RCT with a natural experiment in the UNPS microdata that allows us to
estimate the upper-tier supply elasticity in our model for substitution of land allocations
across crops.

Appendix 2 Stylized Facts

In this appendix, we use the data described above to document the empirical context and
a number of well-known stylized facts about agricultural trade across markets. Figure 1
provides a map of the Ugandan geography we use in our counterfactual analysis.

Product Differentiation Across Farmers Appendix Table A.1 looks at evidence on prod-
uct differentiation across farmers. The canonical approach in models of international trade
sets focus on trade in manufacturing goods across countries, where CES demand coupled
with product differentiation across manufacturing varieties imply that all bilateral trading
pairs have non-zero trade flows. In an agricultural setting, however, and focusing on house-
holds instead of entire economies, this assumption would likely be stark. Consistent with
this, the survey data collected by Bergquist et al. (2024) suggest that less than 5 percent of
possible bilateral trading connections report trade flows in either of the crops covered by
their dataset (maize and beans). This finding reported in Table A.1 provides corroborating
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evidence that agricultural crops in the Ugandan empirical setting are unlikely well-captured
by the assumption of product differentiation across farmers who produce the crops. Our
solution method will explicitly account for these zero trade flows and allow for endogenous
switching on and off of trade flows as a result of treatment at-scale.

Nature of Trade Costs The magnitude and nature of trade costs between farmers and
local markets and across local markets play an important role for the propagation of output
and factor price changes between markets along the transportation network. The canonical
assumption in models of international trade is that trade costs are charged ad valorem (as a
percentage of the transaction price). Ad valorem trade costs have the convenient feature that
they enter multiplicatively on a given bilateral route, so that the pass-through of cost shocks
at the origin to prices at the destination is complete (the same percentage change in both
locations). In contrast, unit trade costs –charged per unit of the good, e.g. per sack or kg
of maize– enter additively and have the implication that price pass-through is a decreasing
function of the unit trade costs paid on bilateral routes. Market places farther away from the
origin of the cost shock experience a lower percentage change in destination prices, as the
unit cost makes up a larger fraction of the destination’s market price.

To explore the nature of trade costs across Ugandan markets, we replicate results re-
ported in Bergquist et al. (2024). Specifically, we estimate:

tijkt = (pjkt − pikt) = α + βpikt + θij + φt + εijkt

where tijkt are per-unit trade costs between origin i and destination j for crop k (maize or
beans) observed in month t, pikt are origin unit prices, θij are origin-by-destination fixed
effects, and φt are month fixed effects. Alternatively, origin-by-destination-by-month fixed
effects (θijt) can be included. Following Bergquist et al. (2024), we estimate these specifi-
cations conditioning on market pairs for which we observe positive trade flows in a given
month. If trade costs include an ad valorem component, we would expect the coefficient β
to be positive and statistically significant. On the other hand, if trade costs are charged per
unit of the shipment (e.g. per sack), we would expect the point estimate of β to be close
to zero. One concern when estimating these specifications is that the origin crop price pikt
appears both on the left and the right-hand sides of the regression, giving rise to poten-
tial correlated measurement errors. This would lead to a mechanical negative bias in the
estimate of β. To address this concern, we also report IV estimation results in which we
instrument for the origin price in a given month with the price of the same crop in the same
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market observed in the previous month. As reported in Table A.2, we find that β is slightly
negative and statistically significant in the OLS regressions, but very close to zero and sta-
tistically insignificant after addressing the concern of correlated measurement errors in the
IV specification. Taken together with existing evidence from field work (e.g. Bergquist
and Dinerstein (2020)), these results suggest that trade costs in this empirical setting are
best-captured by per-unit additive transportation costs.

Household Preferences Appendix Figure A.1 reports a non-parametric estimate of the
household Engel curve for food consumption. We estimate flexible functional forms of the
following specification:

FoodShareit = f (Incomeit) + θmt + εit

where θmt is a parish-by-period fixed effect and f(Incomeit) is a potentially non-linear
function of household i’s total income in period t. The inclusion of market (parish)-by-
period fixed effects implies that we are comparing how the expenditure shares of rich and
poor households differ while facing the same set of prices and shopping options. As reported
in the figure, the average food consumption share ranges from 60 percent among the poorest
households to about 20 percent among the richest households within a given market-by-
period cell. In our model, these nonhomothetic preferences will allow for distributional
effects due to changing food prices that result from the scaled intervention.

Modern Technology Adoption Many policy interventions that are run through agricul-
tural extension programs are aimed at providing access, information, training and/or subsi-
dies for modern technology adoption among farmers. One important question in this context
is whether adopting modern production techniques could be captured by a Hicks-neutral
productivity shock to the farmers’ production functions for a given crop. Alternatively,
adopting modern techniques could involve more complicated changes in the production
function, affecting the relative cost shares of factors of production, such as land and la-
bor. To provide some descriptive evidence on this question, we run specifications of the
following form:

LaborShareikt = α + βModernUseikt + θm + φk + γt + εikt

whereLaborShareikt is farmer i’s the cost share of labor relative to land (including both
rents paid and imputed rents) for crop k in season t (there are two main seasons per year),
ModernUseikt is an indicator whether the farmer uses modern inputs for crop k in season
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t (defined as chemical fertilizer or hybrid seeds), and θmkt, φk and γt are district, crop and
season fixed effects. Alternatively, we also include individual farmer fixed effects (θi). As
reported in appendix Table A.3, we find that the share of labor costs relative to land costs
increases significantly as a function of whether or not the farmer uses modern production
techniques. This holds both before and after the inclusion of farmer fixed effects (using
variation only within-farmer across crops or over time). These results suggest that modern
technology adoption is unlikely to be well-captured by a simple Hicks-neutral productivity
shift in the production function. As a result, interventions at scale that affect the use of
modern technologies may also have knock-on effects on local labor demand and wages.
Our model will allow for such effects.

Appendix 3 Additional Figures and Tables

Table A.1: Product Differentiation – Missing Trade Flows

(1) (2)

VARIABLES Buying Dummy Selling Dummy

Proportion Trading 0.0429*** 0.0432***

(0.0021) (0.0021)

Observations 9,146 9,146

See Appendix 2 for discussion and Appendix 1 for description of the data. *** p<0.01, ** p<0.05, * p<0.1
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Figure A.1: Household Preferences (Non-Homotheticity)
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See Appendix 2 for discussion and Appendix 1 for description of the data.

Table A.2: Nature of Trade Costs

(1) (2) (3) (4)

Price Gap Price Gap Price Gap Price Gap

VARIABLES OLS OLS IV (Lagged Price) IV (Lagged Price)

Origin Price -0.0605*** -0.0419** -0.0081 -0.0002

(0.0188) (0.0206) (0.0256) (0.0274)

Observations 8,524 8,430 7,153 7,079

Pair FX yes . yes .

Month FX yes . yes .

Pair-by-Month FX no yes no yes

Standard errors clusterd at level of bilateral pairs.

*** p<0.01, ** p<0.05, * p<0.1
See Appendix 2 for discussion and Appendix 1 for description of the data.
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Table A.3: Technology Adoption and Production Cost Shares

(1) (2)
VARIABLES Labor Share Labor Share
Use Modern 0.1056*** 0.0423***

(0.0126) (0.0112)
Observations 26,037 25,889
District FX yes .
Crop FX yes yes
Season FX yes yes
Farmer FX no yes
Standard errors clusterd at level of farmers. *** p<0.01, ** p<0.05, * p<0.1

See Appendix 2 for discussion and Appendix 1 for description of the data.

Table A.4: Calibrated Cost Shares in Production
(1) (2) (3) (4) (5) (6)

Land Share Labor Share Intermediate Share Land Share Labor Share Intermediate Share
VARIABLES Traditional Traditional Traditional Modern Modern Modern
cropID1==Beans 0.5107 0.4893 0.0000 0.4607 0.3852 0.1541

(0.0259) (0.0259) (0.0000) (0.0041) (0.0139) (0.0154)
cropID1==Cassava 0.5566 0.4434 0.0000 0.4429 0.3785 0.1786

(0.0503) (0.0503) (0.0000) (0.0180) (0.0187) (0.0176)
cropID1==Coffee 0.6777 0.3223 0.0000 0.5428 0.2683 0.1889

(0.0571) (0.0571) (0.0000) (0.0164) (0.0202) (0.0122)
cropID1==Groundnuts 0.5134 0.4866 0.0000 0.4204 0.4253 0.1543

(0.0231) (0.0231) (0.0000) (0.0190) (0.0450) (0.0271)
cropID1==Maize 0.5000 0.5000 0.0000 0.4153 0.4335 0.1512

(0.0272) (0.0272) (0.0000) (0.0520) (0.0559) (0.0159)
cropID1==Matooke 0.6343 0.3657 0.0000 0.6180 0.2564 0.1256

(0.0455) (0.0455) (0.0000) (0.0394) (0.0275) (0.0119)
cropID1==Millet 0.5285 0.4715 0.0000 0.5485 0.3381 0.1134

(0.0174) (0.0174) (0.0000) (0.0074) (0.0039) (0.0035)
cropID1==Sorghum 0.5563 0.4437 0.0000 0.5774 0.3321 0.0905

(0.0216) (0.0216) (0.0000) (0.0062) (0.0060) (0.0051)
cropID1==Sweet Potatoes 0.5088 0.4912 0.0000 0.4721 0.3642 0.1637

(0.0258) (0.0258) (0.0000) (0.0735) (0.0800) (0.0107)

See Section 4 for discussion and Appendix 1 for description of the data.
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Figure A.2: Relative World Price Changes Over the Sample Period
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See Section 4 for discussion.

Figure A.3: Land Income Shares, Land Ownership and Household Incomes
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The figure plots estimates from local polynomial regressions. Shaded areas indicate 95 percent confidence

intervals. See Section 5 for discussion.
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Table A.5: Effect on Household Welfare

(1) (2) (3) (4) (5) (6) (7) (8)

Welfare Welfare Welfare Welfare Welfare Welfare Welfare Welfare

Local At Scale Local At Scale Local At Scale Local At Scale

VARIABLES All Households All Households Bottom 20% Bottom 20% Middle 20% Middle 20% Top 20% Top 20%

Percentage Point 4.42*** 3.60*** 3.06*** 3.49*** 4.05*** 3.02*** 6.50*** 4.72***

Change (0.07) (0.07) (0.06) (0.08) (0.07) (0.08) (0.11) (0.10)

Observations 104,361 104,361 19,829 19,829 19,828 19,828 20,872 20,872

No Clusters 4502 4502 3577 3577 4130 4130 4087 4087

Standard errors clustered at market-level.

*** p<0.01, ** p<0.05, * p<0.1

See Section 5 for discussion.



11

Ta
bl

e
A

.6
:C

ha
nn

el
s

Pa
ne

lA
:L

oc
al

Eff
ec

ts
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
(9

)
(1

0)
(1

1)
(1

2)

In
co

m
e

W
ag

e
P

m
an

u
P

ba
na

na
P

be
an

P
ca

ss
av

a
P

co
ffe

e
P

gr
ou

nd
nu

t
P

m
ai

ze
P

m
ill

et
P

so
rg

hu
m

P
sw

ee
tp

ot

VA
RI

A
BL

ES
Lo

ca
l

Lo
ca

l
Lo

ca
l

Lo
ca

l
Lo

ca
l

Lo
ca

l
Lo

ca
l

Lo
ca

l
Lo

ca
l

Lo
ca

l
Lo

ca
l

Lo
ca

l

Eff
ec

t
4.

33
25

**
*

0.
65

50
**

*
0.

00
00

-0
.0

48
1*

**
-0

.0
31

4*
**

-0
.0

15
0*

*
-0

.0
01

2*
**

-0
.0

26
0*

**
-0

.5
20

0*
**

0.
02

59
**

*
0.

01
01

**
*

0.
10

64
**

*

(0
.0

64
8)

(0
.0

15
9)

(0
.0

00
0)

(0
.0

03
8)

(0
.0

02
6)

(0
.0

07
2)

(0
.0

00
3)

(0
.0

08
5)

(0
.0

19
4)

(0
.0

02
0)

(0
.0

00
8)

(0
.0

03
8)

O
bs

er
va

tio
ns

10
4,

36
1

10
4,

36
1

10
4,

36
1

10
4,

36
1

10
4,

36
1

10
4,

36
1

10
4,

36
1

10
4,

36
1

10
4,

36
1

10
4,

36
1

10
4,

36
1

10
4,

36
1

N
o

Cl
us

te
rs

45
02

45
02

45
02

45
02

45
02

45
02

45
02

45
02

45
02

45
02

45
02

45
02

Pa
ne

lB
:A

t-S
ca

le
Eff

ec
ts

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

(1
1)

(1
2)

In
co

m
e

W
ag

e
P

m
an

u
P

ba
na

na
P

be
an

P
ca

ss
av

a
P

co
ffe

e
P

gr
ou

nd
nu

t
P

m
ai

ze
P

m
ill

et
P

so
rg

hu
m

P
sw

ee
tp

ot

VA
RI

A
BL

ES
A

tS
ca

le
A

tS
ca

le
A

tS
ca

le
A

tS
ca

le
A

tS
ca

le
A

tS
ca

le
A

tS
ca

le
A

tS
ca

le
A

tS
ca

le
A

tS
ca

le
A

tS
ca

le
A

tS
ca

le

Eff
ec

t
3.

45
95

**
*

2.
88

38
**

*
0.

97
39

**
*

-0
.1

07
5*

**
-0

.3
00

4*
**

-0
.1

36
9*

**
-0

.0
06

9*
**

0.
11

02
**

*
-4

.4
58

8*
**

0.
20

85
**

*
0.

01
46

**
*

0.
89

32
**

*

(0
.0

69
8)

(0
.0

56
9)

(0
.0

03
5)

(0
.0

05
3)

(0
.0

10
2)

(0
.0

32
7)

(0
.0

00
6)

(0
.0

11
5)

(0
.0

45
5)

(0
.0

07
2)

(0
.0

03
0)

(0
.0

12
5)

O
bs

er
va

tio
ns

10
4,

36
1

10
4,

36
1

10
4,

36
1

10
4,

36
1

10
4,

36
1

10
4,

36
1

10
4,

36
1

10
4,

36
1

10
4,

36
1

10
4,

36
1

10
4,

36
1

10
4,

36
1

N
o

Cl
us

te
rs

45
02

45
02

45
02

45
02

45
02

45
02

45
02

45
02

45
02

45
02

45
02

45
02

St
an

da
rd

er
ro

rs
cl

us
te

re
d

at
m

ar
ke

t-l
ev

el
.*

**
p<

0.
01

,*
*

p<
0.

05
,*

p<
0.

1

Se
e

Se
ct

io
n

5
fo

rd
isc

us
sio

n.



12

Figure A.4: Initial Usage of Modern Inputs Across Land-Poor vs Land-Rich Households

.0
8

.1
.1

2
.1

4
.1

6
In

iti
al

 R
ev

en
ue

 S
ha

re
 o

f M
od

er
n 

Te
ch

.25 .35 .45 .55 .65 .75 .85
Initial Share of Land in Total Income

The figure plots estimates from local polynomial regressions. Shaded areas indicate 95 percent confidence intervals. See Section 5 for
discussion.

Figure A.5: Effects as a Function of Initial Crop Shares
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Figure A.6: Decomposition of Difference At Scale vs. Local Effect
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Figure A.7: Sensitivity to Alternative Parameters
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Figure A.8: Alternative Assumptions on Cross-Border Trading
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Appendix 4 AEA Registry of Agricultural RCTs

4.A Database Construction

To construct a database of agricultural RCTs conducted in Sub-Saharan Africa, we turn to
the American Economic Association (AEA) RCT registry (www.socialscienceregistry.org/).
We collect all studies that have been conducted in Sub-Saharan Africa and listed on the reg-
istry from the registry’s launch in 2013 through 2024. To do so, we search the database
for keyword “agricultur*” for each country in Sub-Saharan Africa. This yields a set of 181
trials. Trials are then manually reviewed by two independent reviewers to ensure they are
related to agriculture. After discarding 38 trials that feature neither an agricultural interven-
tion nor an agricultural outcome, we are left with 143 trials conducted across 23 countries.
These comprise the studies in our dataset.

With the help of three RAs, we then manually code information for each study, drawing
data from the information listed on the registry, attached pre-analysis plans, and working
papers or published papers identified in a web search including Google Scholar, authors’
websites, and EconLit. When available, information collected on each study included: (1)
intervention type; (2) study location; (3) working paper and publication status; (4) sample
size; (5) randomization details; (6) coefficient and standard error of the treatment effect on
harvests (in kgs), agricultural revenues, and total household revenues, as well as the mean
of the variable in the population; (7) mean and standard deviation of demographic variables
of the study population (land size, education, household expenditure) and (8) minimum
detectable effects (MDEs). For the full codebook, please contact the authors. Note that
several studies do not have working papers and, when they do, not all reported all outcomes
above (more on this below).

The location data is collected at the finest level described in the text, which is almost
always a town, district or other subnational administrative unit. For studies that only listed
country or broad region within the country (e.g. “Eastern Uganda”), we contacted the au-
thors to get a more precise location. We thank the many authors who replied to this request
with detailed study location information.

Using the location data, we merge in several auxiliary data sources that provide data on
market access, land share, maize share, and modern share, and maize shares. These data are
drawn from four additional sources, merged with our RCT data based on the nearest grid
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cell or enumeration area centroid:
1) Market access data is constructed using population counts on 15-arc-minute grids

from the Socioeconomic Data and Applications Center at NASA (CIESIN, 2018) and dis-
tance between each grid cell from Harvard WorldMap (WorldMap, 2021).

2) Land shares are constructed at the lowest possible enumeration area level using data
on household consumption and non-farm income collected in nationally representative house-
hold surveys (Living Standards Measurement Surveys, for countries that conduct them, and
other nationally representative households surveys manually collected from national statis-
tics agencies, for countries that do not run LSMS surveys).

3) Data on maize shares and modern shares are constructed using spatial data at a 5 arc-
minutes grid level from the Food and Agriculture Organization’s Global Agro-Ecological
Zones (GAEZ) v4 dataset. Data on maize production value and total production value al-
lowed for the calculation of maize shares. Data on “achievement ratios”, which GAEZ
calculates by “comparing downscaled actual yields with agro-ecological attainable yield
simulated under high input/advanced management assumptions” across 22 major crops, are
used a proxy for modern share.

4) Additional demographic data is added on asset holdings, household size, and educa-
tion and age of household head from Demographic and Health Surveys.

In addition, to facilitate comparison to the full population of all possible rural sites
across the 23 countries studied in the AEA registry studies, a database is constructed with
the same four variables collected for all grid cells (or enumeration areas) across all rural
areas in the 23 countries. Grid cells with a population of greater than 300 people/square
km are identified as “urban” (following the definition of the UN Statistical Commission
(Commission, 2020)) and are dropped. This results in a drop of 2.5% of all grid cells.

4.B Summary statistics

First, we explore where the RCTs listed on the AEA Registry were conducted. Uganda, our
country of focus, is the second most commonly studied country, accounting for 25 stud-
ies, second only to Kenya at 27 studies. In descending order, the next most common are:
Ethiopia (14 studies), Ghana (13 studies), Malawi (12 studies), Mozambique (7 studies),
Zambia (6 studies), Liberia (5 studies), and Rwanda (5 studies). All other countries had
fewer than five registered studies.

Second, we explore intervention type, coding the interventions evaluated in the 143



17

studies into (non-exclusive) categories. We find that 42% study extension services or farmer
training, 38% financial vehicles or services (including credit, savings, insurance, and cash
transfers), and 36% free or subsidized inputs. While our paper shows that even these types of
productivity-enhancing interventions can have strong GE effects at scale, we note it is much
less common that experiments study interventions with more obvious GE implications, such
as those that directly target output or input market access (including land and labor markets);
these total only 17% of interventions in the registry. This may in part be driven by concern
about GE effects arising even in the pilot and contaminating the control group.1

4.C Publication bias

We use this database to study the role of publication bias among agricultural RCTs listed
on the AEA registry. As discussed above, we collect data on whether each study has been
published. Restricting attention to experiments that were launched more than five years
ago (before 2020) to allow enough time to produce results, we find that 57% of studies are
published.2

We then regress a dummy for being published on the same set of covariates explored in
the variance decomposition in Table 4: land shares in income, modern shares of production,
maize revenue shares, and remoteness. Results are presented below in Appendix Table A.7.

1Only 4% of the studies reviewed does not fall into one of the above categories. These are mostly studies
measuring the impact of nutritional information, food safety, or health campaigns.

284% have a working paper, consistent with a broader meta analysis conducted by Hoces de la Guardia
(2025) which finds that 81% of all AEA registry entries have a working papers within eight years.
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Table A.7: Predictors of Publication Status among RCTs in the AEA Registry

Published

Land share -0.06

(0.07)

Modern share 0.17∗

(0.08)

Maize share 0.02

(0.06)

Log (inverse) market access -0.04

(0.08)

Observations 105

Mean of DV 0.59

R squared 0.07

Notes: Regression of indicator for whether the study has been published on land share, modern share, maize
share, and remoteness (as proxied by log inverse market access). See text above for details and sources for
each variable construction. Regression sample is restricted to experiments launched more than five years ago
(before 2020) to allow time for publication.

Consistent with the results from the variance decomposition, which finds that the share
of revenues produced under the modern production technique is the strongest predictor of the
local effect, we find studies conducted among populations with greater modern shares are
significantly more likely to be published, possibly because they have stronger local treatment
effects. However, these populations have lower treatment effects at scale, suggesting again
that publication bias may lead to an over-reporting of results in settings where treatment
effects are likely to greater in the local intervention than at scale – and an under-reporting
of the opposite.
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4.D Validation among AEA registered experiments

Finally, we can also use our AEA RCT database to conduct some (arguably ambitious) out-
of-sample validation exercises. As discussed above, for each study, we collect information
about treatment effects on harvests, agricultural revenues, and total revenues when available.
We can then compare the drivers of variation in the local intervention’s treatment effect that
we estimate in our quantitative model of the Ugandan input subsidy application to those we
observe across the realized field experiments.

We note upfront that this exercise suffers from two major caveats: (1) substantial hetero-
geneity in setting and intervention details (only one-third of experiments specifically study
input subsidies) and (2) small-sample size (of the 143 studies identified in the review, only
115 have working papers and, among these, only 53 report harvest impacts, 37 agricultural
revenue impacts, and 30 total household revenue impacts).3

With these caveats in mind, in Appendix Figure A.9 we overlay the estimated treatment
effects from the AEA registry studies and those estimated in our model, as a function of the
factor found to be the main driver of the local effect size in our variance decomposition in
Table 4: the initial farmer revenue share under the modern production technique. We do this
for all registered agricultural interventions with reported treatment effects for each outcome
as shown in the top row of Figure A.9, while the bottom row plots a version restricted to
those experiments that specifically study input subsidies. Given the small sample sizes,
the confidence intervals around the AEA registry data are large (even when using point
estimates of treatment effects as data points, ignoring confidence intervals).

Having said this, reassuringly we find that our model’s estimates fall within these con-
fidence intervals. Moreover, in both our model and in the AEA registry data we find a
positive relationship between treatment effects and the share of modern production tech-
niques used. Such out-of-sample validation is, of course, quite tentative – as there could be
many meaningful differences between the studies’ settings and our calibrated application
using the Uganda data. Nevertheless, this meta analysis adds some further reassurance that
the economic forces captured in our model appear to be present across multiple different
empirical contexts.

3Among the input subsidy experiments, which match more closely the intervention modeled here, sample
size is even more constrained, with only 21 reporting harvest impacts, 16 agricultural revenue impacts, and
11 total household revenue impacts.
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Figure A.9: Model Validation using Results from AEA Registry Trials
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Notes: Presented is a local polynomial fit between treatment effects – in the AEA registry studies in black
and in the model in dotted gray – as a function of the modern share (standardized z-score, normalized by the
within country mean and standard deviation). Gray areas present the 95% confidence intervals around each
line (which are more visible in the AEA registry due to the much smaller sample size than in the granualar
model data). Results are presented for treatment effects on harvests (in kgs), agriculture revenues, and total
household revenues, as a percentage of the baseline mean. The top row presents results for all studies in the
AEA registry with the given outcome reported (53 studies for harvest treatment effects, 37 for agricultural
revenues, and 30 for total household revenue impacts). The bottom presents results restrict to the experiments
studying the same intervention we model: a subsidy for modern inputs. This results in a smaller sample
size, with only 21 studies reporting harvest impacts, 16 agricultural revenue impacts, and 11 total household
revenue impacts.

Appendix 5 Model and Solution Method

In Appendix 5.A, we first present the excess demand functions χi,g (•) used in the text to
define the equilibrium, and we then present the excess demand functions for the “price
discovery” step. In Appendix 5.B, we develop the proof for uniqueness in price discovery
for the special case with iceberg trade costs. Finally, in Appendix 5.C, we extend the model
to allow for seasonal migration between rural markets and between rural and urban markets.
For readers interested in more technical detail on the model and solution method we refer
to the Technical Appendix.

5.A Excess Demand Functions

The excess demand function for farmers are given by

χi,g ({pi,g} ;Wi,g) =
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=


ξg,i ({pi,g} ;Wi,g) Ii − pi,g

∑
ω qi,g,ω ({pi,g} ;Wi,g) for crop g,

ξg,i ({pi,g} ;Wi,g) Ii for manufacturing product g,∑
k,ω βi,k,ωpi,kqi,k,ω ({pi,g} ;Wi,g)− pi,gLi for labor g = l.

The excess demand functions for urban household h for crops and manufacturing products
g are given by:

χh,g ({ph,g} ;Wh,g) = [ξh,g ({ph,g} ;Wh,g)− 1 (g = g(h))] Ih

where expenditure share function ξi,g (•) and crop output function qi,g,ω (•) are defined in the
main text where we skip the functional dependencies to avoid excessive notation. Indicator
function 1 (g = g(h)) is equal to one only if manufacturing product g belongs to urban
household h and zero otherwise.

For Foreign and for crop g, χF,g equals −∞ if pF,g < p∗F,g, equals +∞ in the reversed
case, and has a finite value if pF,g = p∗F,g. For manufacturing products g produced in Home:
χF,g = XF,g(pF,g).

For the price discovery step excess demand as functions of data DA and prices {pi,g} of
crops and labor for farmers and urban households are given by

χ̃i,g ({pi,g} ;DA) = ξi,gIi ({pi,g} ;DA)−
∑
ω

pi,gqi,g,ω, for crop g,

χ̃i,g ({pi,g} ;DA) =
∑
k,ω

βi,k,ωpi,kqi,k,ω − pi,gLi for labor g = l,

χ̃h,g ({ph,g} ;DA) = ξh,gIh, for crop g,

χ̃F,g ({pF,g} ;DA) =


−∞ if pF,g < p∗F,g

]−∞,∞[ if pF,g = p∗F,g

∞ if pF,g > p∗F,g

for crop g,

where
Ii ({pi,g} ;DA) =

∑
k,ω

(1− αi,k,ω) pi,kqi,k,ω + pi,LLi.

5.B Price Discovery

In this appendix, we show that, in the case with only iceberg trade costs (i.e., tij,g = 0 for
all i, j, g), the price discovery step described in Section 2 is well defined in the sense that
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there is a unique set of prices {pj,g} that solves the system of equations (7) and (8) (for a
given set of Foreign prices) and excess demand functions in 5.A. To do so, we think of that
system of equations as characterizing the equilibrium of a competitive exchange economy,
and so the goal is to prove that this economy has a unique equilibrium.

We consider an equivalent economy where there is a single market with an expanded
set of goods (which we now call varieties) given by

V ≡ {(o, g) ∈ J ×KA ∪ {L} | qo,g > 0} ,

where J is the set of all agents excluding Foreign. A variety of good g produced by agent
o is indexed by (o, g) ∈ J ×KA ∪ {l} where KA is the set of crops. Agent o′s endowment
of (o, g) is qo,g, which is also the total endowment of variety (o, g) in the economy.

Letting po,g denote the price of variety (o, g) ∈ V , the price at which agent d has access
to variety (o, g) is then τod,gpo,g. Letting p ≡ {po,g}(o,g)∈V , the excess demand function (in
value) for a variety (o, g) ∈ V is given by

χo,g (p) =
∑

d∈J∪{F}

Xd,o,g (p)− po,gqo,g,

where Xd,o,g (•) is the expenditure of agent d on variety (o, g). For d ∈ J , and letting
ξd,g ∈ [0, 1] denote the expenditure share of gross income of agent d ∈ J (i.e.,

∑
g pd,gqd,g)

on good g,4 we have Id =
∑

g pd,gqd,g and:

Xd,o,g (p) ∈

[0, ξd,gId] if o ∈ arg mino′∈J∪F po′,gτo′d,g

0 if o /∈ arg mino′∈J∪F po′,gτo′d,g
.

In turn, for d = F we have XF,o,g (p) = ∞ if po,g < p∗F,g, zero in the flipped case, and
finite if po,g = p∗F,g. We henceforth follow the convention that qo,g = 0 =⇒ po,g =∞ and
Xd,o,g (p) = 0, and also let XF (p) ≡

∑
d∈J ,gXd,F,g (p) denote the aggregate expenditure

on goods from Foreign (imports).
The equilibrium is a set of pricesp such that the excess demand (in value) for all varieties

in V is zero,
χo,g (p) = 0, ∀ (o, g) ∈ V . (A.1)

We also assume that each agent j ∈ J produces at least one good (to ensure positive income)
4Recall that the set of goods includes labor and crops. Gross income for a household is composed of the

value of endowment of crops plus labor income. Subtracting the cost of intermediate goods (which are not
included in the set of goods because prices are exogenous) and labor (as an input) yields disposable income,
which is spent on consumption goods.
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and has a positive expenditure share on each good that it produces:

Assumption A1: 1) Endowments:
∑

g∈K qo,g > 0, ∀o ∈ J .
2) Demand: qo,g > 0 =⇒ ξo,g > 0, ∀o ∈ J , g ∈ KA ∪ {L}.

For future purposes, note that the second part of this assumption implies that an increase
in any price po,g′ , (o, g′) ∈ V leads to a strict increase in the value of excess demand χo,g (p)

for any variety (o, g) with ξo,g > 0.
We say that a set of prices p is connected if there is only one trading block, i.e. there is

no partition {J1,J2} of J such that for all g ∈ KA we have (i) Xd,o,g (p) = Xo,d,g (p) =

0, ∀o ∈ J1, d ∈ J2 (i.e., no trade between the two blocks) and (ii) XF,o,g(p) = 0, ∀o ∈
J1 or XF,o,g(p) = 0, ∀o ∈ J2 (i.e., it is not the case that both trade blocks trade with
Foreign). Given Assumption A1, we now show that there can be at most one connected p

that solves the system of equations A.1. We do so by appealing to the result in Corollary 1
of Berry, Gandhi, and Haile (2013) – henceforth BGH – which states sufficient conditions
under which a function is injective on a set. We apply this result to our excess demand
function {χo,g (p)}o,g.

Following BGH, we need to define “good 0,” which is critical for the concept of “con-
nected substitutes.” We do this by considering each variety (o, g) ∈ V as a regular good
and by thinking of the value of imports,XF (p), as the “demand for good 0.” Trade balance
then implies that

XF (p) = −
∑
o,g

χo,g (p) ,

as in equation (2) of BGH.5 We next show that Assumptions 1-3 in Corollary 1 of BGH are
satisfied in our setting.

Translated to our context and notation, Assumption 1 in BGH states that the set of pos-
sible prices P is a Cartesian product, which is satisfied here.6

Given that expenditure shares in demand are fixed and that higher prices lead to higher
income (weakly), it is then easy to verify that import demand,XF (p), increases weakly with
the price of any domestic variety in V while demand for variety (o, g), χo,g(p), increases
weakly with the price of any other variety (o′, g′) ∈ V with (o′, g′) 6= (o, g). This shows that
varieties in our context are weak substitutes, and hence Assumption 2 in BGH is satisfied.

5BGH add+1 to demand for good “0,” but this does not affect any results nor assumptions on monotonicity.
6Here we look at prices, thus reversing all signs of the slopes in BGH, who focus instead on demand shifters

(denoted with x). Our set P corresponds to the set X in BGH, while the set of all connected prices P∗ ∈ P
corresponds to X ∗ ⊂ X in BGH.
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To verify that Assumption 3 in BGH is satisfied, we use the equivalent condition stated
in BGH’s Lemma 1. Translated to our context, this condition states that for any nonempty
subset V0 of V either (i) there is a variety (o, g) ∈ V0 such that XF (p) increases strictly in
po,g or (ii) there is a variety (o′, g′) ∈ V\V0 such that χo′,g′ (p) increases strictly in po,g. We
now show that this condition is satisfied by considering the three possible cases.

First, if there is an agent o and two goods g and g′ such that (o, g) ∈ V0 and (o, g′) ∈
V\V0 then an increase in po,g leads to an increase in revenues for agent o and an increase in
demand for (o, g′) through an income effect (under A1).

Second, suppose that for any agent o either all or none of the varieties are in V0 (other-
wise we are back to case one just above). Suppose also that there is a variety (o, g) ∈ V0

and a variety (o′, g′) ∈ V\V0 such that agent o purchases good g′ from o′, i.e. such that
Xo,o′,g (p) > 0. In that case, an increase in the price po,g leads to an increase in revenues
for agent o and an increase in demand for variety (o′, g′) again through an income effect.

The third case is one where, for any agent o, either all or none of the varieties are in
V0, and where no agent o purchases goods from agents that have varieties outside V0. As
we focus on connected price vectors, this implies non-zero demand for some Foreign good
by some agent o that has some varieties (o, g) in V0. As such, an increase in po,g leads to
greater demand for Foreign goods XF (p).

5.C Model Extension with Seasonal Migration

In this appendix, we extend the model to allow for seasonal migration between rural markets
as well as between rural and urban markets. As for trade in goods, labor can be traded
between any two local labor markets subject to additive trade costs tij,l and/or iceberg trade
costs τij,l. We refer to this trade in labor as “seasonal migration”, since we assume that
migrants consume (and face prices) at their home location but earn wage pi,l on destination
farm i, or ph,l when working for urban household h. We do not allow for international
migration, i.e., tij,l = τij,l =∞ for i, j ∈ {F}.

Our model exposition in Section 2 continues to apply to the model with migration. How-
ever, since labor supply is no longer perfectly inelastic in urban markets due to migration,
we cannot treat output of manufacturing good g(h) as an endowment. Instead, output of
manufacturing variety g(h) is given by ah

∑
i xih,l, where xih,l are flows of labor from any

origin i to urban household h, and ah is a productivity shifter. As for wages in rural mar-
kets, we need to account for wages ph,l that clear urban labor markets in equilibrium. Due to
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perfectly competitive labor markets, the urban wage follows ph,l = ph,g(h)ah, where ph,g(h)

is the price of manufacturing variety g(h) for urban household (or city) h.
In equilibrium, rural and urban households maximize utility taking prices as given,

prices respect no-arbitrage conditions given trade costs, and all markets clear. The equi-
librium is a set of prices, {pj,g} and trade flows {xij,g} (measured in quantity at the desti-
nation). The equilibrium conditions (3) and (4), laid out in Section 2, apply to the model
with migration as well. Based on the discussion above, only the equilibrium condition for
urban income changes to:7

Ih = ph,lLh, ∀h.

To implement this model extension in counterfactuals, one needs to calibrate the size of
regional migration costs. One way of doing so is guided by the model’s implication that two
markets connected through migration have equal wages net of migration costs – similar to
the estimation of trading frictions using bilateral price gaps. But of course, this implication
is conditional on (partly unobserved) worker characteristics, as discussed at length in the
literature on rural-urban wage gaps in developing countries (Gollin et al. (2014); Young
(2013); Herrendorf and Schoellman (2018)).

7Here, we now need to distinguish between urban labor endowment Lh and urban employment
∑
i xih,l.
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Technical Appendix More General Model and Exact Hat Algebra

In Appendix A, we present the model allowing for general functional forms on preferences
and technology, for which exact hat algebra is feasible. In Appendix B, we formally describe
this class of functions. In Appendix C, we provide additional details on recovering trade
shares in manufacturing to apply exact hat algebra for that sector.

A General Functional Forms on Preferences and Technology

We now restate the assumptions on preferences and technology, but allowing for general
functional forms that satisfy certain assumptions needed for exact hat-algebra (after the
price discovery step), discussed formally in Technical Appendix B. The model equilibrium
and solution to counterfactuals in the main text and excess demand functions in 5.A also
apply for these more general functional forms.1 The purpose of this exercise is to allow
researchers to customize the model by choosing alternative preferences and technology,
depending on their application of the model.
Preferences
Agents j 6= F have indirect utility function V ({bj,kpj,k}j, Ij), where Ij denotes income,
{pj,k}j denotes prices and {bj,k}j denotes demand shifters. Let ξj,k denote the expenditure
share of agent j on good k. Roy’s identity implies that

ξj,k = −
∂ lnV ({bj,kpj,k}j ,Ij)

∂ ln pj,k

∂ lnV ({bj,kpj,k}j ,Ij)
∂ ln Ij

≡ ξk

(
{bj,kpj,k}j , Ij

)
.

Turning to Foreign, our small-open economy assumption for Home implies that Foreign’s
demand (in value) for manufacturing good g(h) can be specified directly as a function of
this goods’s individual price, XF,g(h)(pF,g(h)).
Technology
Farmers produce agricultural goods k ∈ KA using land, labor and intermediate goods with
techniques ω ∈ Ω. Assuming constant returns to scale in agriculture, letting ri,k,ω denote
the return to an effective unit of land allocated by farmer i to produce agricultural good k
with technique ω, and letting ci,k,ω({pi,n}i, ri,k,ω)/ai,k,ω denote the corresponding unit cost
function – with ai,k,ω a Hicks-neutral productivity shifter – then at an interior solution to

1With general functional forms for preferences and technology, the only change in excess demand functions
presented above is for farmers’ excess demand for labor (g = L), where we replace αi,g,k,ω with the cost share
function αi,g,k,ω({pi,n}i, ri,k,ω).
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the farmer’s optimization problem we must have

pi,k = ci,k,ω({pi,n}i, ri,k,ω)/ai,k,ω.

This determines ri,k,ω as an implicit function of prices, pi,k and {pi,n}i, and productivity
ai,k,ω. In turn, letting αi,n,k,ω({pi,n}i, ri,k,ω) denote the cost share of input n for farmer i
producing crop k using technique ω, an envelope result implies that

αi,n,k,ω({pi,n}i, ri,k,ω) =
∂ ln ci,k,ω({pi,n}i, ri,k,ω)

∂ ln pi,n
.

Farmer i allocates their land endowment Zi across different agricultural goods and tech-
niques to maximize their total land returns,

∑
k,ω ri,k,ωZi,k,ω, where Zi,k,ω measures the

effective units of land allocated by farmer i to produce crop k with technique ω. We al-
low for decreasing marginal productivity in how physical units of land Zi can be converted
into efficiency units of land for different crops and techniques. Specifically, we assume that
the feasible set for the allocation of efficiency units of land across crops and techniques is
{{Zi,k,ω}i|f({Zi,k,ω}i) ≤ Zi}, with f (•) homogeneous of degree one and strictly quasi-
convex. Total land returns of farmer i are then given by

Y
(
{ri,k,ω}i

)
Zi ≡ max

{Zi,k,ω}
i

∑
k,ω

ri,k,ωZi,k,ω s.t. f({Zi,k,ω}i) ≤ Zi.

Letting πi,k,ω denote the share of land returns of farmer i coming from production of crop
k with technique ω, an envelope result implies that

πi,k,ω =
∂ lnY

(
{ri,k,ω}i

)
∂ ln ri,k,ω

≡ πk,ω
(
{ri,k,ω}i

)
.

Finally, letting qi,k,ω denote output of crop k for farmer i with technique ω, then

qi,k,ω ({pi,g}i, {ri,k,ω}i) =
πk,ω ({ri,k,ω}i)Y

(
{ri,k,ω}i

)
Zi

[1−
∑

n αi,n,k,ω({pi,n}i, ri,k,ω)] pi,k.

It remains to parameterize all the relevant functions, namely ξg (•), XF,g (•), Y (•), and
ci,k,ω(•), and ensure that these functions are conducive to exact hat-algebra, as defined in
the next section.

B Functional Forms for Exact Hat Algebra

For a function f(p) (e.g., expenditure shares, shares of land returns), exact-algebra entails
writing f(p′) = g(f(p), p̂), where g(•) is some function and p̂ = p′/p denotes the vector
of ratios (element-wise), so that we can solve for counterfactual f(p′) as a function of f(p)

without necessarily knowing p. Not all functions f , however, allow us to write f(p′) in this
way. The goal of the following proposition is to describe the class of such functions.
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Definition Let f be a smooth function from Rn to its image Im(f) ⊂ Rm. We say that
this function is ”conducive to exact hat algebra” if we can write:

f(p.p̂) = g(f(p), p̂)

for all p, p̂ ∈ Rn
+, for some function g : Im(f)× Rn

+ → Rm, and where p.p̂ is the element-
wise product of p and p̂.

Proposition Suppose that f is a smooth function from Rn
+ to Rm. Then these three prop-

erties are equivalent:

• i) f is conducive to exact hat algebra.

• ii) For all p0, p1, p̂ ∈ Rn
+, f(p0) = f(p1) =⇒ f(p0.p̂) = f(p1.p̂)

• iii) ConsiderF (x) = f(exp(x)), where exp(x) denotes the vector of elements exp(xi).
There is a linear subspace E of Rn on which F is injective, and a linear function
π : Rn → E , equal to the identity on E, such that

F (x) = F (π(x)),∀x ∈ Rn.

This implies that level sets of F are affine, and that f can be written as a combination
of Cobb-Douglas functions (exponential of π) and an invertible function.

Note that such definition and results may apply to the derivatives instead of the output func-
tion itself. For instance, with a production function featuring constant returns to scale, we
can observe the initial values of the gradient (in log), which corresponds to the shares of
the different inputs entering the production function. In such cases, we can use a similar
approach if the gradient is itself conducive to exact hat algebra, according to the definition
above. By integrating, we can then retrieve the total changes in the output function as a
function of the initial values of the log-gradient and the changes in the arguments.

Proof of the Proposition For the proof, it is more convenient to take the log of each
argument. Let us denote by x = log p the log of inputs and by δ = log(p′/p) the log change,
so that a relative change in variables becomes additive. Consider F (x) = f(exp(x)), where
exp(x) denotes the vector of elements exp(xi).

Proof of i) implies ii) If i) is satisfied then we can write F (x+δ) = G(F (x), δ). Suppose
that F (x0) = F (x1), we have then

F (x0 + δ) = g(F (x0), exp(δ)) = g(F (x1), exp(δ)) = F (x1 + δ)
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Similarly, in terms of function f, with p = exp(x) and p̂ = exp(δ), f(p0) = f(p1) implies:

f(p0.p̂) = g(f(p0).p̂) = g(f(p1).p̂) = f(p1.p̂)

Proof of ii) implies i) For the converse, let’s construct a function K : Im(f)→ Rn such
that F (K(y)) = y for all y ∈ Im(F ). Then, for all y ∈ Im(f) and all x ∈ Rn, define g as
g(y, δ) = F (K(y) + δ). Mechanically, by definition of K, we have: F (K(F (x))) = F (x)

for any x ∈ Rn. Property ii) implies that F (K(F (x)) + δ) = F (x + δ) for any δ ∈ Rn.
Hence we obtain

g(F (x), δ) = F (K(F (x)) + δ) = F (x+ δ)

for any x, δ ∈ Rn. With p = exp(x) and p̂ = exp(δ) this implies: f(p.p̂) = g(f(p), p̂).

Proof of iii) implies ii) With this projection, F (x0) = F (x1) implies π(x0) = π(x1), and:
F (x0+δ) = F (π(x0+δ)) = F (π(x0)+π(δ)) = F (π(x1)+π(δ)) = F (π(x1+δ)) = F (x1+δ)

Proof of ii) implies iii) To prove the converse property, first notice that each level set is a
translation of any other one since for any shift δ, two points x0 and x1 are on the same level
set if and only if x0 + δ and x1 + δ are on the same level set. Hence we just need to describe
the shape of a single level set to find the shape of all other ones. In the case where a level
set is a point, all level sets are points and F is injective and property iii) is trivial; so for the
remainder we will assume that level sets are not points.

Let’s consider a function π : Rn → Rn such that F (π(x)) = F (x) for all x ∈ Rn. For
any x0, x1 ∈ Rn, F (π(x0)) = F (x0) and property ii) imply:

F (π(x0) + π(x1)) = F (x0 + π(x1))

when we shift both sides by π(x1). Again using property ii) applied to F (x1) = F (π(x1))

and shifting by x0, we obtain: F (x0 + π(x1)) = F (x0 + x1), and thus:

F (π(x0) + π(x1)) = F (π(x0 + x1))

Similarly, as it implies F (2π(x)) = F (π(2x)), we get: F
(
π(x0)+π(x1)

2

)
= F

(
π
(
x0+x1

2

))
If, in addition, F is injective on the image of π (i.e. π projects on at most a single point per
level set), then we have

π

(
x0 + x1

2

)
=
π(x0) + π(x1)

2
(T.1)

for all x0, x1. For any F,we can construct such a projection π by chosing an arbitrary point
on each level set. Let us pick a point x0 where the derivative of F has its maximal rank
over a neighborhood of x0. Assuming property ii), the derivative is the same on all points
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of the level set {x;F (x) = F (x0)} associated with point x0. We can thus define an open
set around x0 that includes the level set {x;F (x) = F (x0)} and define a projection π that
is continuous on that open set. Property T.1 then implies that π is linear on that set and thus
that it is an affine set in Rn.2 Since all level sets are translations of each other, all level sets
are parallel affine sets of Rn. The level set crossing the origin is then a linear subspace of
Rn. Denote by E its complement. E is crossing each level set only once, hence F is then
injective on E. Denote by π : Rn → E the projection of all points of a level set onto its
intersection with E, we obtain that π is a linear function satisfying the conditions in iii).

Examples Cobb-Douglas production functions provide an extreme example where we just
need to know the functional form and the relative change in inputs. Level sets (in log) are
planes and are thus affine as described above.

Next, consider expenditure shares when preferences are CES. Based on expenditure
shares, we can identify relative prices up to a common constant. Knowledge of such relative
prices is then sufficient to compute the change in expenditure shares, as it is well documented
in the literature. In this case, level sets (in log) are all the lines parallel to the (1, ..., 1) vector.

With Stone-Geary preferences exhibiting strictly positive minimum consumption re-
quirements φi for each good i, expenditure shares are given by:

fi(p/w) = φipi/w + αi

(
1−

∑
j

φjpj/w

)
depending on normalized prices pi/w. Such f is however not conducive to exact hat alge-
bra.3 To fix this issue, a solution is to assume that one good (manufacturing good, say good
i = 1) does not have a minimum consumption requirement, i.e. φ1 = 0. Function f is then
invertible up to p1/w, noticing that p1/w does not influence any expenditure share, and is
now conducive to exact hat algebra.4

C Recovering Trade Shares in Manufacturing

In Section 2, we lay out our solution method when available data include expenditure shares
ξj,g(h) for manufacturing goods for all h ∈ H and agents j ∈ I ∪H where we denote the set

2Note that we cannot have a disconnected level sets (e.g. the union of two affine subsets) as the average
between any two points of that level sets is again in the level set.

3For instance, if n = 2, φi = 1 and αi = 1/2, we have: f1(p1/w, p2/w) = 1
2 [1 + p1/w − p2/w] for

i = 1, 2. We can see that f1 = f2 = 1/2 implies p1/w = p2/w, but we cannot identify its value. However,
the overall level of p1/w = p2/w matters for the counterfactual outcome f(p̂1p1/w, p̂2p2/w) as soon as
p̂2 6= p̂1. The same issue arises even if we consider expenditures instead of expenditure shares as observables.

4Note that other counter-examples can be found for homogeneous (homothetic) functions.
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of urban households withH and the set of farmers with I. As in our case, such data are not
always available at such level of aggregation. Here we provide details on how to recover ex-
penditure shares ξj,g(h) following a method similar to e.g. Donaldson and Hornbeck (2016).
We assume that we have some data on the international trade deficit in manufacturing.

First, we need to separately infer aggregate imports and aggregate exports of manufac-
turing with Foreign. Given income levels of farmers (inferred along with agricultural crop
prices) and urban households in Home (observed), we can compute overall expenditures on
manufacturing by each agent in Home as Ij · (1 −

∑
k∈KA ξj,k) for j ∈ I ∪ H. Total rev-

enues in manufacturing in Home are
∑

h Ih, and the difference between total expenditures
and revenues in manufacturing gives us Home’s overall deficit in manufacturing. Assuming
that we can observe (e.g. from international trade data) the ratio of this deficit to Home’s
manufacturing imports, we can then deduce the value of manufacturing imports by Home,∑

j∈I∪HXj,g(F ), as well as its manufacturing exports to Foreign,
∑

h∈HXF,g(h).
Next, we assume that the demand shifter in manufacturing (e.g. quality or productivity)

may vary across sources (urban households and Foreign) but is not specific to each destina-
tion, i.e. bj,g(h) = bM,g(h), ∀j ∈ I ∪ H ∪ {F} and ∀h ∈ H ∪ {F}. Excess demand for the
manufacturing good of urban household h satisfies:∑

j∈J

χj,g(h)({bM,kpj,k}j, Ij) = 0.

(in this expression, note again that we can simplify the arguments of function χj,g(h)). For
the manufacturing good produced in Foreign, we have∑

j∈I∪H

χj,g(F )({bM,kpj,k}j, Ij) =
∑
j∈I∪H

Xj,g(F )

where the right-hand side is observed or inferred as discussed above. Combined with
pj,g(h) = τhj,g(h)ph,g(h) for h ∈ H and pj,g(F ) = τFj,g(F )pF,g(F ), the previous displayed
equations constitute a system of equations in bM,g(h)ph,g(h) for h ∈ H and bM,g(F )pF,g(F ),
which has a unique solution as long as demand features gross substitutes, as is the case in
most of the trade literature (e.g., with CES demand). Given the solution in bM,g(h)ph,g(h) (up
to a common constant), we can recover expenditure shares ξj,k for each agent j ∈ I ∪ H
and manufacturing variety k.


