THE MINIMAX THEOREM

FEDERICO ECHENIQUE
ECON 201B - UC BERKELEY

Let $G=\left(\{1,2\},\left(S_{1}, S_{2}\right),\left(u_{1}, u_{2}\right)\right)$ be a finite two-player normal-form game. We say that G is a zero-sum game if $u_{1}+u_{2}=0$.

We may describe the game using the payoff function $u=u_{1}$, which we interpret as a payment from player 2 to player 1.

Minimax Theorem. There is a strategy profile $\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right)$ such that

$$
\max _{\sigma_{1} \in \Delta\left(S_{1}\right)} \min _{\sigma_{2} \in \Delta\left(S_{2}\right)} u\left(\sigma_{1}, \sigma_{2}\right)=u\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right)=\min _{\sigma_{2} \in \Delta\left(S_{2}\right)} \max _{\sigma_{1} \in \Delta\left(S_{1}\right)} u\left(\sigma_{1}, \sigma_{2}\right) .
$$

The number $v=u\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right)$ is the value of the game.
Observe that, if the profile $\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right)$ is as in the theorem, then

$$
u\left(\sigma_{1}, \sigma_{2}^{*}\right) \leq u\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right) \leq u\left(\sigma_{1}^{*}, \sigma_{2}\right)
$$

for all $\sigma_{1} \in \Delta\left(S_{1}\right)$ and $\sigma_{2} \in \Delta\left(S_{2}\right)$. This means that $\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right)$ is a saddle point of u. In particular, $\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right)$ is a Nash equilibrium of G.

Proof of the theorem.

Observe first that

$$
\begin{equation*}
\max _{\sigma_{1} \in \Delta\left(S_{1}\right)} \min _{\sigma_{2} \in \Delta\left(S_{2}\right)} u\left(\sigma_{1}, \sigma_{2}\right) \leq \min _{\sigma_{2} \in \Delta\left(S_{2}\right)} \max _{\sigma_{1} \in \Delta\left(S_{1}\right)} u\left(\sigma_{1}, \sigma_{2}\right) \tag{1}
\end{equation*}
$$

which we may describe as "moving second confers an advantage." To show inequality (1), note that for any $\sigma_{1} \in \Delta\left(S_{1}\right)$ and $\sigma_{2} \in \Delta\left(S_{2}\right)$ we have

$$
u\left(\sigma_{1}, \sigma_{2}\right) \leq \max _{\sigma_{1}^{\prime} \in \Delta\left(S_{1}\right)} u\left(\sigma_{1}^{\prime}, \sigma_{2}\right)
$$

Since this inequality holds for all σ_{2}, we obtain that

$$
\min _{\sigma_{2} \in \Delta\left(S_{2}\right)} u\left(\sigma_{1}, \sigma_{2}\right) \leq \min _{\sigma_{2} \in \Delta\left(S_{2}\right)} \max _{\sigma_{1}^{\prime} \in \Delta\left(S_{1}\right)} u\left(\sigma_{1}^{\prime}, \sigma_{2}\right) .
$$

And since this inequality holds for all σ_{1}, we obtain inequality (1).

The main point of the Minimax Theorem is that inequality (1) is actually an equality - which we now show by establishing the reverse inequality.

Let $n_{i}=\left|S_{i}\right|$ and write, for each fixed $\sigma_{2} \in \Delta\left(S_{2}\right)$, the function $s_{1} \mapsto$ $u\left(s_{1}, \sigma_{2}\right)$ as a vector $\vec{u}\left(\sigma_{2}\right) \in \mathbf{R}^{n_{1}} .{ }^{1}$

Let

$$
\mathcal{C}=\left\{\vec{u}\left(\sigma_{2}\right): \sigma_{2} \in \Delta\left(S_{2}\right)\right\} \subseteq \mathbf{R}^{n_{1}},
$$

and observe that \mathcal{C} is a compact and convex set.
Define the function $m: \mathbf{R}^{n_{1}} \rightarrow \mathbf{R}$ by $m(x)=\max \left\{x_{i}: 1 \leq i \leq n_{1}\right\}$ and define

$$
v=\inf \{m(x): x \in \mathcal{C}\}=\inf \left\{\max \left\{u\left(s_{1}, \sigma_{2}\right): s_{1} \in S_{1}\right\}: \sigma_{2} \in \Delta\left(S_{2}\right)\right\}
$$

Because \mathcal{C} is compact, there exists $\sigma_{2}^{*} \in \Delta\left(S_{2}\right)$ for which

$$
v=m\left(\vec{u}\left(\sigma_{2}^{*}\right)\right)=\max \left\{u\left(s_{1}, \sigma_{2}^{*}\right): s_{1} \in S_{1}\right\}
$$

Note that $u\left(s_{1}, \sigma_{2}^{*}\right) \leq v$ for all $s_{1} \in S_{1}$. Hence, for any $\sigma_{1} \in \Delta\left(S_{1}\right)$,

$$
\begin{equation*}
u\left(\sigma_{1}, \sigma_{2}^{*}\right)=\sigma_{1} \cdot \vec{u}\left(\sigma_{2}^{*}\right) \leq v \tag{2}
\end{equation*}
$$

Consider the set $\mathcal{A}=\left\{x \in \mathbf{R}^{n_{1}}: x \ll(v, \ldots, v)\right\}$. Then by definition of $v, \mathcal{A} \cap \mathcal{C}=\emptyset$. The set A is convex so there exists, by the separating hyperplane theorem, a vector $p \in \mathbf{R}^{n_{1}}, p \neq 0$, so that

$$
p \cdot x \leq p \cdot \vec{u}\left(\sigma_{2}\right)
$$

for all $x \in \mathcal{A}$ and $\sigma_{2} \in \Delta\left(S_{2}\right)$.
Now, the set \mathcal{A} contains vectors with arbitrarily small entries in any dimension. So we must in fact have $p \geq 0$. Since $p \neq 0$ we conclude that $p>0$. Thus

$$
\sigma_{1}^{*}=\frac{1}{\sum_{i=1}^{n_{1}} p_{i}} p \in \Delta\left(S_{1}\right)
$$

is well-defined because $\sum_{i=1}^{n_{1}} p_{i}>0$.
Given that σ_{1}^{*} is a positive scalar multiple of p, we have that

$$
\sigma_{1}^{*} \cdot x \leq \sigma_{1}^{*} \cdot \vec{u}\left(\sigma_{2}\right)=u\left(\sigma_{1}^{*}, \sigma_{2}\right)
$$

for all $x \in \mathcal{A}$ and $\sigma_{2} \in \Delta\left(S_{2}\right)$.

[^0]Note that $(v, \ldots, v)-\varepsilon(1, \ldots, 1) \in \mathcal{A}$ for any $\varepsilon>0$. Hence, for any $\sigma_{2} \in \Delta\left(S_{2}\right)$,

$$
\sigma_{1}^{*} \cdot[(v, \ldots, v)-\varepsilon(1, \ldots, 1)] \leq \sigma_{1}^{*} \cdot \vec{u}\left(\sigma_{2}\right)
$$

Since this inequality holds for arbitrarily small ε, we conclude that

$$
\begin{equation*}
v=\sigma_{1}^{*} \cdot(v, \ldots, v) \leq \sigma_{1}^{*} \cdot \vec{u}\left(\sigma_{2}\right) \tag{3}
\end{equation*}
$$

If we use $\sigma_{1}=\sigma_{1}^{*}$ in Equation (2) we see that $u\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right) \leq v$, while $\sigma_{2}=\sigma_{2}^{*}$ in Equation (3) yields $v \leq u\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right)$.

Hence, $v=u\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right)$, and

$$
u\left(\sigma_{1}, \sigma_{2}^{*}\right) \leq v=u\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right) \leq u\left(\sigma_{1}^{*}, \sigma_{2}\right)
$$

for any $\sigma_{1} \in \Delta\left(S_{1}\right)$ and $\sigma_{2} \in \Delta\left(S_{2}\right)$. The first inequality is due to Equation (2) and the second to Equation (3).

Finally, we claim that

$$
\max _{\sigma_{1} \in \Delta\left(S_{1}\right)} \min _{\sigma_{2} \in \Delta\left(S_{2}\right)} u\left(\sigma_{1}, \sigma_{2}\right) \geq \min _{\sigma_{2} \in \Delta\left(S_{2}\right)} \max _{\sigma_{1} \in \Delta\left(S_{1}\right)} u\left(\sigma_{1}, \sigma_{2}\right) .
$$

Indeed,

$$
\max _{\sigma_{1} \in \Delta\left(S_{1}\right)} \min _{\sigma_{2} \in \Delta\left(S_{2}\right)} u\left(\sigma_{1}, \sigma_{2}\right) \geq \min _{\sigma_{2} \in \Delta\left(S_{2}\right)} u\left(\sigma_{1}^{*}, \sigma_{2}\right)=u\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right) .
$$

And

$$
\min _{\sigma_{2} \in \Delta\left(S_{2}\right)} \max _{\sigma_{1} \in \Delta\left(S_{1}\right)} u\left(\sigma_{1}, \sigma_{2}\right) \leq \max _{\sigma_{1} \in \Delta\left(S_{1}\right)} u\left(\sigma_{1}, \sigma_{2}^{*}\right)=u\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right) .
$$

Wait, What happened?

The key idea in this proof is the work done by σ_{1}^{*}. We started from looking at the function m, which provides a worst-case scenario for player 2 for each σ_{2}. You could think of m by imagining that player 1 moves second, after a choice of σ_{2} by player 2 that fixes a vector $\vec{u}\left(\sigma_{2}\right)$. Then σ_{2}^{*} is optimal for 2 when they imagine that 1 moves after them.

When we get the σ_{1}^{*} vector from the SHT, we can substitute the "player 1 moves second" idea implicit in function m with the expected payoff $\sigma_{2} \mapsto \sigma_{1}^{*} \cdot \vec{u}\left(\sigma_{2}\right)$. The level curves of this expected payoff function are the parallel lines to the hyperplane that separate \mathcal{A} and \mathcal{C}. And the function is minimized by choosing $\sigma_{2}=\sigma_{2}^{*}$, even when 1's strategy is fixed at σ_{1}^{*} before 2's choice of strategy. In other words, if "player 1
moves first" by setting $\sigma_{1}=\sigma_{1}^{*}$ then it is still optimal for player 2 to choose $\sigma_{2}=\sigma_{2}^{*}$.

Examples

Example: Matching Pennies

	H	T
	1	-1
		-1

The next figure represents \mathcal{C} as the blue set: a blue line segment in this case, obtained as the convex combinations of $(1,-1)$ and $(-1,1)$. We see that $v=0$ and the separating hyperplane will be parallel to \mathcal{C} (actually it will contain \mathcal{C}).

Example: Rock-Paper-Scissors

	R		P
S			
R	0	-1	1
P	1	0	-1
S	-1	1	0

I'm not going to try to draw this in \mathbf{R}^{3} ! So I'll instead use the following game in which P1 only has two strategies. Note that P1 is at a disadvantage here because she cannot play Scissors.

	R	P	S
R	0	-1	1
	1	0	-1

Here the blue set is \mathcal{C} and the pink set is \mathcal{A}. It's easy to see that $v=-1 / 3$ because if we take a convex combination of the payoffs from when P2 plays P and S (clearly P2 is not going to play R, which can only win against the strategy for P1 that we eliminated) we get

$$
a(1,-1)+(1-a)(-1,0)=(a-(1-a),-a)=(2 a-1,-a)
$$

So if we set $2 a-1=a$ then we get $a=1 / 3$ and therefore $(1 / 3)(1,-1)+2 / 3(-1,0)=(1 / 3-2 / 3,-1 / 3)=-(1 / 3,1 / 3)=(v, v)$.
Player 1's disadvantage is reflected in the game's value being negative.

REmarks

I wrote this note while teaching graduate students at Berkeley and Caltech. The Minimax theorem seems magical. Most popular books on game theory for economists don't seem to include a proof of the Minimax Theorem based on the separating hyperplane theorem, which I think provides the most transparent reasoning behind its magic. I also find it useful for first-year graduate students to see yet another argument using the separation theorem, which is used in so many different contexts in economics.

Finally, I should mention that the Minimax Theorem is due to John Von Neumann: see [1] for an interesting discussion of the history behind the theorem.

References

[1] Tinne Hoff Kjeldsen. John von neumann's conception of the minimax theorem: A journey through different mathematical contexts. Archive for history of exact sciences, 56(1):39-68, 2001.

[^0]: ${ }^{1}$ The notation here should remind you of our proof of the domination theorem. Other aspects of the proof will also remind you of the proof of the domination theorem.

