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Abstract

We describe a sequential mechanism that fully implements the set of efficient out-

comes in environments with quasi-linear utilities. The mechanism asks agents to

take turns in defining prices for each outcome, with a final player choosing an out-

come for all: Price & Choose. The choice triggers a sequence of payments, from each

agent to the preceding agent. We present several extensions. First, payoff inequali-

ties may be reduced by endogenizing the order of play. Second, our results extend to

a model without quasi-linear utility, to a setting with an outside option, robustness

to max-min behavior and caps on prices.

JEL Codes: D71, D72.
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1 Introduction

Ted and Joanna Kramer are getting a divorce. It gets messy. Not only do they need to

divide their assets, but they must decide on a complex arrangement for custody and

visitation rights of their son Billy. Many possible outcomes are on the table, and the

Kramers agree to use an outside arbitrator to find a solution. The arbitrator, Judge

Atkins, does not know the Kramers’ preferences over the different possible solutions,

but wants to find a good compromise despite his ignorance.

Our paper proposes a simple solution for Judge Atkins and the Kramers. The

solution is optimal, in the sense of producing an efficient outcome in any equilib-

rium of the ensuing game of Kramer vs. Kramer, and relies on two key aspects of the

problem: First, that Joanna and Ted know each other very well. Their preferences are

common knowledge between them. Judge Atkins does not know the Kramers’ pref-

erences, but can leverage their shared knowledge. Second, Ted has a high-paying job

as an advertising executive; so they have money available to facilitate an agreement.

Our solution is a simple dynamic mechanism that we call Price and Choose (P&C

in the sequel). It works as follows:

1. The first mover sets up a zero-sum price vector that specifies a price for each

of the different options.

2. The second mover chooses one of the options as the outcome, and pays the first

mover the specified price.

We prove that any equilibrium outcome of P&C is Pareto efficient.1 The intuition

behind our result is straightforward: The first mover’s best choice is to make the sec-

ond mover indifferent among all options; otherwise she is not playing optimally, as

she can improve by slightly altering the price vector without modifying the choice

of the second mover. This indifference implies that the second mover obtains her

1There is a relation between P&C and the classical take-it-or-leave-it mechanism (or TOL), where
a monetary transfer and an alternative is proposed by one agent and his opponent either accepts
it or opts out. The TOL mechanism requires an outside option, which may prove a challenge for
applications like the Kramers’ in the introduction. As will be shown, P&C extends beyond the two-
player, quasi-linear, model with an outside option required by TOL.
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average utility across the options in equilibrium. The second part of our argument

shows that the second mover chooses the best option(s) for the first mover. A differ-

ent choice could not emerge in equilibrium, as the first mover would “punish” her by

slightly modifying prices. This ends our argument since the option that maximizes

the payoff of the first mover, including transfers, is necessarily one that maximizes

the sum of the utilities: an efficient option.

Our paper contributes to the general theory of implementation, and to the more

practical literature on arbitration. We proceed to discuss each of these connections

in more detail.

Arbitration is a private dispute resolution method that does not involve courts.

While the model in our paper is quite general, the problem faced by arbitrators,

such as Judge Atkins, is a good application of several aspects of the model we de-

velop.2 Our method allows the (two) involved parties to choose the arbitrator who

will resolve the dispute.3 These institutions may specify a structured selection pro-

cedure to help the parties exercise their right of choice, such as the American Associ-

ation of Arbitrators (for instance, using vetoes, points, etc.). Two recent papers have

proposed methods to improve the procedures used by practitioners. The first one,

de Clippel et al. (2014), proposes a “shortlisting” mechanism. Shortlisting works in

only two stages, and the paper tests its validity in the lab. The second paper, Barberà

and Coelho (2022), considers procedures with more steps, but achieving less in-

equality among players. A key common ingredient in the problems studied in these

two papers is that they do not allow for monetary transfers between the players.

The lack of transfers is a realistic feature of some problems, but not of others. For

problems like the Kramers’, it makes sense to assume that money is available, and

that it may be used to facilitate an agreement. Economic theory has shown that in-

troducing transfers (or prices) can serve as a powerful coordination tool and lead to

welfare gains. Our proposal relies on transfers, but can accommodate rather general

2Arbitration is not the only application of our work; note that our results extend to a setting with
an arbitrary number of players so that agreements among countries or firms is also a good illustration
of the current results.

3As argued by Barberà and Coelho (2022), practically all cross-border commercial disputes are
resolved by arbitration.
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preferences over money. In the paper, we first consider a setting where preferences

are quasilinear, and two players need to reach an agreement. Our goal is to design

mechanisms that implement the utilitarian goal (that is, players end up maximiz-

ing the sum of the individual utilities). With quasilinear preferences, utilitarianism

captures economic efficiency exactly. Then we generalize the result to a setting with

separable, but non-quasilinear, preferences over transfers. In consequence, our re-

sults allow for example, for general attitudes towards risky monetary lotteries.

Next, we turn to a discussion of implementation. Implementation theory studies

procedures for collective decision-making in the presence of selfish agents who may

disagree on their preferences over outcomes. So-called full implementation looks

for procedures that induce a desirable outcome, regardless of equilibrium selection.

It is often difficult to achieve when there are only two agents, as in the example

with Joanna and Ted. Our paper considers full (subgame perfect) implementation in

a general social choice problem with monetary transfers. The P&C mechanism we

propose has the benefit of being natural and bounded, in contrast with some well-

known proposals in the literature on implementation that rely on integer games and

unbounded message spaces to rule out equilibria (see Jackson (1992) for a critical

review). Implementation is often challenging when there are only two agents, but

our baseline analysis of the P&C applies precisely to the model with two agents.

In fact, the extension to n agents works by recursively applying our result for two

agents.

The literature on implementation with transfers is not new. The classic demand-

revealing mechanisms (see Clarke (1971) and Groves (1976)) achieve implemen-

tation in dominant strategies, even though they fail to be budget-balanced. These

mechanisms require utility to be quasi-linear in transfers. Our mechanism, in con-

trast, achieves full implementation in subgame-perfect equilibrium; but it is budget

balanced, and does not require quasilinear utility. Groves and Ledyard (1977) de-

scribe a mechanism that yields efficient Nash equilibria for the public-goods prob-

lem, see Groves (1979) for an excellent summary. The more recent literature has

shifted its attention to simple mechanisms: Varian (1994) designs compensation

mechanisms that achieve efficiency in the presence of externalities. Such mecha-
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nisms are not balanced off-equilibrium, whereas the P&C mechanism is balanced by

definition.4 Similarly, Jackson and Moulin (1992) describe simple mechanisms that

implement efficient allocations in undominated Nash equilibria; yet, the implemen-

tation result requires indivisible public goods and quasi-linear utilities. As we have

mentioned above, our results extend beyond this setting.

The main result is stated in a stylized setting, but our arguments turn out to

generalize in various ways. Specifically, we show that the P&C mechanism can be

adapted, and efficiency still implemented, in the following variations of our basic

model:

• n players. Moving in order, all players but the last one, choose a price vector

that the next player faces. Prices must add to zero across outcomes (and trans-

fers are balanced, adding to zero across players, by design). The last player

chooses an outcome, say x. Then each player pays their predecessor the price

that they demanded for x. Here the first mover receives a transfer but does not

make any, the last mover makes a transfer but does not receive any, whereas

each of the other players receives and makes transfers. Our two-player result

can be applied recursively to show that the mechanism implements the effi-

cient options. (Section 5.)

• Endogenous order of play. We tackle the implied first-mover advantage in P&C

by having players bid for the role of moving first. (Section 6). There is an al-

ternative approach to dealing with the first-mover advantage by constraining

prices to add up to a non-zero constant. This is briefly discussed after our basic

result is stated.

• Non-quasi linear preferences. We consider a model in which agents have gen-

eral additively separable preferences over money and outcomes, and show that

the main result of the paper continues to hold. (Section 7.1.)

4The compensation mechanisms in Varian (1994) rely on fines to ensure that both players accu-
rately report each other’s “type,” which pushes transfers to be balanced in equilibrium; with three
players and more, compensation mechanisms rely on classical implementation ideas to make each
player’s payment do not depend on his own report. The P&C mechanism does not depend on this
logic since it gives each player either the possibility of setting a price vector (except the last one)
which balances the transfers.
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• Outside option. We consider an extension of P&C where players can opt out

and select an outside option. We show that the main message of the paper

continues to hold. (Section 7.2.)

• Robust implementation. We relax the assumption that players play an exact

subgame-perfect Nash equilibrium. Instead, the agents are ε-maximizing, and

one player makes a pessimistic worst-case assumption over the possible ε-

optimizing choices of the other player. (Section 7.3.)

• Price caps. We discuss an extension of P&C where prices cannot be above a

certain boundary, and show that the resulting mechanism also achieves full

implementation of efficient alternatives. (Section 7.4.)

The rest of the paper is organized as follows. Section 2 reviews the literature.

After laying down the model in Section 3, Section 4 presents the P&C mechanism

for two players and the implementation argument. Sections 5 extends the model to

an arbitrary number of players and Section 6 discusses how to tackle the first-mover

advantage. Section 7.1 deals with non quasi-linear utilities; Section 7.2 considers the

setting with an outside option, Section 7.3 presents the robustness of the mechanism

with respect to adversarial behavior, and finally, Section 7.4 adapts P&C to a setting

where prices are capped.

2 Review of the literature

Classical results in implementation say that, with two players, and in the absence

of transfers, the only Pareto efficient rule that is implementable is dictatorship (see

Maskin (1999) and Hurwicz and Schmeidler (1978)). While more permissible re-

sults arise when domains are restricted (Moore and Repullo (1990) and Dutta and

Sen (1991)), or when mechanisms are not deterministic (Laslier et al. (2021)), a

commonly-held view is that it is hard to design mechanisms with desirable prop-

erties in two-player settings. This has led the literature to consider the short mech-

anisms (short in the sense of few steps) proposed by de Clippel et al. (2014) and

Barberà and Coelho (2022).
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Our P&C mechanism deviates from these papers by working in an environment

with transfers, and by being dynamic in nature—one player sets up a price and the

other player chooses an option. The resulting solution concept is subgame-perfect

Nash equilibrium. One strand of the literature is concerned with the design of mech-

anisms with transfers. Beyond the papers previously cited, Hurwicz (1977), Dutta et

al. (1995), Sjöström (1996) and Saijo et al. (1996) study Nash implementation when

players announce prices and quantities. Among other findings, they prove that the

no-envy and Pareto correspondence are implementable. Moore and Repullo (1988)

prove that in the quasi-linear setting, any social choice rule is implementable with

two players. Yet, this result has been subject to several criticisms (see Aghion et al.

(2012)); and Moore and Repullo (1988) themselves write that their mechanisms “are

far from simple; players move simultaneously at each stage and their strategy sets

are unconvincingly rich.” Our P&C mechanism is arguably very simple, and uses a

natural economic framework. It also continues to work, even when we deviate from

the quasi-linear setting (Section 7.1).5

A literature in social choice theory (see Green (1993), Chambers (2005), and

Chambers and Green (2005)) considers similar environments to ours, and studies

efficient solution axiomatically. This work is, however, not concerned with imple-

mentation.

In dynamic environments with transfers, the P&C mechanism is also related to

Gary Becker’s “Rotten Kid theorem;” see Bergstrom (1989) for a formal analysis.

Bergstrom shows how to achieve efficiency in the Rotten Kid two-stage game, where

a benevolent planner makes transfers to several selfish players. His main result in-

volves quasi-linear preferences, but also discusses extensions that do not involve

these preferences. To cite the most relevant of them, Chen et al. (2023) considers

two-stage stochastic mechanisms that achieve full implementation under initial ra-

tionalizability in complete information environments. Chen et al. (2022) consider

implementation allowing for lotteries and monetary transfers in the mechanism and

5Our model with transfers, but non-quasi-linear preferences, is related to the recent literature on
matching problems with imperfectly transferable utility such as Legros and Newman (2007), Chiap-
pori and Salanié (2016) and Galichon et al. (2019).
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characterize the implementable rules. This is, of course, different from P&C which

is not a random mechanism.

Given our motivation, we should mention the literature on dissolving partner-

ships: for example Crampton et al. (1987). The literature is usually focused on mech-

anism design, not full implementation, and considers more restrictive environments

than we have studied here. Crawford and Heller (1979) and McAfee (1992) consider

variations of the “cut and choose” mechanisms, which were an inspiration of sorts

for our mechanism. The name “price and choose” is meant to highlight this con-

nection. Of course, cut and choose (or divide and choose) make sense for alloca-

tion problems, not for the general social choice environments we have studied here.

Among the literature on cake-cutting, the work of Nicolò and Velez (2017) is rele-

vant; they consider sequential Divide-and-compromise rules under monetary trans-

fers, which share some common ideas with P&C, but are designed for situations

where a collectively owned indivisible good is to be divided between two agents.

Furthermore, Brown and Velez (2016) study these procedures experimentally, and

find evidence that second movers tend to be adversarial, an assumption related to

our extension in section 7.3.

Finally, we should also mention the literature that crafts mechanisms implement-

ing efficient options, such as Perez-Castrillo and Wettstein (2002), Ehlers (2009) and

Eguia and Xefteris (2021). The common feature of the mechanisms designed by these

papers is that they are simultaneous, and rely on lotteries as tie-breaking devices.

Our approach differs from theirs in that we design a deterministic dynamic (with

sequential choices) mechanism. We think of this distinction as an advantage. On the

one hand, de Clippel et al. (2014) and Camerer et al. (2016) have shown that sub-

game perfect equilibrium is a good predictor in the lab for a particular mechanism,

namely shortlisting. The shortlisting mechanism is closely related to P&C , since the

first-mover proposes a list of alternatives, and her opponent selects an alternative

from the proposed list. On the other hand, Nash equilibrium often performs poorly

in experimental designs with simultaneous interactions and lotteries.
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3 The model

Utilities. We consider a finite set N of players, with generic element i, who bargain

over a finite set of options denoted by A = {a1, a2, . . . , ak}. Players have quasi-linear

utility functions, defined over the options in A and money. So player i has a util-

ity function ui : A → R, and enjoys a utility of ui(a) + ti if the outcome is a ∈ A

and they receive a monetary transfer ti .6 For each player i, we write Avgi to denote
1
k

∑k
j=1ui(aj), the average utility over A for player i.

Utilitarian welfare from an option a is
∑

i∈N ui(a), and max(u) = max{
∑

i∈N ui(a) :

a ∈ A} denotes the maximum utilitarian welfare.

Outcomes. For each i, ti denotes the monetary transfer that player i obtains and

t = (t1, . . . , tn) ∈ Rn is a vector of transfers. An allocation, or outcome, (a, t1, . . . , tn) is a

decision (that is, an option in A) coupled with a vector of transfers.

Welfare. An allocation (a, t1, . . . , tn) ∈ A × Rn is Pareto optimal if there is no other

allocation (ã, t̃1, . . . , t̃n) ∈ A × Rn with 1) ui(a) + ti ≤ ui(ã) + t̃i for all i, 2) ui(a) + ti <

ui(ã) + t̃i for all least one i, and 3)
∑n

i=1 t̃i ≤
∑n

i=1 ti . An outcome a ∈ A is efficient if

max(u) =
∑n

i=1ui(a), so it achieves maximum utilitarian welfare. It is well known that

an allocation (a, t1, . . . , tn) ∈ A×Rn is Pareto optimal if and only if a is efficient.

Subgame perfect implementation. We provide an informal definition of subgame-

perfect implementation because the paper is devoted to a particular mechanism. A

general definition is rather cumbersome and would be a distraction from the main

point of the paper.

A mechanism specifies a game-form: this means that, when the mechanism is

coupled with utility functions over outcomes for each of the players, it defines an

extensive-form game. For a mechanism θ, let SPNEθ(u) be the set of subgame perfect

equilibria when the utility profile is u. A mechanism subgame perfect implements the

set of efficient options if for any u, any member of SPNEθ(u) selects an efficient

option and any efficient option is selected by some member of SPNEθ(u).

6The assumption of quasi-linearity is relaxed in Section 7.1
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4 Price & Choose mechanism

We proceed with our baseline result by first describing the Price & Choose mecha-

nism for two players, and showing that it achieves full implementation in subgame-

perfect Nash equilibrium of the efficient outcomes.

Consider an instance of our model with two players. The Price & Choose mecha-

nism requires player 1 to choose a price vector; that is, a price for each option. Prices

may be positive or negative, and “budget balanced,” in the sense that they must add

up to zero. Player 2 then chooses an alternative in A, and pays player 1 the price that

she demanded for that alternative.

The formal definition of the Price & Choose mechanism (P&C) follows. Let P =

{p ∈ R|A| :
∑

a∈Ap(a) = 0}.

Timing:

1. Player 1 chooses a price vector p ∈ P .

2. Player 2 chooses an option a ∈ A and transfers p(a) to Player 1.

For any option a chosen at the second stage and any price vector p set in the first

stage, the payoffs associated to this mechanism equal g(p,a) = (g1(p,a), g2(p,a)) =

(u1(a) + p(a),u2(a)− p(a)).

Now it is obvious that the P&C mechanism defines an extensive form game, given

the players’ utility functions. A strategy profile in the game induced by the P&C

mechanism is a pair σ = (σ1,σ2), with σ1 ∈ P and σ2 : P → A. It is also obvious that

there exists at least one subgame perfect Nash equilibrium in pure strategies, as this

is a finite perfect-information game.

We say that the P&C mechanism implements the efficient options in subgame-perfect

equilibrium if, for any subgame-perfect Nash equilibrium σ = (σ1,σ2), σ2(σ1) is effi-

cient; and, conversely, for any efficient outcome a ∈ A, there is a subgame-perfect

Nash equilibrium σ = (σ1,σ2) with a = σ2(σ1).

Proposition 1. The P&C mechanism subgame-perfect implements the set of efficient

options.
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Proof. The proof is divided in four steps: the existence of a price vector that makes

Player 2 indifferent between all options (Step A), the proof that this price vector is

the unique one compatible with equilibrium behavior (Step B), the proof that any

equilibrium selects an efficient option (Step C) and finally (Step D) the construction

of an equilibrium selecting an efficient option and the converse construction: for

each efficient option, there is an equilibrium implementing it.

Step A: there is one and only one price p∗ ∈ P with g2(p∗, aj) = u2(aj) − p∗(aj) is con-

stant in j.

Indeed if θ = u2(a)− p(a), then

kθ =
k∑

j=1

u2(aj)−
∑
a∈A

p(a) = kAvg2,

as p ∈ P . Therefore, p∗(a) = u2(a)−θ = u2(a)−Avg2.

Step B: If σ is a subgame-perfect Nash equilibrium, then σ1 = p∗.

Let σ be a subgame-perfect equilibrium, p = σ1 and ai = σ2(p). We claim that

g2(p,a) = u2(a) − p(a) is constant for any a. Suppose then, towards a contradiction,

that there are j and h with g2(p,ah) > g2(p,aj). Let H be the set of h with ah ∈
argmax{u2(aj) − p(aj) : 1 ≤ j ≤ k}, and note that i ∈ H while j < H . Consider the

price vector p′ that is identical to p except that p′(ai) = p(ai)+ε, p′(ah) = p(ah)+2ε for

h ∈ H \ {i}, and p′(aj) = p(aj) − ε − 2ε(|H | − 1) for any aj < H . For ε > 0 small enough,

Player 2 finds it uniquely optimal to choose ai , while Player 1’s payoff is strictly

greater. A contradiction.

Since g2(p,aj) = u2(aj)− p(aj) is constant in j, by Step A, p = p∗.

Step C: If σ is a subgame-perfect Nash equilibrium, then σ2(p∗) ∈ argmax{u1(aj) +

u2(aj) : 1 ≤ j ≤ k}.
Suppose, towards a contradiction, that σ2(p∗) = aj and that u1(aj)+u2(aj) < u1(ai)+

u2(ai). By definition of p∗, however, u2(aj)− p∗(aj) = u2(ai)− p∗(ai). Suppose now that

player 1 chooses a price vector p′ ∈ P that is identical to p∗, except in that p′(ai) =

p(a∗i ) − ε and p′(aj) = p∗(aj) + ε, for ε > 0. Then we have that σ2(p′) = ai , as now ai is

10



the uniquely optimal choice for player 2, while

u1(aj) + p∗(aj) = u1(aj) +u2(aj)−Avg2 < u1(ai) +u2(ai)− ε −Avg2 = u1(ai) + p′(ai),

for ε > 0 small enough, contradicting that σ is a subgame-perfect Nash equilibrium.

Step D: For every efficient outcome, there is a subgame-perfect Nash equilibrium

that selects it.

Observe that Step A is a general remark on the mechanism whereas Steps B and

C deal with any subgame perfect equilibrium. This means that in any subgame per-

fect equilibrium: σ1 = p∗ and σ2(p∗) ∈ argmax{u1(aj) + u2(aj) : 1 ≤ j ≤ k}. In other

words, any subgame perfect equilibrium outcome is efficient. Let aj be an efficient

outcome. Consider the strategy profile σ1 = p∗ and σ2(p∗) = aj . Player 2 is playing

a best response since p∗ is making him indifferent between all options. Player 1’s

payoff equals :

u1(aj) + p∗(aj) = u1(aj) +u2(aj)−Avg2 = max(u)−Avg2.

This means that, given p∗, Player 1 is indifferent among all efficient options. Now,

suppose that Player 1 alters the price vector to force Player 2 to choose another ef-

ficient option. Any option ah with a price p(ah) > p∗(ah) will not be chosen by Player

2. This means that if Player 1 wants to induce Player 2 to choose some option al he

must set p(al) < p∗(al); however, this implies that if Player 2 chooses al Player 1’s

payoff is lower or equal than max(u) −Avg2 since Player 1’s payoff is increasing in

p(al), a contradiction. Hence, any efficient option is selected in some subgame perfect

equilibrium.

Observe that, in Step D, the existence of a subgame-perfect Nash equilibrium is

established.

The P&C mechanism confers the first player an advantage, as the equilibrium

payoffs to Player 2 are always Avg2, while Player 1 gets a payoff that is greater than

Avg1. We consider this issue in detail in Section 6, but we note here that the assump-

tion that prices in P add to zero may be modified to avoid (or exacerbate) the payoff
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imbalance.

Indeed, for any constant α, we may define the P&C mechanism with Player 1

choosing a price in Pα = {p ∈ R|A| :
∑k

j=1p(aj) = α}. By considering a modified game,

with P = Pα as above, but in which Player 2’s utility is u2−α
k , and 1’s utility is u1+α/k,

we see that P&C again subgame-perfect implements the efficient alternative. Now,

however, Player 2’s payoff is Avg2− α
k while 1’s payoff is max(u)−Avg2 + α

k . A negative

value of α serves to balance the payoffs to the two agents.

An outside agent like Judge Atkins, who does not know the utilities of players 1

and 2, may want to use Pα in order to balance the P&C mechanism, but not know

the proper value of α. It is, however, possible to endogenize the needed value of α.

One idea is to proceed as follows:

1. Player 1 proposes a real number α.

2. Player 2 decides between being the chooser (so that Player 1 is the proposer) or

the proposer (and Player 1 becomes the chooser).

3. The proposer set-up a price vector with p ∈ Pα and

4. The chooser selects an alternative aj and pays p(aj) to the proposer.

By replicating the arguments in Proposition 1, one can show that, in equilib-

rium, α = k
2(Avg1 + Avg2 − max(u)) so that Player 2 is indifferent between the two

roles. This means that the respective payoffs equal 1
2(max(u)) − 1

2(Avg2 −Avg1) and
1
2(max(u)) + 1

2(Avg2 −Avg1). This version with an endogenous sum of the prices in-

duces a redistribution between players with respect to the default version of P&C ,

in which the prices sum up to 0 and payoffs equal (max(u) −Avg2,Avg2). The main

difference between the P&C with endogenous α is that the payoff difference only

depends on the players’ average payoff, and not on the total payoff max(u).

Section 6 fleshes out a related idea for balancing payoffs in the P&C mechanism.
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5 Price & Choose with many players

We now turn to a many-player version of the problem. We shall see that the previ-

ous result implies that a simple n-player variation of our P&C mechanism achieves

subgame-perfect implementation of the efficient options. In this mechanism, the

first n − 1 players propose, one after the other, a balanced price vector that they

demand as payment from the next player in the order. The nth player chooses an

option a ∈ A. The endogenously set prices determine the transfers made between

consecutive players. A balanced price vector remains a vector of prices such that the

sum of prices equals zero.

Timing:

1. Player 1 sets up a price vector p2 ∈ P .

2. For each i = 2, . . . ,n− 1, Player i sets up a price vector pi+1 ∈ P , knowing prices

p2, . . . ,pi .

3. Player n chooses an option a as the outcome given the prices p2, . . . ,pn.

Transfers.

Say that a is the option chosen by Player n; this means that Player n pays Player

n− 1 the price pn(a). In turn, Player n− 1 has to pay the price pn−1(a) to Player n− 2.

This applies to any Player m with m = 2, . . . ,n − 1, so that he pays pm(a) to player

m−1 while receiving the transfer pm+1(a) from player m+1. Finally, Player 1 receives

the transfer p2(a) from Player 2, but makes no further payments. This entails that,

assuming quasi-linear preferences, the payoffs associated to the option a and the

price vector p = (p2, . . . ,pn) equal:

gn(p,a) = un(a)− pn(a),

gm(p,a) = um(a)− pm(a) + pm+1(a) for m = 2, . . . ,n− 1,

g1(p,a) = u1(a) + p2(a).
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Proposition 2. The Pn−1&C mechanism subgame-perfect implements the set of efficient

options.

Proof. We prove first that any equilibrium outcome of the P n−1&C mechanism is

an efficient option. We use Proposition 1 and proceed by induction. Fix a subgame-

perfect Nash equilibrium σ = (σ1, . . . ,σn). Define pn+1 = p1 = (0, . . . ,0) so that, for any

player i, if the option a is the outcome, with the sequence of prices p2, . . . ,pn, then i’s

payoff is ui(a)− pi(a) + pi+1(a).

The proof uses an auxiliary two-player P&C game, on which we apply Proposi-

tion 1. Let G(v1,v2) denote the two-player P&C game with utility functions v1 and

v2 for, respectively, players 1 and 2.

For any i ≤ n−1, consider the game G(ui−pi ,
∑n

j=i+1uj). Any equilibrium outcome

(pi+1, ai) involves:

1. ai ∈ argmaxa∈A
[
ui(a)− pi(a) +

∑n
j=i+1uj(a)

]
,

2. and
∑n

j=i+1uj(a) − pi+1(a) = 1
k

∑
ã∈A

∑n
j=i+1uj(ã), for all a ∈ A, which uniquely

defines pi+1.

So, in equilibrium, the unique pi+1 chosen results in maximizing:

ui(a)− pi(a) +
n∑

j=i+1

uj(a).

Consider a subgame in which it is player i’s time to move, and there are given prices

p1, . . . ,pi chosen by the players j < i. We claim that, in any SPNE, pi+1 = σ i(p1, . . . ,pi)

chosen by Player i must be part of a SPNE of the game G(ui − pi ,
∑n

j=i+1uj).

Indeed this is obviously true for i = n−1. So, reasoning by induction, suppose that

it holds true for any player j > i. By the inductive hypothesis, for any pi+1 chosen by

player i, Player i + 1 will choose pi+2 to be part of a SPNE of G(ui+1 −pi+1,
∑n

j=i+2uj).

So Player i + 1’s strategy, given (p1, . . . ,pi+1), will result in an option that maxi-

mizes ui+1 − pi+1 +
∑n

j=i+2uj . By reasoning as in the case of two players, we see that

i’s strategy will leave i + 1 indifferent among inducing any of the possible actions.

Indeed, if there exists a,a′ with ui+1(a) − pi+1(a) +
∑n

j=i+2uj(a) > ui+1(a′) − pi+1(a′) +
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∑n
j=i+2uj(a

′), then i could raise pi+1 for the actions that are in the same indifference

class as the chosen option and, without changing the chosen option, obtain a strictly

higher payoff. So

pi+1(a) =
n∑

j=i+1

uj(a)− 1
k

∑
ã∈A

n∑
j=i+1

uj(ã) for all a ∈ A

and the payoff to Player i from choosing pi+1 is

ui(a)− pi(a) + pi+1(a) = ui(a)− pi(a) +
n∑

j=i+1

uj(a)− 1
k

∑
ã∈A

n∑
j=i+1

uj(ã).

So Player i will choose pi+1 to maximize ui(a)− pi(a) +
∑n

j=i+1uj(a).

This concludes the proof by induction.

If we now consider the game G(u1,
∑n

j=2uj), and recall that p1 = 0. The prior ar-

gument esablishes that any subgame-perfect Nash equilibrium outcome is efficient.

We now show the converse argument: for any efficient outcome ā, there is an

equilibrium where ā is the outcome.

By applying Proposition 1, we know that for any pair of utility functions (u1,u2)

and any alternative ā that maximizes
∑2

h=1uh(a), the two-player P&C game G(u1,u2)

admits an equilibrium selecting ā.

We have also deduced earlier in the proof that, for any player i = 1, . . . ,n− 1, the

unique equilibrium prices proposed in any subgame where i moves first are equiv-

alent to the ones in the two-player P&C game G(ui − pi ,
∑n

j=i+1uj). So are the se-

lected alternatives in equilibrium. Indeed, we know that, in equilibrium, any player

moving after i is indifferent. Thus, there is an equilibrium selecting any efficient al-

ternative ā(i) in argmaxa∈A
∑n

h=i uh(a) − pi(a). Indeed, as long as any player moving

after i is indifferent and Player n selects an efficient alternative in the subgame, no

Player has a profitable deviation. The formal proof consists in showing by induction

that any Player moving after i obtains Avgi in equilibrium while Player i obtains∑n
h=i uh(a(i)) − pi(a(i)) −

∑
h=i+1 Avgi (we omit it for brevity). By recalling that p1 = 0

by definition and considering the whole game, it follows that, for any alternative ā(1)
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with ā(1) = argmaxa∈A
∑n

j=1uj(a), there is an equilibrium selecting it concluding the

proof.

6 Bid, Price & Choose

The P&C mechanism implements a Pareto efficient option in the general model of

social choice with transfers, but it does so with a particular set of transfers. In fact,

the first mover is treated asymmetrically with respect to the other players. Consider

P n−1&C and note that every player other than the first player in the order receives a

payoff that equals Avgi , their average payoff from an option in A. The first moving

player will receive, instead, a payoff that equals max(u) −
∑

j,1 Avgj > Avg1; a first-

mover advantage.

To correct the resulting unequal welfare distribution, we could proceed as was

suggested after we stated the proof of Proposition 1. We could also randomize the

order of play and select uniformly the identity of the first-mover.7 This will lead to

an ex-ante equal surplus split (that is, before the lottery takes place) but would still

generate ex-post inequality. Since we care about the ex-post allocation of the surplus,

we focus here on ideas suggested in the literature by Jackson and Moulin (1992)

and Pérez-Castrillo and Wettstein (2001); where biding in an auction determines

the order of play. Specifically, all players bid to be the first mover, and the highest

bidder wins (ties being broken by a uniform draw). The revenue from the winning

bid is equally split among the rest of the players. Then the players play the P&C

mechanism, where the player with the winning bid is the first mover. As we show,

this bidding stage reduces inequality among players, and makes the equilibrium

payoffs order-independent. That is, in equilibrium, players have no preferences ex-

post over the stages at which to participate.

More formally, consider an auction for the role of choosing first. Each player

submits a bid, bi ≥ 0. Let W = {i : bi ≡ max{bj : 1 ≤ j ≤ n}} be the set of winners —

the set of players who submitted the highest bids. One winner is chosen at random

(uniformly) to pay their bid and become the first mover. The bid collected from the

7We thank a referee for this suggestion.
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first mover is then distributed in equal shares among the rest of the players. So if

i ∈W is selected, then i pays bi and becomes the first mover, while all the remaining

players receive a payment of 1
n−1bi . The order of play among players who are not

first is determined at random.

Proposition 3. Bid, Price & Choose subgame-perfect implements the set of efficient op-

tions. Moreover, in any equilibrium, if U i are the equilibrium payoffs to players i =

1, . . . ,n, then

U i −U j = Avgi −Avgj .

Proof. Let η =
∑n

i=1ui(a
∗)−

∑n
i=1 Avgi , where a∗ is an efficient outcome, and b∗ = n−1

n η.

Consider a P&C subgame, after the order of play has been determined, and observe

that, in any subgame-perfect equilibrium outcome of this subgame, the payoffs to a

player j who is not the first mover is Avgj , while the payoff to a player i who is the

first mover is Avgi + η. Thus, if i is a winner of the auction, and is randomly chosen

to move first, their payoff is Avgi +η−bi . Any player j , i gets payoff Avgj +bi/(n−1).

By definition, η − b∗ = b∗/(n− 1), so the difference in payoffs is as in the statement of

Proposition 3.

Note first that there exists a symmetric Nash equilibrium of the auction with

bi = b∗ for all i, as η − b∗ = b∗/(n− 1) ensures that the payoff from winning and losing

are the same. Bidding higher than b∗ would ensure winning, but with a strictly lower

payoff; and bidding lower than b∗ would result in losing, but getting the same payoff

as with a bid of b∗.

This symmetric equilibrium is not unique, but all other equilibria have the same

outcome. Indeed there is no Nash equilibrium with a single winner, as the winner

would gain from lowering their bid. For any W with at least two players, there is a

Nash equilibrium with bi = b∗ for i ∈W and bi < b∗ for i <W . This follows from the

same argument as above.

Finally, consider a profile of bids with a set of winners choosing b′ , b∗. At b′

the payoff from winning differs from the payoff from losing. If the latter is higher, a

winner has an incentive to lower their bid. If the latter is lower, they can benefit by

raising their bid. So there is no Nash equilibrium in which the winning bid differs
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from b∗.

7 Extensions

We consider four extensions of our basic model and results. In the first extension we

relax the assumption that utility over monetary transfers is quasilinear. We adopt

a model with additively separable preferences, but allowing for very general pref-

erences over transfers. Remarkably, the main message that P&C implements the ef-

ficient outcomes goes through. Our second extension introduces an outside option,

and provides a modified mechanism implementing efficient outcomes with an added

voluntary participation property. The third extension relaxes the assumption of full

rationality, introduces adversarial behavior, and shows that the implementation re-

sult under P&C and two players is robust to this behavioral assumption. Finally, our

last extension introduces an upper-bound on the prices that players can propose in

the P&C mechanism.

7.1 Non-quasi-linear preferences

We turn to a generalization of our model to the case when agents’ preferences are

additively separable, but not necessarily quasilinear in monetary transfers. The P&C

mechanism is the same as the benchmark mechanism used in Section 5 to implement

efficient outcomes when preferences are quasi-linear with n players. The main dif-

ference deals with how players’ payoffs are transformed when making/receiving a

monetary transfer.

Recall that P = {p ∈ R|A| :
∑

a∈Ap(a) = 0} denotes the set of price vectors with zero

sum. When the outcome is (a,m1, . . . ,mn) ∈ A×Rn then player i’s utility is ui(a)+ηi(mi)

for i = 1, . . . ,n. In other words, we assume that agents’ utilities satisfy additive sepa-

rability. We assume that the functions ηi : R→ R are strictly monotone, continuous

and surjective.

In the non-quasilinear case, the allocation of money is explicitly part of the effi-

ciency consideration. Consider a strategy profile σ ; let p2, . . . ,pn be the sequence of
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prices on the path of σ , and ā be the chosen option. The outcome resulting from σ

is then (ā, m̄1, . . . , m̄n) with m̄1 = p2(ā),m2 = p3(ā)−p2(ā), . . .mn−1 = pn(ā)−pn−1(ā) and

mn = −pn(ā). We say that this outcome is efficient if there is no (a′,m′1, . . . ,m
′
n) ∈ A×Rn

with
∑n

i=1m
′
i ≤ 0 and ui(a′) + ηi(m′i) ≥ ui(ā) + ηi(mi) for all i with at least one strict

inequality for some agent i.

Proposition 4. With additively separable preferences, the SPNE outcome of the P&C

mechanism is an efficient allocation.

The proof of Proposition 4 is in Appendix A. Observe that the statement is weaker

than what is claimed in our main results. We only say that equilibrium outcomes

are efficient, not that there is full implementation. The characterization of efficient

transfers is an added complication in the non-quasilinear case, and we do not deal

with the full implementation problem for this case.

7.2 Outside option

We turn to a version of our model in which the player who makes a choice has an

outside option available that provides her with certain exogenous bargaining power.

In practice, agents are often endowed with some property rights or outside options

that make their participation in the mechanism voluntary. For example, a particular

case of our model is when each outcome corresponds to the allocation of some set of

indivisible private goods. In this case, the outside option may be a given endowment

of private goods.

More formally, we augment the set A of alternatives with an outside option a0.

An equilibrium outcome is individually rational for a player if she obtains a utility

equal to or larger than the one she receives with the outside option.

In this augmented setting, we slightly modify the P&C mechanism to reach ef-

ficiency. This modification is rather simple: we keep the main structure unchanged

without imposing anymore a restriction on the sum of prices. With n players, we

define the Unconstrained P&C’s mechanism proceeds as follows:

Timing:
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1. Player 1 sets up a price vector p2 ∈ R|A|.

2. For each i = 2, . . . ,n−1, Player i either sets up a price vector pi+1 ∈ R|A|, knowing

prices p2, . . . ,pi or selects the outside option a0 (for free).

3. Player n chooses an option a as the outcome given prices p2, . . . ,pn, or selects

the outside option a0.

If some player selects a0, then a0 is the outcome, there are no transfers, and each

player i obtains utility ui(a0). If no player selects a0, then Player n selects an alterna-

tive a and transfers are given by prices, identical to the ones in P&C with n players.

For ease of notation, we write u∗i = ui(a0) to denote the utility of Player i when the

outside option is selected; u∗ = (u∗1, . . . ,u
∗
n) is the vector of such utilities.

Proposition 5. For any specification of u∗, the Unconstrained P&C implements the set of

efficient and individually rational allocations.

Proof. Fix a subgame-perfect Nash equilibrium σ = (σ1, . . . ,σn). Define pn+1 = p1 =

(0, . . . ,0) so that, for any player i, if the option a is the outcome, with the sequence of

prices p2, . . . ,pn, then i’s payoff is ui(a)− pi(a) + pi+1(a).

Consider first any subgame where Player n−1 moves first. Remark that, indepen-

dently of Player n−1’s proposal, Player n can obtain a utility u∗n by opting out. In such

a subgame, if pn = σn−1(p1, . . . ,pn−1) and a = σn(p1, . . . ,pn), then un(a) − pn(a) = u∗n as

both agents are optimizing. So Player n−1’s payoff will be un−1(a)+un(a)−pn−1(a)−u∗n,

which is maximized when a is efficient in the subgame. Player n− 1 can induce any

efficient a by setting a price that leaves n indifferent with u∗n, and large prices for all

other options. Now we may complete the proof by induction.

For any i = 1, . . . ,n, let āi ∈ argmax{
∑n

h=i uh(a) : a ∈ A}. Assume now that in any

subgame where Player j moves first with j > i:

1. the alternative selected is efficient in the subgame with utilities (uj−pj ,uj+1, . . . ,un)

2. each Player h with h = j + 1, . . . ,n obtains payoff κh with

κh =
n∑
l=h

ul(āh)−
∑
l=h+1

u∗l
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.

Consider now a subgame where Player i moves first. The payoff for Player i + 1

equals ui+1(ã)− pi+1(ã) + pi+1(ã), where ã is the selected option. For any price vector

pi , the inductive hypothesis tells us that the payoff of Player i + 1 can be rewritten

as
∑

h=i+1uh(a) − pi+1(a) −
∑n

h=i+2u
∗
h, with a being the choice in the subgame. This is

maximized when a is efficient in the subgame. Moreover, Player i can always induce

Player n to choose the efficient option by setting pi∗ that makes Player i + 1 uniquely

prefer the efficient option, which, by the inductive hypothesis, leads to the imple-

mentation of this option. This concludes the proof by induction by recalling that

p1 = 0.

It is easy to see that unconstrained P&C fully implements the efficient outcomes.

In any subgame p1, . . . ,pi , for any outcome a that maximizes
∑n

h=i ui(a
′) − pi(a′), set

pi+1
∗ (a), . . . ,pn∗ (a) so that ph∗ (a) =

∑n
j=huj(a) −

∑n
j=h+1uj(a)u∗j and ph∗ (a

′) is sufficiently

large for a′ , a. This defines a SPNE strategy profile for each choice of efficient out-

come.

Remark 1. We may define a constrained version of P&C with an outside option, by

adding the constraint that prices add to zero. This will modify the above when the

value of the outside option falls below the average utility of agents’ over the options

in A. We omit the details, but emphasize that this may be a way of addressing an

imbalance in bargaining power, when the outside option does leaves some players

in a weak position (see also Section 6).

7.3 P&C as a robust mechanism

The analysis so far hinges, of course, on complete information among the players,

and on the assumption of equilibrium play. We now discuss two deviations from

these assumptions: perturbations from the complete information assumption and

approximate equilibrium with adversarial behavior.

Regarding the first robustness check, Aghion et al. (2012) study implementa-

tion with transfers under perturbations of the complete information assumption.

They prove that any mechanism that subgame perfect implements a social choice
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function which fails to be Maskin monotonic8 under complete information admits a

sequential equilibrium with undesirable outcomes when information is perturbed.

Their result is stated for finite strategy sets as well as for countably infinite ones,

so it does not exactly apply to P&C and our setting. For completeness, however,

we now show by example that the social choice function that the P&C mechanism

implements is not Maskin monotonic. To see why, consider the next example involv-

ing three alternatives and quasi-linear preferences over transfers. Let A = {a1, a2, a3}
be the set of options and u = (u1,u2) and u′ = (u1,u

′
2) denote two possible utility

profiles with u1 = u2 = (1,0,−1) and u′2 = (1,−2,−1). The set of allocations equals

{(a′, t1, t2) ∈ A×R2 with t1 + t2 = 0}, where a′ is the implemented option and t1,t2 are

the transfers of players 1 and 2 respectively. The sum of the transfers is zero since

Player 2 makes a transfer to Player 1 in the P&C mechanism. Recall that a social

choice function f maps the set of utility vectors U into the set of allocations. A so-

cial choice function is Maskin monotonic on U if for any pair of utility vectors u,

u′ ∈U , if x = f (u) and

{(i,y) | ui(x) ≥ ui(y)} ⊆ {(i,y) | u′i(x) ≥ u′i(y)},

(i.e. no player ranks x lower when moving from u to u′) then x = f (u′). The allocation

x chosen by the P&C mechanism where 1 is the first-mover equals x = (a1,1,−1) since

a1 is the efficient option and the price vector is p = (1,0,−1). When moving from u to

u′, no player ranks x lower since (i) the utility function of 1 remains unchanged and

(ii) for player 2, the utilities of a1 and a3 remain unchanged whereas the utility of a2

goes down. If the rule is Maskin monotonic, x should be chosen in u′. Yet, the chosen

allocation in u′ is y = (a1,2/3,−2/3) and clearly x , y, violating Maskin monotonicity.

As said, however, the results of Aghion et al. (2012) do not strictly speaking apply to

our model and it remains to see if our results suffer from the lack of robustness that

they study.9

8Maskin monotonicity plays a central role in implementation theory since any Nash imple-
mentable social choice function needs to satisfy it.

9Some of the main results in the paper of Aghion et al. deal with direct revelation mechanisms, so
they are focused on mechanisms that naturally differ from P&C .
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We now consider a different robustness test in the spirit of robust mechanism de-

sign (see Carroll (2019) for an excellent overview). The deviations we have in mind

relax the notion of equilibrium in two ways: First, players are only approximately

optimizing; they are “ε-maximizers.” Second, the assumption of approximate opti-

mization gives rise to ambiguity in how the second player will choose, and we as-

sume that Player 1 operates under a worst-case scenario. So Player 1 expects that the

ambiguity will be resolved adversarially by Player 2. As we prove below, the P&C

mechanism still achieves efficient implementation in the perturbed setting we have

outlined.

The assumption that Player 2 is adversarial could be motivated by ideas of nega-

tive reciprocity (see Fehr et al. (2021) for a recent contribution on this idea in imple-

mentation), in which players’ utilities depend negatively on the utility level of their

opponent. Observe also that, in the equilibrium of P&C in Section 3, the opposite

behavior arises: Player 2 is indifferent between all alternatives and he chooses the

one maximizing Player 1’s payoff (this occurs, as we show, endogenously; it is not an

assumption).

Formally, we say that, for a fixed ε > 0, option a is an ε-maximizer for Player 2 if

there is no a′ that is better than a by more than ε. This is equivalent to saying that

a is an ε-maximizer for Player 2⇐⇒ g2(p,a) + ε ≥ g2(p,a′) for any a′ , a. We denote

by βε
i (p) the set of ε-maximizers at the price vector p for Player 2. The adversarial

nature of Player 2 is then captured by setting σ2(p) ∈ argmin{g1(p,a) : a ∈ βε
2(p)}. In

words, Player 2 selects the option among ε-maximizers that minimizes Player 1’s

payoff.

Similarly, we say that Player 1 is ε-maximizing when choosing a price vector p ∈ P
if g1(p,σ2(p)) + ε ≥ g1(p′,σ2(p′)) for all p′ ∈ P .

To sum up, we say that the strategy profile σ = (σ1,σ2) is a ε-robust subgame

perfect Nash equilibrium if

1. σ2(p) ∈ argmin{g1(p,a) : a ∈ βε
2(p)} for all p ∈ P ,

2. and Player 1 is ε-maximizing when choosing σ1 ∈ P .

We say that σ2(σ1) is the outcome of the ε-robust subgame perfect Nash equilibrium
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σ .

For simplicity we assume here that there is a unique efficient alternative. We

expect that the argument generalizes to settings with more than one efficient option.

Proposition 6. For any ε > 0 small enough, the unique ε-robust subgame perfect Nash

equilibrium outcome of P&C is the efficient outcome.

Proof. Let p∗ be the price vector constructed in the proof of Proposition 1. So g2(p∗, aj) =

u2(aj)− p∗(aj) is constant in j and p∗(aj) = u2(aj)−Avg2 for each aj ∈ A.

Without loss of generality, we say that the (unique) efficient option is a1 ∈ A. So

max(u) = u1(a1) +u2(a1) > u1(aj) +u2(aj) for all j , 1.

Choose ε > 0 small enough so that

u1(aj) +u2(aj) +
k − 1
k

ε < u1(a1) +u2(a1)− 2ε (1)

for all j , 1.

Before we get started, observe that if aj = σ2(p), then aj ∈ βε
2(p), and hence u2(aj)−

p(aj) + ε ≥ u2(ah)− p(ah) for all h , j. Therefore:

u2(aj)− p(aj) ≥ Avg2 −
k

k − 1
ε. (2)

The proof is now divided in two steps. In Step A, we exhibit an ε-subgame-perfect

Nash equilibrium that selects a1. In Step B, we show that, despite the potential mul-

tiplicity of equilibria, all of them select option a1 as the equilibrium outcome.

Step A: Consider the strategy profile σ defined by

a) q∗ = (p(a∗1)− ε,p(a∗2) + ε
k−1 ,p(a∗3) + ε

k−1 , . . . ,p(a∗k) + ε
k−1 )

b) Player 2 chooses a1 if p = q∗ and minimizes the payoffs of Player 1 over β2
ε (p)

otherwise.

To see why this is an ε-equilibrium, observe that with q∗, the payoffs of both
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players are respectively equal to:

g1(q∗, ·) = (u1(a1) + p(a∗1)− ε,u1(a2) + p(a∗2) +
ε

k − 1
, . . . ,u2(ak) + p(a∗k) +

ε
k − 1

)

g2(q∗, ·) = (u2(a1)− p(a∗1) + ε,u1(a2)− p(a∗2)− ε
k − 1

, . . . ,u2(ak)− p(a∗k)− ε
k − 1

).

Thus, βε
2(q∗) = {a1}, so that Player 2 chooses a1 as we have claimed. To complete

the proof, we need to check that Player 1 does not have a profitable deviation that

exceeds their payoff by at least ε. Assume, towards a contradiction, that Player 1 can

find a price vector p that ensures him a payoff strictly greater than g1(q∗, a1) + ε. Let

aj = σ2(p). Then we have u1(aj) + p(aj) > u1(a1) + q∗(a1) + ε.

There are two cases to consider. The first case is when aj = a1. Then u1(a1)+p(a1) >

u1(a1) + q∗(a1) + ε implies that p(a1) > q(a∗1) + ε = u2(a1)−Avg2. Thus Avg2 > u2(a1)−
p(a1), and we conclude that there exists aj with u2(aj)− p(aj) > u2(a1)− p(a1).

At the same time, a1 = σ2(p), which implies that a1 ∈ βε
2(p). But then u2(aj)−p(aj) >

u2(a1) − p(a1) means that aj ∈ βε
2(p), so σ2(p) = a1 is only possible if u1(a1) + p(a1) ≤

u1(aj) + p(aj) (by the definition of σ2). Adding up these inequalities, we obtain that

u1(a1) + p(a1) +u2(a1)− p(a1) < u1(aj) + p(aj) +u2(aj)− p(aj),

which contradicts the definition of a1.

The second case to consider is when aj , a1. Then the assumption that q∗ is not

an ε-optimum yields that

u1(aj) + p(aj) > u1(a1) + q∗(a1) + ε = u1(a1) +u2(a1)−Avg2.

Combine this inequality with Equation (2) to obtain that

u1(aj) + p(aj) +u2(aj)− p(aj) > u1(a1) +u2(a1)− k − 1
k

ε,

contradicting (1).

Step B: Consider any ε-subgame perfect equilibrium (p,σ2). We claim that σ2(p) = a1,

and suppose (towards a contradiction) that σ2(p) = aj , a1.
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We first observe that u1(aj) + p(aj) ≥ u1(a1) + u2(a2) −Avg2 − 2ε, because Player

1 may select q∗ (as constructed in Step A) and guarantee a payoff of u1(aj) + p(aj) ≥
u1(a1) +u2(a2)−Avg2 − ε.

By (2), we obtain

u1(aj)+p(aj)+u2(aj)−p(aj) ≥ u1(a1)+u2(a2)−Avg2−2ε+Avg2−
k − 1
k

ε = u1(a1)+u2(a2)−2ε−k − 1
k

ε,

contradicting (1).

7.4 Capped Price & Choose

We now consider a modified version of P&C in which there is a bound on the prices

that the Players may put on the alternatives. The motivation for such capped price

vectors is that arbitrarily large prices may not be feasible in practice, and that cap-

ping prices could be seen as a measure to protect the welfare of Player 2.

Formally, for any τ ∈ R, we define the set of feasible prices by P τ = {p ∈ R|A| :

p(aj) ≤ τ for each aj ∈ A}. The number τ is an upper bound on prices. The Capped

P&C mechanism with upper-price limit τ works as follows.

Timing:

1. Player 1 chooses a price vector p2 ∈ P τ .

2. For each i = 2, . . . ,n−1, Player i chooses a price vector pi+1 ∈ P τ , knowing prices

p2, . . . ,pi .

3. Player n chooses an option a as the outcome given the prices p2, . . . ,pn.

We assume quasi-linear preferences and that each player pays the price associ-

ated to the option selected by Player n. This implies that the payoffs associated to

the option a are the same as in Section 3, with quasi-linear preferences.

Proposition 7. For any τ ∈ R, the capped P&C mechanism with upper-bound τ subgame

perfect implements the set of efficient options.
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Proof. Fix a subgame-perfect Nash equilibrium σ = (σ1, . . . ,σn). Define pn+1 = p1 =

(0, . . . ,0) so that, for any player i, if a ∈ A is the outcome, with the sequence of prices

p2, . . . ,pn, then i’s payoff is ui(a)− pi(a) + pi+1(a).

The proof proceeds by induction. Our inductive hypothesis is: For any i = 1, . . . ,n

and any subgame defined by a sequence of prices p1, . . . ,pi , the outcome chosen by σ

in the subgame maximizes
∑n

h=i uh(a)− pi(a).

The base case is obvious: When i = n, the hypothesis is true by assumption of

P&C .

So fix i ≤ n − 1 and suppose that the hypothesis holds for any subgame p1, . . . ,pj

with j = i + 1, . . . ,n.

Consider an arbitrary sequence of prices (p1, . . . ,pi). Suppose that a∗ is the equi-

librium alternative, and pi+1
∗ , . . . ,pn∗ the sequence of equilibrium prices, chosen in the

subgame defined by (p1, . . . ,pi) according to σ .

Claim: pi+1
∗ (b) = τ for all b ∈ argmax{

∑n
h=i+1uh(a) : a ∈ A}, and

n∑
h=i+1

uh(a∗)− pi+1
∗ (a∗) = max{

n∑
h=i+1

uh(a) : a ∈ A} − τ

Proof. Let

m(pi+1
∗ )B argmax{

n∑
h=i+1

uh(a)− pi+1
∗ (a) : a ∈ A}.

First we show that pi+1
∗ (a) = τ for some a ∈ m(pi+1

∗ ). Indeed, otherwise player i

may raise the price of a∗ by ε, and the price of all other a ∈ m(pi+1
∗ ) \ {a∗} by 2ε;

keeping the rest of the prices unchanged. If q is the resulting price vector, we may

choose ε > 0 small enough that q ∈ P τ and m(q) = {a∗}. By the inductive hypothesis,

a∗ is the equilibrium outcome in the subgame (p1, . . . ,pi ,q). This deviation to q would

increase the transfer to Player i without changing the option chosen in the subgame

following i’s choice.

So at least some a ∈m(pi+1
∗ ) has pi+1

∗ (a) = τ . Then for any b ∈ argmax{
∑n

h=i+1uh(a) :

a ∈ A},
∑n

h=i+1uh(b)−pi+1
∗ (b) ≥

∑n
h=i+1uh(a)−pi+1

∗ (a). Then, a∗ ∈m(pi+1
∗ ) implies

∑n
h=i+1uh(a∗)−

pi+1
∗ (a∗) = max{

∑n
h=i+1uh(a) : a ∈ A} − τ .
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Observe that the claim implies that i’s payoff under σ in this subgame is

ui(a
∗)− pi(a∗) + pi+1

∗ (a∗) = −pi(a∗) + τ −max{
n∑

h=i+1

uh(a) : a ∈ A}+
n∑
h=i

uh(a∗).

We now proceed to prove the hypothesis for i: We claim that a∗ maximizes a 7→∑n
h=i uh(a) − pi(a). Suppose, towards a contradiction, that there exists a′ ∈ A with∑n
h=i uh(a′) − pi(a′) >

∑n
h=i uh(a∗) − pi(a∗). Then i could modify pi+1

∗ to ensure a prof-

itable deviation: Let q ∈ P τ be

q(a′) = τ −max{
n∑

h=i+1

uh(a) : a ∈ A}+
n∑

h=i+1

uh(a′)− ε

and q(a) = τ for all a , a′. Then a′ is the unique maximizer of a 7→
∑n

h=i+1uh(a)− q(a),

as the claim implies that

max{
n∑

h=i+1

uh(a)− pi+1
∗ (a) : a ∈ A} = max{

n∑
h=i+1

uh(a) : a ∈ A} − τ <
n∑

h=i+1

uh(a′)− q(a′)

and q(a) ≥ pi+1
∗ (a) for all a , a′. By the inductive hypothesis, then, the outcome in the

subgame following the choice of q by i is a′. In consequence, i’s payoff from choosing

q is

ui(a
′)− pi(a′) + q(a′) =

n∑
h=i

uh(a′)− pi(a′) + τ −max{
n∑

h=i+1

uh(a) : a ∈ A} − ε

>
n∑
h=i

uh(a∗)− pi(a∗) + τ −max{
n∑

h=i+1

uh(a) : a ∈ A}

= ui(a
∗)− pi(a∗) + pi+1

∗ (a∗),

where the inequality follows from
∑n

h=i uh(a′) − pi(a′) >
∑n

h=i uh(a∗) − pi(a∗) and the

choice of a small enough ε > 0. The price vector q would be a profitable deviation:

a contradiction. The inductive argument completes the proof that any subgame-

perfect Nash equilibrium outcome is efficient. For the converse argument, let ā be

any efficient outcome. In any subgame, defined by a sequence of prices p1, . . . ,pi , let
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a(pi) maximize a 7→
∑n

h=i uh(a)− pi(a) and define

σ i(p1, . . . ,pi)(a(pi)) = τ +
n∑
h=i

uh(a(pi))−max{
n∑
h=i

uh(a) : a ∈ A}

and σ i(p1, . . . ,pi)(a) = τ for all a , a(pi). On path, with prices p1
∗ , . . . ,p

i
∗ set a(pi∗) = ā.

8 Conclusion

We have considered implementation in the general social choice problem with money,

and an arbitrary number of agents. Our proposed solution, the Price & Choose mech-

anism, is a simple procedure for reaching efficient agreements. A remarkable feature

of our approach is that it relies on prices, and does not require penalties, integer

games, off-equilibrium threats, or lotteries; all classical techniques used by mecha-

nism designers to discipline players and achieve full implementation. Our solution

requires the availability of money, but does not rely on the narrow assumption of

quasilinear preferences.

The main shortcoming of our approach is that it assumes complete information

and equilibrium behavior; we have addressed this weakness by considering a model

with maxmin and ε-optimizing behavior, and shown that the set of efficient options

remains implemented by the P&C mechanism - whether experimentally subjects

manage to reach efficient agreements through the described methods remains an

empirical question.10

A potentially appealing extension of the current work is to understand how P&C

mechanisms can help in specific applied problems that the literature has previously

addressed, such as the efficient allocation of pollution emissions among a fixed set of

firms (as Duggan and Roberts (2002)) or the design of a revenue-maximizing auction

between one seller and multiple buyers in the presence of externalities (Jehiel et al.

10Another possible extension is to understand how to achieve similar results in incomplete infor-
mation settings with interdependent preferences (see Ollár and Penta (2022) for recent work in this
direction).
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(1996)).
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A Proof of Proposition 4

Let σ = (σ1, . . . ,σn) be a subgame-perfect Nash equilibrium. Let pi , i = 2, . . . ,n be the

prices set on the equilibrium path. Let ā be the outcome chosen on the path of play.

For notational economy, define the price vectors p0 and pn+1 by p0(a) = pn+1(a) = 0

for all a.

Lemma 1. There exists a unique solution (αi ,p
i) ∈ R × P , i = 2, . . . ,n, to the system of

equations

ui(a) + ηi(p
i+1(a)− pi(a)) = αi for all a ∈ A,i = 2, . . . ,n.

Proof. The system is solved recursively. Denote the solution by (αi ,p
i
∗). Consider

player i and suppose that pi+1
∗ , . . .pn+1

∗ are given, with pn+1
∗ = 0 ∈ P . Define a func-

tion fa : R→ R by

fa(x) = pi+1
∗ (a)− η−1

i (x −ui(a))

for each a ∈ A. Note that fa is continuous, strictly monotonically decreasing, and

that fa(R) = R. Then there exists x and x̄ so that
∑

a∈A fa(x) < 0 <
∑

a∈A fa(x̄). By the

intermediate value theorem, there is then αi ∈ (x, x̄) with
∑

a∈A fa(αi) = 0. Define

pi∗(a) = fa(αi) for a ∈ A. Then pi∗ ∈ P and ui(a) + ηi(pi+1
∗ (a)− pi∗(a)) = αi for all a ∈ A.

Observe that the value of αi is uniquely determined (given pi+1
∗ ). Indeed, if there

were two, say αi and α′i with αi < α′i , then pi(a) = pi+1
∗ (a)−η−1

i (x−ui(a)) for x ∈ {αi ,α
′
i}.

Impossible since the right-hand side is strictly monotonic in x, and we need the price

vector pi to be in P and thus add to zero.

Finally, pi∗ is uniquely determined from pi+1
∗ and αi as pi∗(a) = pi+1

∗ (a)−η−1
i (x−ui(a))

for all a ∈ A.

Lemma 2. Fix i = 1, . . . ,n. Consider a subgame given by the sequence of prices p0 =

0, p̂1, . . . , p̂i . Let pi+1, . . . ,pn be the prices, and â be the chosen outcome, on the path of σ in

this subgame. Then â maximizes player i’s payoff:

ui(â) + ηi(p
i+1(â)− p̂i(â)) ≥ ui(a) + ηi(p

i+1(a)− p̂i(a))

34



for all a ∈ A. And if i < n then i chooses pi to leave i+1 indifferent among all alternatives:

ui+1(a) + ηi+1(pi+1(a)− p̂i(a)) = αi+1,

for all a ∈ A, for some αi+1.

Proof. The proof is by induction. The first statement is obviously true for i = n in

any subgame, by definition of Price & Choose. We prove the second statement for i =

n−1. Suppose (towards a contradiction) that there is a,a′ ∈ A with un(a)+ηn(pn+1(a)−
pn(a)) > un(a′) + ηn(pn+1(a′)− pn(a′)), then

un(â) + ηn(pn+1(â)− pn(â)) ≥ un(a) + ηn(pn+1(a)− pn(a))

> un(a′) + ηn(pn+1(a′)− pn(a′)).

Player n − 1 may then increase the price of â by ε while increasing the price of the

other outcomes in argmax{un(a) + ηn(pn+1(a) − pn(a)) : a ∈ A} by more than ε and

compensating for these increases by decreasing the price of a′. The resulting price

vector would be in P ; when ε > 0 is small enough, the unique optimal choice for n

would be â, but the price received by n − 1 would be strictly higher as well as the

corresponding payoff. A contradiction as σ is a SPNE.

Suppose now that both statements are true for any subgame in which the first

mover is one of the players i + 1, . . . ,n. We first show the second statement for player

i. The argument is the same as earlier: player i can otherwise increase the price of â so

that it is the uniquely optimal outcome for the next player. By the inductive hypoth-

esis, â would still be chosen in the resulting subgame but at a larger price received

by i. This would contradict that pi+1 is chosen in the subgame-perfect equilibrium.

Finally, we turn to proving the first statement for player i. Suppose, towards a

contradiction, that there is a ∈ A with :

ui(a) + ηi(p
i+1(a)− p̂i(a)) > ui(â) + ηi(p

i+1(â)− p̂i(â)),

where pi+1 is the price indicated by σi in the subgame. Then i may increase the price

to i + 1 of the outcome â, and decrease the price of a, so that the payoff to i from
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outcome a remains higher than that of â. We have seen that i + 1 was indifferent

between all options at the prices pi+1. The modified prices would then give i + 1

strictly higher utility from choosing a than any other outcome. By the inductive

hypothesis, then, a would be the outcome in the subgame resulting from i modified

price vector. But this would be a profitable deviation from σ by i; a contradiction.

We proceed to prove Proposition 4. Suppose (towards a contradiction) that there

is ã ∈ A and m1, . . . ,mn with
∑
mi = 0 so that ui(ã) + ηi(mi) ≥ ui(ā) + ηi(pi+1(ā)− pi(ā))

with a strict inequality for at least one agent i. Since the ηi are continuous and strictly

increasing, this means we can take ã and m1, . . . ,mn to satisfy ui(ã) + ηi(mi) > ui(ā) +

ηi(pi+1(ā)− pi(ā)) for all i.

Let p̃i ∈ P be such that mi = p̃i+1(ã)− p̃i(ã). Such prices exist because we can take

p̃n(ã) = −mn, and p̃i(ã) = −p̃i+1(ã)−mi for all i = 2, . . . ,n− 1. Then p̃2(ã) = −
∑n

j=2mj =

m1. For a , ã we define prices arbitrarily to ensure that p̃i ∈ P . Again we define

p̃n+1 = 0.

First note that for i = 2, . . . ,n

ui(ã) + ηi(p̃
i+1(ã)− p̃i(ã)) = ui(ã) + ηi(mi)

> ui(ā) + ηi(p
i+1(ā)− pi(ā))

= ui(ã) + ηi(p
i+1(ã)− pi(ã)),

here the second equality follows from the indifference property of any SPNE that we

have shown in Lemma 2.

Thus

p̃i+1(ã)− p̃i(ã) > pi+1(ã)− pi(ã) =⇒ pi(ã)− p̃i(ã) > pi+1(ã)− p̃i+1(ã),

as ηi is strictly monotonically increasing. We have pn+1 = p̃n+1 = 0, so recursively we

see that p̃i(ã) < pi(ã) for all i. This means that p̃2(ã) < p2(ã).

As a consequence,

u1(ã) + η1(p̃2(ã)) < u1(ã) + η1(p2(ã)) ≤ u1(ā) + η1(p2(ā)),
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where the last inequality follows because the selected ā in SPNE maximizes the pay-

off of the first mover in any subgame, as shown in Lemma 2, in contradiction to the

assumption that alternative ã and transfer m1 is preferred by Player 1 to alternative

ā with transfer p2(ā).
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