Monotone comparative statics

Federico Echenique Caltech – SS205a

November 15, 2021

Comparative statics

Comparative statics

Consider a firm with production function $f : \mathbb{R} \to \mathbb{R}$, hiring labor at salary w and selling its product at price p.

Profit of the firm when it employs / units of labor is

$$g(w,l)=pf(l)-wl.$$

Labor demand is $I(w) = \operatorname{argmax}_{l \ge 0} pf(l) - wl$.

To do comparative statics, suppose we can apply the implicit function theorem.

We need f to be smooth, and assume an interior solution to the profit maximization problem.

From the first order condition pf'(l(w)) - w = 0 we obtain: pf''(l(w))l'(w) - 1 =. Meaning that l'(w) = 1/pf''(l). Then it would seem that downward-sloping labor demand hinges on f being concave.

As we shall see this idea is misleading.

Proposition

Let $f : \mathbb{R}^2 \to \mathbb{R}$ be twice differentiable, with

$$\frac{\partial^2 f(x,t)}{\partial x \partial t} \ge 0,$$

and suppose that $a, b : \mathbb{R} \to \mathbb{R}$ are monotone increasing, with a(t) < b(t) for all t. Then there is

$$x^*(t) \in \operatorname{argmax} \{f(x,t) : x \in [a(t), b(t)]\}$$

that is monotone increasing.

A binary relation \leq on a set X is:

- reflexive if $(\forall x \in X)(x \leq x))$;
- antisymmetric if $(\forall x, y \in X)(x \le y \text{ and } y \le x \Longrightarrow x = y)$;
- ► transitive if

$$(\forall x, y, z \in X)(y \le x \text{ and } z \le y \Longrightarrow z \le x));$$

- ▶ a *partial order* if it is reflexive, antisymmetric and transitive;
- a linear order if $(\forall x, y \in X)(x \le y \text{ or } y \le x)$.

Obs. linear orders are also called complete.

A pair (X, \leq) , where X is a set and \leq is a partial order on X, is called a *partially ordered set*, or a PO set.

The set (\mathbb{R}^n, \leq) is a PO set.

Let $C_b(A)$ be the set all continuous and bounded functions $f : A \subseteq \mathbb{R} \to \mathbb{R}$, and define $f \leq g$ if $f(x) \leq g(x)$ for all x. Then $(C_b(A), \leq)$ is a PO set.

Let Ω be a non-empty set, and denote by 2^{Ω} the set of all subsets of Ω . Then $(2^{\Omega}, \subseteq)$ is a PO set.

The English alphabet ordered lexicographically.

On the set Z_+ of positive integers, let $a \le b$ if b is divisible by a. Then (Z_+, \le) is a PO set.

Examples

Let V be a real vector space and P be a pointed convex cone in V (meaning that if $x, y \in P$ $\alpha \in (0, 1)$ and $\lambda > 0$ then $\lambda x \in P$ and $\alpha x + (1 - \alpha)y \in P$; and that if $x, -x \in P$ then x = 0). Then P defines a partial order by x < y iff $y - x \in P$.

Exercise

Verify that indeed this defines a partial order.

Later in the class, we'll work with a special case where P is defined via a collection of linear functions \mathcal{F} :

$$P = \{x \in V : f(x) \ge 0 \text{ for all } f \in \mathcal{F}\}$$

Exercise

Show that if \mathcal{F} is a collection of linear functions such that $0 = \cap \{f^{-1}(0) : f \in \mathcal{F}\}$, then P as defined is a pointed convex cone.

Finite PO sets are represented by a *Hasse diagram*. For ex. c ($2^X, \subseteq$), by set inclusion:

Let (X, \leq) be a PO set and $A \subseteq X$ be a subset of X. Then $A^u = \{x \in X : \forall z \in A, z \leq x\}$ is the set of *upper bounds* of A; and $A' = \{x \in X : \forall z \in A, x \leq z\}$ is the set of *lower bounds* of A.

The *least upper bound*, or *supremum* of A, if it exists, is a smallest element of A^u . So the supremum of A, denoted sup A, is $x \in A^u$ s.t $x \le z$ for all $z \in A^u$.

The greatest lower bound, inf A, is $x \in A^{l}$ such that $z \leq x$ for all $z \in A^{l}$.

Lattices

For sets with two elements, we use a special notation to denote infimum and supremum.

For
$$x, y \in X$$
, we let $x \lor y = \sup\{x, y\} \ x \land y = \inf\{x, y\}$.

We term $x \lor y$ the *join* of x and y; and $x \land y$ the *meet* of x and y.

Definition

A PO set (X, \leq) is a *lattice* if, for all $x, y \in X$, $x \land y$ and $x \lor y$ exist in X.

Example:

A rectangle in \mathbb{R}^n is a subset $\prod_{i=1}^n [a_i, b_i]$ of \mathbb{R}^n , with $a_i < b_i$ for all i = 1, ..., n. A rectangle is a lattice.

A lattice (X, \leq) is *complete* if for all $B \subseteq X$, inf B and sup B exists in X.¹

¹This terminology is potentially confusing. We often use complete order to talk about a linear order.

Let (X, \leq) be a lattice and $A \subseteq X$. We say that A is a *sublattice* of (X, \leq) if, for all $x, y \in A$, $x \land y, x \lor y \in A$.

Let A be a sublattice of (X, \leq) . We say that A is *subcomplete* if, for all $B \subseteq A$, inf B, sup $B \in A$.

Let (X, \leq) be a lattice. For $A, B \subseteq X$, say that A is smaller than B in the strong set order (or induced set order; and denoted by $A \sqsubseteq B$) if

 $x \in A$ and $y \in B \Longrightarrow x \land y \in A$ and $x \lor y \in B$.

Example with X = R. $A \sqsubseteq B$:

Lemma

 \sqsubseteq is antisymmetric and transitive on $2^X \setminus \{\emptyset\}$.

Obs.
$$x \wedge y \leq x$$
 so $(x \wedge y) \vee x = x$
And $x \leq x \vee y$ so $(x \vee y) \wedge x = x$

First anti-symmetry. Let $A \sqsubseteq B$ and $B \sqsubseteq A$. Let $x \in A$ and $y \in B$. Then $x \land y \in A$ and $x \lor y \in B$, as $A \sqsubseteq B$. Then $x = (x \lor y) \land x \in B$ and $y = y \lor (x \land y) \in A$, as $B \sqsubseteq A$. Thus A = B.

Now to show transitivity: Let $A \sqsubseteq B$ and $B \sqsubseteq C$. Let $x \in A$ and $y \in C$. Choose $z \in B$. Note:

$$x \lor y = x \lor ((y \land z \lor y)) = (x \lor (y \land z)) \lor y.$$

Now, $y \land z \in B$, as $B \sqsubseteq C$ Then $x \lor (y \land z) \in B$, as $A \sqsubseteq B$. So $x \lor y \in C$, as $B \sqsubseteq C$.

Similarly,

$$x \wedge y = (x \wedge (x \vee z)) \wedge y = x \wedge ((x \vee z) \wedge y).$$

Now, $(x \lor z) \in B$, so $(x \lor z) \land y \in B$. Then $x \land y \in A$

Observe that $A \sqsubseteq A$ iff A is a sublattice of (X, \leq) .

If we denote by L(X) the set of all nonempty sublattices of (X, \leq) , we obtain:

Theorem

 $(L(X), \sqsubseteq)$ is a PO set.

Let (X, \leq) be a lattice and (T, \leq') be a PO set.

A function $f : X \times T \rightarrow R$ has increasing differences if, for all $x, x' \in X$ and $t, t' \in T$ with x < x' and t < t'

$$f(x',t) - f(x,t) \le f(x',t') - f(x,t').$$

(Put differently, if the function $t \mapsto f(x', t) - f(x, t)$ is monotone increasing, for each $x, x' \in X$ with x < x'.)

Increasing differences

A function $f : X \times T \rightarrow R$ has strictly increasing differences if, for all $x, x' \in X$ and $t, t' \in T$ with x < x' and t < t'

$$f(x',t) - f(x,t) < f(x',t') - f(x,t').$$

We say that the function has increasing differences "in (x, t)."

Obs. that a function has increasing differences in (x, t) iff it has increasing differences in (t, x).

Definition

A function $f: X \to R$ is supermodular if, for all $x, x' \in X$,

$$f(x) + f(x') \leq f(x \lor x') + f(x \land x').$$

Supermodularity

Supermodularity requires that

$$f(x) - f(x \wedge x') \leq f(x \vee x') - f(x'),$$

which in the figure means that

$$f(x_1, x_2) - f(x_1, x_2') \leq f(x_1', x_2) - f(x_1', x_2').$$

So in this case, supermodularity is the same as increasing differences in each dimension.

Supermodularity is often viewed in economics as a notion of complementarity because of the connection to increasing differences. In the figure, think of f as production from two inputs, or the utility of consumption from two goods.

Supermodularity says that any "marginal" increase along the X_2 dimension is aided by increases in the X_1 dimension. The two inputs, or the two consumption goods, are therefore complements.

Two elements $x, x' \in X$ are *unordered* if $x \not\leq x'$ and $x' \not\leq x$.

A function $f : X \to R$ is strictly supermodular if, for all unordered $x, x' \in X$, $f(x) + f(x') < f(x \lor x') + f(x \land x').$

Remark

If f and g are supermodular functions, and $\lambda > 0$, then f + g and λf are supermodular functions.

There is, however, a supermodular f and strictly increasing $h : \mathbb{R} \to \mathbb{R}$ such that $h \circ f$ is not supermodular. Supermodularity is a cardinal property.

Let (X, \leq) and (T, \leq) be PO sets.

A function $f : X \times T \to R$ satisfies the single-crossing property in (x, t) $(x \in X \text{ and } t \in T)$ if, for all $x, x' \in X$ and $t, t' \in T$.

$$f(x,t) \le f(x',t) \Longrightarrow f(x,t') \le f(x',t')$$

$$f(x,t) < f(x',t) \Longrightarrow f(x,t') < f(x',t')$$

when $x \leq x'$ and $t \leq t'$.

Moreover, if

$$f(x,t) \leq f(x',t) \Longrightarrow f(x,t') < f(x',t')$$

for t < t' then we say that f satisfies the *strict single crossing property*.

Remark

If $f : X \times T \rightarrow R$ has increasing differences in (x, t) then it satisfies the single crossing property.

Let (X, \leq) be a lattice. A function $f : X \to \mathbb{R}$ is *quasi-supermodular* if, for all $x, x' \in X$

$$f(x \wedge x') \le f(x') \Longrightarrow f(x) \le f(x \vee x')$$

$$f(x \wedge x') < f(x') \Longrightarrow f(x) < f(x \vee x')$$

Remark

If $f : X \to R$ is supermodular then it is quasi-supermodular.

Theorem

Let (X_i, \leq_i) be a lattice for i = 1, ..., n. If $f : \times_{i=1}^n X_i \to \mathbb{R}$ has increasing differences in (x_i, x_j) , for $i \neq j$, and $x_i \mapsto f(x_i, x_{-i})$, for all i is supermodular, then f is supermodular.

Corollary

Let $X \subseteq \mathbb{R}^n$ be a lattice under the usual order on \mathbb{R}^n . If $f : X \to \mathbb{R}$ has increasing differences in any two variables then it is supermodular.

Proposition

Let $X_i \subseteq \mathbb{R}$ be an open set, and $X = \times_{i=1}^n X_i \subseteq \mathbb{R}^n$. Let $f : X \to \mathbb{R}$ be twice continuously differentiable. If

$$rac{\partial^2 f(x)}{\partial x_i \partial x_j} \ge 0$$

for $i \neq j$ then f has increasing differences in (x_i, x_j) ; and if this inequality holds for all $i \neq j$ then f is supermodular.

Supermodulariy: Examples

- $\bullet f(x_1, x_2) = x_1 x_2$
- $f(x_1,\ldots,x_n) = K \prod x_i^{a_i}, K > 0 \text{ and } a_i > 0$
- $\log[D_1(p_1, p_2)(p_1 c)]$, when

$$p_2 \mapsto rac{\partial \log D_1(p_1, p_2)}{\partial p_1}$$

is monotone increasing. When D_1 is a demand function (for "differentiated products") this means that demand elasticity

$$\epsilon = -rac{\partial \log D_1(p_1, p_2)}{\partial log p_1}$$

is decreasing in p_2 .

 f(x₁, x₂) = g(x₁ − x₂), when g is a concave function.

 In particular, in the previous example, log[D₁(p₁, p₂)(p₁ − c)] is
 supermodular in (p₁, c) as the log is concave.

Let (X, \leq) be a lattice, (T, \leq') a PO set, and $f : X \times T \rightarrow R$ a function. Denote by

$$M(t,S) = \operatorname{argmax} \{ f(x,t) : x \in S \}$$

the set of maximizers of f over the set $S \subseteq X$ for fixed $t \in T$.

Theorem (Milgrom and Shannon's Monotonicity Theorem)

M(t, S) is monotone increasing iff

- $x \mapsto f(x, t)$ is quasi-supermodular;
- f satisfies the single crossing property in (x, t)

 (\Leftarrow) Let $t \leq t'$ and $S \sqsubseteq S'$.

Let $x \in M(t, S)$ and $x' \in M(t', S')$. Since $S \sqsubseteq S'$, $x \land x' \in S$ and $x \lor x' \in S'$. Now, $x \land x' \in S$ and $x \in M(t, S)$ means that $f(x \land x', t) \leq f(x, t)$.

By SCP, $f(x \wedge x', t') \leq f(x, t')$.

QSM implies that $f(x', t') \leq f(x \lor x', t')$.

Since $x' \in M(t', S')$ and $x \lor x' \in S'$ we obtain that $x \lor x' \in M(t', S')$.

Now: $x', x \lor x' \in M(t', S')$ imply that $f(x', t') = f(x \lor x', t')$. So we must have, by single crossing and supermodularity, that $f(x \land x', t) = f(x, t)$. Thus $x \land x' \in M(t, S)$. (\Longrightarrow) Conversely, suppose that M(t, S) is monotone increasing. Let $x, x' \in X$ and $t, t' \in T$.

First consider $S = \{x, x \land x'\}$ and $S' = \{x', x \lor x'\}$.

Note that $S \sqsubseteq S'$.

Suppose that $f(x \wedge x', t) \leq f(x, t)$; so $x \in M(t, S)$.

Then $M(t, S) \sqsubseteq M(t, S')$ implies that we must have $f(x', t) \le f(x \lor x', t)$ (as $f(x', t) > f(x \lor x', t)$ would imply $x' \in M(t, S')$ and $x \lor x' \notin M(t, S')$)). Similarly, $f(x \land x', t) < f(x, t)$ implies $f(x', t) < f(x \lor x', t)$. Let x < x' and t < t'. Consider $S = \{x, x'\}$. If $f(x, t) \le f(x', t)$, then $x' \in M(t, S) \sqsubseteq M(t', S)$ implies that $f(x, t') \le f(x', t')$. Similarly, f(x, t) < f(x', t) implies that f(x, t') < f(x', t').

The following result follows directly from the more general Milgrom and Shannon result.

Corollary (Topkis's monotonicity theorem)

Let $x \mapsto f(x, t)$ be supermodular and satisfy increasing differences in (x, t). Then M(t, S) is monotone increasing.

Let g(I, w) = pf(I) - wI, where p, w, I are all real variables: p is price, w is wage and I is labor.

 $f : \mathbb{R} \to \mathbb{R}$ is a production function. Note that π satisfies the single-crossing property in (-w, l).

So labor demand is monotone decreasing. This result holds without any assumptions on f; it is purely a consequence of the interaction between wages and labor: at higher wages, any given increase in labor use gives a higher cost increase.

Suppose you want to generalize the result to more than one factor.

Let $g(z, w) = pf(z) - w \cdot z$, where $z = (z_1, z_2)$ is a vector of production factors and $w = (w_1, w_2)$ is a vector of factor prices.

As before, p is price and f a production function.

Now factor demand is decreasing when f is supermodular. In this case we do need some assumptions on production, but it is a natural assumption because we want the increase in one factor go "move" the demand for other factors in the same direction.

Let $\pi_i(p_i, p_{-i}, c_i) = (p_i - c_i)D_i(p_i, p_{-i})$ be the profit function of a firm *i*.

 D_i is the demand facing firm *i* when prices are $p = (p_1, \ldots, p_n) = (p_i, p_{-i})$ and c_i is the (constant) marginal cost.

Suppose that demand elasticity

$$\epsilon = -\frac{\partial \log D_1(p_1, p_2)}{\partial log p_1}$$

is decreasing in p_2 .

By a similar calculation to what we already did, we see that $g_i(p_i, p_{-i}, c_i)$ has increasing differences in (p_i, c_i) and in (p_i, p_{-i}) .

So the optimal price will be increasing in c_i and also in competitors' prices.