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Comparative statics

Consider a firm with production function f : R — R, hiring labor at salary
w and selling its product at price p.

Profit of the firm when it employs / units of labor is

Labor demand is /(w) = argmax;~q pf(/) — wl.

To do comparative statics, suppose we can apply the implicit function
theorem.

We need f to be smooth, and assume an interior solution to the profit
maximization problem.

From the first order condition pf’(/(w)) — w = 0 we obtain:
pf”(I(w))l'(w) — 1 =. Meaning that /'(w) = 1/pf”(l). Then it would
seem that downward-sloping labor demand hinges on f being concave.

As we shall see this idea is misleading.
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Comparative statics

Proposition
Let f : R2 — R be twice differentiable, with

2
PFxt)
oxot —

and suppose that a, b : R — R are monotone increasing, with a(t) < b(t)
for all t. Then there is

x*(t) € argmax{f(x,t) : x € [a(t), b(t)]}

that is monotone increasing.
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Partial orders

A binary relation < on a set X is:
» reflexive if (Vx € X)(x < x));
» antisymmetric if (Vx,y € X)(x <yandy < x = x=y),

> transitive if
(Vx,y,ze X)(y < xand z< y = z < x));

» a partial order if it is reflexive, antisymmetric and transitive;

» a linear order if (Vx,y € X)(x <y ory < x).

Obs. linear orders are also called complete.

A pair (X, <), where X is a set and < is a partial order on X, is called a
partially ordered set, or a PO set.
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The set (R", <) is a PO set.

Let Cp(A) be the set all continuous and bounded functions f : AC R — R,
and define f < g if f(x) < g(x) for all x. Then (Cp(A), <) is a PO set.

Let Q be a non-empty set, and denote by 2% the set of all subsets of Q.
Then (29,C) is a PO set.

The English alphabet ordered lexicographically.

On the set Z of positive integers, let a < b if b is divisible by a. Then
(Z4,<) is a PO set.
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Let V be a real vector space and P be a pointed convex cone in V
(meaning that if x,y € P a € (0,1) and A > 0 then Ax € P and
ax + (1 — a)y € P; and that if x, —x € P then x = 0).

Then P defines a partial order by x < y iff y — x € P.

Verify that indeed this defines a partial order. \

Later in the class, we'll work with a special case where P is defined via a
collection of linear functions F:

P={xeV:f(x)>0forall feF}

Show that if F is a collection of linear functions such that
0=n{f"1(0): f € F}, then P as defined is a pointed convex cone.
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Partial orders

Finite PO sets are represented by a Hasse diagram. For ex. ¢ ( 2X,C), by
set inclusion:

{xy,2}

/1N

{xy} Axz} A{y,z}
Y \/

{x} {r} {z}

ANVE

Echenique MCS



Let (X, <) be a PO set and A C X be a subset of X.
Then AY = {x € X : Vz € A,z < x} is the set of upper bounds of A; and
Al ={x € X :Vz € A x < z} is the set of lower bounds of A.

The least upper bound, or supremum of A, if it exists, is a smallest
element of AY. So the supremum of A, denoted sup A, is x € AY st x <z
for all z € AY.

The greatest lower bound, inf A, is x € Al such that z < x for all z € A’

Echenique MCS



For sets with two elements, we use a special notation to denote infimum
and supremum.

For x,y € X, we let x Vy =sup{x,y} x Ay = inf{x, y}.

We term x V y the join of x and y; and x A y the meet of x and y.

{x, ¥}
o X -X\/_y

X/N\Y-e
{x,y}'
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Definition

A PO set (X, <) is a lattice if, for all x,y € X, x Ay and xV y exist in X.
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Example:

A rectangle in R" is a subset []}_;[a;, bi] of R”, with a; < b; for all

i=1,...,n. A rectangle is a lattice.
by
o« X
ar Y
ai b1
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Not a lattice

-x ------------------ ?XVy
X/\y ................ y
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A lattice (X, <) is complete if for all B C X, inf B and sup B exists in X.!

This terminology is potentially confusing. We often use complete order to talk about
a linear order.
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Sublattice

Let (X, <) be a lattice and A C X. We say that A is a sublattice of (X, <)
if, for all x,y € A, x Ay,xVye€A.

Let A be a sublattice of (X, <). We say that A is subcomplete if, for all
B C A, inf B,supB € A.
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Strong set order

Let (X, <) be a lattice. For A, B C X, say that A is smaller than B in the
strong set order (or induced set order; and denoted by A C B) if

xeEAandye B=xAy€Aand xVyeB.
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Strong set order

Example with X = R.
AL B:
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Strong set order

C is antisymmetric and transitive on 2%\ {()}.
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Obs. x ANy <xso(xAy)Vx=x

And x < xVyso(xVy)Ax=x

Echenique MCS



First anti-symmetry. Let AC Band BC A. Let x€ Aand y € B. Then
xANy€Aand xVyeB,asAC B. Then x=(xVy)Ax € B and
y=yV(xAy)eA as BLC A Thus A=B.

Now to show transitivity: Let AC Band BC C. Let x€ Aand y € C.
Choose z € B. Note:

xVy=xV((yAzVy))=(xV(yAz))Vy.
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Now, yAze€ B,as BC C Then xV (yAz) € B,as AC B. So
xVyeC, as BC C.

Similarly,
xANy=(xANXxVz)Ay=xAN((xVz)Ay).

Now, (x Vz) € B,so (xVz)Ay € B. ThenxAy €A
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Strong set order

Observe that A C A iff A is a sublattice of (X, <).

If we denote by L(X) the set of all nonempty sublattices of (X, <), we
obtain:

(L(X),E) is a PO set.
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Increasing differences

Let (X, <) be a lattice and (T, <’) be a PO set.

A function f : X x T — R has increasing differences if, for all x,x’ € X
and t,' € T withx < x and t <t/

f(x',t) — f(x,t) < F(X, t') — F(x,t').

(Put differently, if the function t — f(x’, t) — f(x, t) is monotone
increasing, for each x, x’ € X with x < x'.)

Echenique MCS



Increasing differences

X ’ ! ’
) (t,x") (t';x")
X . .
: :
| |
X o [
(£,x) (t';x)
t t T
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Supermodulariy

A function f : X x T — R has strictly increasing differences if, for all
x,x € Xand t,t' € T with x < x"and t < t/

f(xX',t) — f(x,t) < (X', t') — f(x, t).

We say that the function has increasing differences “in (x, t)

Obs. that a function has increasing differences in (x, t) iff it has increasing
differences in (t, x).
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Supermodulariy

Definition

A function f : X — R is supermodular if, for all x,x" € X,

f(x)+ f(x") < f(xVvx)+ f(xAX).
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Supermodularity

Xa
X0 o (xu2) o (i) Vv (1, %)

S %

g =
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(x1,x2) A (45 x3) (x15x3)
!
X1 X X1
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Supermodulariy

Supermodularity requires that
f(x) — f(x AX) < f(xVX)—f(X),
which in the figure means that
f(x1, x2) — f(x1, %) < f(x1,x2) — F(X], X5)-

So in this case, supermodularity is the same as increasing differences in
each dimension.
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Supermodulariy

Supermodularity is often viewed in economics as a notion of
complementarity because of the connection to increasing differences. In the
figure, think of f as production from two inputs, or the utility of
consumption from two goods.

Supermodularity says that any “marginal” increase along the X, dimension
is aided by increases in the X; dimension. The two inputs, or the two
consumption goods, are therefore complements.
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Supermodulariy

Two elements x, x’ € X are unordered if x £ x" and x’ £ x.

A function f : X — R is strictly supermodular if, for all unordered
x,x" € X,
f(x)+ f(xX') < f(x VX)) + f(x AX).

Echenique MCS



Supermodulariy

Remark

If f and g are supermodular functions, and A > 0, then f 4+ g and Af are
supermodular functions.

There is, however, a supermodular f and strictly increasing h: R — R such
that ho f is not supermodular. Supermodularity is a cardinal property.
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Quasi-supermodulariy

Let (X, <) and (T, <) be PO sets.

A function f : X x T — R satisfies the single-crossing property in (x, t)
(xe X and te T)if, for all x,x’ € X and t,t' € T.

f(x,t) < (X, t) = f(x,t') < (X, t)
f(x,t) < f(xX',t) = f(x,t') < f(X, t)
when x < x" and t < t'.

Moreover, if
f(x,t) < (X, t) = f(x,t') < f(X, t))

for t < t’ then we say that f satisfies the strict single crossing property.
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Quasi-supermodulariy

If f: X x T — R has increasing differences in (x, t) then it satisfies the
single crossing property.

Let (X, <) be a lattice. A function f : X — R is quasi-supermodular if, for
all x,x' € X

/

f(x/\x')g f(x’):>fx)< f

f(xAX) < f(xX') = f(x) ;

X

X
X

~
—

v x')
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Quasi-supermodulariy

If f: X — Ris supermodular then it is quasi-supermodular. I
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Supermodulariy

Let (Xi, <;) be a lattice for i =1,...,n. If f: x"_;X; = R has increasing
differences in (x;, x;), for i # j, and x; — f(x;, x_;), for all i is
supermodular, then f is supermodular.

Corollary

Let X C R" be a lattice under the usual order on R”. If f : X — R has
increasing differences in any two variables then it is supermodular.

Echenique MCs



Supermodulariy

|

Proposition
Let Xj C R be an open set, and X = x?_, X; CR". Let f : X = R be

twice continuously differentiable. If
0?f(x)

>0
0x;0x; —

for i # j then f has increasing differences in (x;, x;); and if this inequality

holds for all / # j then f is supermodular.
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Supermodulariy: Examples

> fx,x2) = x1x
» f(x1,...,xp) = K[[x", K>0and a; >0
> log[D1(p1, p2)(p1 — )], when

= 0log D1 (p1, p2)

P2
op1

is monotone increasing. When D is a demand function (for
“differentiated products”) this means that demand elasticity

__Olog Di(p1, p2)
Ologps

is decreasing in po.
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Supermodulariy: Examples

» f(x1,x) = g(x1 — x2), when g is a concave function.
In particular, in the previous example, log[D1(p1, p2)(p1 — ¢)] is
supermodular in (p1, ¢) as the log is concave.
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Monotoniciy theorem

Let (X, <) be a lattice, (T,<’) a PO set, and f : X x T — R a function.
Denote by
M(t,S) = argmax{f(x,t) : x € S}

the set of maximizers of f over the set S C X for fixed t € T.
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Monotoniciy theorem

Theorem (Milgrom and Shannon's Monotonicity Theorem)

M(t, S) is monotone increasing iff
» x — f(x,t) is quasi-supermodular;

» f satisfies the single crossing propery in (x, t)
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Monotoniciy theorem: Proof

(<) Lett<t' and SC S

Let x € M(t,S) and x’ € M(t',S’). Since SC S, x Ax' € S and

xVx" €S Now, x Ax" €S and x € M(t,S) means that

f(x Ax' t) < f(x,t).

By SCP, f(x A X', t') < f(x,t).

QSM implies that f(x',t") < f(x V X/, t).

Since x' € M(t',S’) and x V x’ € S’ we obtain that x V x' € M(t', S').
Now: x/,x V x" € M(t',S") imply that f(x',t') = f(x V X', t'). So we must

have, by single crossing and supermodularity, that f(x A X', t) = f(x, t).
Thus x A x" € M(t,S).
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Monotoniciy theorem: Proof

(=) Conversely, suppose that M(t, S) is monotone increasing. Let
x,x € Xand t,t' € T.

First consider S = {x,x A x’} and S’ = {x/,x V x'}.

Note that SC §'.

Suppose that f(x A X', t) < f(x,t); so x € M(t, S).

Then M(t,S) C M(t,S’) implies that we must have f(x',t) < f(x V X/, t)
(as f(x',t) > f(x VX', t) would imply x" € M(t,S’) and

xV x" ¢ M(t,S"))). Similarly, f(x A x',t) < f(x,t) implies
f(x',t) < f(xVx,t).
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Monotoniciy theorem: Proof

Let x < x" and t < t/. Consider S = {x,x'}. If f(x,t) < f(x/,t), then
x' € M(t,S) C M(t',S) implies that f(x,t") < f(x,t'). Similarly,
f(x,t) < f(x', t) implies that f(x,t') < f(x', t').
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Monotoniciy theorem

The following result follows directly from the more general Milgrom and
Shannon result.

Corollary (Topkis's monotonicity theorem)

Let x — f(x,t) be supermodular and satisfy increasing differences in
(x,t). Then M(t,S) is monotone increasing.
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Application: labor demand

Let g(/,w) = pf(/) — wl, where p, w, [ are all real variables: p is price, w
is wage and / is labor.

f : R — R is a production function. Note that 7 satisfies the
single-crossing property in (—w, /).

So labor demand is monotone decreasing. This result holds without any
assumptions on f; it is purely a consequence of the interaction between

wages and labor: at higher wages, any given increase in labor use gives a
higher cost increase.
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Application: labor demand

Suppose you want to generalize the result to more than one factor.

Let g(z, w) = pf(z) — w - z, where z = (z1, zp) is a vector of production
factors and w = (wy, wp) is a vector of factor prices.

As before, p is price and f a production function.

Now factor demand is decreasing when f is supermodular. In this case we
do need some assumptions on production, but it is a natural assumption
because we want the increase in one factor go “move” the demand for
other factors in the same direction.
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Application: differentiated products

Let m;(pi, p—i, ¢i) = (pi — ¢i)Di(pi, p—i) be the profit function of a firm i.

D; is the demand facing firm i when prices are p = (p1, ..., pn) = (pi, P—i)
and ¢; is the (constant) marginal cost.

Suppose that demand elasticity

__Olog D1(p1, p2)
Ologpy

is decreasing in po.
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Application: differentiated products

By a similar calculation to what we already did, we see that gi(pi, p—i, ¢i)
has increasing differences in (p;, ¢;) and in (p;, p—;).

So the optimal price will be increasing in ¢; and also in competitors’ prices.
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