
Monotone comparative statics

Federico Echenique
Caltech – SS205a

November 15, 2021



Comparative statics

Echenique MCS



Comparative statics

Consider a firm with production function f : R→ R, hiring labor at salary
w and selling its product at price p.

Profit of the firm when it employs l units of labor is

g(w , l) = pf (l)− wl .

Labor demand is l(w) = argmaxl≥0 pf (l)− wl .

To do comparative statics, suppose we can apply the implicit function
theorem.

We need f to be smooth, and assume an interior solution to the profit
maximization problem.

From the first order condition pf ′(l(w))− w = 0 we obtain:
pf ′′(l(w))l ′(w)− 1 =. Meaning that l ′(w) = 1/pf ′′(l). Then it would
seem that downward-sloping labor demand hinges on f being concave.

As we shall see this idea is misleading.
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Comparative statics

Proposition

Let f : R2 → R be twice differentiable, with

∂2f (x , t)

∂x∂t
≥ 0,

and suppose that a, b : R→ R are monotone increasing, with a(t) < b(t)
for all t. Then there is

x∗(t) ∈ argmax{f (x , t) : x ∈ [a(t), b(t)]}

that is monotone increasing.
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Partial orders

A binary relation ≤ on a set X is:

I reflexive if (∀x ∈ X )(x ≤ x));

I antisymmetric if (∀x , y ∈ X )(x ≤ y and y ≤ x =⇒ x = y);

I transitive if

(∀x , y , z ∈ X )(y ≤ x and z ≤ y =⇒ z ≤ x));

I a partial order if it is reflexive, antisymmetric and transitive;

I a linear order if (∀x , y ∈ X )(x ≤ y or y ≤ x).

Obs. linear orders are also called complete.

A pair (X ,≤), where X is a set and ≤ is a partial order on X , is called a
partially ordered set, or a PO set.
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Examples

The set (Rn,≤) is a PO set.

Let Cb(A) be the set all continuous and bounded functions f : A ⊆ R→ R,
and define f ≤ g if f (x) ≤ g(x) for all x . Then (Cb(A),≤) is a PO set.

Let Ω be a non-empty set, and denote by 2Ω the set of all subsets of Ω.
Then (2Ω,⊆) is a PO set.

The English alphabet ordered lexicographically.

On the set Z+ of positive integers, let a ≤ b if b is divisible by a. Then
(Z+,≤) is a PO set.
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Examples

Let V be a real vector space and P be a pointed convex cone in V
(meaning that if x , y ∈ P α ∈ (0, 1) and λ > 0 then λx ∈ P and
αx + (1− α)y ∈ P; and that if x ,−x ∈ P then x = 0).

Then P defines a partial order by x ≤ y iff y − x ∈ P.

Exercise

Verify that indeed this defines a partial order.

Later in the class, we’ll work with a special case where P is defined via a
collection of linear functions F :

P = {x ∈ V : f (x) ≥ 0 for all f ∈ F}

Exercise

Show that if F is a collection of linear functions such that
0 = ∩{f −1(0) : f ∈ F}, then P as defined is a pointed convex cone.
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Partial orders

Finite PO sets are represented by a Hasse diagram. For ex. c ( 2X ,⊆), by
set inclusion:

{x , y , z}

{x , y} {x , z} {y , z}

{x} {y} {z}

∅
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Lattices

Let (X ,≤) be a PO set and A ⊆ X be a subset of X .
Then Au = {x ∈ X : ∀z ∈ A, z ≤ x} is the set of upper bounds of A; and
Al = {x ∈ X : ∀z ∈ A, x ≤ z} is the set of lower bounds of A.

The least upper bound , or supremum of A, if it exists, is a smallest
element of Au. So the supremum of A, denoted supA, is x ∈ Au s.t x ≤ z
for all z ∈ Au.

The greatest lower bound , inf A, is x ∈ Al such that z ≤ x for all z ∈ Al .
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Lattices

For sets with two elements, we use a special notation to denote infimum
and supremum.

For x , y ∈ X , we let x ∨ y = sup{x , y} x ∧ y = inf{x , y}.

We term x ∨ y the join of x and y ; and x ∧ y the meet of x and y .

{x , y}u

{x , y}l

x ∨ y

x ∧ y

x

y
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Lattices

Definition

A PO set (X ,≤) is a lattice if, for all x , y ∈ X , x ∧ y and x ∨ y exist in X .
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Lattices

Example:

A rectangle in Rn is a subset
∏n

i=1[ai , bi ] of Rn, with ai < bi for all
i = 1, . . . , n. A rectangle is a lattice.

a1 b1

a2

b2

x

y
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Not a lattice

x

y

x ∨ y

x ∧ y
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Lattices

A lattice (X ,≤) is complete if for all B ⊆ X , inf B and supB exists in X .1

1This terminology is potentially confusing. We often use complete order to talk about
a linear order.
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Sublattice

Let (X ,≤) be a lattice and A ⊆ X . We say that A is a sublattice of (X ,≤)
if, for all x , y ∈ A, x ∧ y , x ∨ y ∈ A.

Let A be a sublattice of (X ,≤). We say that A is subcomplete if, for all
B ⊆ A, inf B, supB ∈ A.
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Strong set order

Let (X ,≤) be a lattice. For A,B ⊆ X , say that A is smaller than B in the
strong set order (or induced set order ; and denoted by A v B) if

x ∈ A and y ∈ B =⇒ x ∧ y ∈ A and x ∨ y ∈ B.
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Strong set order

Example with X = R.
A v B:

A

B
A ∩ B
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Strong set order

Lemma

v is antisymmetric and transitive on 2X \ {∅}.
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Proof

Obs. x ∧ y ≤ x so (x ∧ y) ∨ x = x

And x ≤ x ∨ y so (x ∨ y) ∧ x = x
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Proof

First anti-symmetry. Let A v B and B v A. Let x ∈ A and y ∈ B. Then
x ∧ y ∈ A and x ∨ y ∈ B, as A v B. Then x = (x ∨ y) ∧ x ∈ B and
y = y ∨ (x ∧ y) ∈ A, as B v A. Thus A = B.

Now to show transitivity: Let A v B and B v C . Let x ∈ A and y ∈ C .
Choose z ∈ B. Note:

x ∨ y = x ∨ ((y ∧ z ∨ y)) = (x ∨ (y ∧ z)) ∨ y .
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Proof cont.

Now, y ∧ z ∈ B, as B v C Then x ∨ (y ∧ z) ∈ B, as A v B. So
x ∨ y ∈ C , as B v C .

Similarly,
x ∧ y = (x ∧ (x ∨ z)) ∧ y = x ∧ ((x ∨ z) ∧ y).

Now, (x ∨ z) ∈ B, so (x ∨ z) ∧ y ∈ B. Then x ∧ y ∈ A
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Strong set order

Observe that A v A iff A is a sublattice of (X ,≤).

If we denote by L(X ) the set of all nonempty sublattices of (X ,≤), we
obtain:

Theorem

(L(X ),v) is a PO set.
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Increasing differences

Let (X ,≤) be a lattice and (T ,≤′) be a PO set.

A function f : X × T → R has increasing differences if, for all x , x ′ ∈ X
and t, t ′ ∈ T with x < x ′ and t < t ′

f (x ′, t)− f (x , t) ≤ f (x ′, t ′)− f (x , t ′).

(Put differently, if the function t 7→ f (x ′, t)− f (x , t) is monotone
increasing, for each x , x ′ ∈ X with x < x ′.)
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Increasing differences
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Supermodulariy

A function f : X × T → R has strictly increasing differences if, for all
x , x ′ ∈ X and t, t ′ ∈ T with x < x ′ and t < t ′

f (x ′, t)− f (x , t) < f (x ′, t ′)− f (x , t ′).

We say that the function has increasing differences “in (x , t).”

Obs. that a function has increasing differences in (x , t) iff it has increasing
differences in (t, x).
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Supermodulariy

Definition

A function f : X → R is supermodular if, for all x , x ′ ∈ X ,

f (x) + f (x ′) ≤ f (x ∨ x ′) + f (x ∧ x ′).
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Supermodularity

X1

X2

(x1, x2) ∧ (x′1, x
′
2) (x′1, x

′
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Supermodulariy

Supermodularity requires that

f (x)− f (x ∧ x ′) ≤ f (x ∨ x ′)− f (x ′),

which in the figure means that

f (x1, x2)− f (x1, x
′
2) ≤ f (x ′1, x2)− f (x ′1, x

′
2).

So in this case, supermodularity is the same as increasing differences in
each dimension.
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Supermodulariy

Supermodularity is often viewed in economics as a notion of
complementarity because of the connection to increasing differences. In the
figure, think of f as production from two inputs, or the utility of
consumption from two goods.

Supermodularity says that any “marginal” increase along the X2 dimension
is aided by increases in the X1 dimension. The two inputs, or the two
consumption goods, are therefore complements.

Echenique MCS



Supermodulariy

Two elements x , x ′ ∈ X are unordered if x 6≤ x ′ and x ′ 6≤ x .

A function f : X → R is strictly supermodular if, for all unordered
x , x ′ ∈ X ,

f (x) + f (x ′) < f (x ∨ x ′) + f (x ∧ x ′).

Echenique MCS



Supermodulariy

Remark

If f and g are supermodular functions, and λ > 0, then f + g and λf are
supermodular functions.

There is, however, a supermodular f and strictly increasing h : R→ R such
that h ◦ f is not supermodular. Supermodularity is a cardinal property.
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Quasi-supermodulariy

Let (X ,≤) and (T ,≤) be PO sets.

A function f : X × T → R satisfies the single-crossing property in (x , t)
(x ∈ X and t ∈ T ) if, for all x , x ′ ∈ X and t, t ′ ∈ T .

f (x , t) ≤ f (x ′, t) =⇒ f (x , t ′) ≤ f (x ′, t ′)

f (x , t) < f (x ′, t) =⇒ f (x , t ′) < f (x ′, t ′)

when x ≤ x ′ and t ≤ t ′.

Moreover, if
f (x , t) ≤ f (x ′, t) =⇒ f (x , t ′) < f (x ′, t ′)

for t < t ′ then we say that f satisfies the strict single crossing property .
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Quasi-supermodulariy

Remark

If f : X × T → R has increasing differences in (x , t) then it satisfies the
single crossing property.

Let (X ,≤) be a lattice. A function f : X → R is quasi-supermodular if, for
all x , x ′ ∈ X

f (x ∧ x ′) ≤ f (x ′) =⇒ f (x) ≤ f (x ∨ x ′)

f (x ∧ x ′) < f (x ′) =⇒ f (x) < f (x ∨ x ′)
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Quasi-supermodulariy

Remark

If f : X → R is supermodular then it is quasi-supermodular.
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Supermodulariy

Theorem

Let (Xi ,≤i ) be a lattice for i = 1, . . . , n. If f : ×n
i=1Xi → R has increasing

differences in (xi , xj), for i 6= j , and xi 7→ f (xi , x−i ), for all i is
supermodular, then f is supermodular.

Corollary

Let X ⊆ Rn be a lattice under the usual order on Rn. If f : X → R has
increasing differences in any two variables then it is supermodular.
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Supermodulariy

Proposition

Let Xi ⊆ R be an open set, and X = ×n
i=1Xi ⊆ Rn. Let f : X → R be

twice continuously differentiable. If

∂2f (x)

∂xi∂xj
≥ 0

for i 6= j then f has increasing differences in (xi , xj); and if this inequality
holds for all i 6= j then f is supermodular.
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Supermodulariy: Examples

I f (x1, x2) = x1x2

I f (x1, . . . , xn) = K
∏

xaii , K > 0 and ai > 0

I log[D1(p1, p2)(p1 − c)], when

p2 7→
∂ logD1(p1, p2)

∂p1

is monotone increasing. When D1 is a demand function (for
“differentiated products”) this means that demand elasticity

ε = −∂ logD1(p1, p2)

∂logp1

is decreasing in p2.
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Supermodulariy: Examples

I f (x1, x2) = g(x1 − x2), when g is a concave function.
In particular, in the previous example, log[D1(p1, p2)(p1 − c)] is
supermodular in (p1, c) as the log is concave.
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Monotoniciy theorem

Let (X ,≤) be a lattice, (T ,≤′) a PO set, and f : X × T → R a function.
Denote by

M(t, S) = argmax{f (x , t) : x ∈ S}

the set of maximizers of f over the set S ⊆ X for fixed t ∈ T .
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Monotoniciy theorem

Theorem (Milgrom and Shannon’s Monotonicity Theorem)

M(t, S) is monotone increasing iff

I x 7→ f (x , t) is quasi-supermodular;

I f satisfies the single crossing propery in (x , t)
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Monotoniciy theorem: Proof

(⇐=) Let t ≤ t ′ and S v S ′.

Let x ∈ M(t, S) and x ′ ∈ M(t ′, S ′). Since S v S ′, x ∧ x ′ ∈ S and
x ∨ x ′ ∈ S ′. Now, x ∧ x ′ ∈ S and x ∈ M(t, S) means that
f (x ∧ x ′, t) ≤ f (x , t).

By SCP, f (x ∧ x ′, t ′) ≤ f (x , t ′).

QSM implies that f (x ′, t ′) ≤ f (x ∨ x ′, t ′).

Since x ′ ∈ M(t ′,S ′) and x ∨ x ′ ∈ S ′ we obtain that x ∨ x ′ ∈ M(t ′, S ′).

Now: x ′, x ∨ x ′ ∈ M(t ′, S ′) imply that f (x ′, t ′) = f (x ∨ x ′, t ′). So we must
have, by single crossing and supermodularity, that f (x ∧ x ′, t) = f (x , t).
Thus x ∧ x ′ ∈ M(t,S).
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Monotoniciy theorem: Proof

(=⇒) Conversely, suppose that M(t, S) is monotone increasing. Let
x , x ′ ∈ X and t, t ′ ∈ T .

First consider S = {x , x ∧ x ′} and S ′ = {x ′, x ∨ x ′}.

Note that S v S ′.

Suppose that f (x ∧ x ′, t) ≤ f (x , t); so x ∈ M(t,S).

Then M(t, S) v M(t,S ′) implies that we must have f (x ′, t) ≤ f (x ∨ x ′, t)
(as f (x ′, t) > f (x ∨ x ′, t) would imply x ′ ∈ M(t, S ′) and
x ∨ x ′ /∈ M(t,S ′))). Similarly, f (x ∧ x ′, t) < f (x , t) implies
f (x ′, t) < f (x ∨ x ′, t).

Echenique MCS



Monotoniciy theorem: Proof

Let x < x ′ and t < t ′. Consider S = {x , x ′}. If f (x , t) ≤ f (x ′, t), then
x ′ ∈ M(t,S) v M(t ′,S) implies that f (x , t ′) ≤ f (x ′, t ′). Similarly,
f (x , t) < f (x ′, t) implies that f (x , t ′) < f (x ′, t ′).
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Monotoniciy theorem

The following result follows directly from the more general Milgrom and
Shannon result.

Corollary (Topkis’s monotonicity theorem)

Let x 7→ f (x , t) be supermodular and satisfy increasing differences in
(x , t). Then M(t, S) is monotone increasing.
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Application: labor demand

Let g(l ,w) = pf (l)− wl , where p,w , l are all real variables: p is price, w
is wage and l is labor.

f : R→ R is a production function. Note that π satisfies the
single-crossing property in (−w , l).

So labor demand is monotone decreasing. This result holds without any
assumptions on f ; it is purely a consequence of the interaction between
wages and labor: at higher wages, any given increase in labor use gives a
higher cost increase.
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Application: labor demand

Suppose you want to generalize the result to more than one factor.

Let g(z ,w) = pf (z)− w · z , where z = (z1, z2) is a vector of production
factors and w = (w1,w2) is a vector of factor prices.

As before, p is price and f a production function.

Now factor demand is decreasing when f is supermodular. In this case we
do need some assumptions on production, but it is a natural assumption
because we want the increase in one factor go “move” the demand for
other factors in the same direction.
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Application: differentiated products

Let πi (pi , p−i , ci ) = (pi − ci )Di (pi , p−i ) be the profit function of a firm i .

Di is the demand facing firm i when prices are p = (p1, . . . , pn) = (pi , p−i )
and ci is the (constant) marginal cost.

Suppose that demand elasticity

ε = −∂ logD1(p1, p2)

∂logp1

is decreasing in p2.
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Application: differentiated products

By a similar calculation to what we already did, we see that gi (pi , p−i , ci )
has increasing differences in (pi , ci ) and in (pi , p−i ).

So the optimal price will be increasing in ci and also in competitors’ prices.
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