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Weak Axiom of Revealed Preference (WARP)

Let X ⊂ Rn
+ be the consumption set.

For an ordinary demand function x∗ : Rn
++ × R++ → X , define the binary

relation S on X by

x S y if ( ∃(p,w) ) [ x = x∗(p,w) & y 6= x & p · y ≤ w ].

That is, x is demanded when y is in the budget set but not demanded, so
x is revealed preferred to y .

Echenique WARP



Weak Axiom of Revealed Preference (WARP)

The demand function x∗ obeys Samuelson’s Weak Axiom of Revealed
Preference (SWARP) if S is an asymmetric relation.

That is, if for every x , y ∈ X ,

x S y =⇒ ¬y S x .

In other words, if x is revealed preferred to y , then y is never revealed
preferred to x .
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The demand function x∗ satisfies budget exhaustion if ∀(p,w),

p · x∗(p,w) = w .
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WARP

Assuming budget exhaustion, We may now rewrite SWARP in the form
that Samuelson used.

Let x0 and x1 belong to the range of x∗. That is, let

x0 = x∗(p0,w0) = x∗(p0, p0 · x0) and x1 = x∗(p1,w1) = x∗(p1, p1 · x1).

Then p1 · x0 ≤ p1 · x1 and x0 6= x1 imply x1 S x0; while x0 6= x1 and
¬x0 S x1 imply p0 · x1 > p0 · x0.
SWARP becomes:

x0 6= x1 and p1 · x0 ≤ p1 · x1 =⇒ p0 · x1 > p0 · x0.
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Slutsky compensated demand

Define the Slutsky compensated demand s from the ordinary demand
function x∗ as

s(p, x̄) = x∗(p, p · x̄).

So if x̄ = x∗(p̄, w̄), then s(p, x̄) is the demand x∗(p,w) where w has been
adjusted (compensated) so that consumption x̄ is still just affordable at
price vector p.
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Slutsky compensated demand

Lemma

Let x∗ satisfy the budget exhaustion condition and SWARP. Let

x0 = x∗(p0,w0) and x1 = x∗(p1, p1 · x0).

Then
(p1 − p0) · (x1 − x0) ≤ 0,

with equality if and only if x1 = x0.

This property is a version of the law of demand: A LOD for compensated
price changes.
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Slutsky compensated demand

Proof.

If x1 = x0, then the conclusion is true as an equality. So assume x1 6= x0.
By budget exhaustion

p1 · x1 = p1 · x0. (1)

Since x1 6= x0, this says that x1 S x0. So by SWARP, we have ¬x0 S x1,
that is,

p0 · x1 > w0 = p0 · x0, (2)

where the second equality follows from budget exhaustion. Subtracting
inequality (2) from equality (1) gives

(p1 − p0) · x1 < (p1 − p0) · x0,

which proves the conclusion of the lemma.
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Slutsky substitution matrix

Suppose that the ordinary demand function is C 1.

Note that
∂si (p, x̄)

∂pj
=
∂x∗i (p, p · x̄)

∂pj
+ x̄j

∂x∗i (p, p · x̄)

∂w
.

In particular, by setting x̄ = x∗(p,w) we may define the Slutsky
substitution term

σi ,j(p,w) =
∂si
(
p, x∗(p,w)

)
∂pj

=
∂x∗i (p,w)

∂pj
+ x∗j (p,w)

∂x∗i (p,w)

∂w
.

Echenique WARP



Slutsky substitution matrix

Interpret:

σi ,j(p,w) =
∂x∗i (p,w)

∂pj
+ x∗j (p,w)

∂x∗i (p,w)

∂w
.

Obs. that x∗j (p,w)
∂x∗i (p,w)

∂w captures the effect of a differential change in pj
on demand for i through the change in income needed to compensate for
the change in price.
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WARP and the substitution matrix

Theorem

Let x∗ : Rn
++ × R++ → Rn

+ be differentiable and satisfy the budget
exhaustion condition and SWARP. Then for every (p,w) ∈ Rn

++ × R++,
and every v ∈ Rn,

n∑
i=1

n∑
j=1

σi ,j(p,w)vivj ≤ 0.

That is, the matrix of Slutsky substitution terms is negative semidefinite.
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WARP and the substitution matrix

Proof:
Fix (p,w) ∈ Rn

++ × R++ and v ∈ Rn. By homogeneity of degree 2 of the
quadratic form in v , without loss of generality we may scale v so that
p ± v � 0.
Define the function x on [−1, 1] via

x(t) = s
(
p + tv , x∗(p,w)

)
. (3)

Note that this function is differentiable, and x(0) = x∗(p,w).
By Lemma 1 (with p + tv playing the rôle of p1 and p playing the rôle of
p0),

(p + tv − p) ·
(
x(t)− x(0)

)
= tv ·

(
x(t)− x(0)

)
≤ 0.

For nonzero t, dividing by t2 > 0 gives

v · x(t)− x(0)

t
≤ 0.
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WARP and the substitution matrix

Taking limits as t → 0 gives

v · x ′(0) ≤ 0. (4)

By the Chain Rule applied to (3),

x ′i (t) =
n∑

j=1

∂si
(
p + tv , x∗(p,w)

)
∂pj

vj . (5)

Evaluating (5) at t = 0 yields

x ′i (0) =
n∑

j=1

∂si
(
p, x∗(p,w)

)
∂pj

vj

=
n∑

j=1

σi ,j(p,w)vj ,

where the second equality is just the definition of σi ,j(p,w).
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WARP and the substitution matrix

Combining this with (4) gives

0 ≥ v · x ′(0) =
n∑

i=1

n∑
j=1

σi ,j(p,w)vivj ,

which completes the proof.
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WARP and the substitution matrix

Corollary

Under the assumptions of the theorem,

σi ,i (p,w) ≤ 0

That is, compensated own-price changes are negative.
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Substitution matrix and utility maximization

We obtained the negative-semidefiniteness of the Slutzky substitution
matrix under the assumptions of WARP and budget exhaustion, but not
utility maximization.

In fact a “rational” demand satisies in addition that the matrix is
symmetric.
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