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Duality

Utility maximization

U(p,m)

maxx∈Rn
+

u(x)

s.t p · x ≤ m

Value: v(p,m)

Solutions: (Marshallian) demand.

Expenditure minimization

E(p, θ)

minx∈Rn
+

p · x
s.t u(x) ≥ θ

Value: e(p, θ)

Solutions: (Hicksian) Compensated
demand.
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Two basic facts:

Let X = Rn
+, u be continuous and locally non-satiated.

I If x solves U(p,m), and θ = u(x), then x solves E(p, θ).

I If x solves E(p, θ) and m = p · x > 0, then x solves U(p,m).

Press pause here and attempt a proof of these two before following the rest
of the lecture.
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Duality

Suppose that u is cont. and LNS.

Claim

If x solves U(p,m), and θ = u(x), then x solves E(p, θ)

Proof.

Suppose (towards a contradiction) that u(x ′) ≥ θ and p · x ′ < p · x = m
(by LNS). Let ε > 0 be small enough that ‖x ′′ − x ′‖ < ε implies that
p · x ′′ ≤ m. By LNS there exists x ′′ with ‖x ′′ − x ′‖ < ε and
u(x ′′) > u(x ′) ≥ θ. This would contradict that x solves U(p,m).
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Duality

Suppose that u is cont. and LNS.

Claim

If x solves E(p, θ) and m = p · x > 0, then x solves U(p,m)

Proof.

Suppose that u(x ′) > θ = u(x). Since x solves E(p, θ) we must have
p · x ′ ≥ m. Suppose (towards a contradiction) that p · x ′ = m. Let δ > 0
be small enough that u((1− δ)x ′) > u(x). Then

p · (1− δ)x ′ = (1− δ)p · x ′ = (1− δ)m < m,

as m > 0. This is absurd as x solves E(p,m).
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Make a note!!

Remember the last claim next Winter when you prove the second welfare
theorem!
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Duality

Let u be cont. LNS, and quasi-concave.

m = e(p, v(p,m))

θ = v(p, e(p, θ))

x∗(p,m) = xh(p, v(p,m))

xh(p, θ) = x∗(p, e(p, θ))
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Digression on convex analysis

I Separating hyperplane theorem

I Support functions and their supergradients
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Separating hyperplane Theorem

Theorem

Let A,B ⊆ Rm be non-empty, disjoint, convex sets. There is p ∈ Rm, and
α ∈ R, such that

p · b ≤ α ≤ p · a

for all a ∈ A and b ∈ B, and at least one of inequalities is strict for some
a ∈ A and b ∈ B (in particular, p 6= 0 ).

Here the set {x : p · x = α} is a hyperplane. It defines two half-spaces:
{x : p · x ≤ α} and {x : p · x ≥ α}.
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Separating hyperplane

p

A

B
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Digression on convex analysis

Consider a function f : Rn → R ∪ {−∞}.

So it’s allowed to take the value −∞.

Say that the domain of f is

{x ∈ Rn : −∞ < f (x)}.

We can still write the definition of concavity, and it will make sense under
standard conventions regarding −∞: f is concave if

λf (x) + (1− λ)f (y) ≤ f (λx + (1− λ)y)

for all λ ∈ (0, 1).
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Supergradients

Let f : Rn → R ∪ {−∞} be concave.

A vector p is a supergradient of f at the point x if for every y it satisfies
the supergradient inequality ,

f (x) + p · (y − x) ≥ f (y).

Note that this is the overestimation property of the gradient of a concave
function. So, when f is differentiable at x , Df (x) is a supergradient at x .
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Support function

The support function of a non-empty set A is defined as

µA(p) = inf{p · x : x ∈ A};

where µA(p) = −∞ is possible.

If A is compact, then µA is always finite, and there is some point in A
where the infimum is achieved.
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Support function

Think of the support function as the value of the optimization problem

min p · x
s.t x ∈ A.

Where we need to use inf instead of min.

Many applications in economics:

I Expenditure function (this lecture).

I Profit function (w/max instead of min).

I Decision under uncertainty.
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Support function

A

p
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Support function

A

−p
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Support function

A

−p
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Support function

A

p
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Support function

A

−p
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Support function

Lemma

The support function µA is concave and positively homogeneous of degree
1 (that is, µA(λp) = λµA(p) for all p and all λ ≥ 0).

Proof.

Each x defines a linear function

p 7→ `x(p) = p · x

By the prev. exercise, µA = infx∈A `x is concave.

Homogeneity is obvious.
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Support function

Theorem

Let C be a closed convex set. Then x is a supergradient of the support
function µC at p iff if x ∈ C and minimizes p · x over C .

In other words,

∂µC (p) = {x ∈ C : p · x = µC (p)} = argmin{p · x : x ∈ C}.
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Support function: proof

By defn. of supergradient: x ∈ ∂µC (p) iff

µC (p) + x · (q − p) ≥ µC (q) for all q.
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Support function: proof

(=⇒) First, if x /∈ C then x /∈ ∂µC (p).

Because if x /∈ C then by (a version of) the SHT there’s q for which
q · x < µC (q); then by homogeneity there’s M s.t
Mq · x < µC (Mq) +

(
p · x − µC (p)

)
; which means that x /∈ ∂µC (p).

So let x ∈ ∂µC (p). We know x ∈ C , and hence p · x ≥ µC (p). But q = 0
in the defn. of supergradient gives µC (p) ≥ p · x .

Thus, ∂µC (p) ⊆ {x ∈ C : p · x = µC (p)}
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Support function: proof

(⇐=) Suppose now x ∈ argmin{p · y : y ∈ C}. So x ∈ C and
µC (p) = p · x .

Then, for any q, q · x ≥ µC (q). Together with µC (p) = p · x this implies

q · x + µC (p)− p · x ≥ µC (q)

Thus {x ∈ C : p · x = µC (p)} ⊂ ∂µC (p), completing the proof.
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Support function

Corollary

Let C be a closed convex set and suppose that x is the unique solution to

min p · x
s.t x ∈ C

Then µC is differentiable at p and

DµC (p) = x .
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Expenditure minimization

Now apply these results to the expenditure function:

Minimize expenditure, subject to achieving a given target utility level:

min p · x
s.t u(x) ≥ θ

The value of this problem is e(p, θ).

But note that
e(p, θ) = µ{x :u(x)≥θ}(p).

The support function of the upper contour set at utility θ.
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Expenditure minimization

Assume u : Rn
+ is quasi-concave, cont. and LNS.

As a consequence of the prev. general theorem on support functions, we
obtain that:

Corollary

∂e(p, θ) = xh(p, θ)

In particular, when p 7→ e(p, h) is differentiable we recover the Hicksian
demand from expenditure by

xh(p, θ) = Dpe(p, θ).
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Duality – take II

The Lagrangean for utility maximization is

L(x , λ) = u(x) + λ(m − p · x) = −λp · x + u(x) + λm.

The Lagrangean for expenditure minimization is

L(x , µ) = p · x + µ(θ − u(x)) = −µu(x) + p · x + µθ.

To exploit this structure we assume differentiabilty.
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Utility max

Now we develop demand theory under differentiability assumptions.

If preferences are “smooth” in a sense that we shall not go into, they
admit not only a continuous utility representation, but also one that is
differentiable.

In fact, if they are smooth enough, the utility function is differentiable as
many times as we wish.
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Utility max

I u is C 1 with Du � 0

I u is strictly quasi-concave

I Restrict attention to p � 0 and m > 0

I Utility max. has interior solutions: this is often achieved by an “Inada”
assumption. Can assume that u(x) > 0 only if x � 0.
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Utility max

Under these assumptions,

max u(x)
s.t p · x ≤ m

has a unique, interior, continuous solution x∗(p,m)� 0.
The Lagrangean for this problem is

L(x , λ; p,m) = u(x) + λ(m − p · x).

The gradient of the constraint is −p 6= 0, so the Lagrange Multiplier
Theorem applies.
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Utility max

Let x∗(p,m) be the solution with Lagrange multiplier λ∗(p,m). The
first-order conditions are

Diu(x∗)− λ∗pi = 0 i = 1, . . . , n.

Since p � 0 and each Diu > 0 we have

λ∗ > 0.

The indirect utility function v is the value function for this problem:

v(p,m) = u
(
x∗(p,m)

)
.
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Roy’s identity

Then by the Envelope Theorem,

Dmv(p,m) = DmL = λ∗(p,m)

Dpj v(p,m) = DpjL = −λ∗(p,m)x∗j (p,m).

Together these imply Roy’s Identity , namely:

x∗j (p,m) = −
Dpj v(p,m)

Dmv(p,m)
.
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Expenditure minimization

min p · x
s.t u(x) ≥ θ

The Lagrangean for this problem is:

p · x + µ
(
θ − u(x)

)
.
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Expenditure minimization

Let xh(p, θ) solve the problem and let µ̂(p, θ) be the Lagrange multiplier.
The expenditure function e is the value function for this problem:

e(p, θ) = p · xh(p, θ).

Then by the Envelope Theorem,

Dθe(p, θ) = µ̂(p, θ) and Dpj e(p, θ) = xhj (p, θ).
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Expenditure minimization

Moreover, by our prev. observation, e is concave in p. Thus e is twice
differentiable in p almost everywhere, and where it is differentiable:

∂2e(p, υ)

∂2p1
· · · ∂2e(p, υ)

∂pn∂p1
...

...
∂2e(p, υ)

∂p1∂pn
· · · ∂e(p, υ)

∂2pn

 =


∂xh1
∂p1

· · · ∂xh1
∂pn

...
...

∂xhn
∂p1

· · · ∂xhn
∂pn


is symmetric and negative semidefinite.

Echenique Duality



Expenditure minimization

In particular then,
Dpj x

h
j ≤ 0

and
Dpi x

h
j = Dpj x

h
i

for i , j = 1, . . . , n,

Price effects for compensated demand are symmetric.
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Back to Marshallian demand

What is the relationship between Hicksian and ordinary demand? From the
equivalence of expenditure minimization and utility maximization we have

x∗i
(
p, e(p, θ)

)
= xhi (p, θ),

which implies
∂x∗i
∂pj

+
∂x∗i
∂m

∂e

∂pj
=
∂xhi
∂pj

.

Rearranging,
∂x∗i
∂pj

=
∂xhi
∂pj
− ∂x∗i

m

∂e

∂pj
.
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Slutsky equation

But ∂e∂pj = xhj and xhj (p, θ) = x∗j(p,m) where m = e(p, θ).

Thus

∂x∗i (p,m)

∂pj
=
∂xhi

(
p, v(p,m)

)
∂pj

− x∗j(p,m)
∂x∗i (p,m)

∂m
.

This is the famous Slutsky equation.
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Slutsky equation: own price effect

∂x∗i (p,m)

∂pi
=
∂xhi

(
p, v(p,m)

)
∂pi︸ ︷︷ ︸
≤0

−x∗i (p,m)
∂x∗i (p,m)

∂m︸ ︷︷ ︸
≥0

.

If i is normal.
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Slutsky equation: own price effect

∂x∗i (p,m)

∂pi
=
∂xhi

(
p, v(p,m)

)
∂pi︸ ︷︷ ︸
≤0

−x∗i (p,m)
∂x∗i (p,m)

∂m︸ ︷︷ ︸
≤0

.

If i is inferior.
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Slutsky equation

Rearranging:
∂2e

∂2p1
· · · ∂2e

∂pn∂p1
...

...
∂2e

∂p1∂pn
· · · ∂e

∂2pn

 =


∂xh1
∂p1

· · · ∂xh1
∂pn

...
...

∂xhn
∂p1

· · · ∂xhn
∂pn



=


∂x∗1
∂p1

+ x∗1
∂x∗1
∂m

· · · ∂x∗1
∂pn

+ x∗n
∂x∗1
∂m

...
...

∂x∗n
∂p1

+ x∗1
∂x∗n
∂m

· · · ∂x∗n
∂pj

+ x∗n
∂x∗n
∂m


is symmetric and negative semidefinite.
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From indirect utility to utility

Consider the following inversion formula:

u(x) = inf
p
v(p, p · x)

When is it valid? Meaning, the u recovered gives rise to v .
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From indirect utility to utility

N (Nonnegativity): v(p,m) ≥ 0 for all (p,m).

P (Monotonicity in p):
(m > 0 & p′ � p) =⇒ v(p′,m) < v(p,m).

M (Monotonicity in m): m′ > m =⇒ v(p,m′) > v(p,m).

H (Homogeneity): v(λp, λm) = v(p,m) for all λ > 0.

Q (Quasiconvexity in p): v(p,m) is quasiconvex in p.

S (Upper semicontinuity): v is upper semicontinuous on
Rn
++ × R+.

Z (The zero property): For all p, p′,
v(p, 0) = v(p′, 0) = min(p,m)∈Rn

++×R+
v(p,m).
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From indirect utility to utility

Theorem

Let v : Rn
++ × R+ → R satisfy properties N, P, M, H, Q, S, and Z.

Then the function u : X → R defined by the inversion formula is upper
semicontinuous, monotone and quasiconcave utility; and

v(p,m) = max
{
u(x) : x ∈ Rn

+ and p · x ≤ m
}
.

This result appears in Krishna and Sonnenschein (1990). I learned it from
Kim Border.
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From expenditure to utility

You may also consider:

u(x) = max{θ : ∀p ∈ RN
++, e(p, θ) ≤ p · x}

If e was derived using another utility representation ũ with θ = ũ(x) and
θ′ = ũ(y).

Then it’s easy to see that θ ≤ θ′ iff u(x) ≤ u(y). Hence u represents the
same preferences as ũ.
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Money metric utility

A related idea is the money metric utility function:

m(p, x) = e(p, u(x))

For fixed p, x 7→ m(p, x) represents the same preferences as u. Utility is
thus expressed in monetary terms.

Note it can be obtained directly from preferences by

m(p, x) = inf{p · y : y � x}.

So that m is independent of u.
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Money metric utility

Let X = Rn
+.

The next theorem is due to Blackorby and Donaldson:

Theorem

Let � on X be cont., LNS and convex. Then x 7→ m(p, x) is a concave
utility representation of � (for all p ∈ Rn

++) iff � is homothetic.

So: concavity, which is useful, comes at a significant cost for the MMU.
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Assignment

Exercise

Complete diagram 3.G.3 in MWG. Add the inversion formula, and the
connection between utility, expenditure and money-metric utility.
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