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0. DISCLAIMER

The ideas and organization in these lecture notes owe a lot to Chris
Shannon’s Econ 201(a) class at UC Berkeley, as well as various text-
books: notably Mas-Colell et al. (1995), and to a lesser extent Bewley
(2009). Over the years, when I've had time in class, I've added some
more advanced material. Usually in the last week of the quarter. I've
never covered all the material here in a single quarter.

The current write-up started from Alejandro Robinson’s notes from
the class I taught in the Winter of 2015. I have added material, and
rewritten the notes each time I have taught the class since. They are
a work in progress, so please let me know of any problems you find.
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1. PRELIMINARY DEFINITIONS

1.1. Binary relations. Let X be a set. A binary relation on X is a
subset of X x X. If B is a binary relation on X, and x,y € X we write
x B y to denote that (x,y) € B. A binary relation B is complete if
x By or y Bz (or both) for any x,y € X. It is transitive if for any
x,y,z € X

xr Byandy B zimply z B z.

A binary relation is a weak order if it is complete and transitive. In
economics we use the term preference relation (or rational pref-
erence relation) for weak orders.

A preference relation is denoted by >. Associated to any preference
relation > are two more binary relation. The first captures indifference:
x ~yisx > yandy = x. The second captures strict preference: x > y
if x = y and it is not the case that z ~ y.

1.2. Preferences in Euclidean space. A subset A C R" is convex
if Az + (1 —\)y € Afor any z,y € A and any A € (0, 1).

We use the following notational conventions: For vectors z,y € R",
xr <y means that z; <y; forallt =1,...,n; r <y means that x <y
and x # y; and x < y means that z; < y; forall v =1,... n.

When X C R"™ and > is a preference relation over X we have the
following definitions: > is

e locally nonsatiated if for any x € X and € > 0 thereisy € X
such that ||z —y|| < e and y > =.

e weakly monotone if x < y implies y = = and * < y implies
y-x

e strongly monotone if < y implies y > x.

Define the following sets: Let U(z) = {y € X : y = x} be the upper
contour set of = at x and let L(z) = {y € X : © = y} be the lower
contour set of > at x.

The preference relation > is

e convez if U(x) is a convex set for all x € X;
e strictly convex if

Ay+(1=Ny =z
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for any y,y’ € U(z) and A € (0,1), for any x € X;
e and continuous if U(z) and L(z) are closed sets (in X) for all
r e X.

The following theorem is due to Debreu.

Theorem 1. If a preference relation = is continuous on X C R" then
there exists u: X — R such that x = y iff u(x) > u(y).

The function u is a utility representation for >.

2. CONSUMER THEORY

A consumer is a pair (X, =), where X is a set termed consump-
tion space, and > is a preference relation on X. As we shall see, we
shall require a bit more information when we place the consumer in an
economy. The set X represents all the possible consumption bundles
that the consumer can choose. The preference > is harder to interpret,
but the standard view in economics is that > is simply a description of
the consumer’s choice behavior: = specifies what the consumer chooses
from each pair of alternative bundles in X.

We assume throughout that X = Ri. This means that there are L
goods, and that the consumer can choose to consume these goods in any
(continuous) quantity. As we shall see, the notion of “good” is quite
flexible, and accommodates goods that differ in the time when they

are consumed, or the uncertain events upon which they are delivered
(Debreu, 1987).

The consumer chooses from a budget set. Let p € Ri and W > 0.
The set

Blp,W)={yeRl:p-y<W}

is the budget set for a consumer when prices are p and income is W.
Given a preference relation >, the optimal choices of the consumer are:
z*(p,W) ={x € B(p,W):x =y forall y € B(p, W)}

The mapping from (p, W) into x*(p, W) is the consumer’s demand
correspondence.

The theory of the consumer predicts that demand (choices made from
budget sets) are optimal choices according to an underlying (rational)
preference relation.



GENERAL EQUILIBRIUM THEORY 7

The following results are simple observations that you should prove on
your own (or find in MWG).

Observation 2. x € x*(p, W) if and only if y > z implies that p-y > W.

2.1. Digression: upper hemi continuity. a correspondence is a
function ¢ with domain A and range 2% for some set B, such that ¢(a)
is a nonempty subset of B for each a. We denote a correspondence by
¢p:A— B.

A correspondence ¢ : A C R" — B C R™ has closed graph if
{(z,y) € Ax B:y € ¢(x)} is a closed subset of A x B.

Let 9 : A C R" - B C R™, where B is closed. We say that ¢ is
upper hemicontinuous (uhc) if it has closed graph and the image
of compact sets are bounded.

Note: this is a practical way of understanding uhc. It is how we use
it in this class. But you can find a general definition, for example, in
Aliprantis and Border (2006).

2.2. Properties of demand.

Proposition 3. If = is locally nonsatiated and continuous then x*(p, W)
is nonempty and satisfies that p-x =W for all x € x*(p, W), for all p
and W. Moreover, the demand correspondence (p, W) — z*(p, W) is
upper hemicontinuous.

Proposition 4. If > is locally nonsatiated, continuous and conver,
then x*(p, W) is nonempty, compact, and convex, for all p and W.
Moreover the demand correspondence (p, W) +— x*(p, W) is upper hemi-
continuous.

Proposition 5. If > is locally nonsatiated, continuous and strictly
convez then x*(p, W) is a singleton for all p and W. Moreover the
demand correspondence (p, W) — x*(p, W) is continuous as a function.

Consider a consumer with convex, continuous, and monotone prefer-
ences =. Fix a bundle z in R™. What do we need to do if we want
this consumer to demand z? Consider the upper contour set U(z).
Given our assumptions on preferences, this set is in the hypothesis of
the supporting hyperplane theorem.! Consider the picture in Figure 1.

1You should be familiar with the supporting hyperplane theorem, but you will
in any case prove it as part of your homework.
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T2

Ty
FIGURE 1. The “second welfare theorem for a single consumer.”

A supporting hyperplane at U(z) gives us prices p and income W for
which z is a demanded bundle. The reason is that any bundle that is
strictly preferred to & must be in the interior of U(x), and therefore
not affordable to a consumer with such income, and facing such prices.
Observe that we can use the monotonicity of preferences to ensure that
the prices obtained are positive.

The observation in Figure 1 can be called the “second welfare theorem
for an individual consumer,” for reasons that will be clear in a few
lectures.

3. ECONOMIES

3.1. Exchange economies. Our first model of an economy is meant
to capture the motivations behind pure economic exchange. I desire
oranges but own only apples. You own oranges but no apples. By
exchanging goods, we satisfy our needs for the fruits that we lack: a
“coincidence of wants” (or “mutual needs”). Prices capture the rate of
exchange between goods; how many oranges should I receive for each
apple that I give you.

The model primitive is a description of a collection of consumers. Each
consumer is described by a preference relation and a consumption
space, as in the theory of the consumer. We take consumption space
to be RE. An important feature of the theory is to account for who
owns and sells the goods that the consumers buy. We also need to
account for where consumers’ incomes come from. Each consumer will
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be endowed with non-negative quantities of each good. These are
the goods that are sold in market, at the prevailing market prices, and
consumers’ incomes come from selling the goods that they are endowed
with at market prices. Thus, a consumer will be described (fixing con-
sumption space to be Ri, by a preference and an endowment vector
in Ri.

An economy then is a description of a collection of consumers. For-
mally, an exchange economy is a tuple

€= ((z1,w1), (Z2,w2), -, (=1, w1)),
denoted by (=;,w;)!_;, in which each =; is a preference relation over
Rf_ and each w; is a vector in Ri.

Let £ = (7, w;)!_, be an exchange economy.

e the aggregate endowment in & is

I
W= E Wi,
=1

e An allocation< in & is a collection of consumption bundles
(z:)f;, where z; € RY, i=1,...,I, such that

I
=1

e an allocation_ in & is an allocation< (z;)_, such that 327_ z; =
w.

Definition 6 (Pareto Optimality). An allocation<(z;)!_, is Pareto
optimal in & if there is no allocation<(y;)Z_, such that y; =; x; for
every i = 1,...,1, and y, =5 xp for some h € {1,... I}

Pareto optimality is a basic notion of economic efficiency. In a Pareto
optimal allocation, one cannot make some agent better off without
making some other agent worse off.

Definition 7 (Walrasian Equilibrium). A Walrasian equilibrium
in € is a pair (z,p) such that = = (z;)/_; € R}, and p € R} (a price
vector), s.t.:

(i) forevery i =1,...,I, x; € B(p,p-w;), and z; € B(p,p - w;) =
x; i} (all consumers optimize when choosing x; at prices p);
(i) 2L, 2 = 32, wi (demand equals supply).
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F1GURE 2. The Edgeworth box

When there are two goods (L = 2), an exchange economy with two
consumers can be conveniently represented using an Edgeworth box.
Consider the following figure. The two agents’ preferences are repre-
sented by indifference curves in the figure. The allocation correspond-
ing to the red dot is not Pareto optimal: any point in the orange set
describes an allocation that is better for both consumers. Note that
each point in the box describes an allocation_,

The Pareto optimal allocations are those for which, if we fix an upper
contour set for consumer 2 (given some given point, and his prefer-
ence relation) and choose one of the best points on that set from the
perspective of 1’s preferences. The resulting set of points, as we vary
the upper contour set for consumer 2, is the set of all Pareto optimal
allocations. In the figure it is represented with a thick blue line.

3.1.1. A characterization of Pareto optimal allocations. Let £ = (=;
,w;) be an exchange economy in which each preference >; is represented
by a utility u;. Consider the maximization problem P(v):

maXxeR_‘L_I (51 (l’l)
(PO-e) s.t. wi(z;) >0, Vi=2,3,..,1,
Zle T < W,
where © € R is a vector of utility values.

Proposition 8. Let each =; be continuous and strictly monotone. An
allocation is Pareto optimal iff there is v € R! for which x solves P(v).



GENERAL EQUILIBRIUM THEORY 11

3.2. Economies with production. The second model allows for pro-
duction. We introduce firms, and consider an economy in which firms
are described by their production possibility sets. Consumers are de-
scribed by their preferences and endowments as before, but now they
also have shares in the profits of the firms. These shares are fixed.

We include production by assuming that there are J firms in the econ-
omy, each described by a production possibility set Y;, j = 1,...,J.
For a production vector y; € Yj, and price vector p € Ri, firms j’s
profits are p - y;. Firms profits need to go to some agent in the econ-
omy: this is often called “closing” the model, which roughly means
that one accounts for all the endogenous quantities in the model. Each
consumer ¢ will have a share ¢; ; > 0 in the profits of firm j. We may

havef); ; = 0, but all profits go to some agent, so Zi[:l ¢;; = 1 for all j.

An private ownership economy is a tuple

E= (V) (= wi, 0)_)

=0

in which,

e for each j = 1,...J, Y; C R” is a production possibility
set;

e for each 2 = 1,..., 1, =; is a preference relation over RJLr,
w; 1s a vector in RY;

e foreach j = 1,...J Zleﬁi,j =1, and for each ¢+ = 1,...,1
Hm- > 0.

and

Let € = ((Y;)7_1, (i, ws, 6:)-,) be a private ownership economy.

e An allocation< in & is a pair (z,y), where x = (z;)l_, € R,
y=(y)  eR™L, y; €Y;Vji=1,..,J, and

1 J
Yo <oty y
i=1 j=1

e An allocation— in £ is an allocation<(z,y), where

I J
in =W+ Zyj.
i=1 j=1
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Let Y = Z}']=1 Y; be the aggregate production set of a private ownership
economy.? Consider the set:

Y +{o}={reR:FJyecYsth r=y+w}

Define PPS = (Y + {w}) N R% as the production possibility set of
the economy. Its boundary is referred to as the economy’s production
possibility frontier.

Definition 9 (Pareto Optimality). An allocation<(x,y) in £ is Pareto
optimal if there is no allocation<(z',y’) such that x} 7; x; for every

1~

i=1,...,I, and =z, >, xp, for some h € {1,...,I}.

Definition 10 (Walrasian Equilibrium). Let £ be a private ownership
economy. A Walrasian Equilibrium is a pair (z,y) € RI* x R'?,
together with a price vector p € RY s.t.

(i) for every i = 1,...,I, x; € B(p, M;), and x}, € B(p, M;) = x; -
x}, where M; = p - w; + ijl 0; ;p - y; (consumers optimize by
choosing z; in their budget sets);

(ii) forevery j =1,...,J, y; € Yj, and p-y; > p-y; V y; € Y; (firms
optimize profits by choosing y; in Y;);

(iii) Zfil x; = Zf:l w; + Z;-Izl y; (demand equals supply).

There is a simple and useful characterization of Pareto optimal alloca-
tions. Let ((Y;)7_,, (2 wi, 05){—;) be a private ownership economy in
which each preference relation >=; has a continuous and strictly mono-

tone utility representation u; : RY — R.

(PO) max uy (1)

(z,y)eRETXRLJ

subject to  u;(x;) >u; Vi=2,3,..,1,

I J

D TS0+
i=1 j=1
y; €Y, Vi=1,...,J

Proposition 11. Suppose that each preference =; is continuous and
strictly monotone. An assignment (x,y) solves the mazximization prob-
lem PO if and only if it is Pareto Optimal.

2Define the sum of two sets A, B C R™ according to Minkowski addition: A+B =
{ceR":Jaec A be Bsth c=a+b}.
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As an illustration, let us analyze the above result for the case of ex-
change economies and differentiable utility functions. Let (2Z;,w;) be
an exchange economy. According to Proposition 11, an assignment
x € R is Pareto Optimal if and only if it solves the following prob-
lem:
(PO") max  u(xq)

mERiI

subject to  w;(z;) > u; Vi=2,3,...,1,

I
Z r; < W,
i=1
(1)

Assume that wu; is a differentiable function, and consider an interior
solution to the above problem.?

4. WELFARE THEOREMS

4.1. First Welfare Theorem.
Theorem 12 (First Welfare Theorem). Let ((Y;)7_;, (7, wi, 0:)1_,) be

j:17 ~o1)
a private ownership economy in which the preference relation of every
consumer is locally nonsatiated. If (x,y) and p constitute a Walrasian

Equilibrium, then (x,y) is Pareto Optimal.

Proof of First Welfare Theorem. Let ((x,y),p) be a Walrasian equilib-
rium. Let (2/,y) € R{F x R7F with ¢/ = (y}) and y} € Y; for all
j. Suppose that z 7=; x; for every i = 1,...,I, and there exists
h € {1,...,1} such that z} > x5. We shall prove that (z,y’) cannot
be an allocation<.

First, let us prove that

J
(2) x;iixi=>p-x22Wi=p-wi+ZGijp'yj-

j=1
Proceed by contradiction: Assume that 2z =; z;, but p -2, < W;.
Then, there exists ¢ > 0 such that ||z — 2f|| < e = p-2z < W,;. By
local non-satiation, 3 z such that z >; z and ||z — 2}|| < e. Therefore,

3This may be achieved by assuming that each individual has strictly convex
utility
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p-z < W;and z »=; x;. This contradicts that consumer 7 is optimizing
when choosing z; in B(p,p - wp + ;00 ;).

Second, note that x}, >, xj implies p-z;, > W}, again because consumer
h is optimizing when choosing xy, in B(p,p - wy + Zj 0.0 - yj).-

Third, note that, since firms are maximizing profits in equilibrium and
y; € Y for every firm, then p-y; > p -y for every j=1,...,J.

Thus, if we put together these inequalities and sum over consumers we
obtain that Therefore,

I
Spai > (- wﬁZeﬂp v;)
j i=1 ]—1
I
ZZW 7

1

The first (strlct) inequality follows from p-z; > W; = p- wz—i—z =1 050y
and p - xj, > Wj. Then we use that »_;0;; = 1. The second (weak)
inequality follows from p-y; > p - y).

Thus
I J
p 3 (3434,
i=1 Jj=1
and therefore (2/,y’) could not be an allocation<. O

4.2. Second Welfare Theorem. Let & = ((Y;)/_,, (i, wi, 6:){=,) be

a private ownership economy (POE).
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\

FiGUurRE 3. The second welfare theorem in the Edge-
worth box

Definition 13. A Walrasian equilibrium with transfers is a tu-
ple (z,y,p,T), where (z,y) € R x R’*, p € R (a price vector)
and T = (T;)L_, € R (a vector of net transfers), s.t.

(i) for every i =1,..., I, x; € B(p, M;), and
x. € B(p, M;) = x; 7

where M; = p-w; + Z;.Izl 0, ;p - y; +T; (consumers optimize by
choosing z; in their budget sets);

(ii) for every j = 1,...,J, y; € Yy, and p-y; > p-y; V y; € Y
(firms optimize profits by choosing y; in Y;);

(iii) 25:1 x; = Zf:l w; + Z;-Izl y; (demand equals supply).

(iv) Zfil T; = 0 (net transfers are “budget balanced”).

Theorem 14 (Second Welfare Theorem). Let
€= ((=iwi 0:)iz1, (Y))j=1)

j=1
be a P.O.E. in which each Y; is closed and convez, and each prefer-
ence »=; is strongly monotone, convez, and continuous. If (z*,y*) is a
Pareto optimal allocation<in which 21'1:1 x; > 0, then there is a price
vector p* € RY and transfers T = (T;)L_, such that (z*,y*,p*,T) is a
Walrasian equilibrium with transfers.

Digression: The separating hyperplane theorem. Let p € R™ and « €
R. The hyperplane defined by (p, o) is:

H(p,a)={r€R":p-z=a}.
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A hyperplane defines two half-spaces:
H (p,a)={zeR":p-z>a}tand H (p,a)={x € R":p -z < a}.

Let X, Y C R™. We say that the hyperplane H(p, ) properly sepa-
rates X and Y if X C H,(p,a) and Y C H_(p,«), or Y C H,(p, )
and X C H_(p,«), while p-x #p -y, for some z € X and y € Y.

Lemma 15 (Separating-hyperplane Theorem). Let X and Y be dis-
joint and nonempty convex sets in R™. Then there exists a hyperplane
that properly separates X and Y .

Proof of Second Welfare Theorem. Let (x*,y*) be a Pareto optimal allocation<in
the hypotheses of the theorem. The first observation is that condition
(73i) of the definition of Walrasian equilibrium with transfers (WET)
holds, which is equivalent to (z*, y*) being an allocation_. Indeed, if we
were to have 331 o < @+ ijl y;. Then we could modify 2’ by giv-
ing some consumer the difference @+ Z}]=1 yi — S1 a¥ and (using the
strict monotonicity of preferences), contradict the Pareto optimality of
(@', y).
We need to prove that there exist a price vector p* € Ri and a transfer-
ence schedule T' € R* such that conditions (i) to (iv) of the definition
are satisfied. Let

P={z Rz = 1}
fori=1,... 1.

Observe that P; is a convex set as a direct consequence of the convexity
of ti-4

Define P = 25:1 P;, and note that, being the sum of convex sets, P is
also convex. The set P contains all the “aggregate bundles” that can
be disaggregated into individual consumption bundles for which every
individual is strictly better off than under the individual consumption
bundle z7.

Let Y = Z}]=1 Y; be the aggregate production set, and note that it is
convex, as every firm’s production set is convex. Hence,

PPS=({w}+Y)NRE
et z, 2/ € P;. Say wlog that z =; /. Then for any A € (0,1) the convexity of

>=; means that Az + (1 — X)z’ =; 2’ »=; . Hence, by transitivity of preferences,
Az+ (1 =Xz € P,
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is also a convex set. Since (z*,y*) is Pareto Optimal,

PN PPS =1.
Otherwise we could produce an allocation<in which all consumers are
better off than in z* by finding 2, € P, with ), 2, € {0} + Y.
Now, by the Separating-hyperplane Theorem (Lemma 15), there exists
p* € RY such that
(3) proz>p -q forallz€ P,and g€ ({w}+7Y).

We shall see that p* is going to be the price vector in our Walrasian
equilibrium with transfers. Observe that the definition of proper sepa-
ration implies that p* # 0. We could, however, in principle have p; < 0.
We’ll need to do some work to rule out negative prices.

Firstly, we shall prove the following:
(4) Tl = ptoax, >ptal,  for every i.

Let 2, >; xf. Note that we must have x; > 0, as =, is strictly monotone.
By continuity of >;, 3 § € (0,1) such that (1 — §)a} >; z}. By strict
monotonicity and the fact that x, > 0,

)
Ty + <:) @ =y ay, for every h # i.

Therefore, (1—6)2}; € P;, and z},+ (125) 2} € P, for every h # i. Then,

x§+2xh:(1—5)x;+§<xh+1_l) S

heti

Since (z*,y*) is an allocation_,

>z e ({0} +Y).

By (3), then, we obtain that

p*- (x; —i—Zx}kl) >p*- (xf +Z$Z> .
hti h#i
Simplifying, p* - 2, > p* - z}.

Secondly, let us prove that p* > 0. Fix [ € {1,...,L}. Let ¢ € R
be the vector that equals 0 in all its entries except for the [th entry,
in which it equals 1 (that is, ¢, = 0V s # [ and e; = 1). By strict
monotonicity, for any ¢ € 1,..., I, xf +¢; >=; xf. Then, p*- (z} +¢;) >

7
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p* -} applying (4). The latter yields p* - ¢, = p; > 0. As [ is arbitrary,
and p* # 0, we conclude that p* > 0.

Knowing that p* > 0 we are in a position to strengthen property (4).
We shall prove that

(5) z = xp = p*eal>pt-af, for every i.

Note that ) .2 > 0 and p* > 0 imply that p* - > 27 > 0, and
so there exists at least one consumer ¢ with p*x7 > 0. For such a
consumer, we show that (5) must hold. To that end, suppose (towards
a contradiction) that z} =; x} but p* - x} < p* - x}. Given that we have
established (4), it must be the case that p* -« = p* - xf. Then, by

)

continuity of =;, 36 € (0,1) such that (1 — )z} >=; . Then
pro(1=0)z,=01-0)p" o, <p'-a,=p" a,

observe that the strict inequality is due to p* -z > 0. Note that the
latter contradicts (4), yielding our desired result (5) for the specific
consumer ¢ that we know has p* - 27 > 0.

Now, reasoning as in the proof that p > 0, we see that, in fact, p > 0:
Since (5) holds for consumer ¢, ] + ¢; >; x; implies that p, > 0. So

p > 0.

Finally, to show that (5) holds for all consumers, note that p > 0
implies that p* - 2} > 0 for all ¢ with x; > 0. Then the proof of (5)
applies to all consumers with x; > 0. For a consumer ¢ with x; = 0 we
know that if « >; z; then 2} > 0 so that p- 2, > 0=p- z;.

At this point we turn to the definition of transfers. For any ¢, define
the transfer to ¢ by

J
(6) Ty=p ) —p wi— Y 0"y

Jj=1

Now we have all the elements to establish condition () of the definition
of Walrasian equilibrium with transfers. Let

J
Mizp'wri-zesz'yj‘i‘ﬂ;
j=1

and note that for every consumer i: p* - z; = M;. Thus =} € B(p, M;).
By (5), condition (i) is satisfied.



GENERAL EQUILIBRIUM THEORY 19

Using the latter result, it is straightforward to verify condition (iv).
Note the following:

I I J
23] (RS S
i=1 i=1 j=1

I I J
—r (S oS
i=1 i=1 j=1
I J
=p* (D i —w— y}‘)
i=1 j=1

We now proceed to condition (i7). First we shall prove that

I
(7) Py @i >ptq Yae{o}+Y.
i=1
Property (7) says that the aggregate bundle ) . 7 “maximizes value”
among all the elements of {w} + Y.
Let g € {w} + Y. For each n, let
z'=x7+ (1/n,....1/n).
By monotonicity of >;, 2 € P; for all i. So 2" = Y.1_ 2" € P. By (3),
(8) p*- 2" >p*-q for every n € N.

Note that 2™ — ) .. Since (8) holds for each n, in the limit as
n — oo we obtain that p*- >, af > ¢. °

Now, let us prove condition (ii) of the definition of WET. We must
show that for every firm j, p* -y > p* -y V y; € Y;. Let y; € Y}, and
note that by (7):

5The proof of statement 7 relies on showing that aggregate consumption ), x
lies on the boundary of the set P. In fact, it lies at the intersection of the boundary
of P and the production possibility set of the economy, PPS = ({&@} +Y) NRE.
Statement 7 says that aggregate consumption maximizes “value” in the PPS.
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As condition (i47) states S1_, a¥ = @ + ijl y;, we have:
J
PO+ Py =pt ety Y Pty = pty =0
=1 k]
As we have proved the existence of a price vector p* € Ri and a trans-

fer schedule T' that satisfy conditions (z) through (iv) of a Walrasian
Equilibrium with transfers. O

Terminology: “Aggregation”. Economy-wide variables are called “ag-
gregate.” If consumers get the bundles in (z1,...,zy), then Y " | z; is
an aggregate consumption bundle. Similarly, when we add up (excess)
demand functions we’ll talk about aggregate (excess) demand.

5. SCITOVSKY CONTOURS AND COST-BENEFIT ANALYSIS

Let (=;)!_; be a collection of preferences. The Scitovsky contour at
= (z;)_, is

1
S(.ﬁlﬁl,...,x[) :{Zi'zi'z tz QZ'ZVZE {1,,[}}
=1

Recall the definition of upper contour set: let U;(x;) = {y; € Rf; Sy

x;}. Then
I

i=1

g2
3
-
ks
)
N—
1

Consider a vector (xy,...,x7). Think of an exchange economy with
these I, agent ¢ having preference >;, and endowments being such that
=S 2, Then we can consider the possibility that (zi,...,;) is
a Pareto optimal allocation_of the aggregate bundle ) . ;.

The set S(z1,...,x) is the set of aggregate bundles that can be dis-
aggregated in a way that makes all consumers weakly better than they
are at (z1,...,xy). If (z1,...,2) is a Pareto optimal allocation_of the
aggregate bundle ) . z;, then the Scitovsky contour S(xy,. ..,z ) must
be disjoint from the set {z € RY : 2 < >, ;}.

Scitovsky contours can be used to evaluate policy decisions. The
Kaldor criterton says that a policy change is desirable if every-
one can be made better off after the policy change than before. Sci-
tovsky contours embody the Kaldor criterion. In particular, suppose
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that the group of agents {1,..., I} are considering a collective change
from the aggregate bundle z = ) . x; to & € Ri. If z is allocated
as in (z1,...,27) and & € S(zy,...,xr) then the change is desirable

because the resulting aggregate bundle can be disaggregated in a way
that makes no consumer worse off than in . Moreover, if Z is in the
interior of the contour, the consumers can be made strictly better off.

When each preference >; is convex, continuous and strictly mono-
tonic, we can essentially use the the second welfare theorem to de-
scribe Scitovsky contours and to operationalize the Kaldor criterion via
cost-benefit analysis. The idea is that if (z;) is a Pareto optimal
allocation_of ) . z;, then we obtain prices p* such that p*-z > p*-> . z;
for all z € S(xy,...,27).° See Figure 4.

This means that prices p* support S(x1,...,z) at >, x;: p-z2 > p-> . x;
for all z € S(xy,...,x7). By observing market prices p* we obtain
information about the shape of S(xy,...,z;). In other words, market
prices convey enough information about agents’ preferences to be useful
policy tools.

When the group of agents {1, ..., I} are considering a collective change
from the aggregate bundle z = Y ,z; to 2 € RE. If p- 2 < p-Z
then we know that & ¢ S(zy,...,2s), and there is therefore no way
to distribute Z in a way that will make all the agents better off than
they are currently in (z1, ..., z). Put differently, even without knowing
agents’ preferences, if we “price” the difference £ — Z using prevailing
market prices p, and the value is negative, we know that the change is
from T to & is undesirable.

On the other hand if the change is positive then it has some chance of
belonging to the Scitovsky contour at z. Moreover, if preferences are
smooth then the supporting hyperplane defined by p will be a good
local description of S(z1,...,xr) around Z. So when the change & —
is relatively small, we can be relatively confident that & € S(xy,...,z)
when p- (z —z) > 0.

This reasoning is known as cost-benefit analysis. We use prevailing
prices to evaluate the change from Z to z, and decide based on the
value of the two aggregate bundles at the prevailing prices.

One problem with the Kaldor criterion is that it is possible that & €
S(x1,...,x) and that there is (z}) € R with & = Y, 2, and = €

6The reason is that x} € U;(x;) implies that p* -z} > p*-x;. So the prices support
each of the individual upper contour sets at the consumption bundle z;.
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S(I‘l, LUQ)

x2,2

2,1
\
T1,1
FIGURE 4. Scitovsky contour at x = 1 + xs.
S(z!,...,2%). Draw such a case for yourself. Think about what it
means.

6. EEXCESS DEMAND FUNCTIONS

6.1. Notation. Let A = {p € RL : & p; = 1} denote the simplex

in RE. The interior of the simplex is denoted by A° = {p € A : p > 0},
and the boundary by 0A = A\ A°.

For ¢ > 0, we also use the notation A*={pe A:p >e,l=1,..., L},
and

OA* ={peA®:p =¢, forsomel=1,... L}

6.2. Aggregate excess demand in an exchange economy. Sup-
pose that (7=;,w;)!_; is an exchange economy in which each =, is con-
tinuous, strictly convex, and strictly monotonic. Then we can define
a demand function p — xf(p,p - w;), and an excess demand function
p > zi(p) = zi(p,p- w;) — w; for all consumer i. The aggregate excess
demand function is then
I I
2p) = ap) =) xi(pp-w) —@
i=1

=1
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This function z : Rfr L R’ satisfies a number of basic properties that
will be essential in our study of equilibrium.

Proposition 16. If (;, w;)_, is an exchange economy in which & =

Zle w; > 0, and each 7=; is continuous, strictly convez, and strictly
monotonic; then, the aggregate excess demand function satisfies:

lim,, 00 p", where p € RY \ RY, and p # 0, then there is | €
{1,..., L} such that {z/(p™)} is unbounded.

Proof. Let us proceed in order:

(i) If 7, is strictly monotonic, then it is locally non-satitated. By
the maximum theorem, every demand function x}(p,p - w;) is
continuous. As z(p) is a linear combination of continuous func-
tions, it is continuous.

(ii) The budget set of every consumer i is unchanged if prices are
multiplied by a constant a > 0, i.e, B(p,p-w;) = B(ap, ap - w;)
for every o € Ry with p € RJLF. Then, the maximization prob-
lem of consumer i is unchanged if the prices are multiplied by
a > 0. This shows that the demand function of every consumer
is homogeneous of degree zero: =} (p,p-w;) = z}(ap, ap - w;) for
every a > 0. Then, by definition, z(ap) = z(p) for every a > 0.

(iii) 7z; strictly monotonic implies p -z} (p,p-w;) = p - w; for every i,
i.e., every consumer’s expenditure level is equal to her income.
(Note that otherwise, the consumer would be able to increase
her utility by consuming more from any good). Summing over
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all consumers, we obtain:
I

I
> peaippw) =Y prw
=1 i=1
1

1
— P> ai(pprw) =p- > w
i=1

i=1
I
— p- (in‘(p,p-wi)—af) =0
=1

= p-z(p)=0

(iv) Note that X = RZ implies z;(p, p - w;) > 0 for every consumer
i and good [. Hence, z(p) > — &, for every good [. Let M € R
be such that M > maxjcqi,. ;1{@}, and note that z(p) > —M
Vi,peRE,.

(v) Towards contradiction, assume z(p™) is bounded above for all
le{l,....,L}. Let p € RE\ R%, bes.th. p# 0. Then, there
arem, k € {1,..., L} s.th. p, = 0 and p,, > 0. As the aggregate
endowment is strictly positive, @ >> 0, then there exists a
consumer j such that w,,; > 0 and thus p-w; > 0. Furthermore,
as 7Z; is strictly monotonic, j strictly prefers bundles that have
more of good k, all else equal. Note that this implies that the
demand function z} (p,p - w;) is not well defined at p = p since
j has positive income and good k, which she likes, is free. To
see this formally, assume by contradiction 3 z7 € R% such that

v € B(p,p-w;) and ) Zjx;Va; € B(p,p-wj).

Let £; = xj + e, with € > 0, where ¢, € R’ is the vector of
zeroes, except for its k-th entry which equals one. As pp = 0,
then p-x} = p-3; = &; € B(p,p-w;). However, by strict mono-
tonicity, Z; >; 7, and we obtain the desired contradiction.

Let {p"} be a sequence in R s.th. p" — p. Let z;(p") be
the sequence of the excess demand of consumer ¢ for good [. We
can write the aggregate excess demand for any good [ as:

a(p") = 2;(0") + ) 2u(p").
i#]
Note that the excess demand of every consumer for good [ is
bounded below by M;; > wy;. As z/(p") is bounded above by
hypothesis for every good [, then it must be that z;(p™) is also
bounded above for every consumer i, 7 included. Hence, as
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25(p") is bounded above and below, it has a convergent subse-
quence, say z,;(p™). Let z; be the limit of this subsequence.”

Let 27 = (25)i~, and 23 = 2 +w;. As p" >> 0 for every n,
then by strict monotonicity, for every n, p" - x}(p", p" - w;) =
p" - wj , i.e., consumer j spends all her income. Therefore,
p" - zj(p") = 0 for every n. Then,

Tim p"*-25(p™) = 0 = p-z; =0 = paj = pw; = x; € B(p, pw)).

To conclude the prove, we will show 7 7 x; for every z; €

~J

B(p, p-w;) to obtain the desired contradiction. Let z; € B(p, p-

wj). Let \" = % for every n, and note A" — 1 and A" > 0
for every n. Since p - z; < p - wj;, multiplying both sides by A"
yields p- \"z; < p™-wj for every n, i.e., \'z; € B(p", p"-w;). By
definition, z;(p") = z;(p",p" - w;) — w; . Hence, 2;(p") + w; Z;
A"z;. By continuity of 7;, we obtain:

lim z;(p") + wj = 2} +w; = 7}

— 1 n,..
Zjx; = lim \'z;.
n—oo

n—oo

O

Observation 17. Note that properties (i)-(iii) do not rely on ) . w; > 0,
nor on strict monotonicity. Local non-satiation suffices for Walras’ Law.

6.3. Aggregate excess demand. So we derived the aggregate excess
demand from an economy, and showed that it satisfies the five basic
properties. Now we shall analyze excess demand function as a primitive
in its own right, “forgetting” the economy that it came from.

This approach allows us to obtain results for many different models,
as long as their equilibria are characterized by the zeroes of an excess
demand. For example we can incorporate production, and show that
a private ownership economy, under some assumptions, has an excess
demand function that satisfies the five properties. And there are other
models that can also be captured by the demand function as a reduced
form.

We use property (ii) to restrict the domain in z in various ways. Some
times we ‘“normalize” prices, and express all prices in terms of one
good. For example in terms of good one: p;/py, = 1,..., L. Another

normalization is p;/ Y ,_; Pk, so prices are in A°:

Tt is tempting to claim zi; = 215(p), but this may not be true since z;;(p) may
no be continuous at p = p.
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4!

z1(p1, 1)
—M

FIGURE 5. Aggregate excess demand for good 1 with
L=2/

Consider a function z : A° — R that satisfies the properties:

(1) z is continuous;

(3) z satisfies Walras’ Law, meaning that p - z(p) = 0.

(4) z is bounded below, meaning that here is M > 0 such that
z(p) > =M foralll=1,...,L and p.

(5) z satisfies the following boundary condition: If {p"} is a se-
quence in A and p = lim,,_,c p", with p € OA, then there is [
such that the sequence {z;(p")} is unbounded.

We refer to aggregate excess demand functions satisfying the 5 prop-
erties with the understanding that we use homogeneity to go back and
forth between the two domains. Either the domain is Ri 4 and we im-
pose all 5 properties, or the domain is A°, and we can obtain a function
on RY, by imposing homogeneity. Specifically, if we define an excess
demand function z : A° — R, then the domain can be extended to all

of RY, by z(p) = z(ﬁ ).

7. EXISTENCE OF COMPETITIVE EQUILIBRIA

Consider the case when L = 2. Then Walras Law implies that p;z;(p)+
peze(p) = 0. We can normalize the price of good 2 to be 1. This
allows us to graph excess demand as a function of p; alone. Moreover,
p121(p1, 1) + paza(p1,1) = 0 implies that we can focus on the market
for good 1. Whenever z;(p;1,1) = 0 we know that z3(p;,1) = 0.

We present an existence result for excess demand functions satisfying
the five properties. The proof is taken from Geanakoplos (2003).
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Theorem 18. Let z : A° — R satisfy properties (1)-(5). Then there
is p* € A© with 0 = z(p*).

We use the following result, which subsumes the role of the boundary
condition.

Lemma 19. Let z : A° — R satisfy properties (1)-(5). Then there is
e >0 and p € A® s.t.

p € 0A® = p-z(p) > 0.

The proof of Lemma 19 is part of your homework. Now we turn to the
proof of the theorem. The proof relies on the following famous result,
Brouwer’s fixed-point theorem:

Theorem 20. Let X C R"™ be (nonempty) compact and convez. If
f: X — X is continuous, then there is x* € X with z* = f(x*).

Proof. Let € and p be as in the statement of the lemma.

Define the functions m and ¢ as follows:

m(p,p) = p- 2(p) — |Ip — pl*
¢(p) = a‘rgma’xﬁeAEm(ﬁv p)a
for p,p € A°.

You should prove that ¢ is a function (it takes singleton values), and
that is satisfies the hypotheses of Brower’s fixed point theorem (use the
Maximum Theorem). So ¢ : A® — A® is continuous. Brower’s fixed
point theorem implies that there is p* € A® with p* = ¢(p*). We shall
prove that 0 = z(p*).

Notice first that if p* is in the interior of A® then the first order condi-
tion for the problem in the definition of ¢ means that

0= %}pﬁ = (2(p") = 25— ")) lpmpr = (")

and we are done. To prove the theorem, we need then to show that p*

must be interior.

Suppose then, towards a contradiction, that p* is not interior. Then
p - z(p*) > 0 by the lemma. Let p(A) = Ap + (1 — X\)p*. Note that
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m(p*,p*) = p* - z(p*) = 0, by Walras’ Law. Now:

m(p(A),p") —m(p*,p*) = p(\) - 2(p") — [I]p(A) — p*|®
=Ap-2(p*) + (1= N)p* - 2(p") = N|lp —p*|
=X(p-z(p) = Mlp—p'11?)

as Walras’ Law implies
(1 =A)p*-2(p*) =0,

and [[p(A) — p*||* = A*|p — p*||*.

Since p - z(p*) > 0 there is A > 0 small enough that

p-z(p") = Alp - | > 0.
Then m(p(X), p*) > m(p*, p*), which is absurd. O

Missing: examples of non-existence. Discontinuous offer curves because
of lack of convexity. One example with lexicographic preferences.

7.1. The Negishi approach. We give a proof of existence that is
based on adjusting welfare weights instead of adjusting prices: this
is called the Negishi approach (after Negishi (1960)); you can think
of it as a way of using the second welfare theorem to prove existence
of Walrasian equilibria. After all, it is easy to see that there must
exist Pareto optimal allocations, and the second welfare theorem says
that they can be obtained as Walrasian equilibria with transfers. The
challenge is to show that they can be obtained as Walrasian equilibria
without transfers, meaning transfers that equal zero.

Let £ = (=;,w;)!_; be an exchange economy.

Theorem 21. If »=; is continuous, strictly monotonic and convez, for
allt=1,...,1, and Zle w; > 0, then € has a Walrasian equilibrium.

Our proof of Theorem 21 relies on Kautani’s fixed point theorem:

Theorem 22. Let X C R" be compact and conver. IfI1 : X — 2%
is a correspondence such that, for all v € X, Il(z) is a nonempty and
convex set, and such that the graph

{(z,y) € X x X 1y € l(x)}
is closed (we say that 11 is upper hemicontinuous), then there is x* € X
with z* € M(z*).8

8The notion of upper hemicontinuous correspondence is more general, but here
it reduces to the correspondence having a closed graph.
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A triple (z,p,T), where z € RY, p € R and T € R' is a Walrasian
equilibrium with transfers (WET) if

(1) p-x; =p-w; + T; and x} > x; implies that p -} > p-w; + T;,
(2) z is an allocation— (), x; = @, or supply = demand), and

(3) 22T = 0.

For the rest of this proof, we refer to allocation_as allocations. We shall
also need the following version of the second welfare theorem, stated
here without proof.

Lemma 23 (Second welfare theorem). If x is a Pareto optimal alloca-
tion, then there is p € A and T € R! such that (x,p,T) is a WET.

Let u; be a utility function representing ;. Suppose wlog that u(0) =
0. Observe then that strict monotonicity implies that if u(z) = 0 then
r=0.

Let
U={veR": v =ux;),i=1,...,n for some Pareto optimal allocation z}
be the utility possibility frontier in €.

Lemma 24. Let v € U, and let x and x’' be Pareto optimal allocations
with
v = ui(z) = wi(al)i=1,...,1
If (x,p,T) is a Walrasian equilibrium with transfers, then so is
(«',p,T).

Proof. 1t is obvious that (2/,p,T') satisfies (2) and (3) in the definition
of Walrasian equilibrium with transfers.

To prove that (2',p,T) satisfies (1), note first that if z; >; ) then
zi =i x; as u;(x;) = uy(2;). Therefore, p-z; > p-w; +T;.

To finish the proof, we need to show that p-z) = p-w; +7;. But
xt = x; (as wi(z;) = wi(x})) implies that p -z, > p - w; + T; because
p-z; < p-w; 4+ T; would imply (by strict monotonicity) the existence
ofa z; =; x; with p- 2, < p-w; +T;. Now, p-ai > p-w; +T; for all
I=1,...,1, %2, =w,and ) _,T; = 0 implies that p- 2} =p-w;, + T;
for all 4. U

Lemma 25. There exists M > 0 such that if (x,p,T) is a Walrasian
equilibrium with transfers, then —M < T; < M for alli=1,...,1.
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Proof. Observe that for all WET (x,p,T), and all i = 1,... 1,
p-(zi—w)="T.

The set of allocations, say A, and A is compact, so there exists M > 0
such that

—M <min{p-(z;—w;) :pe ANz € Aji=1,.... I} <max{p(z;,—w;) :pe ANz € Ai=1,...,1
]

For v € U, let TI(v) C [—M, M] be the set of T for which there exists
a Pareto optimal z allocation with v = u(z) and (x,p,T) is a WET.

Lemma 26. The correspondence v — Il(v) is convex valued and has
a closed graph.

Proof. First we show that II(v) is a convex set, for v € U. So let
T,T7" € TI(v). By Lemma 24 there is a Pareto optimal z and p,p € A
such that v = u(z) and (z,p,T) and (z,p’,T") are both WET.

Let p € (0,1), p = pup+ (1 — p)p' and T = pT + (1 — p)T'. We
shall prove that (z,p,T) is a WET. Properties (2) and (3) of WET
are immediately satisfies, as (z,p,T) and (z,p’,T’) are both WET. To
prove Properties (1) note that p-x; = p-w; +T; and p'-x; = p' - w; + T}
imply p-x; = ﬁ-wi+Ti. Moreover, z; > x; implies that p-z; > p-w; +1;,
and p/ - z; >p' - w; +T!. Thusp-z; > p-w; + T;. This shows that II(v)
is a convex set.

Now we prove that v — TI(v) has a closed graph. Let {v"} be a con-
vergent sequence in U and {T"} be a convergent sequence in [—M, M],
with 77 € II(v™) for all n. Let 2™ be a Pareto optimal allocation with
v" = u(a™) for all n. Choose p" € A such that (™, p",T") is a WET.
By the compactness of the set of allocations, and the compactness of
A, after considering a subsequence, we can suppose that (z",p™, T")
convergence to a triple (x,p,T).

To finish the proof, we have to prove that (x,p,T) is a WET. Again,
properties (2) and (3) are immediate. To prove (1) note first that
p" -l =p" - w; + T implies that p-x; = p-w; + T;. Next, suppose
that z; > x;. Then the continuity of >=; implies that for n large enough
z; > x7. Then for n large enough, p" - z; > p" - w; +17*. Thus p- z; >
p-w; + 1.

Before we continue, we show that p > 0. We know that x is an
allocation, so ) . x; = w, and @ > 0. So, p € A means that p- ). x; >
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0. Therefore, there is some consumer ¢ for which p - z; > 0. We show
that (1) holds for this consumer. For consumer i, we can rule out that
z; =i x;and p-z; = p-w; +T; = p-x; because there would then exist, by
continuity of =;, 6 € (0,1) with dz; >; x;. But then (and this argument
should be familiar by now),

p-(0z)=0p-x;<p-z;=p-w +1T1;,

a contradiction of the property we have already established that z; >;
x; = p-z > p-w +T;. For any [, then x; + ¢ »=; z; (by strict
monotonicity) and therefore p; > 0. Thus p > 0.

Now consider an arbitrary consumer ¢ and suppose that z; >=; x;. Con-
sider first the possibility that p-z; = 0. If x; = 0 then z; >; x; would
imply that p-z; >0 =p-x; as z; > 0O when z; >; O and p > 0. If z; # 0
then p - z; > 0, again because p > 0. So suppose that p-x; > 0. Then
we can just repeat the argument we made for the special consumer
above, for which we knew that p - z; > 0. This implies that (1) holds
for all consumers. 0

Let A; ={A e RL: S>7 . A = 1} be the simplex in R’. Now observe
that for each v € U there is a unique value of o > 0 such that av € Aj.
In words, the ray defined by v > 0 in R’ intersects A; once and only
once. The function that maps v € U into Ay is one-to-one. It is also
possible to show that it is onto, and that it and its inverse is continuous.
Let h be its inverse. The function h is called the radial projection

of A; onto U.
Lemma 27. The function h : A; — U is a continuous bijection.

Lemma 28. The correspondence A +— II(h(\)) has convex values and
a closed graph.

Proof. This follows from Lemma 26. If \" is a sequence, T" € ®(\")
for each n, and (A, T) = lim,,_,oo (A", T") O

Define
n(T) = argmin{\ - T : XA € A}

for T' e [-M, M]. The correspondence T' +— n(T") has convex values
and a closed graph (an application of the maximum theorem).

Consider the correspondence

F:Apx [—M,M] — A7 X [—M,M]
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defined by F(\,T) = n(T) x II(h(A). Then F is convex valued and
has a closed graph. Kakutani’s fixed point theorem implies that there
exists (A*,T%) € Ay x [—=M, M] with (A*,T*) € F((A\*,T%)).

Let (z*,p*,T*) be a WET with h(A\*) = u(z*). We shall show that
T* =0, and thereby prove that (z*, p*) is a Walrasian equilibrium.

Suppose then, towards a contradiction, that T}’ > 0 for some . Then
there is j with T} < 0 as >, T} = 0. But then the definition of 7, and
A* € n(T*) implies that A\, = 0. By definition of h, then, v, = 0. This
means that uy(x,) = 0 which is only possible if z;, = 0 (as u;(0) = 0
and w; is strictly monotone). Then

0=p -zl =p* W 4+1T"
Hence T" < 0, contradicting that 7" > 0.

8. UNIQUENESS

Definition 29 (Strong Weak Axiom for Excess Demand functions).
Let z : A°: RY — Ry be an excess demand function. We say that z
satisfies the Strong Weak Axiom if:

[2(p*) =0, p#p*] = p"-2(p) > 0.

The strong weak axiom is motivated by a one-consumer exchange econ-
omy. Let x*(p,p-w) be the demand function of this consumer. Then
p* € A°is an equilibrium price iff z*(p*, p* - w) = w (supply equals
demand when there is a single consumer).

Let p # p*, and suppose that *(p,p-w) # z*(p*,p* - w). By WARP, it
must be the case that p* - x*(p,p - w) > p* - x*(p*,p* - w) = p* - w, e,
the new optimal bundle was unaffordable under the equilibrium price
vector. The reason is that the bundle consisting of the endowment is
affordable under any price vector, and z*(p*, p* - w) = w. Therefore,

p (@ (p,p-w) —w) =p"-z(p) > 0.

Theorem 30. If z : A° — Rl satisfies conditions (i) to (v) and the
Strong Weak Axiom, then there is a unique competitive equilibrium.

Proof. By the equilibrium existence theorem, a competitive equilibrium
must exist. To see why it must be unique, suppose that there are two
different competitive equiilbriums, and use the Strong Weak Axiom to
reach a contradiction. 0
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We motivated the Strong Weak Axiom in a one consumer economy us-
ing the Weak Axiom of Revealed Preference. With more than one con-
sumer, we would need that aggregate demand satisfies WARP. When
there are multiple heterogeneous consumers, however, it is very hard
to guarantee that an aggregate demand will satisfy WARP. Our next
condition may seem to have a lot of economic content, but it turns out
to be stronger than SWA.

Definition 31 (Gross Substitutes). Let z : RY, — R be an excess
demand function. We say that z satisfies the gross substitutes prop-
erty if, V p,p' € R% ., pi < pj, for some k, and p, = p] V | # k imply
a(p) <a(p) VI#k.

Like the SWA | the meaning of GS is simple in the case of a single con-
sumer. Consider an economy with one consumer and two goods: coffee
and tea. The two goods are substitutes, meaning that if the price of
coffee increases, then the demand for tea must increase. Since there
is a single consumer, aggregate demand will have the same property.
Now, if there are many heterogeneous consumers, then the price in-
crease will have consequences the incomes of the consumers who own
coffe, or for whose who own shares in the firms that produce coffee. It
is hard to know what the final impact of these consequences will be.
It could result in lower demand for tea. In all, with many agents and
many goods, the GS property is not very plausible.

Proposition 32. If z satisfies the gross substitutes property, then it
satisfies the Strong Weak Axiom.

A proof of Proposition 32 can be found in Arrow and Hahn (1971).

By Theorem 30, Proposition 32 implies that the gross substitutes prop-
erty is a sufficient condition for uniqueness of competitive equilibrium.
We show this fact directly in the next result:

Theorem 33. If the excess demand function z : RY, — R satisfies
conditions (i) to (v) and the gross substitutes property, then there is a
unique competitive equilibrium in A°.

Proof. By Theoreml18, properties (i) -(v) from Proposition 16 assure
the existence of p* € A° such that z(p*) = 0. Let p € A° be such
that p # p*. Choose A > 0 such that A\p > p* and 3 h for which
Apn, = p. (This is achieved by letting h = argmax,{p}/p;} and setting
A = p;/pn > 0.) Therefore, A\p > p* implies that for some k, Apy > p;,
ie., the set LT = {k € L : Ap;, > p;} # 0. Increase the price of each
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good in L™ one by one to get from price vector p* to Ap. By applying
gross substitutes, it must be that the excess demand function of good
h ¢ L* increases with each price increase, so that z,(Ap) > z,(p*). As
zn(p*) = 0, and z,(Ap) = Azp(p) by homogeneity of z, then z,(p) > 0.
Therefore, p is not an equilibrium. O

By homogeneity of degree zero, there is of course always multiple equi-
libria in R% . That is why Theorem 33 qualifies the statment to talk
about uniqueness in A°.

9. REPRESENTATIVE CONSUMER

Consider a collection of preferences (77;);_; over R% such that each =;
gives rise to a continuous demand function z;. We want to know when
there is a preference relation >, giving rise to a demand function x* with

the property that: 2f(p,p- @) = Zle z;(p,p- w;), where w = >, w;.
Let

W = (wl,wg, Ce ,W[) S R{i_L
Note that & represents the distribution of the aggregate endowment in

the economy. Under this notation, w = ¢-&, where ¢ is a vector of ones.
We write the aggregate demand function in terms of the distribution

of income as:
I
* —
= E z;(p,p-wi) —t- .
i=1

Definition 34 (Representative Consumer). A collection of preferences
(=), admits a representative consumer if there is a preference
relation =~ on RJLr and an associated continuous demand function x* :
RZ x R; — RY% such that

B(p,p-) Zx D, P W) V&GRiL,pER{;.

If a collection of preferences admits a representative consumer, note
that its associated demand function satisfies

(p,0) =2%p,p-0) —0=2(pd) Vi€ RiL.
In this case, we say that z admits a representative consumer.

Observation 35. Let (7=;,w;)_, be an exchange economy. If the collec-
tion of preferences (=;)_, admits a representative consumer, then

z(p,d') = z(p,d) V,d,d s.th. D=0-d.
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The observation suggests that a representative consumer will only exist
under very stringent conditions.

We shall see that homothetic preferences is central to the question
of when an economy accepts a representative consumer. Recall that
a consumer has a homothetic preference relation if x 2=, y implies
ax 7; ay for all z,y € R and a > 0.

Theorem 36 (Antonelli’s Theorem). The aggregate excess demand
function z admits a representative consumer if and only if there is
a homothetic preference relation 75 on RY such that each individual
demand z} is generated by 7.

You may have seen a result on aggregate demand and Gorman forms,
and you may be wondering what the relation is to Antonelli’s theorem.
The Gorman form characterizes demand with linear expansion paths
(Engel curves), but the usual result on the Gorman form is local. If
you consider demand when income becomes very small, close to 0, then
the income expansion paths have to pass through zero. This means
that income expansion curves must behave like they do for homothetic
preferences.

9.0.1. Digression: The Cauchy equation. Consider the following equa-
tion f(x1 + xz2) = f(x1) + f(x2) for all 1,5 € R. This is an equation
in which the unknown is the (real) function f: a so-called functional
equation. This particular equation is called Cauchy’s equation.
We want to know if Cauchy’s equation has a solution, and what the
solution is. It obviously has solutions, for example f(z) = x. The
following result characterizes all continuous solutions.

Proposition 37. Let f : R — R be continuous and satisfy that f(x;+
x9) = f(x1)+ f(z2) for allzy,x9 € R. Then there is c € R (a constant)
such that f(x) = cx. Note that c = f(1).

Proof. First, let n > 1 be a positive integer and r € R. Note that

flnr) = f(r+(n=1)r) = f(r)+f((n=1)r) = f(r)+f(r)+f((n=2)r) = ...

In second place, let ¢ = n/m € Q be a rational number, with n,m € Z
being positive integers. Then f(n/m) = nf(1/m), which means that

mf(n/m) =mnf(1/m) =nf(m/m)=nf(1).
Hence f(q) = qf(1). The same holds true when ¢ < 0.
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Now, since f(q) = ¢f(1) for all rational numbers ¢, and f is continuous,
f(z) = xf(1) for all real numbers x. O

9.0.2. Proof of Antonelli’s theorem.

Proof. (<) Let 7 be a preference on R such that it generates every
demand function z¢ and it is homothetic. Let 2 be the demand gen-
erated by this preference relation. Note that z%(p,m) = ma®(p, 1) for
all m as ' is linear homogeneous in income. Then,

I I
Y wipp-w) =) 2 (p.p-w)
=1 =1

I
= 2"(p,1) ZP " Wi
i=1

Blp, D(p- )

= 2%(p,p- @)

=T

(=) Let p e RY and w € RE. Let &; = (0,...,0,w,0,...,0), with w
in the ¢-th position. Then
2(p, @) = 2 (p,p-w) —w
=Y @i(pp-0) + 7 (pp-w) —w
J#1
:l':(p,p-W)—w
pp-w) =zi(p,p-w) Viel

— xR(

As the consumer 4, price vector p and endowment w are arbitrary, 27 =
x} Vi. Let =% generate 2%, so that 7 also generates z7. We shall prove
that 2™ is linear homogeneous in income, i.e., f(p, A\-m) = Az’ (p, m)

VA >0, (pm) € RE, x RY. This is a neccesary and sufficient for
homotheticity.

First, let m = m; + ms, and choose for i = 1,2, p-w; = m; and w; =0
Vj # 1. Since we have a representative consumer,

$R(p7 m) = IT(I% ml) + $;(p, m2) + Zx;(pvp ’ 0)
Jj=3

= 2™(p,m1) + z™(p, m»).



GENERAL EQUILIBRIUM THEORY 37
In particular, for a positive integer n, zf(p,nm) = 2%(p, (n — 1)m) +
2" (p,m). This means that 2% (p, nm) = na®(p,m). Let ¢ = ¥ € Qy,
with &k, € N. Then

z®(p, qm) = ka™ (p, %)

= lz"(p, qm) = k2" (p, le)
R k R
— 2"(p, qm) = (7) z" (p,m)

= 2™(p,qm) = qz" (p,m)

R

Finally, since x'* is continuous by hypothesis:

2% (p, Am) = Xxfi(p,m) VYA >0.
]

Observation 38. The exercise in the proof is known as the solution to
the Cauchy Fquation. Let f : R — R be continuous and satisfy that
flxy + 22) = f(z1) + f(xo) for any (71, 25) € R?. Then V z € R,
f(x) = cx for some constant c. In our case, let f(m) = z%(p,m), for a
fixed p let ¢ = 2f(p, 1). Therefore, z%(p, m) = ma'(p,1).

9.1. Samuelsonian Aggregation. Let (:2)._; be a collection of pref-

erences where each 77; is represented by a utility function u; : Rfr — R.

Let W : R! — R be a strictly monotone increasing function. We refer
to W as a soctal welfare function.

Consider the following problem:

(Pl) max W(ul(xl),...,u1($1))

(wl,...,xI)ER_I'_L
I

subject to  p- le <m.
i=1

The problem above implies choosing an aggregate consumption bundle
2z =1 x; € R™ for the economy. The objective is to maximize the
social welfare in the economy, as given by W. The constraint reflects
an aggregate budget constraint.
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Consider the alternative problem:

(P2)

max {( max W (ui(xq),...,ur(xr))  s.t. lezz}

zERiP x1puaq)€RiP

subject to  p-z < m.

Therefore, define the value function of (P1) as

U(z) = sup{W (u1(z1),...,ur(z1)) : (21,...,27) € R and ZI’ =z},

and rewrite (P2):

(P27) max U(z) subjectto p-z<m.

IL
z€RY

Let zf(p, m;) be the demand function generated by 7Z;, where m; is the
income of consumer ¢. Consider the following problem:

(P4) nax W (w1 (23 (p, m1)), -y ur(z7(p, m1)))

subject to Zmi < m.

Interpret these problems. Problem 1 maximizes social welfare function
by choosing an individual bundle for each consumer subject to the ag-
gregate budget constraint. This induces an optimal aggregate bundle
z € R¥. The second problem is a maximization in two steps. First,
given an arbitrary aggregate bundle of consumption z € R*, the social
planner maximizes the social welfare function, i.e., decides on the op-
timal allocation of the aggregate bundle among the consumers. Then,
given the income restriction of the economy, the social planner decides
the optimal aggregate consumption bundle. Problem P2’ makes ex-
plicit that we can write the second problem as that of a representative
consumer whose utility function is the value function resulting from the
first of the two nested problems above. Therefore, the utility function
of our representative consumer represents the optimal division of an
aggregate consumption bundle among the consumers. Another way of
addressing this problem is in terms of income.
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9.2. Eisenberg’s Theorem. Let (7=;)L_; be a collection of preferences
where each 7—; is represented by u; : Ri — R. Identify an economy
with a vector of endowments & € R (so that for each & € RAE,
(=i, wi)_,. An economy has a fized structure of endowments if

there is a = (o)1, € RL with Y, ; = 1 and w; = oy00.

Theorem 39 (Eisenberg’s Theorem). Consider an economy with a
fized structure of endowments, given by «. Let each 7-; be represented
by a continuous and homogenous degree one utility fuction u;i. Then
the aggregate demand of the economy is generated by a representative
consumer, whose utility function U : RJLr — R is given by:

(9) U(r)=  max {lj <uz(xl)>az s.t. x= ixz} :

(1,0, ERLE

10. DETERMINACY

Consider a collection of preferences (=;)/_; over RZ. For each given
vector of endowments:

&= (wy,...,wr) ERLL,

we have an exchange economy (ti,wi)le. So for fixed preferences
(=4)_, we can identify a set of possible (exchange) economies with a
set of vectors of initial endowments.

Let E be an open subset of RiL. Assume that all vectors of endowments
W € Esatisty ). w; > 0, and the consumers’ preferences >; are strictly
convex, strictly monotone, and continuous. Then each >; gives rise to
a demand function z} and aggregate excess demand is

I 1
F (@) = al(ppwi) — Y wi
=1 =1

The function p — 2*(p; &) satisfies properties (1)-(5). Note that we now
make the dependence of z* on & explicit. As a function of p (meaning,
for fixed &, z* satisfies properties (i)-(v).

As an example, consider an economy with two goods. Normalize ps = 1,
and focus on p; and z;. In this case, we would expect the economy to
have an excess demand function such as the one depicted below.
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10.1. Digression: Implicit Function Theorem. REMIND OF THE
INVERSE Fn THM using a picture.

Here’s a quick calculation to remind you of what the IFT says.

Let f: R? — R be a C! function. Let v be a variable of interest and ¢
a parameter of the model. Suppose that the solution to our model is
characterized implicitly by f(v,q) = 0.

We want to find a function A defined on a neighborhood of a ¢y such
that f(vo,q0) = 0, vo = h(qo) and f(h(q),q) = 0 for all ¢ in the
neighborhood. Taking derivatives, we find that

of
af oh of N 0q
Ov 8q+8q_0 hile) = %'

Note that in order to perform the previous excercise we need to assume
% # 0. This is intuitive: as f(v,q) = 0 describes our solution, if f
does not vary in v, even though f may change as we vary ¢, this does
not tell us anything the behavior of v.

A function f: A C R"™ — R, for which A is open, is said to be of class
r if it has 0 < r < oo continuous derivatives. We write C" to denote
the property of being of class 7.

Let g : R x R¥ — R™ be a C! function. The Jacobian matriz of g is

— — |4 ... d9 d¢ . dg
Dg(z,y) = [ng(fc,y) Dyg(wi] = [Bm drn Oy 8yk:|
991 .., 991 991 ., O¢
o1 Ozn oy Oyx
99m - 9gm 9gm . 9gm
o1 Ozn o Oyx

Theorem 40 (Implicit Function Theorem). Let A C R™, and B C R™
be open sets. Let f : Ax B — R"™ be C" with 1 < r < oo. Let
(0,q) € A X B be such that f(v,q) =0. Then, if

D, f(v,
J(0.q) (v,9)=(9,9)

is a non-singular matriz, there are open sets A C A, B' C B, and
a C" function h : B" — A" such that h(q) = v, and f(v,q) = 0 for
(v,q) € A" x B’ if and only if v = h(q). Moreover,

o=~ [puswa) 1 Dusea

v,9)=(7,
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This version of the IFT can be found in Mas-Colell (1989).

10.2. Regular and Critical Economies. We develop methods for
analyzing parametrized models. To this end, we focus on exchange
economies and interpret endowments as parameters. It is, however,
possible to use the same ideas for different parametrizations. For ex-
ample, we could use preferences as the parameters of the model, or
firms’ technologies in a POE.

Fix a collection of preferences >=; on RJLF, 1 <4 < [I. For each collection
of endowments & = (wy, ..., ws) € R we have an exchange economy

(=4, w;i)_,. With fixed preferences, we identify an economy with the
vector of endowments &, and let £ C RerJr be a set of economies.
Assume that E is open.

Given an economy & € E, the resulting demand for agent i is z}(p,p -
w;). We assume that demand functions, as functions of prices and in-
come (p,m) — x}(p,m), and with domain R4 are C*. This assump-
tion relies on a notion of smooth preferences that we are not going to
get into.

To make the dependence of the model on its parameters (endowments)
explicit, we write the aggregate excess demand as

I

I
Ap, @) =D wi(pp-wi) = Y wi
=1

i=1

Before we used homogeneity to normalize prices so that they are in
A°, but now we will use a different normalization. In particular, ho-
mogeneity of degree zero implies that

b1 PrL-1 PL
z(pl,...,pL):z(—,..., ,—),
PL pPL PL

which means restricting to prices in Rijrl with the price of the Lth good
being fixed at 1. Moreover, by Walras’ law we can restrict attention
to all market except for one. To this end let 2 : Rif x E — R be
defined by:

(10) 2(p1sp2, -+ PL-1;6) = z1(p1, P2, -+ - PL-1, 1)
forl=1,...,L — 1. In particular,

é(ply P ,pL_1> = O lﬁ z(pl, e 7])L_17 ]_) — 0



42 ECHENIQUE

M

—-M
FIGURE 6. Aggregate excess demand Z;(py, 1, d).

Given an economy &, let P(&J) denote its competitive equilibria. So
P@) = {pe R 2(p,&) =0} .

Definition 41 (Regular Equilibrium). An equilibrium price p* € P(&J)
is a regular equilibrium of & if the matrix

Dpé(F? CU)

p=p*

is non-singular.

An economy & is said to be a regular economy if all the equilibrium
prices in P(&J) are regular. An economy that is not regular is eritical.

Recall our initial example of an economy with two goods. In that case
2 : Ry xR* — R. Therefore, the condition of regularity is equivalent
to the derivative of the excess demand function being different from zero
at every equilibrium price. Consider the aggregate excess demands in
Figure 6. The economy with the green excess demand is regular, while
that with the red excess demand is critical.

If there are more than two goods, consider an infinitesimal change
in prices dp = (dp1,dps, ...,dpr—1). The directional derivative of the
function 2 at the price vector p € R in the direction of dp is given by
D2(p) - dp.® If D2(p) has full rank at p, then DZ(p) - dp # 0 for every
dp # 0. This implies that the normalized excess demand function

Let f: R™ — R be a differentiable function with gradient vector V f(z). The
directional derivative of f in the direction of vector v € R™ is given by D f(xz;u) =
Vf(z) -u If f:R" — R™, then Df(z;u) = [Vfi(z),...,VIf™(x)u=[Vfi(z)-
u,,me(x) "U,]l = [Dfl(:c,u),,Dfm(x,u)]
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z changes for infinitesimal changes in prices, i.e., we stop being at
equilibrium. This is the intuition for our next concept and result.

Definition 42 (Local Uniqueness). An equilibrium p* € P(J) is lo-

cally unique if there exists € > 0 such that, V p € Rijrl,

lp=p"|| <e = p¢PW&).

Proposition 43. Let 2 be C' and p* € P(&J) be a reqular equilibrium.
Then, p* is locally unique. Furthermore, there are neighborhoods By of
@ i E, and By of p* in Rfrjrl, and a function h : By — By such that

2(h(J),d) =0 V€ By,
and

Dah(@) = — {Dpap, 3)

Proof. Inmediate from the Implicit Function Thm ([l

Proposition 44. A regular economy has a finite number of equilibria.

Proof. Consider prices as subsets of the simplex, A, a re-normalization.
Local uniqueness is preserved under the re-normalization.

Note that P(J) = 271(0;&). Since z is a continuous function, P(J) is
a closed set. Moreover P (&) is compact because it is a closed subset of
a compact set. For each price p € P(J), let N, be an open ball with
center p and for which p is the only equilibrium price in N,. Such balls
exist because equilibrium prices are locally unique. Now

P (&) C Upep(@) Np,
an open cover. So P(&J) has a finite subcover, and therefore is unique.

Another proof is as follows: Suppose towards a contradiction that P (&)
is infinite. Let p, be a sequence of distinct prices in P(J). p, is in A
so it has a convergent subsequence that we, in an abuse of notation,
also denote by p,. If p* = lim, , p, then p* € P(J) by continuity
of aggregate excess demand. But then p* is not locally isolated; a
contradiction. O

Definition 45 (Index). The index of p € P(&) is defined as:
index(p) = (=1)*7! - sign <’Dp:2(p,u7)‘> :

where ‘Dpé(p,ﬁ)‘ is the determinant of the matrix D,Z(p, d).
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Note that for every regular economy o, index(p) € {—1,1} ¥V p € P(J).
We state without proof the following theorem.

Theorem 46 (Index Theorem). If & is a reqular economy, then

Z index(p) = 1.

pEP (W)

The index theorem can be used to establish uniqueness: if you can
show that any competitive equilibrium in an economy has index one,
then there can only be one equilibrium. Finally, the index theorem
implies the following curiosity.

Corollary 47. A reqular economy has an odd number of equilibria.

Consider our initial example of an economy with two goods. See in the
graph below the index of each equilibrium in the economy, and verify
that they sum up to one.

10.3. Digression: Measure Zero Sets and Transversality.

Definition 48 (Rectangle and Volume). A rectangle in R" is a set
of the form

R = [a1,b1]x[ag, ba] %+ - -X[an, by ={xr € R" 1 aq; <z; < b,i=1,...,n},
where [a;,b;] = {x € R :a; <2z <b;} is an interval in R. The volume
of a rectangle R = [ay,b1] X [ag, bs] X -+ X [a,,by,] is

n

vol(R) = [ [ (b — ).

i=1

Definition 49 (Measure Zero). A set A C R" is measure zero if V
e > 0 there exist a collection of rectangles Ry, Rs, ... such that

AC DR“ and ivol(Ri) <e.
i=1 i=1

Consider the following two examples of measure zero sets in R?: a finite
set and a straight line.

Under the same reasoning, note that a line segment is not measure zero
in R (because it is an interval), but it is in R" V n > 2. Similarly, a
plane is not measure zero in R?, but it is in R™ V m > 2.

Observation 50. No open set has measure zero.
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Consider a parametrized familiy of equations f : R¥V+% — RN . Define
a system of equations as f(v,q) = 0, where v € RY is a vector of
unknowns, and ¢ € R¥ is a vector of parameters.

Theorem 51 (Transversality Theorem). Let f : RNtE — RN pe C1L.
If the N x (N + K) Jacobian matriz D f (v, q) has full rank (rank N ) at
each (v,q) with f(v,q) = 0, then there is a measure zero set C C RE
such that, V q € RE\ C, the N x N matriz D,f(v,q) is non-singular
whenever f(v,q) = 0.

The rough idea behind the theorem is that when D f (v, q) is full rank,
the function f can change locally in any direction. This means that
when we are at a critical solution, a change in parameters can “perturb
away” the critical point.

10.4. Genericity of regular economies. Return to the assumptions
we made earlier. Suppose that 2 : RY}! x E — RL71is C! and satisfies
properties (i)-(v).

Theorem 52. There is a measure zero set C° C RIF such that, if
WJe FE\C, then @ is a reqular economy.

Proof. The result follows from the Transversality Theorem.
The matrix DZ(p; &) is (L — 1) x (L — 1+ IL). Write this matrix as
Dz(p;@) = [Dp2(pi @) Du2(pi@) -+ Du2(pi@)]

where D, Z(p; &) is the (L —1) x L Jacobian matrix with respect to the
endowment vector of consumer ¢. We shall prove that any one of the
matrices D, Z(p; ) has full rank. If we show that any D, 2(p; @) has
full rank, then we have that DZz(p;d) has L — 1 linearly independent
columns and thus it is also full rank.

So lets calculate D, 2(p; &), and show that it has full rank. The matrix
D, 2(p; @) may be written as

D, 2(p; @) = [Dwné(p; &) Dy 2(p;&d) -+ Dy, 2(p; (Ij)}
— [ d2(p;&d) d2(p;&d) dz(p;d) }
Ow11 Owa1 owr

Recall that

I
Z1(p; J) :fo(p,p-wi)—wl Vi=1,..., L.
i=1
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Then, compute for every [ =1,..., L — 1,

Yo, it h=1

0&4(p; @) dma
aWhl - oy (p,p-w .
Bigpp) it h#1

For notational purposes, we let m; denote the income of consumer 1.
Therefore we may write the complete matrix D, Z2(p; &) as

oz, . 0xyy 0xy, 0x7,
o P11 a2 Pt
To1 O3, -1 ... ox3, O3,
_D ~ e N 8m1 pl aml p2 8m1 pL—l 3m1
w 2(p; &) = ) . . .
Oz} _4 4 Oxy 4 4 Oz} _q 4 Oz} _q 4
omy D omy P2 omq pr-1—1 omy (L-1)xL

See that the L-th column of the previous matrix takes into account
the fact that we have normalized p;, = 1. Take the L-th column and
multiply it by p; to subtract it from the [-th column. This operation
does not change the rank of the matrix. Repeating the operation, we
obtain:

-1 0 0 gfm
0 -1 - 0 g
0 O _1 81‘?:—1,1

omy (L-1)xL

The first L —1 columns of the previous matrix are linearly independent,
implying that D,, Z2(p; &) has full rank. Therefore, the Jacobian matrix
DZz(p; &) has also full rank. Transversality implies that there exists a
measure zero set C' € R" such that, if & € R\ C, then D,2(p; &)
has full rank for every p € FE(J). In other words, every economy
& € RIL\ C is regular, where C is a measure zero set. U

11. OBSERVABLE CONSEQUENCES OF COMPETITIVE EQUILIBRIUM

11.1. Digression on Afriat’s Theorem. A data set as a collection
(2%, pF)f_, where ¥ € RY and p* € RY, for every k=1,... K.

Definition 53. A data set (z*, p*)i-; is rationalizable by u : RY — R
if, VyeRY,

PPy <pfoat = uly) <u@®) VYek=1,... K.
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Definition 54 (Revealed Preference). Given a data set (z*,p*)K
define a binary relation = on R% as:

xRy «— Fk sth. =2 and p* - 2% > p* .y,
and ¢ ="y < Tk sth. x =2" and p*- 2% > p~ ..
We refer to the binary relation —% as the revealed preference relation.

Definition 55 (Weak Axiom of Revealed Preference). A data set
satisifes the Weak Axiom of Revealed Preference (WARP) if there is
no k and [ such that z* = 2! and 2! =% 2*.

Definition 56. A data set satisfies the Generalized Axiom of Revealed
Preference (GARP) if there is no sequence z*1, %2, ..., 2% such that

ki R ks wR Rk kn R k1
A R i IRl A 1710 B Al A

Observation 57. If L <2, WARP and GARP are equivalent. If L > 3,
then GARP = WARP, but not conversely.

Theorem 58 (Afriat’s Theorem). Consider a data set (x*,p*)5 . The
following statements are equivalent:

(1) the data set is rationalizable by a locally nosatitated utility func-
tion;

(2) the data set satisfies GARP;

(3) there are numbers UX \F > 0 for k=1,..., K, such that

Uk < U 4+ 2 - (aF — 2b);

(4) the data set is rationalizable by a strictly monotonic and concave
utility function.

See Chambers and Echenique (2016) for a proof and detailed discussion
of Afriat’s theorem.

11.2. Sonnenschein-Mantel-Debreu Theorem: Anything goes.
In this section we consider a set of important results regarding what can
be obtained as an equilibrium for a well-behaved economy. The answer
is that, in a sense, anything can happen. The Sonnenschein-Mantel-
Debreu Theorem says that, off the boundaries of the simplex, any func-
tion that satisfies the basic properties of an excess demand function can
be obtained as the excess demand of a well-behaved exchange economy.
Note that properties (iv) and (v) are about the boundary behavior.
Homogeneity will be subsumed in the use of A° as the domain of f.
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Theorem 59 (Sonnenschein-Mantel-Debreu Theorem). Let f: A° —
R” be a continuous function that satisfies Walras’ Law. For any e > 0
there exists an exchange economy (7, w;)f_, with I = L and each =;
strictly monotonic, continuous and strictly convex such that the aggre-
gate excess demand function of this economy coincides with f on A°.

The proof of the Sonnenschein-Mantel-Debreu Theorem is complicated,
but here are some of the basic ideas.'® The proof “decomposes” f into
individual aggregate excess demand functions that satisfy WARP. For
each individual consumer i, we let w’ = ¢;, the ith unit vector (recall
that I = L). So agent 7 is endowed with one unit of good i. Then
let g;(p) be the projection of e; onto the orthogonal complement of p.
You can think of g;(p) as the residuals of a least squares regression
of w; = e; on the line spanned by p. Then g;(p) will satisfy Walras
law, as it was chosen to live in the orthogonal complement to p. It
is also continuous, and satisfies WARP because it is the outcome of
an optimization problem. Moreover, if h;(p) > 0 is a scalar, then the
function p-h;(p)g;(p) is also continuous and satisfies WARP and Walras
Law.

Theorem 60 (Mantel). Let f : A° — RE be C* and satisfy Walras’
Law. Then, ¥ € > 0, there exists an exchange economy (7 wi)l_,
with each 7—; homothetic, monotonic and strictly convex such that its
aggregate excess demand function coincides with f on AF.

Corollary 61. For any compact set K C A°, there exists an exchange
economy with I = L and each 7=; strictly monotonic, continuous, and

strictly convex such that K is the set of equilibrium prices of the econ-
omy.

11.3. Brown and Matzkin: Testable Restrictions On Com-
petitve Equilibrium. If we imagine that we can observe more than
just prices, so that we can see how equilibrium varies with endowments
(or, observe outcomes “on the equilibrium manifold”), then we can
avoid the negative conclusion in the SMT theorem. These ideas are
due to Brown and Matzkin (1996).

Recall that the equilibrium manifold is defined by {(p,d) : z(p;d) =
0} for an economy with exchange demand function z. In words, the
equilibrium manifold for a fixes set of preferences (=;)!_, is the set

10See Shafer and Sonnenschein (1982) or Chambers and Echenique (2016) for a
sketch of the main ideas behind the proof.
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of price and endowment combinations for which markets clear in the
resulting exchange economy.

Suppose we have the following two observations for an economy with
two agents and two goods: (p',w') and (p?,w?), i.e., we have two ob-
servations of the equilibrium manifold.

GRAPH OF EQUILIBRIUM MANIFOLD

Each endowment vector w! and w? induces an Edgeworth Box economy.
For illustrative purposes, suppose that each Edgewroth Box is given by:

GRAPH OF TWO SEPARATE EDGEWROTH BOXES

Superimpose both Edgeworth Boxes by aligning the origin of consumer
1’s consumption set, and draw the equilibrium price vectors as follows:

GRAPH OF TWO EDGEWROTH BOXES SUPERIMPOSED

As the economy is in equilibrium under the two observations, then it
must be that both individuals are maximizing their respective utili-
ties. However, note that this two choices violate WARP for consumer
1. There are no preferences 77, and 7o for which there exist alloca-
tions (z1,7s) and (z},x)) such that ((z1,z3),p') is a Walrasian Equi-
librium of the economy ((=1,w;), (72, ws)) and ((z},x), p?) is a Wal-

~

rasian Equilibrium of the economy ((Z1,w?), (22, ws3)). Therefore, this

~

pair of observations is not consistent with the notion of competitive
equilibrium.

12. THE CORE
Let £ = (=4, w;)_, be an exchange economy.

e An allocation< in € is a vector x = (z;){_; € RAF, such that

I I _
D1 Ti S D wi =W

e An allocation— in & is a vector x = (z;)1_; € R, such that
I I _
D1 i = Qi Wi = @.

e A nonempty subset S C {1, ..., I} of agents is called a coalition.

e Let S be a coalition. A vector (v;)ics is an S-allocation< if

Dies Yi <D ics Wi

e Let S be a coalition. A vector (y;)ics is an S-allocation— if

Zies Yi = ZiES Wi
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Definition 62. A coalition S blocks the allocation<z in £ if there
exists an S-allocation<(y;);es such that y; >=; z; Vi € S.

e An allocation<is weakly Pareto optimal if it not blocked by
the coalition I of all consumers,

e individually rational if no coalition consisting of a single
consumer blocks it,

e and a core allocation if there is no coalition that blocks it.

Let C(€) be the set of core allocation<of £. We refer to C(€) as
the core of the economy €. Let P(E) be the set of Pareto Optimal
allocation<of the economy &, and let W(&) be the set of Walrasian
Equilibrium allocation-.

Note that C'(&), W(E), and P(€) are subsets of RZE.

Definition 63. A coalition S weakly blocks the allocation x if there
exists an S-allocation<(y;);es such that y; =; z; Vi € S, and y; >; z;
for some j € S.

Observation 64. If each preference relation is continuous and strictly
monotonic, then a coalition blocks an allocation if and only if it weakly
blocks it.

Proof. (=) If a coalition blocks an allocation, then it weakly blocks it
by the definition of strict preference.

(<) Let = be an allocation and S a coalition that Weakly blocks it.
Then, there exists an S-allocation (y;);cs such that y; 72; x; Vi € S, and
y; =, x; for some j € S. By continuity of 7, there exists (5 E (0, 1) such

N]7
that (1 —0)y; =, x;. By strict monotonicity of each 77, |S| Y =i i
. 5
Vie S\ {j} Letz =(1-9)y; and z; = ‘S‘y71+yz‘v’z e S\ {j}.
2 = (2i)ies is an S-allocation since

Zzi:(l—d)yﬂr Z |S] T tu= Zyz Zwi'

ieS i€S\{j} ieS ieS

By transitivity, z; »=; x; for every ¢ € S, so S blocks the allocation
x. 0

For the remainder of our treatment of the core, we will work with
preferences that are continuous and strictly monotonic. So there will
be no difference between weak blocks and blocks. We will also refer
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to allocations, and not distinguish between allocation<and allocation_.
(The only relevant allocations will be allocation_.)

12.1. Pareto Optimality, The Core and Walrasian Equiilbria.

Observation 65. If each preference relation is continuous and strictly
monotonic, then all core allocations are Pareto Optimal, i.e., C(€) C
P(€&).

e An allocation x of & is individually rational if x; 77; w; V1 =
1,...,1.

Observation 66. If © € C(E), then x is individually rational.

Example 67. Let [ = 2. Given continuous and strictly increasing
preferences, the core is the intersection of the set of Pareto optimal
allocations and the set of individually rational allocations. We have
already shown that every core allocation is both Pareto Optimal and
individually rational.

The following is a sort of strong version of the first welfare theorem,
except that the notion of blocking we're using now precludes the need
for local non-satiation.

Theorem 68. Every Walrasian Equilibrium allocation is a core allo-

cation, i.e., W(E) C C(€).

Proof. Let (z*,p*) € RIF x RY, be a Walrasian Equilibrium. Towards
contradiction, suppose x* ¢ C(€). Then, there exists a coalition S and
an S-allocation (ys)ses such that Y oy, = >  qws, and, Vs € S,
Ys >s Ti. Since z* is an equilibrium allocation, the latter implies
ys ¢ B(p*, p* - ws) for every s € S, ie., p* - ys > p* - ws. Summing over
s and pricing both resulting bundles, we obtain a contradiction:

o) ()

Thus, we conclude W (&) C C(€). O

12.2. Debreu-Scarf Core Convergence Theorem. We next dis-
cuss the validity of the competitive hypothesis: the idea that agents
act as price-takers. We start from bargaining outcomes, in which agents
will typically posses market power. The bargaining outcome is mod-
eled through the game theoretic notion of the core, which says that no
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gains from multilateral exchange are left unexploited. Note that we do
not model the detailed institutional framework for trade (the extensive-
form game, if we were to adopt a non-cooperative paradigm). Instead
we are agnostic about how trade takes place, and impose that whatever
the outcome is, it has to exhaust all the gains from trade. So it has to
be in the core.

The second, crucial, idea is to ensure that no agent is special. We
replicate an economy, so that there will be many copies of the same
agent. Each agent will have a large number of identical “twins.” This
will reduce the bargaining power of each individual agent. In the limit
all the core outcomes must be Walrasian allocations.

Definition 69 (Replica Economy). Let £ = (=;,w;)._; be an exchange
economy. and N > 1 an integer. The N-th replica of £ is the
exchange economy

EN = (?\:i,n,wz‘,n)izl,...,f,n:1,...,N
in which agents are indexed by (i,n) withi=1,....I, n =1,..., N,
and satisfy that:
VTZZL...,N, >_ >_ and wzzwzn

~LT AL ’

Note that the replica £V has I N agents.
Definition 70 (Equal Treatment Property). An allocation

T = (xi,n)izl,...,[,n:l,...,N

of EN has the equal treatment property if z;, = z;,, for every n,m =
1,...,Nandi=1,...,1.

Lemma 71. Let 7; be strictly monotonic, continuous and strictly con-
vex for every i = 1,...,1. Every allocation in C(EN) has the equal
treatment property.

Proof. The result is trivial for N = 1. Let N > 2, and consider the
contrapositive statement. Let x be an allocation of £V that does not
have the equal treatment property. For each i = 1,... 1, let n(i) be
the agent (i,n(7)) such that

Tin Zi Tin@) Vn=1,...,N.

Hence, n(i) is the (weakly) worst off agent among all the replicas of 1.
Let S = {n(1),n(2),...,n(I)} be a coalition of all such agents. We shall
prove that coalition S weakly blocks the allocation z. This is sufficient
for x ¢ C(EN) by continuity and strict monotonicity.
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Define the bundle y; ;) by:

| X
Yin) = 3 > win Vi
n=1

AS @iy i Tine) V= 1,..,N, then y; ;) Zi Tine) V @ by (strict)
convexity. As x does not satisfy the equal treatment property, there is
at least one i € {1,...,I} and one m € {1,..., N} such that x;,, #
Tin@)- Therefore, for such 7, by strict convexity we have

11
Yin(i) =i Tin(i)-

Finally, let us prove that (ym(i))f:l is an S-allocation.

I I 1 N
=1 zl—l . n;l
S99 3

i=1 n=1

I N
1 . . . N
= g g wi, since z is an allocation of £
i=1 n=1
I
1 ) .
=% E Nw; since w;, = w; for every n and i
i=1

I I
= g Wi = E Wi n(i)-
1 i=1

1=

Therefore, we have proved that (y; (;))/_; is an S-allocation that (weakly)
blocks z, so x ¢ C(EN). O

L1 N = 2 the result is straightforward. Let N > 3, and note that ; ., Zi T4 n (i)
and z; ., # xi,n(i)) imply %xi,m—&—%xi’n(i) i Tjn(;) by strict convexity. Furthermore,
as Tin i Tin(i) for every n = 1,..., N, then by convexity:

1
N_2 Z Zi Tiyn(i)-
ng{mn(i)}
Therefore, see that 2/N € (0,1) and note that by strict convexity we obtain:

2 (1 1 2 1
N <2$i,m + 2$i,n(i)> + (1 - N) m Q{Z(v)} = Yin() =i Lin(i)-
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By the previous lemma, we can represent the core allocations of £V as
vectors in R, So we shall write C'(EY) as a subset of RIX. The same
is true of Walrasian allocations.

Observation 72. Let & = (=;,w;)_, be an exchange economy in which
preferences >; are continuous, strictly monotonic and strictly convex.

(i) The core of a replica economy decreases with the number of
replicas:

VN, CcEMoCcENHYooEN?) D ...

(ii) The equilibrium allocations of £¥ may be represented as allo-
cations in &, i.e., the elements in W (EY) can be represented in
RIL.

(iii) W(EN) = W(E) for every N.

(iv) An equilibrium allocation of £ is in the core of every replica
economy EV:

W@gﬁqﬂy

N=1

Statement (i) needs some explanation. We know that W (EY) are in
the core, and therefore satisfy the equal treatment property. So we can
represent W(EN) as a subset of R!Z for all N. Now, in a Walrasian
equilibrium (x,p) of EV, any two agents of the same type face the same
budget, and have the same preferences. So a consumption bundle is
optimal for each one of them iff it is optimal for the original prototype
in £. By the equal treatment property, the supply = demand property
holds for £V iff it holds in &.

The following result is due to Debreu and Scarf (1963).'?

Theorem 73 (Debreu-Scarf Core Convergence Theorem). Let £ = (7Z;
,wi)L_, be an exchange economy. Suppose that, for alli=1,... 1, =;
15 continuous, strictly monotonic and strictly convex, and that w; > 0.
Suppose also that w > 0.

Then z* € C(EN) VY N > 1 implies that x* € W (E). In other words,
W(E) =) CEY).
N=1

2The proof here follows Kim Border’s notes on Debreu-Scarf.
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FIGURE 7. Proof of Debreu-Scarf Theorem

Proof. Let z* € NF_,C(EN).
Define

Pi={z e R": z; + w; =; x}},
and let P be the convex hull of UL, P,."?

Note that individual rationality of x* rules out that 0 € UP;,. By im-
posing the core property we get much more than individual rationality,
and will be able to rule out that 0 € P. For this it is important that
we work with arbitrary replicas of £ as we need to represent convex
combinations with rational coefficients as coalitions in some (arbitrarily
large) economy.

We shall prove that 0 ¢ P. Suppose then towards a contradiction
that 0 € P. P is an open set, so there is a neighborhood V of 0
with V' C P. Then there is a neighborhood V' in V' contained in
RLY_ ={—z:2z € RL,}. See Figure 8. Now, since V' C P there is a
collection

L1y RJ

BNote the difference with the approach in the second welfare theorem. We work
with U/, P; instead of Zle P;, and U/_, P, may not be a convex set.
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FIGURE 8. Proof of Debreu-Scarf Theorem

with z; € P; for all 4, and

I
Zaizi S V/.
i=1
The function ,
(O~él, . ,071) — Z&Zzz
i=1
is continuous, so thereis (o), ..., o) with Y1, a/z; € V" and for which
a, e Qpforalli=1,... 1.

Let 5; € N and N be such that o = 3;/N. Consider a coalition S
in &N with ; copies of agent type i. Define the vector (yp)nes with
yn = z; + w; for the type of agent ¢ that h is a member of. This means
that yp, = 27, as 2z; € F;. In addition:

th_Z/Bl Zz"—wz

heS

as
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Agents’ preferences are monotonic, so the coalition S blocks z* in &V,
contradicting that z* € C(EV). 1

The rest of the proof is similar to the proof of the second welfare
theorem, but simpler since we do not need to go from individual bundles
to aggregate bundles.

The set P is convex and nonempty, and 0 ¢ P. By the separating
hyperplane theorem, there is p* € R, non-zero, such that p* -z > 0
for all z € P. Then z; >; x} implies that z; — w; € P;, which means
that p* - x; > p* - wj;.

Let ¥ = 2 + (1/k,...,1/k) for k > 1. Then x¥ =; x}, which means
that p* xf > p*-w; for all k. Then p* - xf > p* - w; as o] = limg_, a:f
Then p*-xf > p*-w; for all i, and Zi]:l(p* cxf—ptw) =pt- Zfil(x:‘ -
w;) = 0 (as 2* is an allocation), imply that p* - 2} = p* - w; for all i.

So we have established that if z; >; « then p* - z; > p* - 2} =p* - w;

Now we can show that p* > 0. Strict monotonicity implies that x} +
e; =; «*. Then, p* - (] +¢;) > p* - xf gives p; > 0. Since p* # 0 we
have p* > 0.

We have @ > 0. So p* > 0 implies that p*-@ > 0. Then there is 7 with
p*-w; > 0. For such j, if we had some z; >; z} and p* - z; = p* - 17
we would obtain a contradiction by the same reasoning as in the proof
of the second welfare theorem: namely that there would be § > 0 with
(1 =6)x; =; af but p* - (1 = 6)x; = p* - (1 = d)x; <p* -},

Now, using what we know about this particular consumer j, we can
show that p* > 0. We have that x} + ¢; =; z* implies p* - (2} + ¢;) >
p*-xj. Sop >0.

Finally, let ¢ be any consumer. Then p* > 0 and w; > 0 implies that
p* - w; = p*-xf > 0. This implies that we can repeat the argument
we made above for consumer j, and show that z; >; =} then p* - z; >
p* - O

MwWe obtain a vector (Yn)nes that sums up to less than ) 7, - wy, but this implies
that S blocs since we can increase y;, a little bit so as to satisfy the equality with
the sum of endowments.
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13. PARTIAL EQUILIBRIUM

Economists often want to focus on the market for one good in isolation.
The ability to do so depends on making certain assumptions, which we
proceed to spell out.

Consider an exchange economy in which each preference is quasilinear.
Specifically, let £ = (=;,w;)._; be an exchange economy in which each
=, is represented by a utility function

L
wi(zy, ..., o) = vi(wy) + le.
1=2

Al consumers regard goods [ = 2,..., L as perfect substitutes. As a
consequence, in equilibrium, these goods should have the same price
(meaning that consumers should exchange one unit of good [ for one
unit of good !, for all [,{" # 1). We can normalize the price of all those
goods to be 1, and regard good Zleg x; as a composite good. Denote
this composite good by m, and z; by x. Effectively, then £ becomes a
two-good economy in which consumers have utility u;(x, m) = v;(z) +
m.

Let p be the price of good .

Consider the maximization problem for consumer i:

Max(; m) Ui () +m
s.t. pr+m < W.

Allow negative consumption of m (a common, but not innocent as-
sumption). Then the problem becomes to maximize

vi(z) + (W — px).

Note that the solution x*(p) is the solution to maximizing v;(z) — px
and does not depend on W. In contrast the demand for “money”
is m*(p, W) = W — pz*(p). These facts about z* and m* are very
important. All “wealth effects,” meaning all changes in income W,
translate one for one into changes in the demand for m. The demand
for x does not depend on W.

Assume: v; is strictly increasing, C? and concave.
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V()

x
FI1GURE 9. Quasi-linear demand

The FOC for the consumer’s problem is then

o) —p L0 ifz = 0
PY_0 itz>o0

We should emphasize that it is this simple because we are allowing for
m < 0.

Now we have that vi(zj(p)) = p when zf(p) > 0, so that z} is the
inverse of the marginal utility ;.

The indirect utility of consumer 7 is
Yilp, W) = vi(zi (p))+m”(p, W) = (vi(}(p)) — pz; (p))+W = / ;i (s)ds+W,
p

when the (improper) integral fpoo x}(s)ds is well defined. See Figure 10

The term
CSi(p) = vilat(p)) — pe(p) = / 27 (s)ds

is usually called consumer surplus. It is a measure of the well being
of a consumer, in the obvious sense that it’s (up to the value of W)
her indirect utility. It has a simple meaning, for magnitude x < z}(p),
the consumer was willing to pay an additional v’(x) in moiney for a bit
more of the good, but only paid p. So the cosumer gained v'(z) — p,
If we “add” up all these gains, stemming from the excess willingness
to pay over what was actually paid, we obtain fomz ®) [vi(z) — pldx =
vi(z;(p)) — px}(p). Moreover,

=7 (p) +o0
vi(x) = s iff x7(s) = x, hence / [vi(x) — pldx = / x;(s)ds
0 P
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7 (p)

FiGUrE 10. Consumer surplus

Note that the formula expressing consumer surplus as a function of
demand allows us to empirically measure consumer surplus, if we can
empirically estimate consumer demand (and we often can).

13.1. Aggregate demand and welfare. Let X*(p) = I z3(p),
which defines a utility v (by integrating its inverse). So there exists
obviously a representative consumer.

Note also that the sum Zle i(p, W;) is, up to the value of Zle Wi,
equal to

I

> (v} (p)-p Z/ ds-/p iile(s)ds:/pooX*(s)ds

=1

We can often estimate aggregate demand, which gives us a measure of
collective welfare.

In fact, consider the problem of finding a Pareto optimal allocation

max vy (x1) + my

vi(z))+m; >uaNi=2,...,1
st.Q > <> Wi

Zi my < ZZ Wi.m

This problem is equivalent to maximizing ) . v;(x;) subject to ) . x; <

Zz‘ Wi -
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The Lagrangian is

L((x;);\) = Zvi(%)—i—)\ <Z Wiz — sz> = Z[vi(wi)—)\aﬁi]—l—)\Zwi,x

7 7

The first-order conditions are the same as for individual maximization
when A\ = p. This is a version of the welfare theorems. So we can
set the solution to be z7(\). Then the value of the lagrangian at the
maximum is equal to Zle CS;(A). So in a sense what we’re tying to
do is to maximize the sum of consumer surpluses.

13.2. Production. Suppose that instead z is produced from “money”
using a cost function ¢ : Ry — R,. This means that there is a
production possibility set

Y ={(z,—c(x)) : x € R, }.

Pareto efficient allocation can be obtained as before by solving:

max vy (x1) + my

vi(zy) +m; > Vi=2,...,1
Zle Ty < 27{:1 Wiz + 2t

Zle m; < Zle Wigm —m!

(xf,—m') ey

s.t.

Suppose that 3.7 w;, = 0. Then at a solution we must have that
i I —m/ - . i

Ut . ) , V) I

> ;x; =), Then (27, —m/') € Y means that m’ = ¢(>_, z;). Finally
>oimi =, wim —m! implies that efficiency is characterized by

1 1

max vilx;) — ¢ €T
D) = o3

- =1

Assume: cis C1, with ¢ > 0, and c is strictly convex.

The FOCs for an interior solution demands that v}(z;) = ¢(x), where
x = Y .x;. This solution can be decentralized by setting the price of
x to be p = d(x). Then vi(z;) = p = d(z), z; = z}(p), and a firm
maximizes profits by choosing = at prices p.
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13.3. Public goods. A public good is a good that all consumers must
consume in the same quantity.

If the public good consumed by i is z, then all consumers consume the
quantity x of the public good. Each consumer j obtains then utility

v; ().

Efficiency demands that

max 1 vi(x) — c(x).
1=

The FOCs for an interior solution now mean that
n

> vl = (@)

i=1

The condition Y, vi(z) = ¢/(z), equating marginal cost to the sum
of marginal utilities is often called Samuelson’s condition for efficient
provision of public goods.’® See Figure 11. Let x* be the solution to
this maximization problem, so x* is the (unique) efficient level of the
public good.

/ /
(A

FIGURE 11. Samuelson’s condition for public good provision

Compare to private provision of public good. Suppose that the price
of the public good is p. Then each agent i is choosing a quantity z; to
buy, at price p. Then 7 solves the problem

rggg%c vi(z; + %:xj) — px;.
jF#

15paul Samuelson introduced this way of analyzing public goods in Samuelson
(1954).
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The FOC is then

vg(ij)—pzoifxi>O
J

vé(Zxﬂ—pﬁOifxi:O.

Profit maximization requires that p = ¢'(3_; x;).
Suppose, to simplify the exposition, that v| < v < --- < v].

Then since p does not depend on ¢ we must have v 1( ) = p and v}(Z) —
p<O0fori=1,...,1—1. Hencex; =0fort=1,...,1—1, and z; = 7.

Note that since v; > 0 we have that ), vi(z) > v}(Z) = ¢(&). Since ¢
is monotone increasing and ) . v} is strictly decreasing,

T <z

In words, there is underprovision of the public good.

13.4. Lindahl equilibrium. Imagine that we could fool consumers
into believing that the quantity consumed of the public good only de-
pends on their individual purchases. Sort of like selling the Hollywood
sign to a very gullible tourist. They would then pay an (individualized!)
price p; for each unit of the public good, and solve the maximization
problem
lgl}gf)i vi(Ti) — PiTi

The FOC for an interior solution is v(z;) = p;. Now let z* be the
efficient level of the public good and set p; = v}(z*). It is then optimal
for each consumer ¢ to purchase the same level z* of the public good.

The firm solves the problem of

maX sz Jqg — c(q

Since Y, p; = Y, vi(z*) and z* satisfies the Samuelson condition of
optimality, we have that ), p; = ¢/(¢*). The firm optimizes by choosing
the level z* of public good when it sells it to each consumer 7 at price

Di-

This outcome is called a Lindahl equilibrium. The idea is to illustrate
the role of the inability to exclude agents from consuming the public
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good as the source of inefficiency in the private provision of public
goods.

14. TWO-SIDED MATCHING MODEL WITH TRANSFERABLE UTILITY

We turn to a model of a two-sided market due to Shapley and Shubik
(1971): B is aset of buyers and S is a set of sellers. The sets B and
S are finite, nonempty, and disjoint. Each buyer seeks to buy one and
only one unit of an indivisible good. Each seller has one unit to sell,
but sellers are different from each other, and offer potentially different
goods.

If © € B buys from j € S, they generate a surplus «;;. Here o;;
is given; part of the primitive of the model. You can think of buyer
getting some value from consuming j’s good, and of j having some cost
of providing that good to ¢. Then «;; would be the difference between
value and cost.

When ¢ buys from j, she obtains some utility u; and j gets some profit
vj, so that u; +v; = o, ;. For example, imagine that the cost for j
is zero. Then 4’s utility is w; = «;; — v;, where v; is the price (and
therefore the profit) that j gets from 4. In this case, i buys from j if
a;j —vj > oy, — vy for all h. Put differently,

U; + Uy 2> QG p,
for all 7 and h.

A matching is a matrix (z;;)icp jes such that x;; > 0, and for all

(i,7) € BxV,
Z%,h <1
heV
ZZL‘;M' S 1.
heB

If z;; € {0,1} we can interpret z; ; = 1 as ¢ buying from j. The above
inequalities mean that each buyer buys from at most one seller, and
each seller sell to at most one buyer.

An assignment is a pair of vectors ((u;)ien, (v;)jes) such that u; > 0,
v; > 0 and such that there exists a matching z; ; such that >, ;u; +
D ies Vi = D icpjes MijTij. An assignment (u,v) is in the core if

U; + Uj Z a/i,j-
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The core terminology arises from a notion of blocks. A pair (7, j) can
block an assignment if u; + v; < «;; by trading among themselves
and sharing the surplus «; ;. In this model, only pairs can “generate
value.” So the only relevant coalitions are pairs, and the core is the set
of assignments that no pair can block.

At the same time, the core requirement ensures that any agent is opti-
mizing in the sense that

uw; = max{o;p — v, h €S} v, =max{ay; —w,: h € B}

We can now analyze the model by means of linear programming duality.
There will be a duality between the problem of efficiently (meaning
surplus-maximizing), matching buyers and sellers, and the problem of
finding a core assignment.

Consider the problem of efficiently matching buyers and sellers. This
is the problem of choosing a matching between buyers and sellers to
maximize total surplus.

MAX(z; ;) D icp jes Tij i
T 2 0

(Vj € 5) 2 iepwis < 1.

This is a linear program. We set up the corresponding Lagrange multi-
plier, and use the minmax theorem. Let u; be the Lagrange multiplier
associated to the constraint that ) jes Tij < 1. Let v; be the Lagrange
multiplier associated to ), px;; < 1.

L(z; (u,0) = Y wigong+ Y wi(1=Y i)+ Y v(1= ).

i€B,jES i€B jes jeS i€B

Then we have that

max min L(x;(u,v)) = min max L(x;(u,v)).
(i) (i) (vy)) S ((ui)(v3)) (wi5) (w; (u,v))
Note that
L(z; (w,0) = Y wijoig+ Y wi(l=Y )+ Y v(1=) )
i€B,jes i€B j€S j€S i€B

= D wigloig —ui—v)+ Y ui+ Y vy

1€B,jES i€B JjeS
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Hence,

max min L(z;(u,v)) = min max UH-Z v+ Z T (Qy j—ui—v;).
(w4) ((u).(0)) () () w) 5 g A

But then z;; are Lagrange multipliers in the problem of minimizing

> iep Wi + D _jeg vy subject to (ai; —u; —v;) < 0. This gives us the

dual to the problem we started from:

min . pu; + ZjeS v;
U; + Uj Z ai,j
’Uj Z 0

Observation 74. If x; ; solves the surplus maximization problem, and
(u,v) solves the dual, then

E QT = E u; + E 5
ij i j

and (u,v) is a core assignment. Note that this holds for any pair of
solutions to the two problems. We can pair up any optimal matching
with any core assignment.

Observation 75. There is a solution to the surplus maximization prob-
lem in which z; ; € {0,1} and where, if ; ; = 1, then w; + v; = ;.

Proof. The extreme points of the set of matchings consist of matrices
with 0—1 values. The primal problem is a linear programming problem,
so a solution always exists that is a extreme point. As for the second
statement, complementary slackness in the dual problem says that

0= Z T \(Oél',j —u; — vj)J.
TV

i€B,jeS 0

So x;; > 0 implies that u; + v; = a; ;. -

Suppose that «; ; > 0 for all ¢, j, and that | B| = |S|. Then the matching
constraints will hold with equality at a solution, and all agents will be
matched to someone.

Proposition 76. Let (u,v) and (u',v") be assignments in the core. Let
u; = max{u;, u;} and v; = min{v;,v;}. Then (u,v) is an assignment
in the core.
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Proof. Note that for any i € B and j € S, 4; +v; > «;; (for say that
v; = v; then u; +v; > u; +v; > oy 5), and 4, v; > 0.

Choose one optimal matching z;; that is an extreme point. Then
z;; = 1 means that u; + v; = w; +vj. Then 4; = u; iff v; = v;. So
u; +v; = u; +vj. Thus,

ZUH‘ZUJ' = Z v j(uitv;) = Z i3 (Uitv;) :Zai+zyj'

i€B jes 1€B,jeS 1€B,jeS ieB JjES

The last equality uses the fact that if x;; = 0 for all 7 € S then
u; = u; = 0, and analogously for v;, v”.

Thus (u,v) satisfies the constraints of the dual program, and has the
same value for the objective function. O

An analogous result is true if we take the maximum of v; and v} and
the minimum of u; and u;. This is called the lattice structure of the
core assignments. It means that buyers share some interests with other
buyers, and sellers with other sellers. There are common interests for
agents on the same side of the market, and opposing interest for agents
on opposite side of the market.

As a consequence we have

Corollary 77. There ezists core assignments (u*,v,) and (u.,v*) such
that for any core assignment (u,v),

*
U ZUj 2 Ui

*
Ui 20 2 Uy

Think of (u*, v,) and (u., v*) as core assignments with minimal, respec-
tively maximal, prices.

14.1. Pseudomarktes.

14.1.1. Notation: The simplex {z € R} : 37 x; = 1} in R" is de-

noted by A™ C R”, while the set {x € R} : 37 | #; < 1} is denoted
by A™ C R"™. When n is understood, we simply use the notation A

and A_.

A function v : A™ — R is
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e concave if, for any x,2 € A_, and A € (0,1), \u(z) + (1 —
Mu(z) < u(Az+ (1 — Nx);

e quasi-concave if, for each x € A_, the set {z € A_ : u(z) >
u(z)} is convex.

e semi-strictly quasi-concave if, for any x,z € A_ u(z) <
u(z) and A € (0,1) imply that u(z) < u(Az+ (1 — \)z).

e expected utility if it is linear. In this case we identify u with
a vector u € R™ and denote u(z) as u - .

e C'lifit can be extended to a continuously differentiable function
defined on an open set that contains A_.

A discrete allocation problem is a tuple (N, O, (u');cr, where N =
{1,...,n} is a finite set of agents, O is a set of objects, and u’ : Al
R is a utility function for agent i.

There is an implicit normalization in u‘. We suppose that an agent
gets the outside option () with probability 1 — " _,, and u takes this
into account.

Let L = |O|.

Allocations and Pareto optimality. An allocation in I' is a vector x €
REY, which we write as x = (2'))Y,, with ' € A%, such that

2 ek =4

icl
for all t € I and all s € S. When 2% € {0,1} for all i and all s, z is a
deterministic allocation.

The notion of efficiency comes in three flavors: An allocation z is weak
Pareto optimal (wPO) if there is no allocation y such that u’(y") >
u'(x?) for all i; e-weak Pareto optimal (e-PO), for € > 0, if there
is no allocation y such that u'(y’) > u'(z*) + ¢ for all 4; and Pareto
optimal (PO) if there is no allocation y such that u’(y’) > u’(x?) for
all i and v/ (y?) > u?(27) for some j.

Equilibrium. A Hylland-Zeckhauser equilibrium is a pair (z,p)
such that © € AN, and p = (p,)oco € RE is a price vector such that

(1) SN, 2f=(1,...,1); and

(2) z' maximizes i’s utility within his budget:

7' € argmax{u’(z"): 2 € A_andp- 2 <a+(1—a)p-w'});

The following important result is due to Hylland and Zeckhauser (1979).
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Theorem 78. Suppose that each u' is continuous, monotonic and
quasi-concave. Then there exists a Hylland-Zeckhauser equilibrium (x, p)
in which x is Pareto efficient and envy-free.

Note: in this model the first welfare theorem fails. It is possible to
construct examples of HZ equilibria that are Pareto dominated. The
theorem says, however, that there exists one that is Pareto efficient.

Let
Bi(p)={zreA_:p-z<1}
d'(p) = argmax{u'(z) : x € B'(p)}

d(p) = argmin{p -z : ¢ € d'(p)}

Z(p) =d'(p) —{(1,..., )} and z(p) = Y 2'(p).

i=1
Let p > N.

Lemma 79. d' is upper hemi-continuous on [0, p]*

We omit the proof of Lemma 79.
Consider the correspondence ¢ : [0, p]X — [0, p|* defined by
¢i(p) = {min{max{0, § +pi},p} : ¢ € 2(p)}.

Lemma 80. ¢ is upper hemi-continuous, convex- and compact- valued.

The proof of Lemma 80 essentially follows from Lemma 79.

By Kakutani’s fixed point theorem there is p* € [0, | with p* € ¢(p*).
We shall prove that p* is an equilibrium price. Note that there exists
¢ € z(p*) such that

(11) p; = min{max{0, ¢ + p;’}, p}-
Lemma 81. p*-( > 0.

Proof. If p* - ¢ < 0 then there is some good [ with p; > 0 and (; < 0.
By Equation 11, then, we cannot have p;’ = p because (; < 0 and then
G+ p; < p. So pf = max{0,p; + (;}, which is not possible as ¢; < 0
and p; > 0. l

Lemma 82. p; < p for alll € [L]
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Proof. Suppose towards a contradiction that there is [ for which p; = p.
Then p; > 0, so Equation 11 means that p < ¢ + p; = ¢ + p. Let
¢=> 2" —1, with 2" € &'(p*).

Note that p* - 2' < 1 for each i, so, adding over i, we obtain that
p* - > xf < N. Subtract p* -1 and we obtain that p*- ¢ < N —p*- 1.

Now, p* -1 > pf = p. But we assumed that p > N. So p* - < 0,
contradicting Lemma 81. O

Lemma 83. ( =0

Proof. By Lemma 82 and Equation (11),

(12) pi = max{0,G +p; }
for all [ € [L].

Equation 12 implies two things. First, that ; > 0 is not possible for
any [. Hence ¢ < 0. Second, that if ¢; < 0 then p; = 0.

Suppose then, towards a contradiction, that that {; < 0 for some good
[, and correspondingly that p; = 0. Now, (; < 0 and ¢ < 0 means that

E ST B) B BRI 3') o B}
l [ i

So there is some agent ¢ for which >, 2} < 1. Agent ¢ can then increase
his consumption of good [ without violating the constraint that con-
sumption lie in A_. Given that p; = 0, the increase in consumption of
good [ would also not violate the budget constraint. So there exist a
bundle in B¥(p) with strictly more of good [, and the same amount of
every other good, than z¢. This contradicts the strict monotonicity of
u’, and the fact that z* € d'(p*). O

[ learned this proof from Antonio Miralles (HZ’s proof seems to be in
the original unpublished working paper, but I do not have a copy).

15. GENERAL EQUILIBRIUM UNDER UNCERTAINTY

Uncertainty is modeled through a set S (finite) of states of the
world. If the uncertainty is over the weather in the future, S could
be S = {rain, shine}. Agents trade and consume contingent goods;
defined as functions from S into R". The interpretation is that there
are n physical goods, and that a contingent good x is a contract that
delivers z(s) € R™ upon the realization of s € S.



GENERAL EQUILIBRIUM THEORY 71
Note that each contingent good is a vector in R‘f‘". A vector x € Rilsl
specifies a level of consumption of each physical good conditional on a
state of the world. For example if S = {s1, 59, 53} and n = 2 then the
vector
(2,3,1,2,2,2)

implies consumption of (2, 3) if the first state of the world, s, occurs,
but (1,2) if the second state of the world, s,, occurs.

Let L = n|S|. An exchange economy now has the meaning that trade
takes place in contingent goods.

15.1. Two-state, two-agent economy. Consider the following ex-
ample: I =2, n=1and S = {s1,s2}. Suppose that each agent ¢ has
preferences represented by a utility

Ui(xy, 9) = mui(x1) + (1 — m)ui(xs).

These are expected utility preferences. Suppose that wu; is strictly in-
creasing, C'!, and strictly concave. Agents’ endowments are (w,ws)
with w; = @y. This assumption means that there is no aggregate
risk (or no systemic risk). All risk is ¢diosyncratic.

We can represent the Pareto optimal allocations in the Edgeworth box.

Pareto optimality is characterized by

muy(e)  muy(@ — o)

(1 =muy () (1 —m)uh(@r — x5)
for interior allocations. This means that x; = x5 for, suppose that
that were not the case. Suppose wlog that x; > x3; so we have as
a consequence of w; = wy that wy; — 27 < Wy — 5. Then the strict
concavity of u; and us would mean that

) (1) T mub(wy — 1)
- mu(e2) ~ (L—m) (L m)up(@s — za)

That x;; = x;2 means that agents will get full insurance. They are
both risk averse and have the same beliefs about the states of the world.
Agents have incentives to trade with each other until they achieve full
insurance. There is no aggregate risk, so full insurance is feasible.

At a competitive equilibrium, prices will satisfy
P T
p2 (1=m)
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so prices will reflect the agents’ shared beliefs about the state of the
world.

Note that, while these properties are very appealing, they rest of very
particular assumptions on the economy: no aggregate risk, risk aver-
sion, and expected utility preferences with a common belief over the
state of the world.

15.2. Pari-mutuel betting. Agents’ probabilistic assessments are ag-
gregated into a single “odds ratio.” We can think of the pari-mutuel
market as a system for aggregating information in the form of different
priors.

Suppose that there are I agents betting on L horses. Each agent ¢ has
beliefs over which horse will win the race in the form of a probability
distribution m; € Ay. So m;; is the probability that i assigns to the [th
horse winning the race. Suppose that for each [ there is ¢ with m;; > 0,
a monotonicity condition.

Agents are going to bet on horses with the objective of maximizing
their expected payoff. Let /3;; be how much ¢ bets on [ (expressed in
monetary units), fori=1,..., T andl=1,..., L.

In the pari-mutuel system, if horse [ wins, then the total amount of bets
in the race get allocated to the agents who bid on [, and it is allocated
proportional to their bets. So agent i gets a payoff that equals

Zh 1Bhl (;;5hk> |

The total amount of bets are Z{L:l Zé:l Bh,, and these are distributed
proportionally among the agents who bet on horse [ (if no-one bets on
[ this magnitude is not defined).

The paritmutuel odds on horse [ are:

[Z A ZZBhk—ll to 1.

h=1 k

So, for example, if the odds on horse 3 are 5-to-1, it means that a bet
of $1 dollar on horse 3 pays $6 (meaning a net gain of $5 on the $1).'6

160f course, in an actual horse race, the track’s profit is first subtracted from
the total proceeds ), >, Bn k-
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We assume that agents have a budget b; > 0 for their bets, so they
are constrained by >, 5;; = b; (wlog we assume equality). Moreover,
assume (as a normalization) that ), b, = 1. This means that if horse
[ wins, then i gets a payoff of f;;/ 22:1 Br. Or that the parimutuel
odds on horse [ are [(31_; Bus) ™" — 1] to 1.

We can translate the problem into a more familiar model if we express
the agents’ decisions as the purchase of an asset, instead of as a mone-
tary bet. Each agent ¢ chooses a number z;; € R, of tickets to bet on
horse [. So that if horse [ wins then they obtain a monetary payoff in
the amount of x;;. The expected payoff from a vector of tickets z € R

: 17
I8 > Mg

Now, f3;; is the amount of money that ¢ bets on [; so if p; is the price
for betting on [, meaning the price of one unit of x;;, then §;; = pjz; ;.
So, now if [ wins then ¢ gets a payoff equal to

Bi _
b
This payoff must equal 3;;/ Z£:1 Bh., so we have

I
D = Z B,y
h=1

So we have two representations of the problem. In the first, each agent
i chooses 3; € Ri to maximize ), m;;5;;/p subject to >, Bi; = b;.
And we know that ) ,p, = 1. In the second representation of the
problem we have each agent ¢ choosing z; € Ri to maximize Zz TiiTi]
subject to >, pixi; = b;. In this case we require that “in equilibrium”
> :xiy = 1. These are market clearing constraints for each I. They
make sense because of horse | wins then there is 1 = ). b; monetary
units to be distributed among the agents.

il

A pari-mutuel equilibrium is a pair (3, p), where 5 = (5;,) is such
that f; maximizes agent i’s expected payoff (>, w3,/ taking p
as given) subject to her budget constraint (Y, 5;;, = b;), and p, =

>t Bn
Given that py =), By, we have >, pr=>,> . Bis=> ;b; =1, so we

can think of p as a vector of “market probabilities.” Moreover, recall

I"The vector of tickets should not be confused with a portfolio of L Arrow-
Debreu securities because the payoff upon horse [ winning depends on how much
other agents bet on horse .
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that the track odds are 1/, 5, —1 = % to 1. Therefore, prices p
correspond one-to-one to track odds.

In the second representation of the problem: Agent i’s problem is to
maximize ), m;;z;; subject to >, pi;; = b;. The solution is given by
T i

~= where 6; = max{— : 1 <1< L}.

Ty > 0= 91 =
b y2i

Let = (z;;) denote a vector of ticket choices.

Consider the function
I L
¢(x) = Z b; log (Z Wi,lmi,l>
i=1 =1

Suppose that z* solves the problem of maximizing ¢ subject to x;; > 0
and ), x;; < 1. Note that 2* exists, and that Zle miry, > 0 for all
1; hence
9¢(z))
0y

bimig

==
z=x* Zk:l i kL g

is well defined.
The following result is due to Eisenberg and Gale (1959).

Theorem 84. A pari-mutuel equilibrium ([3,p) exists in which

(13) p = maX{M

axi’l
(14) ﬁi,l = plﬁl-

Moreover, equilibrium price p is unique.!

1 <i<I}

r=x*

8

The idea in the proof is to consider the problem of allocating the vector
1=(1,...,1) € RV among the agents i € {1,..., I} so as to maximize
the social welfare function W(Uy, ..., U;) = II_ U”, where Uj(z;) =
>, miuxig. The prices p support the resulting solution (z;) (and are
therefore obtained as dual variables from the problem of allocating the
vector 1).

Proof. Consider the choice of z = (z;) > 0 in the program to maximize
¢ subject to the constraint that ) . x;; < 1. The relevant Lagrangian

18The equilibrium Ss are not generally unique.
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(15)  L(z;N\) = ¢(aq, ..., x; +ZAl 1—2@1
(16) = Z b 10g Z?T”l'” Z)\ll‘” Z

I
Note that x* satisfies the (KKT) first-order condition:

09(x)
c%cu

. bz‘ﬂ-i,l =\ if ‘/EZZ >0
r=x* B Zl ﬂ-i,lx;l S >\l if ZEZZ =0
So we have p; = A\; when p is defined as in the statement of the theorem.

We shall prove that z} is utility maximizing, which will imply that
(Bi1), with B, = piay;, is utility maximizing. Observe that

*
E nx;, = g nx; E xi’lbm’l =——)=b
i1 — ILip = * — Y
] Dk Ti kT,

Lz} ;>0 Lz}, >0

as x* satisfies the KKT conditions.

Note that z* maximizes L(x, ()\;)), given ;. That’s just the standard
saddle-point property of Lagrangians. Given the expression on Equa-
tion 16, this means that =} maximizes b;log(> ", miixi) — Y, Ny

Recall that \; = p;. So if y; is in i's budget set, we have ZZL:I ANyig <
Zle Aixi . So we must have that Y, m i < > mixy.

Now, By = Nz, and 1 = ), o}, implies that

= Z Nz, = Z Bi-

We now turn to uniqueness. Suppose that (5,p) and (5',p’) are two
pari-mutuel equilibria. We shall prove that p = p'.

For each i, let y; = max{m;;/p; : 1 <1 < L} and p = max{m;;/p;: 1 <
[ < L}. Observe that §;upi = Biimiy because p; canceles out when
Bis > 0 (and both sides of the equation are zero otherwise). Since,
mip < pyiy, we obtain that B upr < Biypp). Similarly, B8;uip, <
B kD
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Given that the elements of p and p’ are strictly positive, these inequal-
ities imply that

2!
/611/87, klu'L k < /B’L l/B@ k:ul < /Bz lﬁz klu; l‘

Cancel out p, which is strlctly positive, and summing up:
P P P P
b Zﬂ’ - Zﬁuﬁ’ e Zﬁ”ﬁ’ - —@-Zﬂu;
l

Again, b, > 0so0 ), /! Pi < > 6@1%. Adding over i gives

’L,k‘pk —_—
) Dh /
=) p=1
Sk <
But then, using the Cauchy-Schwartz inequality we have that:

Z(%:pﬁg) Z\/_pk ‘< ZPZ<\/—)2:ZM§1'

Pk kpk

This means that )
>k \/Pk%)2 B
r N2
Dk Pk Dy (%)
so the correlation between the vectors /px and p).//pr is = 1. Thus
there is a scalar 6 such that \/py = 0p}.//pr. Which implies that p and

p’ are collinear. Since they are probabilities, we must have p =p’. [

Y

In a pari-mutuel market, then, equilibrium “market probabilities” are
given by

= max{ =——— Z

So that the market probability that horse [ wins the race is, in a sense,
the largest weighted subjective probability that some agent assigns to
[ winning.

Example 85. Suppose that all agents agree on the probability that
each horse wins, so that m;; = m for all i. Then in any parimutuel
equilibrium (B,p) an agent © will bet only on horse for which m /p; is
mazximal. This means that m/p;, = m/pr for all I,k (otherwise we
would have f;; = 0 for all i for some |, which by p, = Y, iy would
give pp = 0, and this is not possible). Hence m = p;, as both the (m)
and (p;) vectors add up to one.
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Example 86. Suppose that I = L = 2 and m = (1/2,1/2) = (b1, b2).
We claim that p = (1/2,1/2) regardless of my. First, if m = m we
obtain the desired conclusion by the argument in Example 85. So sup-
pose that this is not the case and wlog that mo1 < m11. If p1 > po then
both agents will only bet on horse 2 so we must have p; < py. This
means that agent 1 bets on 1 and agent 2 bets on 2. Now, py =), Bi,
so p1 = by and py = by. Hence p1 = po, a contradiction.

15.3. Arrow-Debreu and Radner equilibria. Let (>=;,w;) be an
exchange economy, with L = n|S| goods. We assume that each »; is
represented by a utility function U;. We refer to the Walrasian equilib-
ria of such an economy as Arrow-Debreu equilibria (and to contin-
gent commodities as Arrow-Debreu commodities, but more about this
later).

Now, in general we have that events unfold over time. In an Arrow-
Debreu model one would trade contingent commodities, contingent on
all possible events and dates at which the events might occur. It turns
out that a simple insight shows that such complexity is not really
needed.

Suppose that there are two time periods: ¢ = 0 and ¢t = 1. We can
re-interpret the exchange economy model as trade in contingent goods
taking place at time ¢ = 0, and consumption taking place in t = 1.

Suppose instead that at time ¢t = 0 agents buy contingent quantities of
one good only: say good 1. Then agents solve the following problem
P
max.,ers o,ert Ui(7:)
q-z <0
. Ps - Ts S Ps - Wis + P1,s%i,s VS S S

s.t

Each z; is a portfolio of state-contingent contracts for delivery of good
1. The vector q € Ri is a vector of prices at time ¢t = 0 for the state-
contingent quantities of good 1. The prices p; are called spot prices,
and are valid for each of the spot markets that may open at time ¢ = 1.

Definition 87. An allocation (z;)L_, with portfolio choices (z;)L,,
spot prices (ps)ses, and contingent-good prices ¢ constitute a Radner

equilibrium if

(1) For each ¢ = 1,...,1, (x;,2;) solve consumer i’s problem P;,
given (p,) and q.
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(2) For each s € S:

I I
E Tis = g Wi,s,
i=1 i=1

and
(3) Zf:l z; = 0.

Proposition 88. Suppose that each U; is strictly monotonic.

(1) Let (z*,p*) be an Arrow-Debreu equilibrium. Then there is
(27)L, and q such that (z*,p*, 2*,q*) is a Radner equilibrium.

(2) Let (x*,p*, z*, q%) be a Radner equilibrium, then there is u* > 0,
s € S, such that (z*, (uipt)ses) is an Arrow-Debreu equilibrium.

16. ASSET PRICING

We now turn to a different two-period model. We assume consumption
at both times ¢ = 0 and t = 1. We also assume that there is a single
physical good.

So time is indexed by t = 0,1. There is uncertainty at time ¢t = 0,
captured through a state space, and uncertainty is resolved at time
t=1.

o Let S ={s1,82,...,5n} be aset of states.

e A column vector ¢ € R is called a cash flow.

e A column vector a = (ay,as, . ..,a,) € R™is called an asset,
where ay is the payment of asset a (in terms of the good) in
period 1 under state s for k =1,...,m.

o Let {a',a?,...,a’} be a collection of J assets. Collect them all
in a matrix A with j-th column equal to a’. That is:

A=lat a® - dl]
Examples of assets include: a risk-free asset a™f = (1,1,...,1) € R™,
or the Arrow-Debreu security ai’ = e, = (0,...,0,1,0,...,0)

which delivers a unit of the good if and only if the realized state is s.

Another example is an option.'® Suppose that s; = 7, for example
the state could be the value of a stock market index, and consider an

BwWe're describing an option to buy, a so-called call option. An option to sell is
termed a put option.
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option to buy the index at a fixed “strike” price p. We can write this
as an asset

a=(0,....0,j = p,(j+1) = p,...m—p),

where j —p > 0 and (j — 1) — p) < 0. An option to buy at price p

will only be exercised when the price exceeds p, and will give a payoff
20

s—p.

Let ¢; € Ry be the price of asset a’. Purchasing one unit of asset a’
generates the following cash flow:

(_Qj7 CL{, ag, e ;a‘zn)/ € Rler.
The cash flow generated by selling one unit of asset a’ at price qj is:
(¢j, —a), —ab,...,—al) € R*™,

o Let ¢ =(q1,...,q)) € Ri be the vector of asset prices, where
q; is the price of asset a’.

e Define W as the following matrix:
v
(1+m)xJ

Note that the j-th column of W, W, is the cash flow generated
by purchasing one unit of asset a’. That is:

ay

W;

J
/" (14m)x1

A column vector z € R’ is called a portfolio. A portfolio z
generates a cash flow Wz. In period zero, the porfolio z pays
— Z;.Izl 2;q;, and in period 1 if state k € {1,...,m} is realized,

it pays Z;.Izl z;al. That is,
(17)
J
1 —q; —qs] (= - ZJj:l 2j4;
1 j J j
_ a a a ) . za
We — { q} Lo | @ 1 1 2| _ e %50
A : : : :
a, al, ap, zJ Zj:l 2,

2OMore jargon: when s > p we say that the option is “in the money;” otherwise
it is “out of the money.”
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We denote by (W) the set of cash flows that can be achieved through
a portfolio of the assets a',...,a’ at prices q.

(W) ={Wz:zecR'}

Observation 89. (W) is a linear subspace of R™™. Tt is the linear
subspace generated by the columns of W.

Definition 90. A market is a pair (A, q).

Definition 91. An arbitrage opportunity is a cash flow ¢ € R!*™
such that ¢ > 0. We say that a market (A,q) is free of arbitrage
opportunities if there is no arbitrage opportunity in (W).

So a market is free of arbitrage opportunities iff there is no portfolio
z € R’ such that Wz > 0. This means that there is no portfolio that
generates a strictly positive payoff in some state or time, without also
generating some negative payoff.

e Let w € RY™™ be an endowment vector.
e The budget set associated to market (A, ¢) and endowment w is
given by:

B(w,A,¢) ={z e R"™: 32 € R’ sth. 2 <w + Wz}

Theorem 92 (Fundamental Theorem of arbitrage pricing). Let (A, q)
be a market. The following statements are equivalent:

(i) for any continuous and strictly monotonic utility function u :
lem — R the following problem has a solution

(18) max u(x) subject to z € B(w, A, q);

(iii) 3 7 € RY™ such that 7W = 0;

(ii) the market (A,q) is free of arbitrage opportunities;
1
(iv) B(w, A, q) is compact and there is 7 € RY™ such that

Bw,A,q) C{z e R 7w 2 <7 w}

Proof. (i) = (i1). If ¢ € R'™™ is an arbitrage opportunity in market
(A, q), then there exists a portfolio z* s.th. ¢ = Wz* > 0. For any
r=w+W2ze Bw,A,q),

x<x/:;p—|—c:w—|—W(é+Z*)EB(W7A7Q>

So u(x) < u(z') as u is strictly monotonic. Then (18) has no solution.
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(11) = (di17). Suppose that (A,q) admits no arbitrage opportunity.
Then

(W) N RI™ = {0}

Let A C R be the simplex in RI™™, so
A:{pGRfm:Zpi:l}.

Then, (IWYNA = (. (W) is a closed and convex set, and A is compact
and convex.

Then, 3 7 € R'"™™ such that
(19) m-c<m-p Vee (W)andpe A

by the Strict Separating-hyperplane Theorem.? Note that 0 € (W)
and ¢; (the I-th unit vector) in R™™isin A,som-0<m-¢e=m VI
Hence, m > 0.

To show that 7WW = 0, suppose towards a contradiction that 7\ # 0.
Then we can choose z € R’ such that #Wz > 0. Then for all a we
have

arWz =7W(az) < Z{?T ‘p:p€ A}

This is a contradiction because we can choose o« > 0 to make arWz
arbitrarily large while p — 7 - p is a bounded function over p € A.

(1i1) = (iv). Let = € B(w, A, q). Then
r<w4+Wz=mrr<nw,
as 1Wz = 0. Therefore,
B(w,4,q) C {z € R""™ : 12 < 7w}

The right-hand side set of the above equation is a standard “Arrow-
Debreu budget set,” so it is compact. B(w, A, q) is a closed subset of
a compact set, so it is compact.

(iv) = (i). If the budget set B(w, A, q) is compact, then problem (18)
has a solution because u is continuous. O

2LCompare this version of the Separating-hyperplane Theorem with the one given
in Lemma 15. Note that it is necessary that at least one of the sets is compact.
Consider X = {(z,y) € R? 12 >0,y > 1/z} and Z = {(x,y) € R? : y < 0}.
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16.1. Digression: Farkas Lemma. In the proof of Theorem 92 we
basically proved the following useful result.

Lemma 93. Let W be a (n x m) matriz. Then one and only one of
the following statements is true.

(1) There is z € R™ such that Wz > 0.
(2) Thereis m € R, such that W = 0.

Proof. In the proof of the theorem, we proved that (1) being false
implies that (2) must be true. All that is left is to observe that (1) and
(2) cannot hold at the same time because it would lead to 0 = 7z > 0,
which is absurd. U

16.2. State prices. The vector 7 in the theorem may be intriguing.
It has the interpretation as a price vector: in fact as a vector of Arrow-
Debreu prices.

—q —4q; —qJ
1 J J
. _q o a’l DY al DY al o
W =m {A} B : : [0](1+m)><J
al a’ al
Therefore, for every j =1,...,J,
al e i
(0, T1s - ) | = 7o(—q;) + > _mal = 0.
: i=1
a,

We may write

(20) qj:Z(:—;)ag Vi=1,...,J

i=1
Hence, we may write the price of asset j, ¢;, at time ¢ = 0 as a weighted
sum of it future payments under the different states ajl,...,al . The

T

weight on the payoff a in state s;, is -

Normalize the vector 7 by defining

W = 0 implies that =W = 7W = 0.

0
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Therefore, rewrite (20) as:
(21) g=» mal Vji=1...J
i=1

From the expression above it becomes clear that 7 €¢ A C R, is a
price vector. The price of a unit of good (of money, say) at time ¢ = 0
is 1. The price of a unit of good at time ¢ = 1 conditional on state s;
occurring is ;. We refer to 7 as a normalized state price vector, and
call the expression for ¢; given in (21) the present value price of asset
a’.

The state price vector 7 allows us to price assets. For example, let
y; € R for every state ¢+ = 1,...,m, and define the column vector
7 = (y1,%2,---,Ym) € R™, so that § is an asset. We can use 7 to
calculate the price of asset § as: Y ", T;y;.

A risk-free asset is ™/ = (1,...,1) € R™. In a market with no
arbitrage, then, the price of the risk free asset is given by:

(22) ¢t = Z ;.

Define the rate of return of the risk free asset as
r 1
gl LT

The rate R/ is known as the risk-free rate.

(23) R =

16.2.1. A risk-neutral probability measure. For any asset j, the ex-
pected rate of return on j is the expected value of the random
variable s — al /¢, which we denote by (R?),cs, or by R7.%?

The expectation of R/ depends of course on the probability measure
used. It turns out that a particular probability measure is useful. Let

qr
> he1 Th

is a probability distribution over S. The probability distribution p is
termed the risk free probability measure. The name comes from

22 random variable s — X is denoted by X.
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the following calculation:

; m
¢ . y
7= E pray, = E,a’ .
h=1

qr

Thus,

1 "l Y
rf _ - Jpuat R J
R = 5= szqj = E,RI.
i=1
So the expected return of asset j, when the expectation is calculated
using risk-neutral probabilities, equals the risk-free rate.

16.3. Application: Put-call parity. An option to buy an asset a’ at
a price K is called a call option. The price K is called the strike price.
Since the option is exercised only when profitable, i.e., if the market
price is higer than K, the call option on a’ has payoff (a] — K)T in
state i = 1,...,m.?® Hence, the price of the call option is given by:

¢ = Zﬁi(ag - K)".
i=1

An option to sell an asset a’ at strike price K is called a put option.
Since the option is exercised only when profitable, i.e., if the market

price is lower than K, the put option on @/ has payoff (K — a})™ in
state i = 1,..., m. Hence, the price of the put option is given by:

¢ = Zfri(K —al)t.
i=1

Note that

= qj — Z ﬁ'iK
i=1
_ qj quf

2For any z € R, z+ = max{z,0}.
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Then, we obtain:
(24) ¢ —Kq?=q¢-¢.

Equation (24) is called put-call parity. The left hand side of (24) is
the payoff from selling one unit of asset j and borrowing K dollars at
the risk-free rate. The right-hand-side is the expense that results from
purchasing a call option and selling a put option for the same strike
price of K. No-arbitrage demands that these two quantities must be
the same because they result in the same state-contingent payoffs.

16.4. Market incompleteness. Let (¢, A) be a financial market, and
define the matrix W as before. Suppose that the market is free of
arbitrage.

Definition 94. The market (g, A) is complete if dim((W)) = |S| =
m. Otherwise say that the market (¢, A) is incomplete.

When a market is complete, agents can use the assets to carry out
transfers of the good (of “money,” or “wealth”) across states.

Proposition 95. The market (q, A) is complete iff dim((A)) = m.

Proof. When (g, A) is free of arbitrage, ¢ = 7+ A. So ¢ is a linear
combination of the rows of A. Therefore, A and W have the same row
rank. ]

The importance of this proposition is that market completeness is a
matter of A, which is exogenous. Not prices ¢g. In a more general model
with more than one good, market completeness is however dependent
on prices.

When the market is free of arbitrage, then 7\ = 0 implies that © €
(W)L, so that (W)+ #£ 0. Since 7 # 0, dim((W)+) > 1.

Observation 96. A market is complete iff there is a unique (up to a
scalar multiple) solution to the system of equations 7W = 0. The
uniqueness is unique up to a scalar multiple: For example, normalizing
7o = 1, when the market is complete there is a unique 7™ € R_]‘f 4 with
q=TmA.

To see why Observation 96 is true: Let (W)+ denote the set of vectors
orthogonal to the vectors in (W), called the orthogonal complement
of (W):

WYt ={zeR"™:z.y=0forally c (W)}
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Note that
R = (W) + (W)™
Given lack of arbitrage, dim((W)+) > 1. The subspace (W)L has

dimension 1 iff the dimension of (W) is m. And 7 is unique (up to a
scalar multiple) iff (IW)* has dimension 1.

Uniqueness of the state prices that result from the “fundamental the-
orem” is a matter of market completeness. For this reason, Observa-
tion 96 is some times called the “second fundamental theorem of asset
pricing.”

Theorem 97. In the one-good, two-period model with C'* wutilities. If
the market is incomplete then there is a set of vectors of endowments
of measure zero such that for all endowments outside of this set, every
equiltbrium allocation is Pareto inefficient.

The theorem is stated informally. Since market completeness in this
model is a matter of A, not g, we can make sense of incompleteness in-
dependently of prices (which are endogenous, of course, and determined
in equilibrium).

A natural question to ask is about Pareto efficiency constrained by
the transfers across states that are possible given the asset structure
A. It turns out that, in the one-good model, equilibrium allocations
are constrained Pareto efficient, but this is no longer true when we
allow for multiple goods. In fact, generically, equilibrium allocations
are constrained Pareto inefficient.

16.5. The Capital Asset Pricing Model (CAPM). The tradi-
tional CAPM is :
ER = R + B(ER™ — R'),

where R™ is the “market” rate of return. In practice, R™ is taken to
be the return of some market index such as the SP500. The CAPM
equation is a linear regression:

_ Cov(R/,R™)

V(Rm)
The CAPM means that the expected return of an asset j is given by
the risk-free rate + a risk premium S(ER™ — R"/) that depends on the

“beta” of the asset j. The beta of an asset depends on how closely it
is related to the market returns. An asset that varies closely with the
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market returns (has high beta) has high systemic risk and therefore
commands a larger risk premium.

The idea behind the CAPM is that optimally choosing a portfolio will
allow an agent to fully diversify all risk that is idiosyncratic to the asset.
So there is no risk premium for such “diversifiable” risk. Systemic risk
cannot be diversified away, and it is reflected in the expected return of
the asset.

16.5.1. A CAPM formula resulting from no arbitrage. The expected
returns in the CAPM are calculated according to some given probability
distribution over states (not necessarily the risk free measure). Let
p € A be a probability measure on {1,...,m}.

Then

n

(25) ¢ = En:fna{ => %ﬁia{ - zn: Oipia] = By .
i=1 ! i=1

i=1

We use 0 to denote the random variable i — %

Equation 25 is important. The random variable 6 is a stochastic
discount factor. It says how a payoff in each state should be “dis-
counted” so as to give the correct, arbitrage free, price ¢/. We see
many instances of such stochastic discount factors in asset pricing, this
is perhaps the simplest one.

For any two random variables X and Y, we have that Covﬁ(f( Y) =
Ei,XY — Ei,XEi,Y SO,

¢ = E;00’ = Covy(0,d) + E0E;i.
Now, note that Exf = .. 7, = ¢/ = 1/R'/.
Then,

- E.a’ rf

(26) Byii = 2 _prr _F

¢’ ¢
(where 7 = R"/).

Cov;(h,a’) = R — Covy(i, R?)

Equation (26) is a “CAPM-like” formula. It says that the expected
return on an asset j equals the risk-free rate of return plus a term
that depends on the correlation of the asset returns with a “market
variable” . The variable © is common to all assets, that is why it is a
market variable.
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16.6. Consumption CAPM. Consider a consumer with income I,
who can invest in J assets. The (random) rate of return on asset j is

RI. Asset 1 is a risk-free asset.

Let z¢ denote consumption (of “money”) on date 0. So that the agent
uses I — xy to invest in assets for consumption on date 1. Investment
in asset j is

cj = ([ - IO)njv
where n = (17)7_; € R with > .7/ = 1.

j=1

Then the random payoff of a portfolio defined by 7 is

J
5&1 = (I - (130) anéj = ([ - 'To)
j=1

The consumer’s problem is

max u(xg) + dEu {(I — T,) [Rl + Z;.IZQ (R’ — Rl)} }
0<2y< T

st 47 =0
Z;‘]:Q <1

Suppose that v : Ry — R is smooth, monotonic and concave. Sup-
pose also that we can focus on interior solutions. Then the first order
conditions that characterize a solution are:

u'(xo) = OEu/ ()R
where R = R' + > 7 (R — RY), and
SEW/ (#,)(I — z0)(RP — RY) =0, j=2,...,J.

The first equality, u/(z) = 0Eu/ (1) R is a so-called Euler equation, de-
scribing the intertemporal trade-off between consumption and saving.

The second collection of equations serve to give a CAPM formula for
the returns of each of the J — 1 risky assets. Specifically, since 6 > 0
and (I — xy) > 0 we have that

Eu/(i)(RP —RY)Y =0, j=2,...,J.
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Recall the properties of the covariance:
0 = Eu'(#1)(R’ — RY)
= Cov(u/(#,), R — R") + Eu/(#,)E(R’ — R")
= Cov(u/(#), R) + Eu/(#,)E(R’ — R")

Then

~ . 1 ~ .
ER =R'— ——— "(71), RY).
R’ =R Eu/(jl)Cov(u (1), R7)

If asset j is positively correlated with consumption then it is negatively
correlated with marginal utility (concavity of u). So it commands a
positive “risk premium” and ER’ > R!.

16.7. Lucas Tree Model. We turn to a one-agent exchange economy
with many goods. Specifically, consumption occurs over time, and it is
uncertain. Endowments are also stochastic, and arrive over time. The
problem is to characterize prices that support the autarky equilibrium
where the agent consumes the endowment.

There is a single good, “fruit,” in each period, and a single asset: a
“tree.” The tree pays off “dividends,” a random production of fruit in
every period. Time is infinite, and ranges from ¢t = 0,1, ... In period ¢,
the production of fruit is realized, and a spot market opens up in fruit.
The consumer can therefore sell and purchase fruit in the spot market.
She can also buy trees. We shall normalize the price of fruit in each
spot market to be 1, and determine the price ¢; of trees in period t.

To sum up, in period t the consumer has an income derived from her
holdings of trees, and how much fruit these have produced. If each tree
has a dividend d; and she holds s; trees, then her income in period ¢
is wy = 84(q; + d¢). This income can be used to purchase fruit (at a
price of 1) for consumption, ¢;, and trees. If she buys s,y trees then
she spends a; = s;11¢; on trees. So her budget constraint for period ¢
isc +a; < wy.

The rate of return on trees is

Ry = den den
4

composed of a capital gain component ¢;11/¢;, and a dividend payoff.
Note that Rip1a; = e1 (@1 + dir) = Wi
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The consumer seeks to maximize the expected discounted sum of per-
period utility. The consumer has a utilty function v : R, — R over
fruit. Suppose that u is C!, strictly increasing and concave. The
consumer has a discount factor § € (0,1).

MaxE Y% 0'u(c)
Ct + a S W
s.t
W41 = Rt+1at

Assume that {R;} follows a Markov process.
The Bellman equation is

v(w, R) = sup{u(c) + 0E[v(Ra, R)|R] : ¢+ a = w}.

Consider the problem on the right-hand-side of the Bellman equation

max u(w — a) + 0E[v(Ra, R)|R]
st. 0<a<w

Suppose that the solution is interior and that the value function v is
differentiable. Use v} to denote W. Then the first-order condition
for a maximum in the right-hand side of the Bellman equation is

v (w — a) = 0E[v}(Ra, R)R|R].
Moreover, the the envelope theorem gives us that

vi(w, R) = u'(w — a).

Thus, along an optimal solution we must have that

u'(c) = OE[u/(¢)R|R].
Specifically, if {¢;} is an optimal path we must have that
(27) u'(cr) = OB [u'(cor1) Reqa],

where E; means expectation conditional of R;. Equation (27) is an
Euler equation.

We can write the Euler equation as

u'(Cry1)

1—5Et W)
t

Rt-‘rl?
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and the Euler equation implies that

gy
=E,/—= .
t5 W () (Ge1 + desq)

t+1
Mt

Here M/™ is the stochastic discount factor for consumption in
period ¢t 4+ 1 at time ¢.

Then

Eigii1 = BB M (qrio + digo) = Be M (Grgo + disa)
by the “law of iterated expectations.” Note also that if we define

MITT = 87/ (cyr)/u' () then MfHMfIlQ = M/™. Hence we obtain
that

= EthHMfif(QtH + dyyo) + E M dyy)
= Eth+2(Qt+2 + diyo) + EthHdtH)
=EM g0 + B M dyys + E M dyyy).

Continuing in this fashion we obtain that

T

q =E, Z Mtt+Tdt+T + EtMttJrTQtJrT-

=1

If we assume that limp_, EtMtt*TqHT = 0, which means ruling out
“bubbles” where agents do not expect at time ¢ that the process { M/ q; . }
converges to zero, then we obtain that

[e)
t+7 _ t+1
hm Et E Mt dt+7- = Et E Mt dt+7-,
T—o0

=1 =1

assuming that we can pass the limit inside the expectation. Thus the
price of the tree in period t is the discounted expected sum of future
dividends. The discount factor is a subjective stochastic discount
factor; it depends on marginal utility and pure time discounting.

Consider now an equilibrium of this economy. There is a single tree
and a single consumer. So equilibrium (market clearing) in the period
t spot market requires that ¢; = d; and s; = 1. Hence we have that

W (dyr)
Et25T ” i
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16.8. Risk-neutral consumer and the martingale property. The
consumer is risk-neutral when wu is linear, so that u'(ciy1)/u/(¢;) = 1.
Then we have

(28) ¢ = Ei(qip1 + diya).

So adjusting for dividends and time-discounting, the price of trees fol-
lows a martingale process. This is the efficient markets hypothesis.

As we shall see next, the martingale property holds in the absence
of risk neutrality, using the risk-free equivalent measure to calculate
expectations (or the equivalent martingale measure).

16.9. Finite state space. We can simplify the calculations a bit, and
gain some intuition from considering the model with a finite set of possi-
ble dividends. Suppose that d; takes values in the set D = {d*,. .., d*}.
When d;, = &’ then d,,; is drawn from D according to the probability
distribution P; = (Pj1,..., Piz). So Pr(dyy; = d'|d+t = &) = Py.

In this case we can write the price of trees as a function of the value of
d;, and we obtain that

o)=Y w%@(dl) ).
=1

Define a new probability P; by

5 budd(d)u(d)  Py(d)

P P (@) (@) X, Py (dF)
and denote expectation with respect to this probability by E;. Let
R; = (37, Pjxou/(d¥)/u/(d7))~": think of R; as the rate of return on

a risk-less asset (one that pays one unit of fruit in the next period,
regardless of the state).

Then we have
q(d’) = R;lEj(q(dl) +dh).

Note that this is an equation like (28), expressing that the dividend-
adjusted price follows a martingale-type property.

Now the probabilities Pj,z define a probability measure over sequences
of dividends. For example the probability that d,.» = d" and d;;; = d'
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given that d, = d’ is ]53-,;]51,;, And the marginal probability that d; o =
d" given that d, = d’ is

_ Zp P, = PJ}IU,(dl) Pl,hul(dh)
a P LS Py (dF) Y, P (dF)

Let P} be the resulting probability measure on sequences of dividends

dis1,diga, . .., given that d, = d’; and denote its expectation operator
by EZ.
J

Then if d; = d’ we have that the “cum dividend” price of the tree is
G = q(dy) + dy = & + q(d) = EjRj_l(th = E:Rt_lRt_-‘y}lth-‘rQ-
Hence, for any 7 > 1,
_ dt _ E* qt—‘yl-’r
HT ‘R

So that the price of the tree is equal to the expected discounted future
price at t + 7, when the expectation is calculated according to the
equivalent martingale measure. In other words, using the equivalent

martingale probability measure, discounted prices follow a martingale
process.

16.10. Logarithmic utility. Macroeconomists like to consider the case
when u(c) = Ine so that

Ul(dt—I—T) dy

S ey = —dyyr = d
L A

Hence,

> )
qt:ththST: 11—
=1

So the dividend-price ratio d;/q = (1 —9)/J is constant.

16.11. CRRA utility. Another common assumption is that u is of
the CRRA form:

l—0
In this case, u/(cihr)/u/'(¢;) = (¢ /ct+7)“. Therefore,

(29) - E, Z 5 (

a
d dt+T
t+1
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Suppose that {d;} is iid and that d = E,d; 7. Then,
de A B

Suppose that d; is iid log-normal with mean = 1. Then E;d;; ¢ =
E(eX)'77 = Ee'=9)X where X ~ N(u,v?) with u = —v2/2 so that d,
has mean = 1. Hence,
Eid ;7 = exp((L — o)+ (1/2)(1 — 0)%7)
= exp(—(1 —0)*/2+ (1/2)(1 — 0)*?)
= exp(—a(1 — o)v?/2).
Thus

2 0 60(071)1/2/2
T 1-0 !

and therefore
logq = ologd, + o(o — 1)v*/2 + log(6/(1 — §))
and we have
Vlogq; = 0°Vlogd;.

This means that (log) prices will be more volatile than (log) dividends
if and only if o0 > 1.

Now suppose instead that dividends follow a random walk. Specifically
suppose that the logd;, 1 = logd; + &, where {&,;} are iid normally
distributed with mean zero and variance v2. Then d;,/d; is iid log-
normal with mean 1. Hence d = Ed; 1 /d;.

From the Euler equation we have that

d
qt = 5Et(ﬁ)g(dt+1 + Gi11),
+

So the price-dividend ratio obeys

qt di oy di \oo1 i1
30 — =0E,(—)7 " + 0E;(—)7 —.
30 4 =G o
Now, as before, we have that
dy

B(2) ! = B2 — Gexp(—o(1 — 0)i?/2)

dita
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We conjecture that there is an equilibrium in which the price-dividend
ratio is a constant v. Then Equation (30) implies that

560(0—1)1/2/2

. 0'(0'71)1/2/2 o
")/—(56 (1_'_7) jﬁy* 1+560.(0._1)V2/2‘

So we get a similar relation between the log of price and dividend:

log ¢t = logd; + o(0 — 1>V2/2 +log d — log(1 + 560(071)1/2/2)

16.11.1. Government expenditure and taxes. Suppose that goverment
expenditure is a fraction of dividends, so that g, = £,d;, and {&,} follows
a Markov process with &, € (0,1). Government expenditure is financed
with a lump-sum tax 7T} levied on the cosumer, so that the consumer’s
budget constraint becomes ¢; + a; < w; — T;. Let ¢l be the resulting
price on trees. Now market clearing demands that ¢, + ¢; = d;, and
thus ¢; = (1 — &;)d;. Then the Euler equation determines that

! 1—¢ )dt 1) u/ — & T)dt ‘r)
L _ g, L= e )dis d E,0" tr)litr) g
¢ t (1= c)dy) (gfy1+dis) Z ¢ (1= en)dy) tr

Suppose that the consumer has logarithmic utility u(c) = logec. Then
we obtain that

ZEW —e)d, dir = (1 — ¢ dtZEtéT

€t+7')dt+7' 1 - 5t+7')

Now suppose in contrast that government expenditure is financed through
a tax on trees. Let the resulting price on trees be ¢/ Then the con-
sumer’s income becomes w; = s;((¢i* — T}) + d;) and the budget con-
straint ¢; + a; < wy. The rate of return on trees, however, must factor
in the tax payments for owners of trees. Hence,

Tt+1 + dt+1
Qt

A
Qi1 —
R =
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We need T; = g, = €,d;. So the asset pricing formula (with logarithmic
utility) becomes

C
¢ = 0B —— (g, — Tr1 + diy1)
Cit1

c
= 0Bi——(qi}y + (1 — ep41)der1)
Ct4+1

(1 —&y)d,

_ SR, T —E)a
t(l — €41)di1

(g4 + (1 = ep41)dis1)

> 1—¢.)d
- ZEJ#Q — erer)dpsr

Note that ¢, € (0, 1) implies that

1 )
do Et1_€t>z;5 =15

T

Hence, ¢F > ¢*.

This difference in price is purely an accounting exercise. In either
case, consumption is (1 — ¢;)d; as government expenditure “crowds
out” private consumption. For the lump sum tax, income is directly
adjusted by taxes. For the tax on trees, income has to be adjusted by
making trees cheaper.

17. LARGE ECONOMIES AND APPROXIMATE EQUILIBRIUM

17.1. The Shapley-Folkman theorem. Suppose a set of sheep and
goats are out to pasture on a field. If, for every set of four animals,
there is a (straight) fence separating the goats from the sheep, then
there is a fence that separates all the sheep from all the goats.

This bucolic theorem about separating sheep and goats is an example
of a “combinatorial” separation property. The next two results are
general combinatorial separation results. The first (which we are not
going to prove) is called Kirchberger’s theorem. The second is called
Radon’s theorem: it is very simple and highlights the main idea behind
these results.

Theorem 98. Kirchberger’s theorem] Let A and B be finite subsets of
R™. If, for any set C' of cardinality at most n +2, ANC and BNC
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can be strictly separated by a hyperplane, then A and B can be strictly
separated by a hyperplane.

Theorem 99 (Radon’s theorem). Let A C R™ be a finite set with
cardinality at least n + 2. Then A can be partitioned into Ay and As
such that

cvh(Ay) N coh(Ag) # 0

Proof. Suppose wlog that A has cardinality n+2 and let A = {aq, ..., a1}

Consider the set {a; — ag,...,an,+1 — ag}. Such a set cannot be lin-
early independent, so there exists A, ..., \,11, not all zero, for which
S Ni(a; —ag) = 0. Define \g = — Z?;Lll N, [={ie{0,...,n+1}:
Ai >0} and J = {i € {0,...,n+ 1} : \; < 0}. These two sets are

nonempty because not all )\ are zero, and Z”H A; = 0. Moreoever,
S A = 0 implies that >, N = — >0, Ay and 30 Ni(a; —ag) =
0 that >, ., Niai = — > e Nia.

NowletAlz{ai:2'6]01")\-:0}andAgz{ai:z'GJ}. Thus

a; € CVh(Al)mCVh(A2>.
iEZI Z jel .7 ZEZJ Z]G] ZEZJ Z]E] J

O

Theorem 100 (Caratheodory). Let A C R"™ and x € cvh(A). Then
there are ay,...,an41 € A such that © € coh({ay,...,an11}).

Theorem 101 (Shapley-Folkman). Let A;,..., Ax C R" and
x € cvh(Ay + ...+ Ak).

Then there is a; € coh(A;), i = 1,..., K, such that v = a; + ... + ak
and a; € A; for all but at most n values of i.

The next lemma and its use in proving these theorems is taken from
Bob Anderson’s lecture notes.

Lemma 102. Let Aq,...,Ax CR" and
x € cvh(Ar+ ...+ Ak).
Then

where a;; € A; for alli,5, N\ij >0, Zml Xij =1, and Zfil m; <n.
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Observe that Lemma 102 says that = ) a;, where a; € cvh(4;),
but it bounds the number of points in the support of the K convex
combinations (A; ;).

Proof of Caratheodory’s theorem. Let x € cvh(A). By Lemma 102
with K = 1 there is ag,a1,...,a, € A and Ao, \q,..., A\, with x =
> g Ajaj and m < n. O

Proof of the Shapley-Folkman theorem. Let a; ;, \;i; i =1,..., K, j =
1,...,m; be as in the statement of Lemma 102. m; is an integer. So
m; > 0 means that m; > 1. Thus, Zfil m; < n means that m; = 0
for all but at most n values of i € {1,..., K'}. In m; = 0 then )y = 1.

Thus ‘
Tr = Z CLZ‘7()+ Z Z/\Z-7jai7j.

i:m; =0 i:m;>1 j=0
N——
ECVh(Ai)

O

The proof of Lemma 102 relies on familiar ideas. A large number of
vectors in R™ cannot be linearly independent, so any linear combination
of a large number of vector can be simplified. In the lemma, we talk
about convex combinations, so the relevant concept is that of “affine
independence:” we translate the vectors a;; and work with the fact
that the collection {a;; —a;o:i=1,...,K,j=1,...,m;} cannot be
linearly independent when » . m; > n.

Proof. Let x € cvh(3", A;). Then there is A\; € (0,1) and z; € Y, 4;,
with 7 =0,...,m, such that = Z;ﬁ:o Ajx; and Zj A; = 1. Moreover,

for each j thereis a;; € A;, 1 =1,..., K, and Zfil a; ; = ;. Thus,

(31) Tr = Z Z )\i,jam

where m; = m and \;; = A; for all ¢,j. Now, we shall prove that
for each representation of x in the form of (31) with >, m; > n there
exists another representation of = in the form of (31) with a strictly
smaller value of > . m,.

Suppose then that ), m; > n. Consider the set of vectors
{aij —aip:1<i<Kand1l<j<m}.
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This subset of R™ has cardinality ), m; > n. Therefore, it is linearly
dependent.

Let 3;;, not all zero, be such that

K m;
0= > Biilai; — ai).
i=1 j=1
Then, for any t,
K m; K m;
T = Z Z i j@ij + tz Z Bijlai; — aip)
i=1 j=0 =1 j=1

K m; m;
= Z Z()\i,j +tBi5)ai; + (Nio — tz Bij)aio
=1 Lj=1 j=1

Let Aj;(t) = Aij + tBi; and Ajo(t) = Nip —t D7, Bij, and observe
that Z;n:zo )\;j (t) = Z;n:il(/\i,j + tﬁi,j) + /\i,O —1 Z;?’L:zl ﬂi,j = ]_, and that
)\:7](0) = )\i,j > 0.

Now note that the (3;; are not all zero, so that there must exist at
least one A7 ,(t) that is strictly monotone (increasing or decreasing) as
a linear function of ¢. Since > 7" Af;(t) = 1 for all ¢, there must in
fact exist (4,j) for which A7 ;(?) is strictly monotone decreasing: A; ;(t)
is a linear function of ¢, so there is ¢ for which A\j,(t) = 0. Finally,
A7 ;(0) > 0 for all (i,j) means that there exists t and some (7, j') for

which )\f,J/(t) =0 and A} ;(t) > 0 for all (4, 5).

Given such £, define now new coefficients (S\Zj)i{( jfom from )\;j(f)

by keeping only the ones that are strictly positive. This gives us
K . k

D i1 Ty < Dy M u

Finally, I want to state the following approximate version of Caratheodory
due to Sid Barman. Remarkably, this approximation does not depend
on n.

Theorem 103. Let © € cvh({x1,...,2x}) € R", ¢ > 0 and p an
integer with 2 < p < co. Let v = max{||zg||, : 1 < k < K}. Then
there is a vector x' that is a convex combination of at most
4py®
€

of the vectors x1,...,xx such that ||z — 2’|, < e.
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17.2. Approximate equilibrium. As a simple consequence of the
Shapley-Folkman theorem we obtain a result on the existence of ap-
proximate Walrasian equilibria. This says that, when preferences are
not necessarily convex, we can obtain an approximate equilibrium where
demand equals supply and “most” agents (when [ is large relative to
L) are optimizing.

Theorem 104. Let £ = (=;,w;)_, be an exchange economy with L
goods. Suppose that each preference >; is continuous and strictly mono-
tone, and that @ > 0. Then there exists p € RY and (z;)l_, € R
such that:

(1) p-a; <p-w; foralli.

( ) Zle Ty = Zz’lzl Wi .

2
(3) The property
T = pea > p-w;

holds for all but at most L consumers.

Proof. Under the assumptions we have made, the aggregate excess de-
mand correspondence of each consumer i, 27, is well defined. For each
p € RY,, z7(p) € R% is nonempty and compact, and p — z7(p) is
upper hemi-continuous. Moreover, p - (; = 0 for all (; € zf(p) (Walras’

Law). The sets z(p) are bounded below by —1||&|| .

Let 2* = ). zF be the aggregate excess demand correspondence of the
economy &. It follows from the standard argument that if p” — p # 0
with p; = 0 for some [, then

00 = lim inf{[|Gilo : G € 27 (")}

Thus, the assumptions needed for existence of a competitive equilib-
rium are satisfied by z*, with the exception of the convexity of the set

Z*(p).

The correspondence p — cvhz*(p) is obviously convex-valued. It turns
out that it continues to satisfy the properties mentioned above (I omit
the proof, which is not difficult), So, by the standard existence theorem
(in its correspondence form) the exists p* with 0 € cvh(z*(p*)).

By the Shapley-Folkman theorem, there exists (; € cvh(z/(p*)), ¢ =
1,...,1, with ¢; € zf(p*) for all but at most L values of i, such that
0=>",G. Define z} = (; + w;. d
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We could get a variation on this result by taking the agents who are
not optimizing and instead giving them a bundle in their demand cor-
respondences. If we can bound the difference between any point in the
demand correspondence of agent ¢, and in its convex hull, then we can
obtain a result on the existence of an approximate equilibrium where
all agents are optimizing, but where demand may not be exactly equal
to supply. There will instead be a “small” gap between supply and
demand. However, to prove such a result we need a lower bound on
prices. This is done, for example in a theorem due to (Hildenbrand
et al., 1973).%

Instead, I present a theorem due to Anderson et al. (1982). It estab-
lishes the existence of an approximate equilibrium under weak assump-
tions on preferences: not only avoiding convexity, but even monotonic-
ity. The equilibrium is approximate in the sense that excess demands
are bounded above. The main idea in this theorem is to work with an
unusual domain of prices, where prices are bounded below by 1/ V1,
and then bound the value of excess demand. Since prices cannot be too
low, an upper bound on the value of excess demand implies a bound
on (physical) excess demand. The focus on the value of excess demand
also means that we shall not require monotonicity of preferences, or
Walras Law.

Theorem 105. Let £ = (=;,w;)!_, be an exchange economy with L
goods. Suppose that each preference =; is continuous. There ezists
p € RE and (z;)l., € RIE such that

®p-T; < P-wi;
o y; —; x; implies that p-y; > p - w;; and
e Aggregate excess demand is bounded above in the following sense:

~i =

L 1
L+1
Z[Z(Izl —wi)|t < —— max{|lwi|j; : 1 < < T}
=1 =1 \/7

Proof. Let
1
M:{pGRi:—Igplgl,lzl,...,L}.

For each p € M, let 27 (p) C Rl be consumer i’s excess demand at
p. Note that z7(p) is a nonempty and compact set, but that it may
not be convex. Note that p — 2/(p) is upper hemicontinous. Let

2AStarr (1969), who introduced many of these ideas and where the first statement
of the Shapley-Folkman theorem appears.



102 ECHENIQUE

2* =31 2*(p). Let K C R* be a compact and convex set such that

(M) C K.
Define a correspondence ¢ : M x K — M x K by
¢(p, () = argmax{q - (: ¢ € M} x cvh(z*(q)).

The correspondence ¢ is in the hypotheses of Kakutani’s fixed point
theorem. Let (p, () be a fixed point of ¢, so (p,() € ¢(p, ().

The idea here is to calculate the value of excess demand at a fixed
point. That explains the choice of M. The bound on value will imply
a bound on physical quantities.

By the Shapley-Folkman theorem, since ¢ € cvh(zl 1 25(p)), there
exists (¢1,...,¢r) and C C {1,. [} with |C| = I — L such that

o (; € z(p) forallie C,
o (; € cvh(z(p)) for all i ¢ C' and

Choose (] € zf(p) for i ¢ C and let z; = w; + (/. Observe that
C{,z — Gy = 33;,; — (G F+wiy) < w;l

Therefore,

Zmax{g, Guas 0} < zx” o < V1w,

min{p,; : 1 <I <L} —

where the second inequality follows as .1 T S o and

prl<I<L}
p-x; < p-w;. The third inequality follows from the definition of M.

This implies that, for any ¢ € M,

¢ (G —¢) <D max{¢, — (i, 0} < LvVTmax{|Jwil|, : i ¢ C}.

i¢C i¢C 1=1

Note that p-¢; < 0 for all i. By definition of ¢, and since (p, () € &(p, (),
q-¢C<p-¢<0forany g € M. So we have that, for any ¢ € M,

¢ G+Y ) =q- quzg —G) < LV Tmax{||wi|ly : 1 <i < T},
i€C i¢C i¢C
<0
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Choose in particular ¢ € M such that ¢ = 1 if ¢ > 0 and ¢ = 1/V/T if
(; < 0. Then we have that

L
Z max{(,0} = Z qmax{(, 0}
=1 l

1
-2 Y6

1:(<0

1
< IVTmax{|lwll; : 1 <i < I} 4+ — w
(sl b L

1
< LVTmax{|jw;||; : 1 <i < I} 4+ —= max{||w;]|; : 1 < i < I}

VI

— (L + D)V max{||w]|; : 1 <4 < I}.

The first inequality follows from the bound on ¢-( we established above,
and the fact that if (; < 0 then —(; < @y, so

-3 G < el

1:;<0

The second inequality holds because ||w|; < Imax{[|w;|l; : 1 < i <
I}. O

The idea in this proof is that if (p,() is a fixed point of ¢, and if
we could show that ( = ). (; with ¢; € 2/(p) for all ¢, then p-¢ <0
(compliance with budget constraints) and a lower bound on p; provides
an upper bound on (.

17.3. Core convergence revisited. The Debreu-Scarf theorem shows
that core allocations of large replica economies converge to Walrasian
equilibrium allocations. Using the Shapley-Folkman theorem, it is pos-
sible to show a version of this result that does not need the machinery of
replica economies, and can also dispense with convexity of preferences.
The theorem, which is due to Anderson (1978), ensures the existence
of a price vector at which agents are on average close to minimizing
expenditure.?

Theorem 106. Let £ = (=;,w;)._, be an exchange economy with L
goods in which each preference »=; is monotonic. If x* is in the core of
E then here exists a price vector p € Ri, p > 0, such that

258ee also Dierker (1975).
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I
1 oM
f§1: (e — il < 5=

I
2M
Z inf{p - (y; —wi) : yi =i 27} < T
—1
where

M =Lmax{w;;: 1 <i<I[,1<I<L}

The second statement in the theorem deserves an explanation. It says
that if one were to make (on average) agents’ incomes a bit smaller,
then there would be no bundle affordable that would be preferred to the
agent’s consumption bundle in z*. For an exact Walrasian equilibrium,
note that we would have |inf{p- (y; —w;) : y; =; 27}| = 0. Incidentally,
the theorem does not explicitly say that demand equals supply but
note that z* is an allocation, so ) . xf = > . w;.

17.3.1. Proof of Theorem 106. Let 6 = max{||wi||lcc : 7 = 1,...,1}, so
M = L. Let
z2=—-L01=—-M1.

Let
B, ={y; — w; s y; = ;U {0} andB:ZBi

7
Note that B is a hybrid of the approaches we used for the second
welfare theorem and the Debreu-Scarf core convergence theorem. It is
an “aggregate” object in the sense that it adds up the translated upper
contour sets, but by including the null vector we can omit agents in
the sum and obtain an aggregate for any coalition of agents. Note also
that B; may not be convex even if preferences are convex.

Since x* is in the core, we have:

Lemma 107. BN (-R%Y,) =0.

We shall first prove that
cvh(B)N (z —RL,) = 0.

Suppose, towards a contradiction, that there exists b € cvh(B) and
2 <« 0 such that z 4+ 2/ = b. By the Shapley-Folkman theorem there is
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(b;) and I" € I with b= ).b;, b; € B; for all i € I" and b; € cvh(B,;)
forallie I'\I',and [I\ I'| < L. Then

iel’ ¢l ¢l

Now, b, € B; means that either b; = 0 or b; = y; — w; with y; >; 2.

Either way, b; > —w;. So for any b; € cvh(B;), b; > —w;. Therefore,
using the definition of §, we obtain that

=3 b <|I\TI'|61 < L1,
gl

Thus >, b < 24+ L1 =0

Define (b}) by setting b = b; for all ¢ € I’ and b = 0 for all i ¢ I'. Thus
Y>..bi€B,but Y b =3, b <0. A contradiction of Lemma 107.

iel’

Now, by the separating hyperplane theorem, cvh(B) N (z — RE,) =0
implies that there is p € R*, p # 0, such that

sup{p-Z: 2 < z} <inf{p-b:b e cvh(B)}

In fact, by standard arguments, p > 0; and, using a normalization, we
can take p to satisfy p-1 =1.2

By monotonicity, for all k£ > 1, zf +1(1/k) — w; € B;, so
p-(xf +1(1/k) —w;) > inf{p - B;}.
Hence
p- (] —w;) > inf{p- B;}.
Now, B; C B (as 0 € B; for all j # 4). This implies that
p- (a7 —wi) > inf{p- B}

> inf{p- B}
>sup{p-Z:z2< 2z}
:p'Z:_M7

where the last equality uses the normalization imposed on p.

Let S={iel:p:(zr; —w;) <0}. Then >, p- (2] —w;) = 0 implies
that

1 1 1 —2
7 > Ip-(wi—wi)| = 7 ZP'(%—W@')—F > p(wi—w) = T > pe(wi—wi).
( ¢S ies sh

26We have p > 0 because if p; < 0 then we may choose 2 < z to make p - 2
arbitrarily large. So p > 0, but we also know that p # 0.
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Lemma 108.

Zp _wz Z_M

€S

Proof. For all k, z; +1(1/k) —w; € B;. So ), o(x; +1(1/k) —w;) € B.
Then

Py (@] +1(1/k) —wi) = p-z=—M.
i€s
The result follows as k is arbitrary. 0

By Lemma 108,

%le(xz— ZP §¥

€S

Now lets turn to the issue of expenditure minimization. Let

1

1 . *
T S

i=1

Let L; = {y; — w; : y; >=; x} }. By monotonicity, p- (xf + 1(1/k) —w;) €
p- L; for all k. So p- (xf —w;) > infp- L;. Note that if ¢ € S then
0>p-(xf —w;) >p-L;. Soinfp- L; =infp - B;. Hence

A:_lemfp'Bi+%Z|infp-Li]

€S i¢S
:—mep B, + - Z{lnfp B; + |infp - L;|},
ngS

where the second equality results from adding and subtracting 3 7 Zi¢ ginf p-
B;.

For i ¢ S there are two possibilities. The first is that infp - L; > 0.
Then inf p - B; = 0 and thus

infp- B; + |infp- L;| =infp- L; <p- (] —w;)

The second is that infp - L; < 0, so that infp - B; = infp - L; and
therefore

infp- B;+ |infp- L;| =infp - B; —infp- L, =0 <p- (] — w;),

where the last inequality follows from i ¢ S.
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As a consequence we obtain that

—1 . 1 .

Now, > infp- B; =infp- B > p-2z= —M. So that
—1 M

(2

On the other hand, > ,.op - (27 —wi) = = > ;g (¥7 —wi) < M, by
Lemma 108. Thus A < M/I + M/I.
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