BASIC DEFINITIONS AND NOTATION - ECON 201B

FEDERICO ECHENIQUE

0.1. Sets and cartesian products. Let A and B be two sets.

- A^{B} denotes the set of all functions $f: B \rightarrow A$.
- $A \times B$ is the set of ordered pairs (a, b) with $a \in A$ and $b \in B$, the cartesian product of A and B.
- For n sets A_{1}, \ldots, A_{n}, we write

$$
\prod_{i=1}^{n} A_{i}=\times_{i=1}^{n} A_{i}=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{i} \in A_{i} \quad 1 \leq i \leq n\right\}
$$

for the set of all n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ with $a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}$.

- When $A_{i}=A$ for all $i, \prod_{i=1}^{n} A_{i}=A^{n}$.
- \mathbf{N} denotes the natural numbers: $1,2, \ldots$
- For $n \in \mathbf{N},[n]=\{1, \ldots, n\}$ is the set consisting of the first n natural numbers.

If I is a set, and A_{i} is a set for each $i \in I$, we write $\prod_{i \in I} A_{i}$ for the set of all functions f with domain I and $f(i) \in A_{i}$ for all $i \in I$. Note that, when I is finite, this convention is consistent with the notation we introduced for finite cartesian products above.

When $A=\prod_{i \in I} A_{i}$ and $i \in I$ we often write $A=\left(A_{i}, A_{-i}\right)$, where $A_{-i}=\prod_{j \in I \backslash\{i\}} A_{j}$. Similarly, if $a \in \prod_{i \in I}$ we may write $a=\left(a_{i}, a_{-i}\right)$, with $a_{i} \in A_{i}$ and $a_{-i} \in A_{-i}$. For example, when $a=\left(a_{1}, \ldots, a_{n}\right) \in A$ then we write $a=\left(a_{i}, a_{-i}\right)$, with $a_{-i} \in A_{-i}=\times_{j \neq i} A_{j}$. This notation is very convenient when we want to discuss changes in a_{i} holding fixed a_{-i}. For example, when $f: A \rightarrow \mathbf{R}$, we may be interested in the property that $f\left(a_{i}, a_{-i}\right)>f\left(a_{i}^{\prime}, a_{-i}\right)$ for all $a_{-i} \in A_{-i}$.

0.2. Vector spaces.

- \mathbf{R} denotes the real numbers;
- $\mathbf{R}^{n}=\mathbf{R}^{[n]}$ is the n-dimensional Euclidean space; the elements of \mathbf{R}^{n} are vectors.
- $x \cdot y=\sum_{i=1}^{n} x_{i} y_{i}$ is the inner product of $x, y \in \mathbf{R}^{n}$.
- If $(p, \alpha) \in \mathbf{R}^{n} \times \mathbf{R}, H(p, \alpha)=\left\{x \in \mathbf{R}^{n}: p \cdot x=\alpha\right\}$ is a hyperplane.
- $\|x\|=\sqrt{x \cdot x}$ is the Euclidean norm of $x \in \mathbf{R}^{n}$.

If $x, y \in \mathbf{R}^{n}$ then we say that $x \leq y$ if $x_{i} \leq y_{i}$ (as real numbers) for $1 \leq i \leq n$. We also have $x \ll y$ if $x_{i}<y_{i}$ for $1 \leq i \leq n$, and $x<y$ if $x \leq y$ and $x \neq y . \mathbf{R}_{+}^{n}$ is the set of vectors $x \in \mathbf{R}^{n}$ with $x_{i} \geq 0$.

If $A, B \subseteq \mathbf{R}^{n}$ then $A+B=\{x+y: x \in A, y \in B\}$ is their sum. Make sure that you understand, for example, $\{x\}+\mathbf{R}_{+}^{n}$ for $x \in \mathbf{R}^{n}$.

A subset $A \subseteq \mathbf{R}^{n}$ is convex if $\lambda x+(1-\lambda) y \in A$ for all $x, y \in A$ and $\lambda \in[0,1] . \lambda x+(1-\lambda) y$ is a convex combination of x and y. The convex hull of a set A is the intersection of all convex sets that contain A; or, equivalently, the set of all convex combinations of elements from A.
0.3. Probability and expectation. Suppose that A is a finite set.

- $\Delta(A)$ denotes the set of probability distributions on A. That is $\Delta(A)=\left\{p \in \mathbf{R}_{+}^{A}: \sum_{a \in A} p(a)=1\right\}$.
- If $p \in \Delta(A)$, for any subset $B \subseteq A$ we can calculate

$$
p(B)=\sum_{a \in B} p(a),
$$

with $p(\emptyset)=0$ and $p(A)=1$.

- We could alternatively define probabilities as functions $p: 2^{A} \rightarrow$ \mathbf{R}_{+}, so that $p(\emptyset)=0, p(A)=1$, and $P(C \cup B)=p(C)+p(B)$ when $C \cap B=\emptyset$.
- For $p \in \Delta(A)$, the support of p is the set

$$
\operatorname{supp}(p)=\{a \in A: p(a)>0\}
$$

of elements with strictly positive probability.

- If $f: A \rightarrow \mathbf{R}$ and $p \in \Delta(A)$ then we write the mathematical expectation of f under p as

$$
\mathbf{E}_{p} f=\sum_{a \in A} f(a) p(a)=\int_{A} f(a) \mathrm{d} p(a) .
$$

To distinguish the variable of integration, we may on occasion write $\mathbf{E}_{p} f(\tilde{a})$.

Often, as a notational shortcut, we write $f(p)=\mathbf{E}_{p} f$. When $A=$ $\prod_{i=1}^{n} A_{i}$ and $p=\left(p_{1}, \ldots, p_{n}\right) \in \prod_{i=1}^{n} \Delta\left(A_{i}\right)$ then we interpret p as the probability on A obtained as the independent mixture of each marginal
p_{i}. That is, for each $B=\prod_{i=1}^{n} B_{i}$, with $B_{i} \subseteq A_{i}$, we have $p(B)=$ $p\left(B_{1}\right) \cdot p\left(B_{2}\right) \cdots p\left(B_{n}\right)$. And we write

$$
\begin{aligned}
f(p)=f\left(p_{1}, \ldots, p_{n}\right) & =\sum_{a_{1} \in A_{1}} \cdots \sum_{a_{n} \in A_{n}} p\left(a_{1}\right) \cdots p\left(a_{n}\right) f\left(a_{1}, \ldots, a_{n}\right) \\
& =\sum_{a_{i} \in A_{i}} p\left(a_{i}\right) f\left(a_{i}, p_{-i}\right) \\
& =\mathbf{E}_{p_{i}} f\left(\tilde{a}_{i}, p_{-i}\right)=f\left(p_{i}, p_{-i}\right) .
\end{aligned}
$$

When $f: A \rightarrow \mathbf{R}^{n}$, then $\mathbf{E}_{p} f=\left(\mathbf{E}_{p} f_{1}, \ldots, \mathbf{E}_{p} f_{n}\right)$.
If $x, y \in \mathbf{R}^{n}$ and $\lambda \in[0,1]$, we may interpret $(\lambda, 1-\lambda)$ as a probability on $\{x, y\}$, and the convex combination $\lambda x+(1-\lambda) y$ as its expectation. In the same spirit, if $U=\left\{u_{1}, \ldots, u_{m}\right\} \subseteq \mathbf{R}^{n}$ is a finite set with m distinct elements, and $\lambda_{i} \in[0,1] 1 \leq i \leq m$, with $\sum_{i} \lambda_{i}=1$, then we can interpret $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ as a probability on U, and the convex combination $\sum_{i} \lambda u_{i} \in \mathbf{R}^{n}$ as its expectation. Then the convex hull of U is the set of expected values of probabilities on U.

In Econ 201b, we will most of the time work with probabilities over finite sets. On occasion, when $A \subseteq \mathbf{R}^{n}$ may not be a finite set, we write $\Delta(A)$ for the set of all Borel probability measures on A.
0.4. Sequences. Fix a set A.

- A function mapping $[n]=\{1, \ldots, n\} \rightarrow A$ is a sequence of length n in A. We write it as

$$
h=\left(a_{1}, \ldots, a_{n}\right)
$$

- A^{n} denotes the set of all sequences of length n.
- $\cup_{n \in \mathbf{N}} A^{n}$ denotes all finite sequences in A.
- A function from \mathbf{N} to A is an infinite sequence.

When

$$
h^{\prime}=\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}, a_{n+1}^{\prime}, \ldots\right)
$$

is a sequence (finite or infinite), and $h=\left(a_{1}, \ldots, a_{n}\right)$ is a sequence with $a_{i}^{\prime}=a_{i}$, we say that h^{\prime} is a continuation of h and that h is a prefix of h^{\prime}.

