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Let G = ({1, 2}, (S1, S2), (u1, u2)) be a finite two-player normal-form
game. We say that G is a zero-sum game if u1 + u2 = 0.

We may describe the game using the payoff function u = u1, which we
interpret as a payment from player 2 to player 1.

Minimax Theorem. There is a strategy profile (σ∗
1, σ

∗
2) such that

max
σ1∈∆(S1)

min
σ2∈∆(S2)

u(σ1, σ2) = u(σ∗
1, σ

∗
2) = min

σ2∈∆(S2)
max

σ1∈∆(S1)
u(σ1, σ2).

The number v = u(σ∗
1, σ

∗
2) is the value of the game.

Observe that, if the profile (σ∗
1, σ

∗
2) is as in the theorem, then

u(σ1, σ
∗
2) ≤ u(σ∗

1, σ
∗
2) ≤ u(σ∗

1, σ2)

for all σ1 ∈ ∆(S1) and σ2 ∈ ∆(S2). This means that (σ∗
1, σ

∗
2) is a

saddle point of u. In particular, (σ∗
1, σ

∗
2) is a Nash equilibrium of G.

Proof of the theorem.

Observe first that

(1) max
σ1∈∆(S1)

min
σ2∈∆(S2)

u(σ1, σ2) ≤ min
σ2∈∆(S2)

max
σ1∈∆(S1)

u(σ1, σ2)

which we may describe as “moving second confers an advantage.” To
show inequality (1), note that for any σ1 ∈ ∆(S1) and σ2 ∈ ∆(S2) we
have

u(σ1, σ2) ≤ max
σ′
1∈∆(S1)

u(σ′
1, σ2).

Since this inequality holds for all σ2, we obtain that

min
σ2∈∆(S2)

u(σ1, σ2) ≤ min
σ2∈∆(S2)

max
σ′
1∈∆(S1)

u(σ′
1, σ2).

And since this inequality holds for all σ1, we obtain inequality (1).
1
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The main point of the Minimax Theorem is that inequality (1) is ac-
tually an equality — which we now show by establishing the reverse
inequality.

Let ni = |Si| and write, for each fixed σ2 ∈ ∆(S2), the function s1 7→
u(s1, σ2) as a vector u⃗(σ2) ∈ Rn1 .1

Let
C = {u⃗(σ2) : σ2 ∈ ∆(S2)} ⊆ Rn1 ,

and observe that C is a compact and convex set.

Define the function m : Rn1 → R by m(x) = max{xi : 1 ≤ i ≤ n1}
and define

v = inf{m(x) : x ∈ C} = inf{max{u(s1, σ2) : s1 ∈ S1} : σ2 ∈ ∆(S2)}.

Because C is compact, there exists σ∗
2 ∈ ∆(S2) for which

v = m(u⃗(σ∗
2)) = max{u(s1, σ∗

2) : s1 ∈ S1}

Note that u(s1, σ
∗
2) ≤ v for all s1 ∈ S1. Hence, for any σ1 ∈ ∆(S1),

(2) u(σ1, σ
∗
2) = σ1 · u⃗(σ∗

2) ≤ v.

Consider the set A = {x ∈ Rn1 : x ≪ (v, . . . , v)}. Then by definition
of v, A∩ C = ∅. The set A is convex so there exists, by the separating
hyperplane theorem, a vector p ∈ Rn1 , p ̸= 0, so that

p · x ≤ p · u⃗(σ2)

for all x ∈ A and σ2 ∈ ∆(S2).

Now, the set A contains vectors with arbitrarily small entries in any
dimension. So we must in fact have p ≥ 0. Since p ̸= 0 we conclude
that p > 0. Thus

σ∗
1 =

1∑n1

i=1 pi
p ∈ ∆(S1)

is well-defined because
∑n1

i=1 pi > 0.

Given that σ∗
1 is a positive scalar multiple of p, we have that

σ∗
1 · x ≤ σ∗

1 · u⃗(σ2) = u(σ∗
1, σ2)

for all x ∈ A and σ2 ∈ ∆(S2).

1The notation here should remind you of our proof of the domination theorem.
Other aspects of the proof will also remind you of the proof of the domination
theorem.
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Note that (v, . . . , v) − ε(1, . . . , 1) ∈ A for any ε > 0. Hence, for any
σ2 ∈ ∆(S2),

σ∗
1 · [(v, . . . , v)− ε(1, . . . , 1)] ≤ σ∗

1 · u⃗(σ2).

Since this inequality holds for arbitrarily small ε, we conclude that

(3) v = σ∗
1 · (v, . . . , v) ≤ σ∗

1 · u⃗(σ2).

If we use σ1 = σ∗
1 in Equation (2) we see that u(σ∗

1, σ
∗
2) ≤ v, while

σ2 = σ∗
2 in Equation (3) yields v ≤ u(σ∗

1, σ
∗
2).

Hence, v = u(σ∗
1, σ

∗
2), and

u(σ1, σ
∗
2) ≤ v = u(σ∗

1, σ
∗
2) ≤ u(σ∗

1, σ2)

for any σ1 ∈ ∆(S1) and σ2 ∈ ∆(S2). The first inequality is due to
Equation (2) and the second to Equation (3).

Finally, we claim that

max
σ1∈∆(S1)

min
σ2∈∆(S2)

u(σ1, σ2) ≥ min
σ2∈∆(S2)

max
σ1∈∆(S1)

u(σ1, σ2).

Indeed,

max
σ1∈∆(S1)

min
σ2∈∆(S2)

u(σ1, σ2) ≥ min
σ2∈∆(S2)

u(σ∗
1, σ2) = u(σ∗

1, σ
∗
2).

And

min
σ2∈∆(S2)

max
σ1∈∆(S1)

u(σ1, σ2) ≤ max
σ1∈∆(S1)

u(σ1, σ
∗
2) = u(σ∗

1, σ
∗
2).

□

Wait, what happened?

The key idea in this proof is the work done by σ∗
1. We started from

looking at the function m, which provides a worst-case scenario for
player 2 for each σ2. You could think of m by imagining that player 1
moves second, after a choice of σ2 by player 2 that fixes a vector u⃗(σ2).
Then σ∗

2 is optimal for 2 when they imagine that 1 moves after them.

When we get the σ∗
1 vector from the SHT, we can substitute the “player

1 moves second” idea implicit in function m with the expected payoff
σ2 7→ σ∗

1 · u⃗(σ2). The level curves of this expected payoff function are
the parallel lines to the hyperplane that separate A and C. And the
function is minimized by choosing σ2 = σ∗

2, even when 1’s strategy is
fixed at σ∗

1 before 2’s choice of strategy. In other words, if “player 1
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moves first” by setting σ1 = σ∗
1 then it is still optimal for player 2 to

choose σ2 = σ∗
2.

Examples

Example: Matching Pennies

H T
H 1 −1
T −1 1

The next figure represents C as the blue set: a blue line segment in
this case, obtained as the convex combinations of (1,−1) and (−1, 1).
We see that v = 0 and the separating hyperplane will be parallel to C
(actually it will contain C).

u(L, σ2)

u(H,σ2)

u⃗(L)

u⃗(H)

A

u(L, σ2)

u(H,σ2)

u⃗(L)

u⃗(H)

Example: Rock-Paper-Scissors

R P S
R 0 −1 1
P 1 0 −1
S −1 1 0

I’m not going to try to draw this in R3! So I’ll instead use the follow-
ing game in which P1 only has two strategies. Note that P1 is at a
disadvantage here because she cannot play Scissors.

R P S
R 0 −1 1
P 1 0 −1
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Here the blue set is C and the pink set is A. It’s easy to see that
v = −1/3 because if we take a convex combination of the payoffs from
when P2 plays P and S (clearly P2 is not going to play R, which can
only win against the strategy for P1 that we eliminated) we get

a(1,−1) + (1− a)(−1, 0) = (a− (1− a),−a) = (2a− 1,−a)

So if we set 2a− 1 = a then we get a = 1/3 and therefore

(1/3)(1,−1) + 2/3(−1, 0) = (1/3− 2/3,−1/3) = −(1/3, 1/3) = (v, v).

Player 1’s disadvantage is reflected in the game’s value being negative.

u(R, σ2)

u(P, σ2)

u⃗(R)

u⃗(P )

u⃗(S)

u⃗(R)

u⃗(P )

u⃗(S)

v

A

C

p

Remarks

I wrote this note while teaching graduate students at Berkeley and Cal-
tech. The Minimax theorem seems magical. Most popular books on
game theory for economists don’t seem to include a proof of the Min-
imax Theorem based on the separating hyperplane theorem, which I
think provides the most transparent reasoning behind its magic. I also
find it useful for first-year graduate students to see yet another argu-
ment using the separation theorem, which is used in so many different
contexts in economics.

Finally, I should mention that the Minimax Theorem is due to John
Von Neumann: see [1] for an interesting discussion of the history behind
the theorem.
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