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Constrained maximization

“Economics is the science which studies human behavior as a relationship
between ends and scarce means which have alternative uses.” (Robbins
1932)
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Constrained maximization

“You Can’t Always Get What You Want.” (Mick Jagger 1973)
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Constrained maximization

Idea: deal with constraints by “pricing” them.

Treat a constrained max. problem as an unconstrained one.

By adding a penalty for violating the constraint.
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Saddle points

Let ϕ : X × Y → R. A point (x∗, y∗) in X × Y is a saddlepoint of ϕ (over
X × Y ) if it satisfies

ϕ(x , y∗) ≤ ϕ(x∗, y∗) ≤ ϕ(x∗, y) for all x ∈ X , y ∈ Y .

That is, (x∗, y∗) is a saddlepoint of ϕ if x∗ maximizes ϕ(·, y∗) over X and
y∗ minimizes ϕ(x∗, ·) over Y .
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Saddle points

Saddlepoints of a function have the following “interchangeability” property.

Lemma (Interchangeability of saddlepoints)

Let ϕ : X ×Y → R, and let (x1, y1) and (x2, y2) be saddlepoints of ϕ. Then

ϕ(x1, y1) = ϕ(x2, y1) = ϕ(x1, y2) = ϕ(x2, y2).

Consequently (x1, y2) and (x2, y1) are also saddlepoints.
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Saddle points

Definition

Given f , g1, . . . , gm : X → R, the associated Lagrangean L : X × Λ→ R is
defined by

L(x , λ) = f (x) +
m∑
j=1

λjgj(x) = f (x) + λ · g(x),

where Λ is an appropriate subset of Rm. (Usually Λ = Rm or Rm
+.) The

components of λ are called Lagrange multipliers.
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Saddle points

The first result is that saddlepoints of Lagrangeans are constrained
maxima. This result makes no restrictive assumptions on the domain or
the functions.

Theorem (Lagrangean saddlepoints are constrained maxima)

Let X be an arbitrary set, and let f , g1, . . . , gm : X → R. Suppose that
(x∗, λ∗) is a saddlepoint of the Lagrangean L(x , λ) = f + λ · g (over
X × Rm

+). That is,

L(x , λ∗) ≤ L(x∗, λ∗) ≤ L(x∗, λ) x ∈ X , λ ≥ 0. (1)

Then x∗ maximizes f over X subject to the constraints gj(x) ≥ 0,
j = 1, . . . ,m, and furthermore

λ∗j gj(x
∗) = 0 j = 1, . . . ,m. (2)
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Constrained maximization

Now we impose some condition on the domain of these functions.

Let X ⊆ Rn, A ⊆ Rm, f : X → R and g : X → Rm.

We want to understand the problem:

max f (x)
such that g(x) ∈ A
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Constrained maximization

Definition

A point x∗ is a constrained local maximizer of f subject to the constraints
g1(x) = α1, g2(x) = α2,. . . , gm(x) = αm in some neighborhood W of x∗

if x∗ satisfies the constraints and also satisfies f (x∗) ≥ f (x) for all x ∈W
that also satisfy the constraints.
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Constrained maximization

The classical Lagrange Multiplier Theorem on constrained optima for
differentiable functions has a simple geometric interpretation, which is
easiest to see with a single constraint. Consider a point that maximizes
f (x) subject to the equality constraint g(x) = α.
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Constrained maximization

Algebraically, this means that there are coefficients µ∗ and λ∗

(“multipliers,” if you will), not both zero, satisfying

µ∗f ′(x∗) + λ∗g ′(x∗) = 0.

If the gradient g ′ is nonzero, then, the multiplier µ∗ on f ′ can be taken to
be unity, and we get the more familiar condition, f ′ + λ∗g ′ = 0, and λ∗ is
unique.
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Constrained maximization

If there is a local maximum of f subject to g(x) ≥ α, then the gradient of
g points into [g > α], and the gradient of f points out.

We can take µ∗, λ∗ ≥ 0. Even if [g > α] is empty, then g ′ = 0. So we can
take µ∗ = 0 and λ∗ = 1. That’s really all there is to it, so keep these
pictures in mind. . .
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Constrained maximization

Theorem

Let X ⊂ Rn, and let f , g1, . . . , gm : X → R be continuous. Let x∗ be an
interior constrained local maximizer of f subject to g(x) = 0. Suppose f ,
g1, . . . , gm are differentiable at x∗.
Then there exist real numbers µ∗, λ∗1, . . . , λ

∗
m, not all zero, such that

µ∗f ′(x∗) +
m∑
i=1

λ∗i gi
′(x∗) = 0.

Furthermore, if g1
′(x∗), . . . , gm

′(x∗), are linearly independent, we may take
µ∗ to be unity, and the λ∗i are unique.
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Constrained maximization

Let f , g1, . . . , gm : Rn
+ → R. Let

C = {x ∈ Rn : x ≥ 0, gi (x) ≥ 0, i = 1, . . . ,m}.

In other words, C is the constraint set. Consider a point x∗ ∈ C and define

B = {i : gi (x
∗) = 0} and Z = {j : xj = 0},

the set of binding constraints and binding nonnegativity constraints,
respectively.
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Constrained maximization

The point x∗ satisfies the Karush–Kuhn–Tucker Constraint Qualification if
f , g1, . . . , gm are differentiable at x∗, and for every v ∈ Rn satisfying

vj = v · e j ≥ 0 j ∈ Z ,

v · gi ′(x∗) ≥ 0 i ∈ B,

there is a continuous curve ξ : [0, ε)→ Rn satisfying

ξ(0) = x∗,

ξ(t) ∈ C for all t ∈ [0, ε),

Dξ(0) = v ,

where Dξ(0) is the one-sided directional derivative at 0.
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Constrained maximization: KKT conditions

Theorem (Karush–Kuhn–Tucker)

Let f , g1, . . . , gm : Rn
+ → R be differentiable at x∗, and let x∗ be a constrained local

maximizer of f subject to g(x) ≥ 0 and x ≥ 0.
Let B = {i : gi (x

∗) = 0}, the set of binding constraints, and let Z = {j : xj = 0}, the set
of binding nonnegativity constraints. Assume that x∗ satisfies the Karush–Kuhn–Tucker
Constraint Qualification. Then there exists λ∗ ∈ Rm such that

f ′(x∗) +
m∑
i=1

λ∗i gi
′(x∗) ≤ 0,

x∗ ·

(
f ′(x∗) +

m∑
i=1

λ∗i gi
′(x∗)

)
= 0,

λ∗ ≥ 0,

λ∗ · g(x∗) = 0.
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Constrained maximization

Theorem

In the KKT theorem, the KKTCQ may be replaced by any of the following:

1. Each gi is convex. (This includes the case where each is linear.)

2. Each gi is concave and there exists some x̂ � 0 for which each
gi (x̂) > 0.

3. The set {e j : j ∈ Z} ∪ {gi ′(x∗) : i ∈ B} is linearly independent.
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Example: Cobb-Douglas

u(x1, . . . , xn) =
n∑

i=1

αi ln xi

where αi > 0, i = 1, . . . , n, and
∑

i αi = 1.

Remark

By convention ln 0 = −∞, a common practice in convex analysis. It is
clear then that any optimal consumption must satisfy x � 0, so we may
ignore the nonnegativity constraints, and treat the first order conditions as
equalities. It is also clear that u is monotonic, so the budget constraint will
bind.
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Example: Cobb-Douglas

Lagrangean:

∑
i

αi ln xi + λ
(
m −

∑
i

pixi

)
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Example: Cobb-Douglas

First order conditions, using the binding constraint m =
∑

i pixi :

αi

x∗i
− λ∗pi = 0 i = 1, . . . , n.

So
αi = λ∗pix

∗
i i = 1, . . . , n.
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Example: Cobb-Douglas

Summing over i yields
1 = λ∗m.

as
∑

i αi = 1, so the prev eq becomes

pix
∗
i = αim,

that is, αi is the fraction of income spent on good i , so the demand
function is

x∗i (p,m) =
αi

pi
m.
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Example: Linear preferences

u(x1, . . . , xn) =
n∑

i=1

αixi

where αi ≥ 0, i = 1, . . . , n, and
∑

i αi = 1.

Remark

Clearly the utility is monotonic, so the budget constraint must bind. But
this is a case where we cannot be sure a priori that x∗ � 0, so we must
pay attention to the Karush–Kuhn–Tucker first-order conditions.
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Example: Linear preferences

The Lagrangean is ∑
i

αixi + λ
(
m −

∑
i

pixi

)
The KKT first-order conditions are

αi − λ∗pi ≤ 0

xi (αi − λ∗pi ) = 0
i = 1, . . . , n.
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Example: Linear preferences

This implies that λ∗ ≥ αi
pi

for each i . Can we have λ∗ > αi
pi

for each i? No,
for in that case we must have x∗i = 0 for all i , which means the budget
constraint does not bind. Therefore

λ∗ = max
i

αi

pi
.

[Note that if we had assumed the Lagrange first-order conditions held we
would have the unlikely result that λ∗ = αi

pi
for all i , which is the sort of

giveaway that the KKT conditions need to be examined.]
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Example: Linear preferences

So first consider the case that i∗ is the unique maximizer of αi
pi

. Then

x∗j (p,m) =


m

pi∗
, j = i∗

0, otherwise.
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Example: Linear preferences

When i∗ is not unique, there is no unique solution, but convex
combinations of the above are all valid demands. That is,

x∗(p,m) = convex hull of

{
m

pj
e j :

αj

pj
≥ αi

pi
, i = 1, . . . , n

}
,
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