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1. Introduction

What determines whether an oligopoly can sustain prices above competitive levels, and if

so how much above?1 Modern oligopoly theory o�ers two general answers to this question.

First, there are static models in which price competition is muted because of product

di�erentiation or because �rms compete in dimensions less cutthroat than price; the main

examples are Cournot oligopoly theory and models of spatial product di�erentiation. But

these models ignore the often obvious dynamic features of oligopoly markets: in particular,

�rms' actions are based on predictions about competitors' reactions.

Second, there are dynamic models in which price competition can be muted through

the prospect of such reactions. These dynamic models are analyzed using the theory of

in�nitely repeated games, usually with the solution known as subgame-perfection. The

folk theorem states that generically almost any outcome | in particular, many outcomes

involving joint monopoly pricing | can arise as the subgame-perfect equilibrium path of a

repeated game, provided only that there is su�ciently little discounting. Thus, the model

can explain the persistence of pricing substantially above cost on the part of a small or

moderate number of �rms, even when products are undi�erentiated, total capacity greatly

exceeds demand, and �rms choose prices simultaneously within each period.

But (with plausible ancillary assumptions) these models also claim that even with many

�rms, monopoly pricing is possible. For instance, in repeated n-�rm Bertrand oligopoly

with constant marginal costs, shared monopoly is sustainable in subgame-perfect equilib-

rium provided that the per-period discount factor � is at least 1 � 1

n
. With � = 0:99,

representing a plausible interest rate if the detection and response lag is a month,2 this

means that 100 �rms can sustain the monopoly price. And Shapiro (1989, page 365{366)

1 A theoretical sharpening of this question is why competition among the few does not drive prices all
the way down to costs. Tirole (1988, p.209) calls this the \Bertrand Paradox."

2 This assumes that ordinary discounting is the primary component of the discount factor �. If there
is uncertainty (of the right kind) about whether a �rm will remain in the market, or the market will
survive, then � might plausibly be considerably lower, even if �rms do not know when it is their last
active period. If �rms do know when it is their last period, and if they can and will then cut price
and take a large share, then cooperation breaks down whenever any �rm is moribund. This may make
cooperation predictably short-lived | and thus hard to sustain even if in fact all �rms are 
ourishing
| with relatively modest numbers of �rms and levels of \ordinary" discounting.
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calculates that (with the same assumptions, plus linear demand) a symmetric Cournot

industry can sustain a shared monopoly with up to 400 �rms, even if punishment consists

of Cournot reversion rather than the harsher minimax punishments allowed by the folk

theorem. Still more dramatic numbers emerge if we look at Cournot competition with

minimax punishments.3

These theories therefore suggest that we should be concerned about coordinated pricing

even in markets with �fty or a hundred equal-sized �rms.4 Yet in practice there is what

I will call a structural consensus that coordinated pricing is normally unlikely to be a

major problem even in markets considerably more concentrated than that. Thus, the

1992 Horizontal Merger Guidelines of the US Department of Justice and Federal Trade

Commission indicate that there will usually be little competitive concern about a merger

that leaves a market \unconcentrated," in the sense of having a Her�ndahl concentration

index (HHI) of 1000 or less (the equivalent of at least ten equal competitors).5 And

there is perhaps some evidence that if changes in industry competitive behavior can be

systematically associated with concentration levels, the cuto� point may often be at about

four-�rm concentration ratios of .5 to .6,6 which would correspond to six to eight equal-sized

3 In order to sustain monopoly pricing with n �rms in the linear-demand (p = 2�X) zero-cost Cournot

case, for example, � must be at least equal to 1 �
4n

(n+ 1)2
; this follows from the fact that (by the

Folk Theorem) the worst subgame-perfect punishment for either player is zero. In the Bertrand case
this is straightforward, since charging p = 0 forever is obviously a subgame-perfect equilibrium. In the
Cournot case the minimax punishment is more complicated, since the innocent �rm must produce 2
per period if the guilty is to be held down to zero, and if this were meant to be kept up forever then
the innocent �rm would want to cheat by producing less in any period. But for large enough values
of the discount factor a �rm can be punished with an \almost" zero continuation value. Note that
I am following fairly standard economics practice by describing a defector from coordinated pricing
as the \guilty" �rm and nondefectors as \innocent;" this language �ts well with the general idea of
cooperation as desirable and thus �ts rather awkwardly with the oligopoly problem.

4 The role of \size" is really that, in the models, any �rm could readily take the whole market.

5 1992 Horizontal Merger Guidelines, April 2, 1992, section 1.51(a). Schmalensee (1987, page 50) de-
scribes the 1984 version of this provision as \clearly warranted: mergers that leave markets atomistic
almost never increase the likelihood of collusion noticeably." Strictly, these statements concern the
incremental competitive concern from a merger, and do not address the level of coordinated pricing
to be expected in such an industry. However, I think that most informed observers would justify the
statements by saying that even after such a merger there is little threat of coordinated supercompet-
itive pricing | not (for instance) by saying, in contrast, that coordinated monopoly pricing is to be
expected even absent the merger, so the merger would make little di�erence.

6 See e.g., White (1987) and references therein.
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�rms. Summarizing what he describes as numerous case studies, Potter (1991, page 12)

claims that \hostility," by which he seems to mean the tendency toward competitive pricing

when there is excess capacity, will often stop \when the industry has consolidated down

to three or four key players."

The theory that purports to explain cases of collusion therefore explains too much: the

structural consensus contrasts sharply with the game theory models, and implies that the

standard subgame-perfection condition is not generally the binding constraint on collusion.

Focusing attention on a constraint that is not binding is a serious problem. Not only

will it wrongly estimate the extent of collusion, but it also risks suggesting wrong lessons

about comparative statics and policy. That is, a structural or legal change that tightens

the subgame-perfection constraint will appear pro-competitive if analyzed as if subgame-

perfection were the binding constraint. Yet logically it may simultaneously weaken the

actually binding constraint, and thus in fact be anti-competitive. Thus it is important to

try to �nd the binding constraint.

What, then, is the binding constraint? Why is coordinated high pricing much harder |

if the structural consensus rather than the textbook theory is correct | than the repeated-

interaction models predict? In this paper I explore one possible candidate: the punishments

for deviation speci�ed in the folk theorem (or under Nash reversion), although subgame-

perfect, are not really credible if the �rms can renegotiate. I explore the extent to which

oligopolists can sustain above-cost pricing in equilibria that are not only subgame-perfect

but \renegotiation-proof." Using an apparently reasonable de�nition of renegotiation-

proofness (when renegotiation is perfect), I show that collusion is severely limited by the

number of �rms, even in the limit as discounting becomes very unimportant (� ! 1).

These results seem appealingly consistent with the structural consensus.

In most of this paper, following economists' sometimes casual usage, I use the term

\collusion" and its cognates to denote oligopoly pricing (far) above cost. Such pricing

may be achieved by explicit collusion, or might occur through other means (\conscious

parallelism").7 To the extent that they di�er, the paper's analysis, which assumes a

7 I am grateful to Richard Gilbert for encouraging me to pursue this distinction. The issue of how these
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communication-rich environment, would be primarily about explicit collusion and thus

perhaps only loosely linked to the structural consensus, which is arguably much more

about parallelism. For this reason, as I discuss in the Conclusion, I am not convinced how

much weight to put on the results' similarities to the structural consensus. I therefore o�er

the paper mainly in the hope of provoking more exploration.

2. Renegotiation as a Constraint on Collusion

The textbook theory of repeated games implicitly assumes that players can coordinate

on any of the enormous range of subgame-perfect equilibria in the repeated game. This

approach may seem reasonable if the players have ample opportunities for communication.

But this very assumption also subverts the standard subgame-perfect analysis. If, indeed,

players can e�ciently coordinate on an equilibrium, what would really happen after (out of

equilibrium) one player cheated? If the pre-speci�ed punishment would hurt the innocent

as well as the guilty, then we might well expect renegotiation, perhaps in the simple form of

an agreement to ignore the transgression \this time". Such undiscriminating punishments

may therefore lack credibility, even if they are subgame-perfect. This suggests that credible

punishments must be renegotiation-proof, at least in the sense that not all players are hurt

by them. Levenstein (1997), for instance, argues that the bromine cartel before World

War I was unable to use Abreu-Pearce-Stacchetti (1986) punishments because they were

not renegotiation-proof.

This line of thought led Bernheim and Ray (1989) and Farrell and Maskin (1989) to

develop a theory of \weak renegotiation-proofness" in repeated games.8 As the name

suggests, weak renegotiation-proofness (WRP) is best conceived as a necessary condition

for credibility of an equilibrium in a repeated game when (re)negotiation is completely

di�er has been recognized in principle for a long time: see e.g., Asch and Seneca (1976) | but not
adequately studied.

8 I use the Farrell-Maskin terminology: Bernheim and Ray called the same concept \partial Pareto
perfection". Both of these papers also developed further, stronger renegotiation-proofness conditions,
but those are unsatisfactory in various ways. Pearce (1987) and Rabin (1991) have also developed
di�erent theories of renegotiation in in�nitely repeated games. Benoit and Krishna (1993) develop a
theory for �nitely repeated games, but (like the subgame-perfection theory) it predicts no collusion at
all in �nitely repeated versions of the simple oligopoly games we consider.
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smooth. Attempts to develop su�cient conditions have been less successful, but this

paper focuses on necessary conditions and shows that collusion among scores or hundreds

of �rms, which can be consistent with subgame-perfection as discussed above, is not even

weakly renegotiation-proof. Speci�cally, I show that with more than three symmetrically

placed �rms in Bertrand oligopoly, full collusion (or anything close to it) is inconsistent

with what might seem a reasonable form of renegotiation-proofness, even if the discount

factor � is arbitrarily close to 1. I also show that in Cournot oligopoly, full collusion is

unsustainable (in the same sense) among more than nine �rms with linear demand.

I shall repeatedly use the result (and the method of proof) of a characterization theorem

for WRP equilibrium in two-player games, derived by Farrell and Maskin (1989). Their

Theorem 1 states that in a two-player game a necessary condition for a pair of average

payo�s,9 v � (v1; v2), to be weakly renegotiation-proof (WRP) for large enough values of

the discount factor � is that there exist (possibly mixed) punishment-phase action-pairs

a1 � (a11; a
1
2) and a2 � (a21; a

2
2), to punish players 1 and 2 respectively. These must be

such that the punishment for each player is su�ciently severe, yet the \innocent" player

is not tempted to renegotiate. Formally, for instance, the punishment action-pair a2 must

be such that, in the stage-game while player 2 is being punished, player 2 cannot (even

by cheating) get a payo� of more than v2 when player 1 plays a21, and must be such that

player 1's payo� g1(a21; a
2
2) from (a21; a

2
2) is at least v1. (In a useful notation, we require that

c2(a21) � maxa g2(a21; a) � v2, and that g1(a21; a
2
2) � v1.) Of course a similar condition must

hold for the action-pair (a1) that is used to punish player 1. Intuitively, the action-pair

a2 is used for a suitably chosen number of periods after player 2 deviates from prescribed

behavior; then normal play resumes. Farrell and Maskin also showed that this condition

(with strict inequalities replacing weak) is su�cient for v to be WRP for large enough �.

It is important to note that although the innocent player's action during the punishment

phase might hold the guilty player perhaps only slightly below his normal-phase payo�

(that is, he could perhaps get almost his normal-phase payo� in a punishment period if he

9 In a repeated game with discount factor �, a player who gets payo� xt in period t has a discounted
payo� of D �

P
1

0
�txt and an \average" payo� of (1 � �)D; the term makes sense because, for

instance, if xt = x for all t then the average payo� is also x.
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cheated on his punishment), he may get much less than that according to the prescribed

actions in a punishment period. In the simple oligopoly context, it is easy to specify actions

that hold down the guilty player's intended punishment-phase payo�, by telling him to stay

out of the market; this also helps to make the innocent player unwilling to renegotiate. As

we will see, it is a lot harder to hold down the guilty player's payo� from cheating during

the punishment phase (without also hurting the innocent player).

3. Repeated Bertrand Oligopoly

Consider n identical price-setting �rms selling undi�erentiated products, each with con-

stant marginal costs c and no capacity constraints. The demand side is represented by

a demand curve X = D(p), where X is total industry quantity and p is the price that

consumers face (i.e., the lowest price set by any �rm). Let �(p) � (p� c)D(p) be industry

pro�ts when consumers must pay price p. We assume for simplicity that the function �(�)
is strictly increasing in the range (c; pm), where of course pm is the monopoly price, i.e.,

the price that maximizes �(p). Write �m � �(pm).

In each of in�nitely many periods, each �rm i chooses its price pi (all �rms choose

simultaneously within a period). Firm i's within-period payo� is �(pi) � (pi � c)D(pi)

if pi is uniquely the lowest price, �(pi)=m if it is one of m equal lowest prices, and zero

otherwise. Each �rm's action becomes common knowledge before the beginning of the

next period; thus, �rms' actions can depend on what others have done in the past. The

�rms share a common and constant discount factor � 2 (0; 1). We shall be concerned with

equilibrium (average) payo�s as � ! 1.

Following Farrell and Maskin (1989), we ask to what extent innocent �rms can hold

down the best-response payo� of a guilty �rm in punishment periods, while simultaneously

getting a good payo� themselves. Farrell and Maskin addressed this issue with the following

duopoly result for the linear-demand case. We prove it here for a general demand curve,

and then extend it to oligopoly with more than two �rms.

Lemma 1. In symmetric Bertrand duopoly with constant costs and no capacity con-

straints, the following results characterize an innocent �rm's ability to minimize its guilty
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rival's best-response expected payo� v while maximizing its own expected payo� u. (a) If

the innocent �rm is restricted to pure strategies (that is, its price is known to its rival),

then it cannot hold its rival's best-response payo� strictly below its own intended payo�:

thus u � v. (b) If the innocent �rm can commit to randomizing its price (in such a way

that the distribution of its price, but not the price itself, is observable by its rival before the

latter chooses its own price), then it can hold its rival's best-response expected payo� down

to any v 2 (0; �m), while itself earning an expected payo� of u = v(1 + log(�m=v)) > v.

Proof. First, note that in choosing strategies a2 to satisfy conditions of the form g1(a2) � v1

and c2(a2) � v2, we can assume without loss of generality that �rm 2 plays only prices

p > pm in a22. That is, it is meant to set prices high enough that it gets no business

while �rm 1 sets prices p 2 [c; pm]. Of course this implies that g2(a2) = 0, but it is

important to understand that a punishment strategy must limit c2(a2) � maxa g2(a21; a),

not (only) g2(a2).

First consider pure strategies on the part of the innocent �rm, �rm 1. If it charges

a21 = p, its intended stage-game payo� g1(a2) = u cannot exceed �(p) (and any a22 >

pm will lead to that value of u). For any � > 0, the guilty �rm can undercut p by a

small enough amount to get a payo� that exceeds u � �. Thus it cannot be held to any

best-response punishment-phase payo� strictly less than u. Except for an uninteresting

opennness problem, we have c2(a21) � g1(a2) (with equality for c � a21 = p � pm). This

proves part (a).10

Now consider mixed price strategies a21 for the innocent �rm. To hold its rival's best-

response expected payo� c2(a21) down to v, the innocent �rm must ensure, for every p, that

if the guilty �rm sets price p then it will have no more than a v=�(p) chance of getting the

whole market (we deal with ties below). Thus, if F (�) is the distribution function of the

10 The reader may ask: if the innocent �rm chooses a pure strategy p that would yield strictly positive
u > 0, why can't the guilty �rm undercut p in�nitesimally and thus get almost u but give the innocent
�rm zero? But we are not comparing payo�s of a Stackelberg equilibrium. Rather, the question is,
if (say) �rm 1 chooses an intended punishment action-pair a2 that involves an unmixed a21 , then how

do g1(a
2) and c2(a

2
1
) compare? The same clari�cation addresses a question a number of readers have

asked: if v is nearly �m, doesn't the Lemma claim that each �rm can get the full monopoly pro�t?
No: the Lemma says (in that case trivially) that �rm 1 can get �m (if �rm 2 stays out of the market)
using a pricing strategy under which �rm 2's cheating best response wouldn't get it more than �m.
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innocent �rm's price, we require that for all p such that �(p) > v,

F (p) � 1� v

�(p)
: (1)

Since the punishment-design task is to maximize the innocent �rm's payo� (with the

guilty �rm out of the market) while holding the guilty �rm's best-response payo� down

to v, and since �(�) is increasing in the relevant range, we can assume without loss that

condition (1) holds with equality for p 2 (p(v); pm), where p(v) is de�ned by �(p(v)) � v,

and the remaining mass of v=�m is at pm.

By construction, this implies that �rm 2 cannot achieve an expected payo� strictly

above v by setting any price other than the monopoly price. To show that the mixed

strategy a2 in question truly holds �rm 2 down to an expected payo� of v, we need only

check that its expected payo� from p = pm is no more than v. But this expected payo�

is equal to v even if all ties are resolved in �rm 2's favor. Under this strategy, moreover,

when �rm 2 sets prices above pm, �rm 1's pro�ts are

u(v) =

Z pm

p(v)

�(p)dF (p) +
v

�m
�m:

Substituting for dF from (1), integrating by parts, and changing variable from p to �,

we �nd that the innocent �rm's expected pro�ts are

u(v) = v

�
1 + log

�m

v

�
:

This proves part (b) of the Lemma.

Lemma 1 implies the following result, which was shown by Farrell and Maskin (1989,

pp. 339{441) for the linear-demand case:

Proposition 2. In the simplest repeated Bertrand duopoly, symmetric collusion is pos-

sible in WRP equilibrium for large enough discount factors; so is asymmetric collusion

provided that it is not too asymmetric.

Since all the relevant calculations are in pro�t space, the calculation of how asymmetric

the pro�t shares can be is no di�erent from that in Farrell and Maskin: each �rm must

8



get no less than a fraction z of the shared monopoly pro�ts, where z(2 � log z) = 1, or

z � 0:32. As we will see, it is important that this number is less than a third but more

than a quarter.

4. Beyond Duopoly: Asymmetric and Quasi-Symmetric Punishments

With two players, it is natural to suppose that renegotiation is blocked if the innocent

party would bene�t from implementing the agreed-upon punishment. With more than

two players, we have to ask who can block renegotiation | equivalently, how many of the

innocent would have to join the guilty party in order to push renegotiation through.

Obviously, a wide variety of answers would be possible. One candidate would be that

any player can block renegotiation: with this assumption, weak renegotiation-proofness

means that no continuation equilibrium of the equilibrium can Pareto-dominate any other.

This is perhaps the most obvious generalization of the two-player de�nition. It turns out

to imply that �rms \should" use highly asymmetric punishments and that by doing so

they can sustain a great deal of collusion.

Indeed, with this assumption, punishments can be designed as follows: if �rm i has

cheated, nominate some other �rm j 6= i to be the renegotiation-blocker, and (during the

punishment phase) concentrate all production in �rm j, specifying that �rm i and all �rms

k 6= j produce nothing. This makes weakly renegotiation-proof (in this sense) collusion

very easy. Formally, a simple extension of the two-�rm analysis implies the following:

Proposition 3. Consider repeated Bertrand oligopoly and assume that asymmetric pun-

ishments are allowed and that any one �rm can block renegotiation. Then, the average

payo�s (�1; : : : ; �n) are WRP for large enough � if for every i there is a j 6= i such that

�j < �i(1 + log
�m

�i
). In particular, symmetric division of the monopoly pro�t among n

symmetric �rms is WRP (with large enough �) for all n.

Proof. Lemma 1 tells us that a Bertrand duopolist can hold its rival to a maximum

expected payo� of v (where v < �m is given) while itself earning up to v(1 + log[�m=v]) if

the rival keeps out of the market (as we can assume it is meant to do during punishment).
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Hence, for �rm i to be e�ectively punished without hurting �rm j requires that we can �nd

v such that v(1+ log[�m=v]) � �j while v < �i. This condition ensures that punishment is

possible and that �rm j would block renegotiation. We have in e�ect reduced the problem

to a duopoly problem by telling all �rms other than j | including both the \guilty" �rm i

and all \third" �rms | to stay out of the market during i's punishment phase.

We must also consider the incentives of �rms other than i to cheat during i's pun-

ishment. We can specify that if any �rm cheats during another's punishment then the

original punishment is canceled and the most recent cheater is punished. With this (stan-

dard) assumption, �rm j will not cheat during i's punishment if it would not cheat during

the normal phase, since it is getting more payo� without cheating and yet it would be

punished just as severely for cheating. Other �rms k 6= i; j are at worst being asked to

remain out of the market, as if they were being punished themselves, and so if no �rm

would cheat on its own punishment then none will cheat on another's.

The claim then follows on substituting �i = �m=n for all i.

Clearly, unrestricted asymmetric treatment of the innocent �rms is a very powerful

tool for blocking unanimous renegotiation. Indeed, Horniacek (1996) has applied similar

arguments, exploiting asymmetries of treatment among innocent players after a deviation,

to argue that a version of weak renegotiation-proofness, and even a weakened version of

strong perfect equilibrium (Rubinstein 1980), is little constraint on cooperation when there

are three or more players.

In symmetric oligopoly games, however, one might expect that the innocent �rms

will all be treated alike in the punishment of a guilty �rm. In that case, and in some

cases even where not all are treated exactly alike, either all the innocent �rms gain from

that punishment (so that renegotiation will plausibly be blocked), or all lose (making

renegotiation likely). Following that idea, we extend the two-player de�nition of a weakly

renegotiation-proof equilibrium to the many-player case as follows:

De�nition. A subgame-perfect equilibrium is quasi-symmetrically weakly renegotiation-

proof (QSWRP) if, evaluated at the beginning of the period after player i alone deviates
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from prescribed play, every other player's continuation payo� (weakly) exceeds what it

would have been had player i not just deviated. Thus no innocent player would want to

forget and forgive.

In the remainder of the paper I will show that symmetric oligopolies with more than

a handful of �rms cannot sustain full | or, indeed, much | collusion in QSWRP repeated

Bertrand equilibrium, even for discount factors very near 1, and even if we allow for

veri�able randomizations in punishment periods.

5. Full Collusion in Repeated Bertrand Competition

We begin by revisiting the textbook repeated Bertrand oligopoly model and asking again

whether or not full collusion can be sustained when the discount factor is high. Our answer

stands in stark contrast to the subgame-perfect theory.

Proposition 4. In repeated Bertrand competition, full collusion is impossible in QSWRP

equilibrium if n > 3, even for discount factors very close to 1.

Proof. Again we use the result of Lemma 1. Suppose that full collusion is a QSWRP

equilibrium with n �rms. Without loss of generality, there is at least one �rm, �rm 1, say,

whose normal-phase payo� is no greater than �m=n; let �1 � �m=n be its normal-phase

average payo�.

Since the claim is that for n > 3 collusion is impossible, let us tactically suppose

that the innocent �rms can correlate their strategies and are not constrained by issues

of distribution of pro�ts among themselves. This reduces their problem to choosing a

distribution of the lowest price quoted by any of the innocent �rms: call this lowest price

p0. They must choose the distribution of p0 so as to give themselves expected pro�ts of

at least �m � �1 while holding down an opportunistic Bertrand rival to expected pro�ts

of less than �1. The problem is that making it impossible for the guilty �rm to make high

expected pro�ts even by \cheating on its punishment" requires that with high probability

p0 must be small: but this con
icts with the need (so as to avoid the temptation to

renegotiate) to make pro�ts for themselves.
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By assuming that the innocent �rms can correlate their strategies, we reduce the prob-

lem analytically to that of a single innocent �rm who must make a pro�t of �m ��1 while

holding a guilty �rm down to �1. Thus, by Proposition 1, a necessary condition is that

�m � �1 � �1

�
1 + log

�m

�1

�
:

Since �1 � �m=n, this implies that

n� 1

n
�m � �m

n
(1 + logn);

which reduces to n� logn � 2, or (in integer terms) n � 3.

Thus n � 3 is a necessary condition for QSWRP full collusion (symmetric or not) in

in�nitely repeated Bertrand oligopoly, however large the discount factor �, and even if the

innocent �rms can correlate their strategies, and their randomizations are observable, in a

punishment phase.

The proof essentially notes that each �rm must get at least a critical share of the shared

monopoly pro�ts. This is just as in the duopoly case, and the same calculation (as in

Farrell and Maskin) implies that this critical share is slightly less than a third: four �rms

or more cannot all get this much. Three can, so we might expect that three can collude

according to this criterion.

If the innocent �rms cannot correlate their strategies in the punishment phase, then the

distribution of p0 must be the minimum-value distribution of n � 1 independently dis-

tributed prices, and each innocent �rm must have a su�cient chance of winning, at a

su�ciently high price, that it would not prefer to renegotiate back to the status quo as if

the deviation had not happened.

To see whether symmetric collusion is sustainable in this way, we need only consider

the case n = 3, since we have shown that such collusion is impossible anyway for n > 3

and Proposition 2 showed that it is possible with n = 2. Here, we show that correlation

of strategies in the punishment period is not essential for collusion with n = 3, but that

observability of randomization is.
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Proposition 5. Two or three �rms can symmetrically collude in QSWRP equilibrium in

repeated Bertrand oligopoly for high enough discount factors even if the innocent �rms

cannot correlate their punishment randomizations.

Proof. Consider a guilty �rm that must be held to a maximum (cheating-on-its-punishment)

payo� of v, while the other two (who cannot now correlate their randomized prices) try to

do as well as they can subject to in
icting this punishment. Suppose that each randomizes

with distribution function F (�) on [p(v); pm] | there is no need to charge prices less than

p(v) and it is foolish to charge prices greater than pm. De�ne G(p) � 1� F (p). Then the

�rm being punished can get, in the short run, maxp �(p)G(p)2. The innocent �rms want

to choose G(�) to keep this down to v and, subject to that, to maximize their expected

pro�ts. Since �(�) is monotonic, the innocent �rms want to charge high prices as much as

possible. Therefore G(�) will satisfy

G(p) =

r
v

�(p)
; p(v) � p < pm;

and the remaining
p
v=�m weight is an atom at price pm.

Now consider the expected pro�t of each of the innocent �rms. An innocent �rm that

bids p < pm wins the market with probability G(p); if it bids p = pm there is a positive

probability of a tie, which I assume leads to equally divided pro�ts. Thus an innocent

�rm's expected pro�t (within a punishment-phase period) is

Z pm

p(v)

�(p)G(p)dF (p) +
p
v=�m(1� 1

2

p
v=�m)�m;

We can re-write this in terms of the variable � as

Z �m

v

�
p
v=� 1

2

p
v=�3 d� +

p
v=�m(1� 1

2

p
v=�m)�m;

which is

1
2
v log

�m

v
+
p
v�m � 1

2
v: (2)

When v = 1
3�

m, (2) is approximately :59�m > 1
3�

m, so each innocent �rm can get more

than �m=3 while holding a guilty �rm strictly below �m=3 during a punishment period.
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Consequently, symmetric Bertrand collusion with three �rms is QSWRP for large enough �

even if the innocent �rms cannot correlate their punishment strategies.

Note that this is not a mixed-strategy equilibrium in the sense that each of the innocent

�rms expects an equal payo� from each of the prices over which it randomizes. On the

contrary: an innocent �rm that sets price p < pm gets an expected this-period pro�t of

�(p)G(p) =
p
v�(p), which is strictly increasing in p (for p < pm). Thus, innocent �rms

are tempted (in the short-run sense) to deviate from their speci�ed punishment strategy

during punishment.

If randomizations are unobservable, collusion is not sustainable at all. For, in order

to punish e�ectively, the innocent �rm(s) must randomize with support going all the way

down to p(v), or else the guilty �rm can get more than v by undercutting. But if the

innocent �rms were playing a mixed-strategy equilibrium in the sense that their short-

run payo�s were equal across realizations of the randomization, this would mean that

they (jointly) were not expecting more than v. That is, the innocent �rms' joint payo�

during a punishment phase cannot exceed the guilty �rm's best-response payo� during

that punishment phase. In turn, this latter must be strictly less than the guilty �rm's

(per-period) normal-phase payo�, unless the guilty �rm is playing a best response during

the normal phase. Applying these observations to the �rm with the lowest normal-phase

payo�, we see that no collusion is sustainable.

6. Partial Collusion in Repeated Bertrand Oligopoly

If full collusion is impossible, can the �rms collude on a price between c and pm? One of

the unsatisfactory predictions of the subgame-perfect theory is that it answers no: either

full collusion is subgame-perfect, or no collusion is.11 Here, by contrast, �rms who are too

numerous to collude fully may be able to collude partially, i.e., on a price greater than c

11 The reason is that for �rms to collude in symmetric subgame-perfect equilibrium on a price p that
yields industry pro�ts of �(p) requires precisely that the present value of one-nth of a perpetual stream
of �(p) be at least equal to �(p). Clearly, �(p) and p drop out of this comparison and all that matters
is n versus �.
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but less than pm.12 However, in numerical terms, I �nd that the e�ciency consequences

(deadweight losses) due to this partial collusion are small, even if � is close to 1 and even

if n is as small as �ve.13

The function v(1+ log [�m=v]), which gives the pro�ts the innocent �rms together can

achieve while e�ectively punishing the guilty �rm by holding its payo� below v, has an

in�nitely steep slope for small v. Thus, for any n,

(n� 1)v < v(1 + log
�m

v
)

for small enough v. Since this is the condition for a payo� of v per �rm to be sustainable in

QSWRP equilibrium for large enough discount factors �, it follows that, for every n, some

collusion is possible in QSWRP equilibrium for large enough �. But even for n � 5, the

condition implies a small value of nv=�m (little collusion), as we now show.

Suppose the �rms can collude on a price p that yields industry pro�ts �(p). By the

same argument as before, for this to be sustainable in QSWRP equilibrium requires that

(n� 1)
�(p)

n
� �(p)

n
(1 + log

�m

�(p)=n
);

which reduces to �(p)=�m � ne2�n.

For example, if n = 4 (the smallest number of �rms that cannot fully collude), they can

collude only on prices p such that �(p)=�m � 4e�2 � :54.14 A price that yields roughly

half of the monopoly pro�t implies only a smaller fraction of the monopoly markup and a

smaller fraction still of the deadweight loss. For instance, with constant-elasticity demand,

Table 1 shows that the maximum sustainable partial collusion leads to markups well below

12 For parameter values for which the renegotiation-proof theory predicts partial collusion, the subgame-
perfect theory predicts full collusion, not none. This follows from the fact that every WRP equilibrium
is a subgame-perfect equilibrium.

13 Even if n = 4 the losses are not large. A previous version of the paper haltingly explored a di�erent
e�ciency issue: the extent to which QSWRP equilibrium must give substantial market shares even to
high-cost �rms.

14 Numerical calculations also indicate that for � = :99, the four �rms can capture only a fraction .51,
rather than .54, of the potential monopoly pro�ts.
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monopoly markups and to a deadweight loss of no more than an eighth of the monopoly

deadweight loss for four �rms facing a wide range of demand elasticities.15

Table 1 about here

For n = 5, the condition is that �(p)=�m � 5e�3 � :25. Again, results for constant-

elasticity demand are shown in Table 1, suggesting a deadweight loss of no more than

two percent of the monopoly deadweight loss for elasticities between 1.1 and �ve.16 For

n = 6, �(p)=�m � 6e�4 � :11, which corresponds to still smaller markups and deadweight

losses.17 For n � 7, �(p)=�m � ne2�n � 7e�5 � :05.

These prices are quite low by the standards of conventional oligopoly models. For n � 5,

calculations suggest that the imperfectly collusive prices in this model are signi�cantly less

than those in a one-shot Cournot model (see Table 2). Moreover, since deadweight loss is

of second order in the markup, these fairly small markups | even for n = 4 or n = 5 |

have small welfare consequences, and for larger values of n the maximum deadweight loss

declines dramatically.

Table 2 about here

15 Because we relate outcomes to the monopoly outcome, the demand elasticity must exceed 1. A similar
calculation assumes linear demand X = 2 � p and zero marginal costs; then the monopoly price is 1.
A collusive pro�t of :54 corresponds to a collusive price of approximately .33, a third of the monopoly
markup, and hence a ninth of the monopoly deadweight loss (since loss is proportional to the square
of the markup).

16 In the linear case the maximum collusive markup with �ve �rms is approximately p � :15, with
deadweight loss of 1

2
(:15)2 or about two percent of the monopoly deadweight loss.

17 For our linear-demand example this corresponds to a markup of less than six percent of the monopoly
markup, and a deadweight loss of less than 0.4 percent of the potential monopoly deadweight loss. For
our constant-elasticity cases shown in Table 1, it produces a deadweight loss of about 0.3 percent of
the monopoly deadweight loss.
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7. Repeated Cournot Competition

I now consider the repeated Cournot case. As above, I �rst derive conditions on n for shared

monopoly to be QSWRP (for discount factors very close to 1); I then ask how much �rms

can collude if those conditions fail. In this section I work with linear demand p = 2 �X:

neither the general demand case nor the constant-elasticity case has proven tractable. To

keep the notation simple I assume zero marginal costs; this is a mere normalization once

one assumes constant and equal marginal costs.

Full Collusion

Proposition 6. In repeated Cournot oligopoly, full collusion is not QSWRP with more

than nine �rms, even for � very close to 1.

Proof. If the innocent �rms each produce y during the punishment phase, then (since we

can assume without loss of generality that the �rm being punished produces nothing) each

innocent �rm gets a per-period payo� during the punishment phase of �I = y(2�(n�1)y).
Meanwhile, by cheating during a punishment period, the guilty �rm could achieve a single-

period payo� of � � maxz z(2 � (n � 1)y � z) = 1
4
(2 � (n � 1)y)2. Thus Theorem 1 of

Farrell and Maskin (1989) requires that it must be possible to choose y so that �I is at least

as large as the normal-phase (collusive) per-period payo�, which is 1=n, while � < 1=n.

This amounts to requiring that y satisfy y(2 � (n � 1)y) � 1
n and 1

4
(2 � (n � 1)y)2 < 1

n .

These two conditions on y can hold simultaneously if and only if n < 9. To see this,

write a � 2 � (n � 1)y, so that the conditions are a(2 � a) � n�1
n and a2 < 4

n . These

can both be made to hold if and only if the �rst can be made to hold strictly with the

second one holding with equality, so we can substitute a = 2p
n
in the �rst condition to

yield (
p
n� 2)2 < 1, or n < 9.

As a technical observation, note that the case n = 9 is right on the boundary: the conditions

can be made to hold weakly but not strictly. This means that the necessary condition for

WRP equilibrium holds, but the su�cient condition does not: we must remain agnostic

about the possibility. As we will see next (and as is not surprising given the calculations
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above), nine �rms can all but fully collude in QSWRP equilibrium in repeated Cournot play

with our cost and demand assumptions, if � is close to 1.

Partial Collusion

Now we put a bound on the amount of pro�t (and welfare loss) that can stem from

QSWRP partial collusion in Cournot oligopolies with n � 9 �rms, in which (as we have

seen) complete symmetrical collusion is not a QSWRP equilibrium.

Proposition 7. If n > 9, the �rms can symmetrically divide in QSWRP equilibrium a

total pro�t of less than
16n

(n+ 3)2
, corresponding to a price of less than

p = 1�
p
(n � 9)(n � 1)

n+ 3
:

Proof. To sustain a per-�rm pro�t of �, there must be punishment actions satisfying the

now-familiar conditions. Let Y be the aggregate output of the n � 1 innocent �rms in a

punishment period; then we require that Y (2�Y ) � (n�1)� and 1
4 (2�Y )2 � �. Writing

q � �1=2, we require Y (2 � Y ) � (n � 1)q2 and 2 � Y � 2q; hence, q � 4
n+3 , and the

Proposition follows when we set � = p(2 � p)=n.

For comparison, under one-shot Cournot equilibrium, the price is
2

n+ 1
and total

pro�t is
4n

(n+ 1)2
; and of course price and total pro�t is 1 under full collusion. For large n,

therefore, roughly four times more pro�t is sustainable in QSWRP equilibrium than without

collusion, but vanishingly less than under full collusion, even as � ! 1.

8. E�cient Punishments

The results above show that frictionless renegotiation would make self-enforcing collusion

impossible for even moderate numbers of �rms. It would also be interesting to derive

results in the other direction, suggesting when collusion is possible. Unfortunately, since

weak renegotiation-proofness is not a convincing su�cient condition for credibility, the

analysis above cannot help very much with that. But if collusion can be sustained by
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means of punishments that themselves divide monopoly pro�t among the innocent �rms,

then full collusion will be a \strong perfect equilibrium" (Rubinstein 1980).

This can never happen in repeated Bertrand competition, even with n = 2, as Farrell

and Maskin (1989) noted. The problem is that an e�ective punishment must involve

randomization by the innocent �rm(s), which is inconsistent with their collecting the full

monopoly pro�t during a punishment phase.

Turning to repeated Cournot oligopoly (with our linear demand and zero cost assump-

tions), when can full collusion be sustained with e�cient punishments? In a punishment

phase, the n�1 innocent �rms divide the monopoly output (i.e., 1) among them. By cheat-

ing in this phase, the guilty �rm can achieve a per-period payo� of maxy y(2� 1� y) = 1
4 .

Hence, each �rm must get strictly more than this per period in the normal phase; if a

�rm got 1
4 or less in the normal phase then it should cheat for a period and could not be

e�ectively punished, given that only Pareto-e�cient punishments are being considered. To

give each �rm strictly more than 1
4 in the normal phase requires n � 3. At the same time,

it is clear that with n � 3 this punishment (suitably repeated) works to sustain collusion

for � close enough to 1. Thus we have:

Proposition 8. There is a strong perfect equilibrium (in which both the equilibrium path

and punishments involve the monopoly price) in in�nitely repeated Cournot competition

with linear demand and with su�ciently little discounting, if and only if n � 3. No such

equilibrium is possible in repeated Bertrand competition.

9. Rebuttal and/or Conclusion

In this somewhat inconclusive concluding section, I try to distinguish more carefully be-

tween explicit collusion and conscious parallelism | a distinction that most game theory

ignores | and in the process raise some doubts about the interpretation of the results

above.

A priori, we surely should analyze renegotiation as well as negotiation of collusive

agreements. If one likes its details (in particular the QSWRP assumption), the model above
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therefore seems appealing on the input side. On the output side, the model says that a

few �rms can sustain signi�cantly super-competitive prices, but only a few. It also says

that oligopolies can sustain somewhat super-competitive prices when they cannot sustain

a monopoly price, but only to a (rapidly) decreasing extent as the number of �rms grows.

These predictions resonate appealingly with the structural consensus. Dare one thus hope

that this is broadly the \right" theory of self-enforcing collusion in oligopoly?

Unfortunately, I am skeptical. To discuss why, let us become more careful in our

language: collusion is explicit agreement or communication to raise prices; coordination is

raising prices with or without such communication. The theory above predicts that (in

unconcentrated industries) it is hard to coordinate on high prices when there is (and will

always be) explicit collusion, whereas the structural consensus is that (in such industries)

it is hard to coordinate on high prices if explicit collusion is not possible. Since collusion

surely a�ects �rms' ability to coordinate, these are not directly comparable predictions.18

The discussion below is not very deep, but it took me some time to clarify to this point,

so I hope it will be helpful to others.

It is helpful to distinguish three negotiation environments for oligopoly pricing. The

�rst is the purely theoretical benchmark of perfect negotiation. This is plainly assumed

above, and also by at least the more advanced forms of the textbook \subgame-perfect"

theory: both equilibrium pricing and punishments can be negotiated in a sophisticated

way, and everyone understands what is going on, sometimes even down to coordination

of random pricing.19 As this paper assumes, in this environment one might also expect

perfect renegotiation.

In the second environment, there is imperfect negotiation. Imperfections arise for many

18 Of course, in cross-section, explicit collusion (where it's illegal) will tend to occur where other factors
make non-collusive coordination at least somewhat di�cult (otherwise why risk prison terms?). Thus,
in principle, collusion might even be negatively correlated with success at raising price. One should
not confuse this correlation with the e�ect of collusion. I thank Dennis Carlton for this observation.
See also Werden and Baumann (1986).

19 In the literature, the oldest papers assumed reversion to one-shot Nash behavior, while more recent
work (including this paper) tends to construct optimal punishments, which can be quite complex.
Researchers of course recognize informally that the latter impose heavier demands on negotiation, and
thus more thoroughly assume perfect collusion, but there does not seem to be analysis following up
on this point.
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reasons, often including asymmetries among �rms, imperfect information about one an-

other's costs and about demand, and perhaps also the need to keep negotiations (collusion)

secret. Nevertheless, explicit negotiation does take place in this environment: �rms explic-

itly agree on prices and quite possibly on what will happen if deviations are detected. Any

renegotiation will presumably also be imperfect. This environment represents the case in

which �rms collude.

In the third environment, no explicit negotiation takes place. Firms recognize their

interdependence, and may engage in some relatively costly and clumsy signaling of inten-

tions, but signaling bandwidth is quite limited.

In this framework, the model above, and the textbook models, clearly concern the

perfect-negotiation environment. The structural consensus, however, concerns the observed

mix of the imperfect-negotiation and the no-negotiation environments. Thus, to make

much of the assonance between my results and the structural consensus would require

(something like) that the three negotiation environments do not di�er very much in terms

of the prevalence of successful price coordination. That is not something one would want

to assume. Although there is some academic debate on the point, I think it is natural to

believe that the laws against collusion matter, which means that the imperfect-negotiation

and no-negotiation environments di�er substantially. Let me call this natural hypothesis

the concern over collusion. It does not contradict the structural consensus if the observed

regime is one in which prohibitions on collusion are often obeyed. Then it just says, very

plausibly, that coordinated high pricing can become much easier with explicit negotiation,

whether this is when explicit collusion is legal (see Dick 1996 on Webb-Pomerene cartels

and Suslow 1991 on international cartels) or when prohibitions are violated (see Fraas and

Greer 1977 on price-�xing prosecutions).20

20 Very brie
y, some kinds of evidence: (a) there continue to be convictions and confessions in per se
price-�xing cases, indicating that executives are sometimes willing to risk prison in order to collude;
(b) where collusion is legal, cartels of substantial size seem to spring up: see for instance Dick (1996)
and Suslow (1991); (c) the structural consensus strongly suggests that it would be rare for cartels of
comparable size to arise absent collusion; (d) both lawmakers and business people seem to believe that
the laws matter.
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Is Coordination Monotonic in Coordination Costs?

Absent renegotiation, one can (and most people do) take a simple monotone view of the

role of the three negotiation environments. Coordinated pricing would be rather easy

in the theoretical perfect-negotiation environment (the textbook models), is harder with

imperfect negotiation (how much harder depending on how imperfect), and is harder still

(especially if more than a handful of �rms are involved) with no explicit negotiation.

This view seems consistent with (a) the calculations discussed in the Introduction about

how many �rms can collude if negotiation is perfect, (b) limited evidence on the extent of

successful collusion with imperfect negotiation, and (c) the structural consensus, if the legal

prohibitions on explicit collusion are mostly obeyed (at least outside the most concentrated

industries). The great gulf between the textbook calculations and the structural consensus,

which I presented in the Introduction as a problem or puzzle, is then viewed just as a

big di�erence between the perfect-negotiation regime and the observed regime. Antitrust

enthusiasts might attribute more of the di�erence to the di�erence between imperfect

negotiation and the observed regime; antitrust cynics might attribute more of it to the

di�erence between perfect and imperfect negotiation.

Thinking about renegotiation complicates this picture considerably. As McCutcheon

(1997) has stressed, when obstacles to negotiation also obstruct renegotiation (more pre-

cisely when they are expected to do so), it is not so obvious that more obstacles will

always lead to more competitive pricing. In a moderately unconcentrated industry, the

model above says that successful collusion will be rare in the perfect-negotiation environ-

ment, while the concern over collusion says that it will be more common in the imperfect-

negotiation environment than in the no-negotiation environment.

This view implies that when renegotiation is possible, the extent of supercompetitive

pricing is not everywhere monotonic in the ease of negotiation. Because of this non-

monotonicity, it is hard to regard the model above as \the right explanation" for the

structural consensus, even if they give similar predictions.

This non-monotonicity is also super�cially consonant with McCutcheon's concern that

anti-collusion policy might be counterproductive. However, here, the implied paradoxical
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e�ect (in which banning smoke-�lled meetings leads to higher prices) occurs between the

perfect-negotiation environment and the imperfect-negotiation environment. This is not

where anti-collusion policy operates: recall that perfect negotiation is only a theoretical

benchmark. Legal prohibitions on explicit collusion, to the extent that they are respected,

shift us from the regime of imperfect negotiation to the regime of no explicit negotiation;

to the extent that they are covertly violated, they leave us in the second regime but

presumably make negotiation harder, sketchier, and more imperfect.

All of this makes it seem important to distinguish, as does the law, between explicit

collusion and coordination without collusion. Game-theoretic models typically gloss over

this di�erence: by staying �rmly within the perfect-negotiation environment, they do not

address the di�erence in outcomes between the imperfect-negotiation and no-negotiation

environments. Game theory generally proceeds by asking whether or not there is an

equilibrium with certain (as for instance collusive) properties. For the most part, it does

not address whether such an equilibrium can readily be attained.21

The 1984 Guidelines made a very explicit distinction on these lines. In section 3.11(a),

they stated of markets with HHI below 1000 that \implicit coordination among �rms is

likely to be di�cult and : : : the prohibitions of section 1 of the Sherman Act [forbidding

collusion] are usually an adequate response to any explicit collusion that might occur [: : : ]."

There was no claim that explicit collusion would be prohibitively di�cult (if attempted)

simply because of the moderately large number of �rms in such a market.22 Thus they

incorporated the concern over collusion in their discussion of the structural consensus.

Having now put my model in its place (I think), what is the bottom line? Clearly,

neither negotiation nor renegotiation is perfect in reality. The model does show that taking

21 Parts of the literature on \cheap talk" (see e.g., Farrell and Rabin 1996, especially page 114) address
this point, but so far it has probably conferred intellectual respectability on the question more than it
has provided answers. Obviously analysis of talk is particularly relevant to collusion. Other re�nement
concepts might, generously, be seen as addressing the question in the form of \which equilibrium will
happen?"

22 It is not part of the argument here, but I would note my own skepticism at the 1984 suggestion
that merger policy should not be used simply because explicit collusion is already illegal. Presum-
ably nobody in the non-Antitrust divisions of the Justice Department was claiming that locks were
unnecessary because burglary was illegal.
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account of the prospects for renegotiation can a�ect ex ante incentives very greatly. The

dramatic di�erence between the renegotiation-proof and the subgame-perfect predictions

(in the perfect-negotiation environment where they live) may suggest that neither one is a

reliable policy guide in its precise predictions, although studying both will surely help one

to assess real-world threats of collusion. Comparison of the model with what we believe

is true in practice (which presumably re
ects the possibility of imperfect renegotiation or

its no-negotiation analogue)23 further suggests that the interaction with the negotiation

environment is quite subtle.

Finally, (within its world, but in contrast to the textbook models) the model says that

it is di�cult to sustain collusion using only threats of price retaliation. This di�culty

might suggest a strong private incentive to develop richer cartel institutions that would

hamper deviations, ease the punisher's pain (or exacerbate the punished �rm's), or retard

renegotiation.24

23 Dick (1996) studies attempts at \reorganization" of (legal) cartels after a breakdown of discipline.
This might be a promising source of information on renegotiation, with the usual caveat that the
observed cases represent actual defections, while the theory concerns how the prospect of defection
and renegotiation a�ects how cartels might be designed so as to eliminate defections.

24 I thank Dennis Carlton for this point.
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