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Separable preferences

I Economists often study smaller sets of goods.

I When is it OK to study the demand for food, or entertainment, in
isolation?

I When can you study the demand in year 2020, independently of
choices made about consumption in other time periods?

I Answer: Two-stage budgeting.

I This requires separable preferences.
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Separable preferences

I We’ve also been thinking about conventional consumer choices.

I But we often want to re-interpret consumption space.

I For example under uncertainty, x ∈ Rn
+ could be state-contingent

consumption: There is a set Ω of states of the world , with S = |Ω|.
And x is a contract that delivers a consumption vector xω ∈ RK

+ if
state ω occurs.

I When K = 1 these are called monetary acts.

I Then consumption space if Rn
+ with n = SK .

I For decisions under uncertainty, separability is important (details
later).
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Separable preferences

I Another re-interpretation is intertemporal choice.

I Think of consumption over time.

I There are T time periods, and x is a plan to consume xt ∈ RK
+ at

time t.

I Then consumption space if Rn
+ with n = TK .

I Again, separability will be crucial in standard models of intertemporal
choice.
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Example: intertemporal choice.

Suppose that T = 2 and K = 1. So: one good in each time period (the
model used in macroeconomics).

Consider a consumer who solves:

maxx∈R2
+

u(x1) + δu(x2)

s.t p · x ≤ m

Here δ ∈ (0, 1) is a subjective discount factor, capturing how utility in later
periods translates into current utility.

Such a utility representation means that preferences are additively
separable.
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Example: intertemporal choice.

We may normalize p1 = 1 and consider p2 = R to be the price of
consumption in period 2 in terms of period-1 consumption: a market
discount factor.

Suppose that u is C 1 and strictly monotone, and that we can focus on
interior solutions. Then the consumer will solve:

max u(x1) + δu(w − Rc1).
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Example: intertemporal choice.

FOC:
u′(c1) = Rδu′(c2);

a so-called Euler equation (the special name for equality of MRS and price
in intertemporal models.).

If R = 1
1+r , where r is a market interest rate. Then

δu′(c2)

u′(c1)
= 1 + r .
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Separable preferences: Notation

Let X = Rn
+.

Let A ⊂ {1, . . . , n} = [n].

For x ∈ Rn, write

xA = (xi )i∈A

x−A = (xi )i∈[n]\A

x = (xA, x−A)
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Separable preferences

Idea:
u(x) = U(s(xA), x−A)

I s : RA
+ → R is a “sub-utility.”

I Consumer optimizes s subject to a budget constraint.

I Marginal rate of substitution:

MRSi ,j =
Diu(x)

Dju(x)
=

Di s(xA)

Djs(xA)
,

when i , j ∈ A.

I So MRS is independent of x−A.

I Basically only prices pA matter for the demand for xA (of course
expenditure on A goods is still affected by p−A).
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Separable preferences: Two-state budgeting

max(xA,x−A) U(s(xA), x−A)

s.t pA · xA + p−A · x−A ≤ m

So solve
maxxA s(xA)

s.t pA · xA ≤ m − p−A · x∗−A(p,m)

Obs: x∗−A(p,m) may depend on pA (check that MRS is not independent of
i ∈ A).
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Separable preferences

A preference relation � on X is A-separable if, for all x , y

(xA, x−A) � (yA, x−A) iff (xA, y−A) � (yA, y−A)
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Separable preferences

Let X = Rn
+.

Theorem

A continuous preference relation is A-separable iff there exists s : RA
+ → R

and a U : R× R
n−|A|
+ → R that is strictly increasing in its first component,

s.t
u(xA, x−A) = U(s(xA), x−A)

is a utility representation for �.
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Separable preferences: Idea

By cont. there exists a cont. utility representation u.

By separability, xA 7→ u(xA, x−A) represent the same (cont) preference for
any x−A.

Let s : RA
+ → R represent this preference.

In fact we can set s(xA) = u(xA, x
0
−A) for arbitrary fixed x0

−A.
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Additively separable preferences

Going back to the two re-interpretations of consumption space: Suppose
K = 1. When there is uncertainty, it’s common to assume a utility of the
form

u(x) =
∑
ω∈Ω

π(ω)v(xω)

For intertemporal consumption, it’s common to assume

u(x) =
T∑
t=1

δtv(xt).

Both are of the general form:

u(x) =
n∑

i=1

vi (xi );

that is: additively separable.
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Additively separable preferences

Let X = Rn
+. A preference � is additively separable if there are functions

vi s.t

u(x) =
n∑

i=1

vi (xi )

is a utility representation of �.

Clearly this implies separability of any set of goods from the rest. In fact,
once we rule out certain degenerate cases, this condition is necessary and
sufficient for additive separability.
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Additively separable preferences: Debreu’s thm

A preference � is non-trivial if there exists a set A of cardinality at least
three with the property that for each i ∈ A there is x and y with x−i = y−i
and x � y .

Theorem

Let � be non-trivial and cont. Then � is additively separable iff, for all
A ⊂ [n], � is A-separable.

Obs: n = 2 is not contemplated by this theorem.
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Additively separable preferences: Debreu’s thm

For n = 2, Debreu introduced the following double cancellation axiom:

(x1, x2) � (y1, y2) and (y1, z2) � (z1, x2) =⇒ (x1, z2) � (z1, y2)

Theorem

Let X = R2
+ and � be cont. on X . Then � is additively separable iff it

satisfies double cancellation.
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Additively separable preferences

Exercise

Show that additively separable preference satisfy double cancellation.
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Additively separable preferences: uniqueness

Let X = Rn
+; n ≥ 2.

Theorem

Let � be cont. and additively separable. Suppose that

u =
∑
i

vi and u′ =
∑
i

v ′i

are two additively separable representations of �. If none of the vi
functions are constant, then there exists numbers α > 0 and βi s.t

v ′i = αvi + βi

So additively separable utility representations are unique up to a “cardinal”
(affine) transformation with a common scale.
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Additively separable preferences: convexity

Let X = Rn
+; n ≥ 2.

Theorem

Let � be cont. and additively separable. Suppose that u =
∑

i vi is an
additively separable representation of �, and that none of the vi functions
are constant. If � is convex, then all, except at most one, of these
functions vi is concave.

Corollary

If u =
∑

i αiv , where αi > 0 are scalars, is a representation of a
continuous and convex preference �, then v is concave.
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A curiosity: Spherical preferences

Let X = Rn
+; write x ⊥ y when x · y = 0.

� satisfies Origin independent orthogonal independence (OIOI) if:

Whenever z ⊥ x and z ⊥ y ,

w + x � w + y iff w + x + z � w + y + z .
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Spherical preferences: Chambers and Echenique

Theorem

Suppose that n ≥ 3. Then a preference � is cont. and satisfies OIOI iff one
of the following is true:

1. There is u ∈ Rn for which x � y iff u · x ≥ u · y

2. There is x∗ ∈ Rn for which x � y iff ‖x − x∗‖ ≤ ‖y − x∗‖

3. There is x∗ ∈ Rn for which x � y iff ‖x − x∗‖ ≥ ‖y − x∗‖.

Note that (1) is a linear preference (only weak. mon. SP); and (2) are
“Euclidean” preferences, of the type used in Political Economy (x∗ is an
ideal point). These are only st. convex SP. The preferences in (3) are
“anti-Euclidean.”
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Composite commodities

Theory can handle 4900 different kinds of cereal, but empirical works needs
to aggregate.
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Composite commodity theorem (Hicks/Leontief)

Partition the set of [n] commodities into K groups, group k having nk
elements.

Assume the commodities are numbered s.t x = (x1, . . . , xK ) where each
xk ∈ Rnk

+ .

We want to know when we can treat the groups as “composite
commodities.” For ex. “food,” instead of milk, bread, etc. or
“entertainment” instead of books, movies, etc.
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Composite commodity theorem

Example:

I Scanner data

I Many different kinds of cereal, bottled water, etc. – just intractable.

I Aggregate into a single “cereal category.”

I How? By calculating expenditure on cereal. When is this OK?
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Composite commodity theorem

Fix a price vector p̄ = (p̄1, . . . , p̄K ), where each p̄k ∈ Rnk .

Idea:

I Keep relative prices between any two goods that belong to the same
group.

I These are kept fixed as defined in p̄.

I Vary relative prices and consider the resulting demand.
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Composite commodity theorem

Define ϕ : RK → Rn by

ϕ(π) = (π1p̄1, . . . , πK p̄K ),

and note that ϕ is linear and monotonic. Define ξ : Rn
+ → RK

+ by

ξ(x) = (p̄1 · x1, . . . , p̄K · xK ),

and observe that ξ is linear and maps Rn onto RK .
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Composite commodity theorem

Obs. For all x ∈ Rn
+, and π ∈ RK

++,

π · ξ(x) = ϕ(π) · x .

Let û : Rn
+ → R+ be a utility with indirect utility function v that satisfies

properties N, P, M, H, Q, S, Z.

Let u be the utility defined from v by the inversion formula, and let
x∗ : Rn

++ × R+ → Rn
+ be its demand function. (For simplicity of notation,

assume there is a demand function, not a correspondence.)
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Composite commodity theorem

Define X ∗ : RK
++ × R→ RK

+ by

X ∗
(
π,m

)
= ξ
(
x∗
(
ϕ(π),m

))
.

Interpret X ∗ as a demand function for the composite commodities
ξ1, . . . , ξK .
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Composite commodity theorem

Theorem (Composite Commodity Theorem)

Under the conditions above, there is an upper semicontinuous
quasiconcave monotone utility function

U : RK
+ → R+

that generates the demand X ∗.
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Punchline

If we want to analyze the market for breakfasts,

I milk

I cereal

I eggs

I bread.

We need:

1. Separability so as to ignore the rest of the goods that the agents’ buy
(housing, transportation, entertainment, etc.)

2. Composite commodity theorem to aggregate all 4900 kinds of cereal
into a composite commodity. Same with bread, milk, etc.
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