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Let G = ({1,2}, (51, 52), (u1,us2)) be a finite two-player normal-form
game. We say that G is a zero-sum game if u; + us, = 0.

We may describe the game using the payoff function u = wuy, which we
interpret as a payment from player 2 to player 1.

Minimax Theorem. There is a strategy profile (o5, 03) such that

max min u(oy,09) =u(o],05) = min  max u(oy,03).
01E€A(S1) o026 A(S2) 02€A(S2) 01€A(S1)

The number v = u(o}, 05) is the value of the game.

Observe that, if the profile (o7, 03) is as in the theorem, then
u(o1,03) < u(oy,03) < u(oy, 02)

for all o7 € A(S;) and o9 € A(S;). This means that (0f,03) is a
saddle point of u. In particular, (o7, 0%) is a Nash equilibrium of G.

PROOF OF THE THEOREM.

Observe first that

(1) max min u(oy,00) < min  max u(oy,09)

o1 EA(Sl) O'QEA(SQ) O'QEA(SQ) 0'16A(Sl)
which we may describe as “moving second confers an advantage.” To
show inequality (1), note that for any o; € A(Sy) and o2 € A(Sy) we
have

< ! .
u(oy,09) < Jllrengb()él)u(al, 09)

Since this inequality holds for all o9, we obtain that

min u(oy,02) < min  max u(oy,09).
O'QEA(SQ) UzEA(SQ)O’iGA(S&)

And since this inequality holds for all oy, we obtain inequality (1).
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The main point of the Minimax Theorem is that inequality (1) is ac-
tually an equality — which we now show by establishing the reverse
inequality.

Let n; = |S;| and write, for each fixed oy € A(S3), the function s; —
u(sy,07) as a vector i(oy) € R™.!

Let
C = {TI(O'Q) 109 € A(Sg)} g Rnl,

and observe that C is a compact and convex set.

Define the function m : R™ — R by m(z) = max{z; : 1 < i < ny}
and define

v =1inf{m(z) : x € C} = inf{max{u(sy,09) : 51 € S1} : 02 € A(S2)}.

Because C is compact, there exists o5 € A(Sy) for which

v =m(u(oy)) = max{u(si,0;) : s1 € S1}

Note that u(sy,05) < v for all s; € S;. Hence, for any o1 € A(S}),
(2) u(oy,05) = oy - (o) < wv.
Consider the set A = {z € R™ : x < (v,...,v)}. Then by definition

of v, ANC = . The set A is convex so there exists, by the separating
hyperplane theorem, a vector p € R™, p # 0, so that

p-z < p-ifo)
for all x € A and o5 € A(S3).

Now, the set A contains vectors with arbitrarily small entries in any
dimension. So we must in fact have p > 0. Since p # 0 we conclude
that p > 0. Thus

1
O'*:T EA S
1 Zi:1pip ( 1)

is well-defined because > p; > 0.

Given that o} is a positive scalar multiple of p, we have that
o1 - & < oy - i(02) = u(o7,02)

for all z € A and o9 € A(Sy).

IThe notation here should remind you of our proof of the domination theorem.
Other aspects of the proof will also remind you of the proof of the domination
theorem.
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Note that (v,...,v) —e(1,...,1) € A for any ¢ > 0. Hence, for any
o9 € A(Sy),

oy - [(v,...,v)—e(l,...,1)] < of - ii(og).
Since this inequality holds for arbitrarily small £, we conclude that
(3) v=o07-(v,...,v) <o U(o).
If we use 07 = o] in Equation (2) we see that u(cf,0;5) < v, while
oy = oy in Equation (3) yields v < u(o7, 03).
Hence, v = u(o7, 03), and
u(oy,03) <v=u(o],05) < u(o],oz)

for any o7 € A(S7) and o9 € A(S2). The first inequality is due to
Equation (2) and the second to Equation (3).
Finally, we claim that

max min u(oy,09) > min  max u(oq,09).
o1 EA(Sl) O'QEA(SQ) UQEA(SQ) o1 EA(Sl)

Indeed,

max min u(oy,09) > min u(o],03) = u(oy,03).
01€A(S1) 02€A(S2) o2€A(S2)

And

min = max u(oy,09) < max wu(oy,0;) = u(oy,o0}).
O'QEA(SQ) o1 EA(Sl) o1 EA(Sl)

WAIT, WHAT HAPPENED?

The key idea in this proof is the work done by oj. We started from
looking at the function m, which provides a worst-case scenario for
player 2 for each g5. You could think of m by imagining that player 1
moves second, after a choice of o9 by player 2 that fixes a vector @(o3).
Then o} is optimal for 2 when they imagine that 1 moves after them.

When we get the o vector from the SHT, we can substitute the “player
1 moves second” idea implicit in function m with the expected payoft
o9 — of - (o). The level curves of this expected payoff function are
the parallel lines to the hyperplane that separate A and C. And the
function is minimized by choosing oy = 03, even when 1’s strategy is
fixed at o] before 2’s choice of strategy. In other words, if “player 1
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moves first” by setting oy = o7 then it is still optimal for player 2 to
choose oy = 073.

EXAMPLES
Example: Matching Pennies
H T
H | 1]|-1
T |—-1]|1

The next figure represents C as the blue set: a blue line segment in
this case, obtained as the convex combinations of (1, —1) and (—1,1).
We see that v = 0 and the separating hyperplane will be parallel to C
(actually it will contain C).

U(H, 02) U(H,Jg)

@(H) i(H)

u(L, 03) u(L, 03)
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Example: Rock-Paper-Scissors

R P S
R0 |-1]1
P 1 1]10]-1
S|-1]110

I'm not going to try to draw this in R3! So I'll instead use the follow-
ing game in which P1 only has two strategies. Note that P1 is at a
disadvantage here because she cannot play Scissors.

R P S
R0 |-1]1
P |1 1]0]-1
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Here the blue set is C and the pink set is A. It’s easy to see that
v = —1/3 because if we take a convex combination of the payoffs from
when P2 plays P and S (clearly P2 is not going to play R, which can
only win against the strategy for P1 that we eliminated) we get

a(l, -1)+ (1 —-a)(—-1,0) = (a— (1 —a),—a) = (2a — 1,—a)
So if we set 2a — 1 = a then we get a = 1/3 and therefore
(1/3)(1,-1)+2/3(—1,0) = (1/3 —2/3,—-1/3) = —(1/3,1/3) = (v, v).

Player 1’s disadvantage is reflected in the game’s value being negative.

u(P,o3)

@(R)
ﬁ(/ ey c

=
=)
S~—

=
2
o~
=
»

REMARKS

I wrote this note while teaching graduate students at Berkeley and Cal-
tech. The Minimax theorem seems magical. Most popular books on
game theory for economists don’t seem to include a proof of the Min-
imax Theorem based on the separating hyperplane theorem, which I
think provides the most transparent reasoning behind its magic. I also
find it useful for first-year graduate students to see yet another argu-
ment using the separation theorem, which is used in so many different
contexts in economics.

Finally, I should mention that the Minimax Theorem is due to John
Von Neumann: see [1] for an interesting discussion of the history behind
the theorem.
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