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Let G = ({1, 2}, (S1, S2), (u1, u2)) be a finite two-player normal-form
game. We say that G is a zero-sum game if u1 + u2 = 0.

We may describe the game using the payoff function u = u1, which we
interpret as a payment from player 2 to player 1.

Minimax Theorem. There is a strategy profile (σ∗
1, σ

∗
2) such that

max
σ1∈∆(S1)

min
σ2∈∆(S2)

u(σ1, σ2) = u(σ∗
1, σ

∗
2) = min

σ2∈∆(S2)
max

σ1∈∆(S1)
u(σ1, σ2).

The number v = u(σ∗
1, σ

∗
2) is the value of the game.

Observe that, if the profile (σ∗
1, σ

∗
2) is as in the theorem, then

u(σ1, σ
∗
2) ≤ u(σ∗

1, σ
∗
2) ≤ u(σ∗

1, σ2)

for all σ1 ∈ ∆(S1) and σ2 ∈ ∆(S2). This means that (σ∗
1, σ

∗
2) is a

saddle point of u. In particular, (σ∗
1, σ

∗
2) is a Nash equilibrium of G.

Proof of the theorem.

Observe first that

(1) max
σ1∈∆(S1)

min
σ2∈∆(S2)

u(σ1, σ2) ≤ min
σ2∈∆(S2)

max
σ1∈∆(S1)

u(σ1, σ2)

which we may describe as “moving second confers an advantage.” To
show inequality (1), note that for any σ1 ∈ ∆(S1) and σ2 ∈ ∆(S2) we
have

u(σ1, σ2) ≤ max
σ′
1∈∆(S1)

u(σ′
1, σ2).

Since this inequality holds for all σ2, we obtain that

min
σ2∈∆(S2)

u(σ1, σ2) ≤ min
σ2∈∆(S2)

max
σ′
1∈∆(S1)

u(σ′
1, σ2).

And since this inequality holds for all σ1, we obtain inequality (1).

I’m grateful to SangMok Lee for comments on this note.
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The main point of the Minimax Theorem is that inequality (1) is ac-
tually an equality — which we now show by establishing the reverse
inequality.

Let ni = |Si| and write, for each fixed σ2 ∈ ∆(S2), the function s1 7→
u(s1, σ2) as a vector u⃗(σ2) ∈ Rn1 .1

Let
C = {u⃗(σ2) : σ2 ∈ ∆(S2)} ⊆ Rn1 ,

and observe that C is a compact and convex set.

Define the function m : Rn1 → R by m(x) = max{xi : 1 ≤ i ≤ n1}
and define

v = inf{m(x) : x ∈ C} = inf{max{u(s1, σ2) : s1 ∈ S1} : σ2 ∈ ∆(S2)}.

Because C is compact, there exists σ∗
2 ∈ ∆(S2) for which

v = m(u⃗(σ∗
2)) = max{u(s1, σ∗

2) : s1 ∈ S1}

Note that u(s1, σ
∗
2) ≤ v for all s1 ∈ S1. Hence, for any σ1 ∈ ∆(S1),

(2) u(σ1, σ
∗
2) = σ1 · u⃗(σ∗

2) ≤ v.

Consider the set A = {x ∈ Rn1 : x ≪ (v, . . . , v)}. Then by definition
of v, A∩ C = ∅. The set A is convex so there exists, by the separating
hyperplane theorem, a vector p ∈ Rn1 , p ̸= 0, so that

p · x ≤ p · u⃗(σ2)

for all x ∈ A and σ2 ∈ ∆(S2).

Now, the set A contains vectors with arbitrarily small entries in any
dimension. So we must in fact have p ≥ 0. Since p ̸= 0 we conclude
that p > 0. Thus

σ∗
1 =

1∑n1

i=1 pi
p ∈ ∆(S1)

is well-defined because
∑n1

i=1 pi > 0.

Given that σ∗
1 is a positive scalar multiple of p, we have that

σ∗
1 · x ≤ σ∗

1 · u⃗(σ2) = u(σ∗
1, σ2)

for all x ∈ A and σ2 ∈ ∆(S2).

1The notation here should remind you of our proof of the domination theorem.
Other aspects of the proof will also remind you of the proof of the domination
theorem.
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Note that (v, . . . , v) − ε(1, . . . , 1) ∈ A for any ε > 0. Hence, for any
σ2 ∈ ∆(S2),

σ∗
1 · [(v, . . . , v)− ε(1, . . . , 1)] ≤ σ∗

1 · u⃗(σ2).

Since this inequality holds for arbitrarily small ε, we conclude that

(3) v = σ∗
1 · (v, . . . , v) ≤ σ∗

1 · u⃗(σ2).

If we use σ1 = σ∗
1 in Equation (2) we see that u(σ∗

1, σ
∗
2) ≤ v, while

σ2 = σ∗
2 in Equation (3) yields v ≤ u(σ∗

1, σ
∗
2).

Hence, v = u(σ∗
1, σ

∗
2), and

u(σ1, σ
∗
2) ≤ v = u(σ∗

1, σ
∗
2) ≤ u(σ∗

1, σ2)

for any σ1 ∈ ∆(S1) and σ2 ∈ ∆(S2). The first inequality is due to
Equation (2) and the second to Equation (3).

Finally, we claim that

max
σ1∈∆(S1)

min
σ2∈∆(S2)

u(σ1, σ2) ≥ min
σ2∈∆(S2)

max
σ1∈∆(S1)

u(σ1, σ2).

Indeed,

max
σ1∈∆(S1)

min
σ2∈∆(S2)

u(σ1, σ2) ≥ min
σ2∈∆(S2)

u(σ∗
1, σ2) = u(σ∗

1, σ
∗
2).

And

min
σ2∈∆(S2)

max
σ1∈∆(S1)

u(σ1, σ2) ≤ max
σ1∈∆(S1)

u(σ1, σ
∗
2) = u(σ∗

1, σ
∗
2).

□

Wait, what happened?

The key idea in this proof is the work done by σ∗
1. We started from

looking at the function m, which provides a worst-case scenario for
player 2 for each σ2. You could think of m by imagining that player 1
moves second, after a choice of σ2 by player 2 that fixes a vector u⃗(σ2).
Then σ∗

2 is optimal for 2 when they imagine that 1 moves after them.

When we get the σ∗
1 vector from the SHT, we can substitute the “player

1 moves second” idea implicit in function m with the expected payoff
σ2 7→ σ∗

1 · u⃗(σ2). The level curves of this expected payoff function are
the parallel lines to the hyperplane that separate A and C. And the
function is minimized by choosing σ2 = σ∗

2, even when 1’s strategy is
fixed at σ∗

1 before 2’s choice of strategy. In other words, if “player 1
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moves first” by setting σ1 = σ∗
1 then it is still optimal for player 2 to

choose σ2 = σ∗
2.

Examples

Example: Matching Pennies

H T
H 1 −1
T −1 1

The next figure represents C as the blue set: a blue line segment in
this case, obtained as the convex combinations of (1,−1) and (−1, 1).
We see that v = 0 and the separating hyperplane will be parallel to C
(actually it will contain C).

u(L, σ2)

u(H,σ2)

u⃗(L)

u⃗(H)

A

u(L, σ2)

u(H,σ2)

u⃗(L)

u⃗(H)

Example: Rock-Paper-Scissors

R P S
R 0 −1 1
P 1 0 −1
S −1 1 0

I’m not going to try to draw this in R3! So I’ll instead use the follow-
ing game in which P1 only has two strategies. Note that P1 is at a
disadvantage here because she cannot play Scissors.

R P S
R 0 −1 1
P 1 0 −1
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Here the blue set is C and the pink set is A. It’s easy to see that
v = −1/3 because if we take a convex combination of the payoffs from
when P2 plays P and S (clearly P2 is not going to play R, which can
only win against the strategy for P1 that we eliminated) we get

a(1,−1) + (1− a)(−1, 0) = (a− (1− a),−a) = (2a− 1,−a)

So if we set 2a− 1 = a then we get a = 1/3 and therefore

(1/3)(1,−1) + 2/3(−1, 0) = (1/3− 2/3,−1/3) = −(1/3, 1/3) = (v, v).

Player 1’s disadvantage is reflected in the game’s value being negative.

u(R, σ2)

u(P, σ2)

u⃗(R)

u⃗(P )

u⃗(S)

u⃗(R)

u⃗(P )

u⃗(S)

v

A

C

p

Remarks

I wrote this note while teaching graduate students at Berkeley and Cal-
tech. The Minimax theorem seems magical. Most popular books on
game theory for economists don’t seem to include a proof of the Min-
imax Theorem based on the separating hyperplane theorem. Instead,
they present it as a consequence of the existence of Nash equilibrium.
This hides, in my view, the main ideas behind its magic. It’s also nice
for students to see yet another argument using the separation theorem,
which is so useful, in so many different contexts, in economics.

Finally, I should mention that the Minimax Theorem is due to John
Von Neumann: see [1] for an interesting discussion of the history behind
the theorem.

1. Application: Expert Testing

Let Ω be a finite set of states of the world. For example,

Ω = {rain, shine}n
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could be a record of whether it rains or not in the next n days. Today
we are uncertain about the weather in the next n days, and we may be
interested in forecasting the weather.

Let ∆(Ω) be the set of all possible probabilistic theories about the
state of the world. In the weather example, a theory µ ∈ ∆(Ω) could
describe the probabilistic law that governs whether it rains or not in
the next n days.

Nature chooses a “true” µ ∈ ∆(Ω) from which a state of the world
will be drawn. Think of µ as the data generating process (dgp). Then
theories are simply different possible dgps.

A putatitve expert claims to know the true data generating process.
The expert may actually know the correct µ chosen by Nature, or they
may be completely ignorant. A charlatan.

An agent, or the public, proposes a test to determine whether the
expert knows what they claim. The test consists of a function T :
∆(Ω) → 2Ω. If the expert claims that the true dgp is ν, and the
realized state of the world ω ∈ Ω is in T (ν), then the expert passes the
test. Otherwise the expert fails.

Let ε > 0. A test is ε-accurate if, when the expert knows the true
dgp, they are guaranteed to pass the test with probability at least 1−ε.
Formally, this happens when ν(T (ν)) ≥ 1− ε for all ν ∈ ∆(Ω).

Theorem 1. Any ε-accurate test can be passed with probability at least
1 − ε by an expert who does not know the dgp at all, and chooses
randomly which theory to report. In symbols: For any ε-accurate test
T , there exists ξ ∈ ∆(∆(Ω)) so that for every true dgp µ,

ξ({ν ∈ ∆(Ω) : µ{ω ∈ Ω : ω ∈ (T (ν)}}) ≥ 1− ε.

Proof. Fix an ε-accurate test T . Since 2Ω is a finite set, there is a finite
set V ⊆ ∆(Ω) with T (V ) = T (∆(Ω)), meaning that for any ν ∈ ∆(Ω)
there is ν ′ ∈ V with T (ν ′) = T (ν).

Consider then a zero-sum game between Player 1, the expert, choosing
ν ∈ V while Player 2, “Nature,” chooses ω ∈ Ω. Player 2 pays Player 1
one dollar (or one “util”) if ω lies in T (ν). The payment from 2 to 1 is
then 1T (ν)(ω). If 1 chooses a mixed strategy ξ ∈ ∆(Y ) and 2 µ ∈ ∆(Ω)
then the expected payment is∫

Y

∫
Ω

1T (ν)(ω) dµ dξ =

∫
Y

µ(T (ν)) dξ.
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By the minimax theorem, the exists ξ∗ ∈ ∆(Y ) (and hence, ξ∗ ∈
∆(∆(Ω))) and so that

min
µ∈∆(Ω)

∫
Y

µ(T (ν)) dξ∗ = max
ξ∈∆(Y )

min
µ∈∆(Ω)

∫
Y

µ(T (ν)) dξ = min
µ∈∆(Ω)

max
ξ∈∆(Y )

∫
Y

µ(T (ν)) dξ,

But for any µ, Player 2 can choose ν ∈ V with T (ν) = T (µ), and hence,
by the assumption of the test being ε-accurate, µ(T (ν)) = µ(T (ν)) ≥
1− ε. This implies that

min
µ∈∆(Ω)

max
ξ∈∆(Y )

∫
Y

µ(T (ν)) dξ ≥ 1− ε.

Thus,

min
µ∈∆(Ω)

∫
Y

µ(T (ν)) dξ∗ = min
µ∈∆(Ω)

max
ξ∈∆(Y )

∫
Y

µ(T (ν)) dξ ≥ 1− ε.

Meaning that, when Player 1 (the expert) chooses mixed strategy ξ∗,
then for any dgp µ ∈ ∆(Ω) that Player 2 (nature) may choose, the
probability of 1 passing the test is at least 1− ε. □

Note: This proof is taken from [2]. I learned about it from Eran
Shmaya.
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