Separability and Composite Commodities

Federico Echenique Caltech – SS205a

October 2021

Separability and composite goods

Echenique Separability

- Economists often study smaller sets of goods.
- When is it OK to study the demand for food, or entertainment, in isolation?
- When can you study the demand in year 2020, independently of choices made about consumption in other time periods?
- ► Answer: Two-stage budgeting.
- This requires separable preferences.

- ► We've also been thinking about conventional consumer choices.
- ► But we often want to re-interpret consumption space.
- For example under uncertainty, x ∈ Rⁿ₊ could be state-contingent consumption: There is a set Ω of states of the world, with S = |Ω|. And x is a contract that delivers a consumption vector x_ω ∈ R^K₊ if state ω occurs.
- When K = 1 these are called *monetary acts*.
- Then consumption space if \mathbb{R}^n_+ with n = SK.
- ► For decisions under uncertainty, separability is important (details later).

- ► Another re-interpretation is intertemporal choice.
- Think of consumption over time.
- ► There are T time periods, and x is a plan to consume x_t ∈ R^K₊ at time t.
- Then consumption space if \mathbb{R}^n_+ with n = TK.
- Again, separability will be crucial in standard models of intertemporal choice.

Example: intertemporal choice.

Suppose that T = 2 and K = 1. So: one good in each time period (the model used in macroeconomics).

Consider a consumer who solves:

$$egin{array}{lll} \max_{x\in \mathsf{R}^2_+} & u(x_1)+\delta u(x_2)\ ext{ s.t } & p\cdot x\leq m \end{array}$$

Here $\delta \in (0, 1)$ is a subjective discount factor, capturing how utility in later periods translates into current utility.

Such a utility representation means that preferences are *additively separable.*

We may normalize $p_1 = 1$ and consider $p_2 = R$ to be the price of consumption in period 2 in terms of period-1 consumption: a market discount factor.

Suppose that u is C^1 and strictly monotone, and that we can focus on interior solutions. Then the consumer will solve:

$$\max u(x_1) + \delta u(w - Rc_1).$$

FOC:

$$u'(c_1)=R\delta u'(c_2);$$

a so-called *Euler equation* (the special name for equality of MRS and price in intertemporal models.).

If $R = \frac{1}{1+r}$, where r is a market interest rate. Then

$$\frac{\delta u'(c_2)}{u'(c_1)} = 1 + r.$$

Separable preferences: Notation

Let $X = \mathbb{R}^n_+$.

Let
$$A \subset \{1, \ldots, n\} = [n]$$
.

For $x \in \mathbb{R}^n$, write

$$x_A = (x_i)_{i \in A}$$
$$x_{-A} = (x_i)_{i \in [n] \setminus A}$$
$$x = (x_A, x_{-A})$$

Separable preferences

Idea:

$$u(x) = U(s(x_A), x_{-A})$$

- $s : \mathsf{R}^{\mathcal{A}}_{+} \to \mathsf{R}$ is a "sub-utility."
- Consumer optimizes *s* subject to a budget constraint.
- Marginal rate of substitution:

$$MRS_{i,j} = \frac{D_i u(x)}{D_j u(x)} = \frac{D_i s(x_A)}{D_j s(x_A)},$$

when $i, j \in A$.

- So MRS is independent of x_{-A} .
- ► Basically only prices p_A matter for the demand for x_A (of course expenditure on A goods is still affected by p_{-A}).

Separable preferences: Two-state budgeting

$$\begin{array}{ll} \max_{(x_A, x_{-A})} & U(s(x_A), x_{-A}) \\ \text{s.t} & p_A \cdot x_A + p_{-A} \cdot x_{-A} \leq m \end{array}$$

$$\begin{array}{ll} \max_{x_A} & s(x_A) \\ \text{s.t} & p_A \cdot x_A \leq m - p_{-A} \cdot x_{-A}^*(p,m) \end{array}$$

Obs: $x_{-A}^*(p, m)$ may depend on p_A (check that MRS is not independent of $i \in A$).

A preference relation \succeq on X is A-separable if, for all x, y

$$(x_A, x_{-A}) \succeq (y_A, x_{-A})$$
 iff $(x_A, y_{-A}) \succeq (y_A, y_{-A})$

Let
$$X = \mathbb{R}^n_+$$
.

Theorem

A continuous preference relation is A-separable iff there exists $s : \mathbb{R}^A_+ \to \mathbb{R}$ and a $U : \mathbb{R} \times \mathbb{R}^{n-|A|}_+ \to \mathbb{R}$ that is strictly increasing in its first component, s.t

$$u(x_A, x_{-A}) = U(s(x_A), x_{-A})$$

is a utility representation for \succeq .

By cont. there exists a cont. utility representation u.

By separability, $x_A \mapsto u(x_A, x_{-A})$ represent the same (cont) preference for any x_{-A} .

Let $s : \mathsf{R}^{\mathcal{A}}_+ \to \mathsf{R}$ represent this preference.

In fact we can set $s(x_A) = u(x_A, x_{-A}^0)$ for arbitrary fixed x_{-A}^0 .

Additively separable preferences

Going back to the two re-interpretations of consumption space: Suppose K = 1. When there is uncertainty, it's common to assume a utility of the form

$$u(x) = \sum_{\omega \in \Omega} \pi(\omega) v(x_{\omega})$$

For intertemporal consumption, it's common to assume

$$u(x) = \sum_{t=1}^{T} \delta^{t} v(x_{t})$$

Both are of the general form:

$$u(x)=\sum_{i=1}^n v_i(x_i);$$

that is: additively separable.

Let $X = \mathbb{R}^n_+$. A preference \succeq is *additively separable* if there are functions v_i s.t

$$u(x) = \sum_{i=1}^{n} v_i(x_i)$$

is a utility representation of \succeq .

Clearly this implies separability of any set of goods from the rest. In fact, once we rule out certain degenerate cases, this condition is necessary and sufficient for additive separability.

A preference \succeq is non-trivial if there exists a set A of cardinality at least three with the property that for each $i \in A$ there is x and y with $x_{-i} = y_{-i}$ and $x \succ y$.

Theorem

Let \succeq be non-trivial and cont. Then \succeq is additively separable iff, for all $A \subset [n]$, \succeq is A-separable.

Obs: n = 2 is not contemplated by this theorem.

For n = 2, Debreu introduced the following *double cancellation* axiom:

$$(x_1, x_2) \succeq (y_1, y_2) \text{ and } (y_1, z_2) \succeq (z_1, x_2) \Longrightarrow (x_1, z_2) \succeq (z_1, y_2)$$

Theorem

Let $X = R_+^2$ and \succeq be cont. on X. Then \succeq is additively separable iff it satisfies double cancellation.

Exercise

Show that additively separable preference satisfy double cancellation.

Let $X = \mathbb{R}^n_+$; $n \ge 2$.

Theorem

Let \succeq be cont. and additively separable. Suppose that

$$u = \sum_i v_i$$
 and $u' = \sum_i v'_i$

are two additively separable representations of \succeq . If none of the v_i functions are constant, then there exists numbers $\alpha > 0$ and β_i s.t

$$\mathbf{v}_i' = \alpha \mathbf{v}_i + \beta_i$$

So additively separable utility representations are unique up to a "cardinal" (affine) transformation with a common scale.

Let
$$X = \mathbb{R}^n_+$$
; $n \ge 2$.

Theorem

Let \succeq be cont. and additively separable. Suppose that $u = \sum_i v_i$ is an additively separable representation of \succeq , and that none of the v_i functions are constant. If \succeq is convex, then all, except at most one, of these functions v_i is concave.

Corollary

If $u = \sum_{i} \alpha_{i} v$, where $\alpha_{i} > 0$ are scalars, is a representation of a continuous and convex preference \succeq , then v is concave.

Let $X = \mathbb{R}^n_+$; write $x \perp y$ when $x \cdot y = 0$.

 \succeq satisfies Origin independent orthogonal independence (OIOI) if:

Whenever $z \perp x$ and $z \perp y$,

 $w + x \succeq w + y$ iff $w + x + z \succeq w + y + z$.

Theorem

Suppose that $n \ge 3$. Then a preference \succeq is cont. and satisfies OIOI iff one of the following is true:

- 1. There is $u \in \mathbb{R}^n$ for which $x \succeq y$ iff $u \cdot x \ge u \cdot y$
- 2. There is $x^* \in \mathbb{R}^n$ for which $x \succeq y$ iff $||x x^*|| \le ||y x^*||$
- 3. There is $x^* \in \mathbb{R}^n$ for which $x \succeq y$ iff $||x x^*|| \ge ||y x^*||$.

Note that (1) is a linear preference (only weak. mon. SP); and (2) are "Euclidean" preferences, of the type used in Political Economy (x^* is an *ideal point*). These are only st. convex SP. The preferences in (3) are "anti-Euclidean."

Product	1970	1998	2012
Automobile models	140	260	684
Newspapers	339	790	>5,000
TV screens (size)	5	15	43
Movies (at the cinema)	267	458	1,410
Breakfast cereals	160	340	4,945
Types of milk	4	19	>50
Mouthwash	15	66	113
Sports shoes	5	285	3,371
Brands of mineral water	16	50	195
Types of tights	5	90	594

Table 1: Trend in product variety (number of models) for some products in the USA⁶

Theory can handle 4900 different kinds of cereal, but empirical works needs to aggregate.

Partition the set of [n] commodities into K groups, group k having n_k elements.

Assume the commodities are numbered s.t $x = (x_1, ..., x_K)$ where each $x_k \in \mathsf{R}^{n_k}_+$.

We want to know when we can treat the groups as "composite commodities." For ex. "food," instead of milk, bread, etc. or "entertainment" instead of books, movies, etc.

Example:

- Scanner data
- ► Many different kinds of cereal, bottled water, etc. just intractable.
- ► Aggregate into a single "cereal category."
- ► How? By calculating expenditure on cereal. When is this OK?

Fix a price vector $\bar{p} = (\bar{p}_1, \dots, \bar{p}_K)$, where each $\bar{p}_k \in \mathsf{R}^{\mathrm{n}_k}$.

Idea:

- Keep relative prices between any two goods that belong to the same group.
- These are kept fixed as defined in \bar{p} .
- ► Vary relative prices and consider the resulting demand.

Define $\varphi \colon \mathsf{R}^{\mathsf{K}} \to \mathsf{R}^{\mathsf{n}}$ by

$$\varphi(\pi)=(\pi_1\bar{p}_1,\ldots,\pi_K\bar{p}_K),$$

and note that φ is linear and monotonic. Define $\xi \colon \mathsf{R}^n_+ \to \mathsf{R}^K_+$ by

$$\xi(x)=(\bar{p}_1\cdot x_1,\ldots,\bar{p}_K\cdot x_K),$$

and observe that ξ is linear and maps \mathbb{R}^n onto \mathbb{R}^K .

Composite commodity theorem

Obs. For all $x \in \mathbb{R}^n_+$, and $\pi \in \mathbb{R}^K_{++}$,

$$\pi \cdot \xi(\mathbf{x}) = \varphi(\pi) \cdot \mathbf{x}.$$

Let $\hat{u} \colon \mathbb{R}^n_+ \to \mathbb{R}_+$ be a utility with indirect utility function v that satisfies properties N, P, M, H, Q, S, Z.

Let *u* be the utility defined from *v* by the inversion formula, and let $x^* \colon \mathbb{R}^n_{++} \times \mathbb{R}_+ \to \mathbb{R}^n_+$ be its demand function. (For simplicity of notation, assume there is a demand function, not a correspondence.)

Define $X^* \colon \mathsf{R}_{++}^K \times \mathsf{R} \to \mathsf{R}_+^K$ by

$$X^*(\pi,m) = \xi(x^*(\varphi(\pi),m)).$$

Interpret X^* as a demand function for the composite commodities ξ_1, \ldots, ξ_K .

Theorem (Composite Commodity Theorem)

Under the conditions above, there is an upper semicontinuous quasiconcave monotone utility function

$$U \colon \mathsf{R}_+^{\mathsf{K}} \to \mathsf{R}_+$$

that generates the demand X^* .

If we want to analyze the market for breakfasts,

- ► milk
- cereal
- ► eggs
- ► bread.

We need:

- 1. Separability so as to ignore the rest of the goods that the agents' buy (housing, transportation, entertainment, etc.)
- 2. Composite commodity theorem to aggregate all 4900 kinds of cereal into a composite commodity. Same with bread, milk, etc.