
REVISITING THE NON-PARAMETRIC ANALYSIS OF
TIME-INCONSISTENT PREFERENCES

FEDERICO ECHENIQUE AND GERELT TSERENJIGMID

Abstract. We revisit the recent revealed preference analysis of sophisticated

quasi-hyperbolic consumers by Blow, Browning, and Crawford (2021) (BBC). We

show that BBC’s revealed preference test is too lax. There are non-rationalizable

data that would pass their test. A basic problem with their test is that it requires

finding a certain endogenous elasticity, without regard to the rationalizing utility.

Their approach motivates a more stringent test, also based on first-order condi-

tions, that would connect the endogenous elasticity and utility: We show that this

test is also too lax. Aside from testing, we also discuss the possibility of recovering

model parameters. We show that, even when discount factors are exactly identified,

the approach followed in BBC allows for incorrect parameter values to lie in their

identified set.
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Introduction

Blow, Browning, and Crawford (2021) (hereafter, BBC) present a revealed-

preference characterization of quasi-hyperbolic discounting preferences in demand

theory. A consumer chooses over time, according to intertemporal utility tradeoffs

that change over time because of their quasi-hyperbolic preferences. Following Afriat

(1967) (in the general utility-maximization framework), and Browning (1989) (for

dynamically consistent exponential discounting), BBC use a first-order approach.

That is, BBC equate consistency of data and model with the existence of a solution

to a system of equations arising from first-order conditions for utility maximization.

These first-order conditions are Euler equations, as derived in Harris and Laibson

(2001), for example.

We argue that BBC’s first-order approach is problematic and may lead to incorrect

inferences. In the cases of Afriat and Browning, one can show that the first-order

approach is correct. It leads to a test that is passed if and only if the model explains

the data (Section 1.1). For the general model of utility maximization (Afriat), or the

model of exponential discounting (Browning), data are consistent with the first-order

approach if and only if there is a utility that satisfies the conditions in the model,

and that rationalizes the data as optimal choices.

We show that there is a problem in using the first-order approach for a quasi-

hyperbolic agent. The first-order approach is too permissive. Say that a dataset is

FOCs rationalizable if the system of first-order conditions can be satisfied. A

dataset is equilibrium rationalizable if there is a utility such that the observed

consumption is an equilibrium outcome of the quasi-hyperbolic model. Our Theo-

rem 1 shows that there are datasets that are FOCs rationalizable, but not equilibrium

rationalizable. Our Theorems 1 and 4 show that the first-order approach leads to in-

correct inference about crucial model parameters.

Theorems 1 and 4 matter beyond their theoretical implications. BBC carry out an

empirical application in which they emphasize the explanatory power of the quasi-

hyperbolic model: “The quasi-hyperbolic model provides a significantly more suc-

cessful account of behaviour than the alternatives considered.” The gap between

equilibrium rationalizability and FOCs rationalizability may call into question the

conclusions drawn from their empirical results.

We should emphasize that the revealed-preference problem for quasi-hyperbolic

discounting is very difficult, and BBC make progress. There are problems with the

first-order approach, but it is at least tractable.
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1. Quasi-hyperbolic discounting and consumption.

We first outline the model of quasi-hyperbolic discounting consumer choice. We

shall focus on a three-period model because it is the simplest case in which the

assumption of hyperbolic discounting has any bite.

A consumer chooses quantities of a single good in periods t = 1, 2, 3. She has

a wealth m, and faces prices pt for consumption in period t. These prices may be

interpreted as encoding interest rates. Given prices and wealth, a consumption stream

x = (x1, x2, x3) is affordable if p · x :=
∑3

t=1 ptxt ≤ m. The standard exponential-

discounting model assumes that preferences over a consumption stream x ∈ R3
+ are

described by a pair (u, δ), with u : R+ → R, and δ > 0. The consumer evaluates a

consumption stream x by u(x1) + δ u(x2) + δ2u(x3).

Under quasi-hyperbolic discounting, the consumer’s preferences are described by a

tuple (u, β, δ), with u : R+ → R, and β, δ > 0. The consumer evaluates a consump-

tion path x by u(x1) + β[δu(x2) + δ2u(x3)]. A quasi-hyperbolic consumer chooses

consumption that results from an equilibrium between their period-1 preferences and

their period-2 preferences. We phrase this as a game played between two agents.

Agent 1 chooses consumption in period 1, x1. Agent 2 chooses consumption in pe-

riod 2, and consequently in period 3 because consumption in period 3 is determined

by the consumer’s overall budget. So Agent 2 chooses (x2, x3).

The relevant equilibrium notion embodies a form of sequential rationality: it is a

subgame-perfect Nash equilibrium. A subgame-perfect equilibrium can be described

by backward induction: In period 2, given x1, Agent 2 maximizes u(x2) + βδu(x3)

subject to x2, x3 ≥ 0 and p2x2+ p3x3 ≤ m− p1x1. Let s(x1) = (s2(x1), s3(x1)) denote

a solution to Agent 2’s problem, as a consumption vector in periods 2 and 3, and as

a function of the period-1 choice x1.

Agent 1 then solves the problem of choosing period-1 consumption x1 to maximize

u(x1) + βδ u(s2(x1)) + βδ2u(s3(x1)),

subject to x1 ≥ 0 and p1x1 ≤ m. If x∗
1 is an optimal choice for Agent 1, we say that

the pair (x∗
1, s) is a subgame-perfect Nash equilibrium of the game induced by

(u, β, δ). In the sequel, we simply write equilibrium to refer to a subgame-perfect

Nash equilibrium. An equilibrium outcome of the game defined by (u, β, δ), for

fixed prices p and budget m, is then a consumption stream x = (x1, x2, x3) for which

there exists an equilibrium (x∗
1, s) with x∗

1 = x1 and (x2, x3) = s(x∗
1).
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A dataset consists of a pair (x, p), where x ∈ R3
++ and p ∈ R3

++. The inter-

pretation is that we observe a consumption stream x, chosen when the prices are p,

and income (or budget) is m := p · x. Importantly, x is the observed, or realized,

consumption choice. Let U+ be the set of all monotone increasing, C2, and strictly

concave functions u : R+ → R. We follow BBC in imposing strict concavity of utility,

δ ≤ 1 and β < 1.1

We introduce the relevant notions of rationalizability: what it means for a dataset

to be consistent with this particular theory of consumer choice.

Definition 1. A dataset (x, p) is equilibrium rationalizable by the sophisti-

cated quasi-hyperbolic model if there exists (u, β, δ), with u ∈ U+, β ∈ (0, 1), and

δ ∈ (0, 1], for which x is an equilibrium outcome of the game defined by (u, β, δ) for

prices p and budget m = p ·x. We say that (u, δ, β) is an equilibrium rationaliza-

tion of (x, p). EQ denotes the set of equilibrium rationalizable datasets.

Equilibrium rationalizability requires checking complicated optimization and equi-

librium properties. The literature on revealed preference theory, following the seminal

work of Afriat (1967), often focuses on the data satisfying the first-order conditions of

a model. We call this the first-order approach. BBC, while ostensibly about equi-

libria in the quasi-hyperbolic discounting model, actually formally uses the first-order

approach. Our next definition is Definition 1 in BBC.

Definition 2. A dataset (x, p) is FOCs rationalizable by the sophisticated quasi-

hyperbolic model if there exists (u, β, δ, (µt)
3
t=1) such that u ∈ U+, λ > 0, β ∈ (0, 1),

δ ∈ (0, 1], µt ∈ (0, 1) for t = 1, 2, and µ3 = 1 such that

(1) u′(xt) = λ
pt
δt

t∏
i=1

1

1− (1− β)µi

.

We say that the tuple (u, β, δ, (µt)
3
t=1) is a FOCs rationalization of (x, p). We

also say (u, β, δ) is a FOCs rationalization of (x, p) if a desirable (µt)
3
t=1 exists. Let

FOC be the set of all datasets that are FOCs rationalizable.

FOCs rationalizability has a straightforward conceptual flaw: the elasticities µt

are not required to arise from the rationalizing utility u. BBC do not prove that

1BBC explicitly assume concavity, but implicitly strict concavity. They assume that the consumption
function is differentiable, which rules out a zero of the second derivative of the instantaneous utility
function (see Theorem C.3.2 in Mas-Colell (1985)). BBC also refer to Harris and Laibson (2001),
who do assume strict concavity of utility.
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FOC=EQ. In fact, as we show below, there is a data set (x, p) that is FOCs rational-

izable but not equilibrium rationalizable.

For the first-order approach to be valid, two conditions are needed. First, any

dataset that is FOCs rationalizable needs to be equilibrium rationalizable. Second,

any FOCs rationalization of a dataset should also be an equilibrium rationalization.

So model parameters that are recovered from the dataset are, in fact, consistent with

the model. For general, and exponential, utility, the two conditions are satisfied

(Section 1.1). For quasi-hyperbolic discounting, both conditions are violated.

Theorem 1. EQ ⊊ FOC. Moreover, there is a data set (x, p) ∈ EQ with a FOCs

rationalization (u, β, δ) that is not an equilibrium rationalization of (x, p).

The intuition behind Theorem 1, and our subsequent results, depends on the notion

of absolute risk aversion. Let AR(x) = −u′′(x)
u′(x)

be the coefficient of absolute risk

aversion at x. Let R(p) =
p22−p1 p3
p3(p1−p2)

; and PS be the set of data (x, p) with max(x1, x3) ≤
x2, p1 > p2 > p3, and R(p) > 1. In our proof, we show that any data in PS

is FOCs rationalizable, but some of them are not equilibrium rationalizable. By

leveraging the connection between µt and u, we show that in order for (x, p) ∈ PS

to be equilibrium rationalizable, AR(x2) has to be at least R(p) times larger than

AR(x3), i.e.,
AR(x2)
AR(x3)

≥ R(p) > 1.

We can make three observations from the inequality AR(x2)
AR(x3)

≥ R(p) > 1. First, any

(x, p) ∈ PS with x2 = x3 is not equilibrium rationalizable because AR(x2) = AR(x3),

which proves the first part of Theorem 1. Second, if (x, p) ∈ PS is equilibrium

rationalizable, then a rationalizing utility function violates decreasing absolute risk

aversion, which is assumed in most economic environments, and overwhelmingly sup-

ported by empirical evidence. Third, R(p) can be arbitrarily large. For example,

R(p) > k+(k+1)2 ϵ when p = (1+(k+2)ϵ, 1+(k+1)ϵ, 1). Hence, for any rationaliz-

ing utility function u of (x, p), even allowing for increasing absolute risk aversion, the

coefficient of absolute risk aversion needs to make arbitrarily large jumps (even when

x2 and x3 are arbitrarily close). This excludes the class of utility functions assumed

in Harris and Laibson (2001), where the coefficient of relative risk aversion is bounded

(Theorem 5). This also rules out utility functions that are uniformly log-Lipschitz

continuous (Theorem 5). Essentially because of the problematic properties of a FOCs

rationalizing utility function, a data set (x, p) ∈ PS with max(x1, x3) < x2 can be a

local minimizer of Agent 1’s objective function while it satisfies FOCs; which proves

the second part of Theorem 1.
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1.1. Exponential discounting model and the First-Order Approach. We ar-

gued that two conditions are needed for the first-order approach to be valid. To con-

trast with quasi-hyperbolic discounting, we consider exponentially discounted utility

(EDU). A dataset (x, p) is EDU-rationalizable if it is equilibrium rationalizable

by the quasi-hyperbolic model with some (u, β, δ) where β = 1. When this occurs, we

say that (u, δ) is a EDU-rationalization of (x, p). Similarly, we say a dataset (x, p)

is EDU-FOCs rationalizable if it is FOC rationalizable by the quasi-hyperbolic

model with some (u, β, δ) where β = 1. EDU-FOCs is the test used by Browning

(1989). The pair (u, δ) is an EDU-FOCs rationalization of (x, p).

Afriat (1967) shows that the first-order approach is valid for the general model of

utility maximization. The same is true for exponential discounting:

Proposition 2. A dataset is EDU-FOCs rationalizable if and only if it is EDU-

rationalizable. Moreover, any EDU-FOCs rationalization (u, δ) of (x, p) is also an

EDU-rationalization of (x, p).

Proposition 2 is presented, without proof, to contrast with Theorem 1.

1.2. Quasi-hyperbolic model and Strong FOC. The disconnect between u and

µt in the definition of FOCs rationalization motivates our next definition. It suggests

that u and µt may be connected through Equation (2) (see Lemma 1 of BBC).

Definition 3. A dataset (x, p) is strongly FOCs rationalizable by the sophisti-

cated quasi-hyperbolic model if there exists a FOCs rationalization (u, β, δ, (µt)
3
t=1)

that satisfies

(2) µ2 =
p2

p2 + p3
AR(x2)
AR(x3)

.

Let Strong FOC be the set of all datasets that are strongly FOCs rationalizable.

We will derive Equation 2 from the utility maximization problems of Agent 1 and

Agent 2 in Section 3. Under standard regularity conditions, the equation is necessary

for equilibrium rationalization, i.e., EQ ⊆ Strong FOC.

Let D be the set of datasets (x, p) that satisfy xt ̸= xs for all t ̸= s, and I be the

set of datasets with p1 > p2 > p3 and p1/p2 > p2/p3.

Theorem 3.

(1) EQ ⊆ Strong FOC ⊊ FOC,

(2) D ∩ FOC = D ∩ Strong FOC ⊊ Strong FOC,
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(3) and I ⊆ FOC.

To unpack the theorem, we discuss the different claims it contains. Statement (1)

gives the obvious logical relations: EQ ⊆ Strong FOC ⊆ FOC; but in contrast with

the message of Proposition 2 for exponential discounting, there is a gap between the

notion of equilibrium and FOCs rationalization; the gap already appears in comparing

FOCs and strong FOCs rationalizations. Strong FOC is a strict subset of FOC.

Statement (2) addresses the disconnect between u and µts in BBC. Theorem 3 says

that, as long as consumption in different time periods is distinct, it is always possible

to line up the µt numbers with the intended rationalization. So strong FOCs seem to

be too permissive as well. Further evidence on the permissiveness of strong FOCs is

in Theorems 4 and 5.

Statement (3) provides additional evidence about the weakness of FOCs rational-

ization. No matter what the values of consumption are, as long as a dataset satisfies

the assumption on prices in I, then it is FOCs rationalizable. It is worth mentioning

that such prices are compatible with data that refute the exponential discounting

model.2

Our next result speaks to the use of FOCs rationalizability to recover the discount

factors in a quasi-hyperbolic utility function. Discount factors matter critically for

welfare comparisons and policy decisions, and estimating β and δ is part of the em-

pirical exercise in BBC. But the proof of Proposition 1 in BBC shows that, whenever

a dataset is FOCs rationalizable, it is without loss of generality to assume δ = 1.

Our next result shows that this is problematic: there are datasets for which (β, δ) are

point identified and δ < 1, but δ = 1 is also in BBC’s identified set.

Theorem 4.

(1) Let δ∗ ∈ (0, 1) and β∗ ∈ (0, 1). There is (x, p) ∈ EQ such that: a) δ = δ∗ and

β = β∗ for any equilibrium rationalization (u, β, δ) of (x, p), and b) there is

also a FOCs rationalization (u, β′, δ′) of (x, p) with δ′ = 1.

(2) There are (x, p) ∈ D and (u, β, δ) such that (u, β, δ) is a Strong FOCs ratio-

nalization of (x, p), but not an equilibrium rationalization of (x, p).

Statement (1) of Theorem 4 means that δ < 1 has additional empirical content

when we focus on equilibrium rationalizability rather than FOCs. Statement (2)

speaks to the possibility of using a FOCs, or Strong FOCs, rationalization in order

2For example, by Theorem 1 of Echenique et al. (2020), the data set (x, p) ∈ I with x = (3, 2, 4) and
p = (8, 2, 1) is not EDU-rationalizable.



DYNAMICALLY INCONSISTENT 7

to recover utility parameters. The theorem says that a rationalization may not have

an equilibrium outcome that coincides with the data, which would mean that the

rationalizing parameters could not generate the observed data. Theorem 4 challenges

the analysis in Section 3.4 of BBC, in which they recover consumers’ preferences

based on a FOCs rationalization. The recovered preferences may not explain the

data according to the quasi-hyperbolic model.

2. Robustness

Some of our results take essentially the form of counterexamples, or of families of

counterexamples. Here we offer evidence that these are not, in some sense, “knifedge.”

We present first two classes of utility functions.

Given α ≥ 0, a function f : A ⊆ R → R++ is α-logarithmically Lipschitz if, for

all x ∈ A and t > 0 so that x + t ∈ A, f(x + t)/f(x) ≤ (1 + t)α. Observe that

any non-increasing function is trivially α-logarithmically Lipschitz. Let Uα be the

set of all smooth, strictly monotone increasing, and strictly concave utility functions

for which the coefficient of absolute risk aversion is α-logarithmically Lipschitz. Note

that Uα ⊆ Uβ for any β ≥ α ≥ 0. The class U0 contains all functions satisfying

non-increasing absolute risk aversion. There is, of course, overwhelming empirical

support for the assumption of non-increasing absolute risk aversion.3 Let FOCα and

Strong FOCα be the sets of data sets that are FOC rationalizable and strong FOC

rationalizable by a utility function u ∈ Uα.

We also consider the class of utility functions UHL ⊆ U that are assumed by Harris

and Laibson (2001). For reasons of space, we do not include the complete definition

of UHL: see assumptions U1-U4 on page 940 of their paper. The critical assumption

for us is U4 which assumes that the coefficient of relative risk aversion is bounded

away from 0 and +∞. The results of BBC rely on Harris and Laibson’s results (for

example, Lemma 1 in BBC is one of Harris and Laibson’s results).

Theorem 5. Let α ≥ 0. There is an open subset Do of D with the property that, for

any (x, p) ∈ Do:

(1) (x, p) is in FOCα but not equilibrium rationalizable with any utility u ∈ Uα ∪
UHL;

(2) (x, p) is not in Strong FOCα.

3See, for example, Cohn et al. (1975), Levy (1994), Guiso and Paiella (2008), Chiappori and Paiella
(2011), and Paravisini et al. (2017).
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Remark 1. There is, as said, overwhelming empirical support for U0. Theorem 5 only

requires Uα, for some α ≥ 0. It is easy to prove even stronger versions of Theorem 5:

We may require that there is a bounded function h : [0, 1] → R+ such that, for all u,

there is ε ∈ (0, 1) with AR(x + t)/AR(x) ≤ h(t) for all t ∈ (0, ε). The conclusion of

the theorem holds in this case.

Remark 2. The proof of Theorem 5 shows a stronger result: for any α ≥ 0, there is an

open subset Do of D with the property that Do ⊆ FOC0 and Do∩Strong FOCα = ∅.
Since FOC0 ⊆ FOCα for any α ≥ 0, we obtain Do ⊆ FOCα. In fact, as we show in

the proof, every (x, p) ∈ Do will be FOC rationalizable with a CRRA utility function.

Remark 3. For additional robustness, we present a result like Theorem 5 for arbitrary

compact sets of utilities in the Online Appendix A.1.

Remark 4. The focus so far has been on a three-period model, which raises the pos-

sibility that the equivalence between EC and FOCS is valid for longer time horizons.

It is, of course, easy to recreate the counterexamples in our proofs so that they oc-

cur in the last three periods of a problem with an arbitrary finite horizon. But we

present a counterexample in Online Appendix A.2 in which the incompatibility arises

at intermediate periods: not at the beginning nor at the end of the time horizon.

3. Proofs

As background for the proofs of Theorems 1-5, we derive convenient expressions for

the model’s first conditions. We derive the first-order conditions (FOCs) by backward

induction. Agent 2 maximizes u(x2)+β δ u(x3) subject to the budget constraint. The

FOC is

(3)
u′(x2)

u′(x3)
= β δ

p2
p3
.

Hence, x3 = g(x2) where g := u′−1
(
Au′) and A = p3

β δ p2
. Note that g is continuous

and strictly increasing. Agent 1 maximizes u(x1) + βδu(x2) + β δ2 u(x3) subject to

the budget constraint. Let

x1 = f(x2) =
m− p2 x2 − p3 g(x2)

p1
.

Note that f is continuous and strictly decreasing. Agent 1 maximizes u
(
f(x2)

)
+

β δ u(x2) + β δ2 u
(
g(x2)

)
. The FOC gives

−u′(x2

)
f ′(x2) = u′(x2

)
(
p2 + p3 g

′(x2)

p1
) = β δ u′(x2) + β δ2 u′(x3

)
g′(x2),
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since f ′(x2) = −p2+p3 g′(x2)
p1

. Then u′(x3) =
p3

β δ p2
u′(x2), implies that

(4)
u′(x1)

u′(x2)
= δ

p1
p2

(β p2 + p3 g
′(x2)

p2 + p3 g′(x2)

)
.

Note that strong FOCs rationalizability is equivalent to (u, β, δ) satisfying Equa-

tions (3) and (4).

Let us see how Equation (1) is related to Equations (3) and (4). Define λ =
δ u′(x1)(1−(1−β)µ1)

p1
. We then obtain Equation (1) for t = 1 for any (u, β, δ) and

µ1 ∈ (0, 1). Since µ3 = 1, the FOC rationalizability is equivalent to

(5)
u′(x1)

u′(x2)
= δ

p1
p2

(1− (1− β)µ2) and
u′(x2)

u′(x3)
= β δ

p2
p3
.

Since u′(x2) = p2
p3
β δ u′(g(x2)) and u′′ < 0, the Implicit Function Theorem implies

that g′(x2) =
p3 u′′(x2)
p2βδu′′(x3)

. Hence,

(6) g′(x2) =
u′′(x2)

u′′(x3)

u′(x3)

u′(x2)
=

AR(x2)

AR(x3)
.

Hence, Equations (4) and (5) are satisfied iff µ2 =
p2

p2+p3 g′(x2)
iff Equation 2 is satisfied.

3.1. Proof of Theorem 1. Recall the following notation: i) AR(x) = −u′′(x)
u′(x)

is the

coefficient of absolute risk aversion at x; ii) R(p) =
p22−p1 p3
p3(p1−p2)

; and iii) PS is the set of

data sets (x, p) with x1 ≤ x2 ≥ x3, p1 > p2 > p3, and R(p) > 1. Let GPS be the set

of data sets (x, p) with x1 ≤ x2 ≥ x3,
p2
p3

> p1
p2

> 1. Note that PS ⊊ GPS.

Lemma 6. For any (x, p) ∈ Strong FOC, g′(x2) ≥ R(p).

Proof. By Equation (3), we obtain p3
δp2

u′(x2)
u′(x3)

= β. By Equation (4), the fact g′(x2) =

AR(x2)/AR(x3) > 0, and the assumption x1 ≤ x2 (and hence 1 ≤ u′(x1)
u′(x2)

),

p2
δ p1

(
p2 + p3 g

′(x2)
)
≤ β p2 + p3 g

′(x2) =
p3
δ

u′(x2)

u′(x3)
+ p3 g

′(x2).

This implies that
p22
p1

− p3
u′(x2)

u′(x3)
≤

(
δp3 −

p2 p3
p1

)g′(x2).

Since u′(x2) ≤ u′(x3),

p22
p1

− p3 ≤
p22
p1

− p3
u′(x2)

u′(x3)
≤

(
δp3 −

p2 p3
p1

)g′(x2) ≤
(
p3 −

p2 p3
p1

)g′(x2).

Hence, we obtain the desired inequality. □

Lemma 7. GPS ⊆ FOC.
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Proof. Let (x, p) ∈ GPS. Let δ1, δ2 ∈ [0, p1
p2

− 1) be such that i) δ1 = 0 if x1 = x2

; ii) δ2 = 0 if x2 = x3; and iii) x1 ≥ x3 iff δ1 ≤ δ2. Choose any u ∈ U+ with

u′(x1) = u′(x2)(1 + δ1) and u′(x3) = u′(x2)(1 + δ2).

Let δ = 1. To obtain Equation (5) for FOCs, we shall find β, µ2 ∈ (0, 1) such that

1

1 + δ1
=

u′(x2)

u′(x1)
=

p2
p1

(1− (1− β)µ2)
−1 and 1 + δ2 =

u′(x3)

u′(x2)
=

p3
β p2

.

From the second equality, we find β = p3
p2(1+δ2)

< 1. Then from the first equality, we

find

µ2 =
1− p2

p1
(1 + δ1)

1− β
=

1− p2
p1
(1 + δ1)

1− p3
p2(1+δ2)

.

Note that µ2 > 0 because δ1 < p1
p2

− 1. Moreover, µ2 < 1 since p3
p2(1+δ2)

≤ p3
p2

< p2
p1

≤
p2
p1
(1 + δ1). Hence, we obtain desired β and µ2. Thus, (x, p) ∈ FOC. □

We can now wrap up the proof of Theorem 1. Let (x, p) ∈ PS with x2 = x3.

Since PS ⊆ GPS, Lemma 7 implies that (x, p) ∈ FOC. However, if (x, p) ∈ EQ ⊆
Strong FOC, then by Lemma 6 we should have g′(x2) ≥ R(p) > 1. However, by

Equation (6), x2 = x3 implies that g′(x2) = 1. Therefore, (x, p) ̸∈ EQ.

The second statement of Theorem 1 follows from the first part of Theorem 4, which

proves that there are (x, p) ∈ EQ and (u, β, δ) such that (u, β, δ) is a FOCs rational-

ization of (x, p) but not an EQ rationalization of (x, p).

3.2. Proof of Theorem 3. It is obvious that EQ ⊆ Strong FOC ⊆ FOC. We

proceed to show the other statements in the theorem.

Part 1: There exists a dataset in FOC that is not in Strong FOC. By Lemma 7,

PS ⊊ FOC. By Lemma 6, if (x, p) ∈ Strong FOC, then g′(x2) ≥ R(p) > 1. However,

by Equation (6), if x2 = x3, then we obtain g′(x2) = 1, a contradiction. Hence, for

any (x, p) ∈ PS with x2 = x3, (x, p) ∈ FOC but (x, p) ̸∈ Strong FOC.

Part 2. Any dataset in FOC that has xt ̸= xs for all t ̸= s is strong FOCs ratio-

nalizable. We claim that, if (û, β, δ, (µt)
3
t=1) is a FOCs rationalization, then we may

find a strong FOCs rationalization (u, β, δ, (µt)
3
t=1) for which u′(xt) = û′(xt) for all t.

To this end, let at = û′(xt) > 0, and choose bt < 0 so that µ2 = p2
p2+p3 G

holds where

G = a3 b2
a2 b3

. Note that (u, β, δ, (µt)
3
t=1) will be a FOCs rationalization if u′(xt) = at.

Moreover, Equation (2) will be satisfied if u′′(xt) = bt.

Consider the function ht(x) = at + bt(x − xt). Note that ht is monotone decreasing

and that at = ht(xt) < hs(xs) = as when xs < xt, as û is strictly concave. Given

that xs ̸= xt for t ̸= s we may find disjoint neighborhoods Nt of each xt so that ht is
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smaller on Nt than hs on Ns when xs < xt, and greater on Nt than hs on Ns when

xs > xt. Define a function h : R+ → R by letting h equal ht on Nt, h(0) > sup{ht(x) :

x ∈ Nt, 1 ≤ t ≤ 3}, and by linear interpolation on R+ \ ({0} ∪ (∪tNt)). Then h is

monotone decreasing, h(xt) = û′(xt), and h′
t = bt for all t. Letting u(x) =

∫ x

0
h(z) dz,

we have u′(xt) = h(xt) = at and u′′(xt) = h′(xt) = bt. Finally, by choosing data in

Strong FOC that is not in D we obtain the strict inclusion.

Part 3. I ⊆ FOC follows from Proposition 1 of BBC.

3.3. Proof of Theorem 4. Part 1: To prove the first statement in the Theorem,

fix δ∗, β∗ ∈ (0, 1), and consider data (x, p) with x1 = x2 = x3 and p3 = 1 and

p2 =
1

β∗δ∗
and p1 =

1 + β∗δ∗

(β∗δ∗)2(1 + δ∗)
.

Let (u, β, δ) be an arbitrary equilibrium rationalization of the data. We claim that

δ = δ∗ and β = β∗.

Since x2 = x3, by Equation (3), we have 1 = βδp2; i.e., βδ = β∗δ∗. Moreover, we also

obtain A = 1, which means that g′(x2) = 1. Since x1 = x2, by Equation (4), we have

1 = δ
p1
p2

g′(x2) + βp2
g′(x2) + p2

= δ
1 + β∗δ∗

β∗δ∗(1 + δ∗)

1 + β
β∗δ∗

1 + 1
β∗δ∗

=
δ + 1

1 + δ∗
.

Hence, δ = δ∗ and β = β∗.

Note that p2
p3

> p1
p2

> 1. Hence, (x, p) ∈ GPS. By Lemma 7, (x, p) ∈ FOC.

On the other hand, the proof of Proposition 1 in BBC shows that, whenever a dataset

is FOCs rationalizable, then it is without loss of generality to set δ = 1. It is in fact

easy to show that the data is FOCs rationalizable with (u, β′, δ′) with δ′ = 1 and

β′ = β∗δ∗ by setting µ2 =
1−β∗(δ∗)2

1−(β∗)2(δ∗)2
.

Part 2: Finally, we prove the second statement in Theorem 4. Consider a dataset

with x1 = 0.04, x2 = 0.05, x3 = 0.4698, and prices p1 = 3.0969, p2 = 2, p3 = 1

(consequently, m = 0.694). We claim that (u, β, δ), with β = δ = 0.8, and u(x) =

x − x3

3
when x ∈ (0, 1), is a strong FOCs rationalization. Indeed, note that g(x) =√

1− A (1− x2) where A = 0.78125. By direct calculation, we obtain

g′(x2) =
Ax2√

1− A (1− x2
2)

= 0.083147 and g′′(x2) =
A (1− A)

(1− A (1− x2
2))

3
2

= 1.648.

To verify strong FOCs rationalizability, note that Equation (3) is satisfied since

u′(x2)

u′(x3)
=

1− x2
2

1− x3
2

=
1− 0.052

1− 0.46982
=

1

0.78125
= β δ p2.
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Moreover, Equation (4) is satisfied since

u′(x1)

u′(x2)
=

1− 0.042

1− 0.052
=

0.8× 3.1

2

(
0.083147 + 1.6

0.083147 + 2

)
=

δ p1
p2

(
g′(x2) + β p2
g′(x2) + p2

)
.

To check the equilibrium rationalizability, we consider the second-order condition for

Agent 1. Recall from the discussion at the start of Section 3 that Agent 1’s objective

function is

u
(
f(x2)

)
+ β δ u(x2) + β δ2 u

(
g(x2)

)
.

Hence, the SOC is

u′′(x1) (f
′(x2))

2 + β δ u′′(x2) + β δ2 u′′(x3) (g
′(x2))

2 + g′′(x2)
(
β δ2 u′(x3)−

u′(x1)

p1

)
≤ 0.

Using Equations (3) and (4), we can further simplify and obtain

(7) u′′(x1) (f
′(x2))

2+β δ u′′(x2)+β δ2 u′′(x3) (g
′(x2))

2+g′′(x2)u
′(x2)

δ(1− β)

g′(x2) + p2
≤ 0.

However, we have

g′′(x2)u
′(x2)

δ(1− β)

g′(x2) + p2
= 0.1263 > 0.1035

= |u′′(x1) (f
′(x2))

2 + β δ u′′(x2) + β δ2 u′′(x3) (g
′(x2))

2|,

so (7) is violated. Hence, the bundle x is a local minimizer for Agent 1’s problem.

3.4. Proof of Theorem 5. Note that there is 0 < σ < σ̄ such that any u in UHL

satisfies that xu′′(x)/u′(x) ∈ [−σ̄,−σ] (this is property U4 in Harris and Laibson

(2001)). Take any k > max(2α−1, σ̄/σ) and let pk = (2 + 1
k+1

, 2, 1). The function

R(p) =
p22−p1 p3
p3(p1−p2)

evaluates to 2k+1 at p = pk and is continuous in a neighborhood of

pk. Let P ⊊ R3
++ be a neighborhood of pk with the property that R(p) > 2k for any

p ∈ P . Let Do be the set of all data sets (x, p) with p ∈ P , x1 ∈ (0, 0.5), x3 ∈ (0.5, 1)

and x2 ∈ (1, 1.5). Note that Do ⊆ GPS and Do ⊆ D.

Suppose (u, β, δ) is an equilibrium rationalization of (x, p) ∈ Do with u ∈ Uα ∪ UHL.

Then by Lemma 6, g′(x2) =
AR(x2)
AR(x3)

≥ R(p) > 2k. However, if u ∈ Uα, then
AR(x2)
AR(x3)

≤
(1 + x2 − x3)

α ≤ 2α < 2k, a contradiction. Suppose now u ∈ UHL. Denote by

RR(x) = −xu′′(x)/u′(x) the coefficient of relative risk aversion of u. Then we obtain

σ̄

σ
>

σ̄

σ
·
[
x3

x2

]
≥ RR(x2)

RR(x3)
·
[
x3

x2

]
=

AR(x2)

AR(x3)
≥ R(p) > 2k,

a contradiction. Hence, we conclude that (u, β, δ) is not an equilibrium rationalization

of (x, p). The above also show that (x, p) is not in Strong FOCα.
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We shall prove that Do ⊆ FOCα. Since FOC0 ⊆ FOCα, it is enough to prove that

Do ⊆ FOC0. Consider (u, β, δ, (µt)
3
t=1) such that u(x) = xγ, δ = 1, β = p3

p2
(x3

x2
)1−γ,

and

µ2 =
1− p2

p1
(x2

x1
)1−γ

1− β
.

Note that u ∈ U0 when γ ∈ (0, 1). We shall show that every (x, p) ∈ Do is FOCs

rationalizable with (u, β, δ, (µt)
3
t=1) for some γ ∈ (0, 1). Note that with the above

specifications, we obtain the FOCs:

u′(x2)

u′(x3)
= (

x3

x2

)1−γ = β δ
p2
p3
, by definition of β,

and
u′(x1)

u′(x2)
= (

x2

x1

)1−γ = δ
p1
p2

(1− (1− β)µ2), by definition of µ2.

Hence, it is sufficient to prove that there is γ ∈ (0, 1) such that β ∈ (0, 1) and

µ2 ∈ (0, 1). Recall that since Do ⊆ GPS, we have x2 > max(x1, x3) and
p2
p3

> p1
p2

> 1.

Since x3

x2
< 1 and p3

p2
< 1, we have β < 1 for any γ ∈ (0, 1). In order to have µ2 < 1, we

need p2
p1
(x2

x1
)1−γ > β = p3

p2
(x3

x2
)1−γ; equivalently,

p22
p1 p3

> (x1 x3

x2
2
)1−γ. The last inequality

holds for any γ ∈ (0, 1) since
p22

p1 p3
> 1 and 1 > x1 x3

x2
2
. Lastly, to have µ2 > 0, we need

p2
p1
(x2

x1
)1−γ < 1, which holds when γ is close to 1.
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Appendix A. Complementary results

A.1. An additional robustness result: Using a standard analytic argument, in

the following, we prove a result like Theorem 5 for arbitrary compact sets of utilities.

Let Cr([0, K]) denote the set of functions u : [0, K] → R that have continuous

derivatives up to r, with 2 ≤ r ≤ ∞. Endow this space with a Hausdorff topology.

For example, under the weak topology, Cr is a Banach space when r < ∞, and a

separable, complete, and locally convex topological vector space when r = ∞ (see

Hirsch (2012)). Let U r
+ ⊆ Cr([0, K]) be the collection of all strictly monotonically

increasing and strictly convex functions in Cr([0, K]). The real number K is large

and can be chosen without loss of generality (large enough to exceed any of the

consumption values that may be relevant for the family of budgets in our set of

data).

Theorem 8. For any compact Ū ⊆ U r
+, there is an open subset Do of D for which

Do ⊆ FOC but no data in Do is equilibrium rationalizable with any utility u ∈ Ū .

Proof. Let m2(x1, p, I, u, β, δ) be the solution to the problem of maximizing u(x2) +

β δ u(x3) subject to p2x2+p3x3 ≤ I−p1x1. By the strict concavity of u, the maximiza-

tion problem has a unique solution. By Berge’s maximum theorem (see Aliprantis

and Border (2006)), m2 is a continuous function. Let m1 be the set of solutions to

the problem of maximizing u(x1) + v(m2(x1, p, I, u, β, δ)) subject to p1x1 ≤ I where

v(x2, x3) = β δ u(x2) + β δ2 u(x3). The set of solutions is non-empty, and the corre-

spondencem1(p, I, u, β, δ) is upper hemicontinuous (again by the maximum theorem).

A dataset (x, p) is rationalizable by u ∈ U r
+ and (β, δ) ∈ (0, 1) × (0, 1] iff x1 ∈

m1(p, I, u) and (x1, x2) = m2(x1, p, I, u) where I = p1x1 + p2x2 + p3x3.

Now let Do be an open subset of GPS that contains the data (x, p) in the proof of

Theorem 1. Then Do ⊆ FOC by Lemma 7. We claim that there is an open neigh-

borhood of (x, p) in Do that is disjoint from EQ. Suppose, towards a contradiction,

that there are datasets arbitrarily close to (x, p) that are in EQ. Choose a sequence

(xk, pk) of such data with (x, p) = limk→∞(xk, pk). For each k there is a utility uk ∈ U
and βk, δk such that (xk, pk) is equilibrium rationalizable by (uk, βk, δk).

By compactness of U , there is a subnet of (uk, βk, δk) that converges to (u, β, δ) ∈
U × [0, 1] × [0, 1]. By continuity of m2 and upper hemicontinuity of m1, (x, p) is

rationalized by (u, β, δ).

Note that if β or δ are zero, then the rationalization would require x2 or x3 to be zero.

So we must have β, δ > 0. Note also that we have already ruled out β = 1 (Lemma 7)
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in our rationalizing example. We are then left with a putative rationalization by a

strictly concave u. A contradiction to Theorem 1. □

A.2. A five period example. Our paper focuses on a three-period model, which

raises the possibility that the equivalence between EC and FOCS is valid for longer

time horizons. It is, of course, easy to recreate the counterexamples in our proofs so

that they occur in the last three periods of a problem with an arbitrary finite horizon.

In this section, we present a counterexample in which the incompatibility arises at

intermediate periods: not the beginning nor the end of the time horizon.

We present a class of examples with five periods. We label time t = 0, 1, 2, 3, 4. The

problem arises, as before, with the consumption in periods 1, 2, 3 but these are now

“interior” periods: neither initial nor terminal.

A data set is a pair (x, p) = ((x1, x2, x3, ), (p1, p2, p3)) and p0, p4, x0, x4 that are unob-

servable to an analyst.4 We say (x, p) is equilibrium rationalizable if we can find

p0, p4, x0, x4 such that (x̃ = (x0, x1, x2, x3, x4), p̃ = (p0, p1, p2, p3, p4)) is equilibrium

rationalizable in the sense of Definition 1.

Recall that GPS be the set of data sets (x, p) with x1 ≤ x2 ≥ x3 and p2
p3

> p1
p2

> 1.

Let GPS∗ be the subset of GPS such that x2 = x3 and R(p)(p3
p2

− 1
9
) > 1 (recall that

R(p) =
p22−p1 p3
p3(p1−p2)

). For example, when p is in a neighborhood of p̂ = (4, 3, 1), the

inequality R(p)(p3
p2

− 1
9
) > 1 is satisfied.

We will prove that any (x, p) ∈ GPS∗ is FOCs rationalizable but not equilibrium

rationalizable.

Let us fix (β, δ, u) ∈ (0, 1)× (0, 1]× U+ and derive the first-order conditions.

Agent 3 maximizes u(x3)+β δ u(x4) subject to the budget constraint. The FOC gives

(8)
u′(x3)

u′(x4)
= β δ

p3
p4
.

Let x4 = h(x3) where h = u′−1
(
Au′) and A = p4

β δ p3
. Agent 2 maximizes u(x2) +

βδu(x3) + β δ2 u(x4) subject to the budget constraint and the fact that x4 = h(x3).

Let

x2 = σ(x3) =
m2 − p3 x3 − p4 h(x3)

p2
.

4If p0, p4, x0, and x4 are partially or fully observed, we can obtain stronger conclusions (when they
are unobserved, it makes it easier for the data to be rationalizable).
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Note that h is continuous, strictly increasing and σ is continuous, strictly decreasing.

We may then take Agent 2 to choose x3 to maximize

u
(
σ(x3)

)
+ β δ u(x3) + β δ2 u

(
h(x3)

)
.

The FOC gives

u′(x2

)
(
p3 + p4 h

′(x3)

p2
) = β δ u′(x3) + β δ2 u′(x4

)
h′(x3),

since σ′(x3) = −p3+p4 h′(x3)
p2

. Then u′(x4) =
p4

β δ p3
u′(x3), implies that

(9)
u′(x2)

u′(x3)
= δ

p2
p3

(β p3 + p4 h
′(x3)

p3 + p4 h′(x3)

)
.

Let

x3 = g(x2) where g−1 = u′−1

(
δ p2 u

′

p3

β p3 + p4 h
′

p3 + p4 h′

)
.

Let

x1 = f(x2) =
m1 − p2 x2 − p3 g(x2)− p4 h(g(x2))

p1
.

Then Agent 1 maximizes

u(f(x2)) + βδ u
(
x2

)
+ β δ2 u(g(x2)) + β δ3 u

(
h(g(x2))

)
.

The FOC gives

u′(x1)
(
− f ′(x2)

)
= β δ u′(x2) + β δ2 u′(x3) g

′(x2) + β δ3 u′(x4)h
′(x3) g

′(x2).

Hence,

u′(x1)
(p2 + g′(x2) (p3 + p4 h

′(x3))

p1

)
= βδ u′(x2) + δ g′(x2)

(
β δ u′(x3) + β δ2 u′(x4)h

′(x3)
)

= βδ u′(x2) + δ g′(x2)
(
β δ u′(x3)

[
1 +

δh′(x3)p4
βδp3

])
= βδ u′(x2) + δ g′(x2)

(
u′(x2

) [p3 + p4 h
′(x3)

p2

])
= δ

u′(x2)

p2

(
β p2 + g′(x2)

(
p3 + p4 h

′(x3)
))

,

where the third equality is by Equation (9). Thus,

(10)
u′(x1)

u′(x2)
=

δ p1
p2

(β p2 + g′(x2)
(
p3 + p4 h

′(x3)
)

p2 + g′(x2)
(
p3 + p4 h′(x3)

) )
.
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For the above first-order condition to be valid, we need to have g′ ≥ 0. If g′ < 0

at some x2, then for any β < 1, δ, p3, and p4, there are some values of p2 at which

p2 + g′(x2)
(
p3 + p4 h

′(x3)
)
> 0 > β p2 + g′(x2)

(
p3 + p4 h

′(x3)
)
, so that the first-order

condition cannot be satisfied. Hence, g′ ≥ 0.

Let U∗
+ be the set of all utility functions in U+ such that g is increasing for any (β, δ, p).

If the utility function does not belong to this set, then using the first-order approach

is not valid for reasons we have explained above. However, even if u ∈ U∗
+, we still

obtain an counter example.

Proposition 9. No dataset (x, p) ∈ GPS∗ is equilibrium rationalizable by (u, β, δ) ∈
U∗
+ × (0, 1]× (0, 1].

Proof of Proposition 9. Suppose, towards a contradiction, that (x, p) ∈ GPS∗ is equi-

librium rationalizable by (u, β, δ) ∈ U∗
+ × (0, 1]× (0, 1].

Step 1. β < 1.

Since x2 = x3, by Equation (9), we obtain

(11) 1 =
u′(x2)

u′(x3)
= δ

p2
p3

(β p3 + p4 h
′(x3)

p3 + p4 h′(x3)

)
,

which implies that
p3
δp2

(p3 + p4 h
′(x3)) = β p3 + p4 h

′(x3),

and hence

(12) [
p3
δp2

− 1](p3 + p4 h
′(x3)) = β p3 − p3 = −p3(1− β).

If β = 1 then we must have δp2 = p3. Thus p1/p2 < p2/p3 and Equation (10) gives

u′(x1)

u′(x2)
=

δ p1
p2

<
δp2
p3

= 1;

and therefore x1 > x2. This is not possible given our assumption that x1 ≤ x2.

Step 2. g′(x2) ≥ R(p).

By Step 1, we know that β < 1. Hence Equation (12) implies that δp2 > p3, and

therefore that

(13) p3 + p4 h
′(x3) =

(1− β) p3
1− p3

δ p2

.
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By Equation (10), and the assumption that 1 ≤ u′(x1)
u′(x2)

,

p2
δ p1

(
p2 + g′(x2)

(
p3 + p4 h

′(x3)
)
≤ β p2 + g′(x2)

(
p3 + p4 h

′(x3)
)
.

This implies that

[
p2
δ p1

− 1]
(
p2 + g′(x2)

(
p3 + p4 h

′(x3)
)
≤ (β − 1)p2.

Since (in Step 1) β < 1, we must have p2
δ p1

− 1 < 0. Thus,

p2 + g′(x2)
(
p3 + p4 h

′(x3)
)
≥ (1− β)p2

1− p2
δ p1

.

Hence, using Equation (13), we obtain that

(14) g′(x2) ≥
( (1−β)p2

1− p2
δ p1

− p2)

(1−β)p3
1− p3

δ p2

=
p2
p3

(1− p3
δ p2

1− p2
δ p1

−
1− p3

δ p2

(1− β)

)
.

Again, by Equation (11), we have

1 =
u′(x2)

u′(x3)
= δ

p2
p3

(β p3 + p4 h
′(x3)

p3 + p4 h′(x3)

)
> βδ

p2
p3
.

Hence,

1− p3
δ p2

< 1− β.

Then by Equation (14),

(15) g′(x2) ≥
p2
p3

(1− p3
δ p2

1− p2
δ p1

−
1− p3

δ p2

(1− β)

)
>

p2
p3

(1− p3
δ p2

1− p2
δ p1

− 1
)
=

p2
p3

( p2
p1

− p3
p2

δ − p2
p1

)
.

Hence,

(16) g′(x2) >
p2
p3

( p2
p1

− p3
p2

δ − p2
p1

)
≥ p2

p3

( p2
p1

− p3
p2

1− p2
p1

)
=

p22 − p1 p3
p3(p1 − p2)

= R(p).

Step 3. If u ∈ U∗
+, then

−u′′

u′ ≥
0.9h′′

β̃ δ̃ p̃3
p̃4

+ h′
for any (β̃, δ̃, p̃).



6 ECHENIQUE AND TSERENJIGMID

Given the putative rationalization (u, β, δ) the function h only depends on u and

B = A−1 = β δ p3
p4
. So fix B > 0. We shall prove that

−u′′

u′ ≥
0.9h′′

B + h′ for any (β̃, δ̃, p̃) such that B = β̃ δ̃
p̃3
p̃4
.

When h′′ ≤ 0, the above inequality is trivially satisfied. So we may suppose without

loss of generality that h′′ > 0.

Note that h is independent of β̃, δ̃, p̃ for fixed B. Note that g is increasing iff

g−1 = u′−1
((β p̃3 + p̃4 h

′)u′

p̃3 + p̃4 h′

)
= u′−1

(
(1− (1− β̃)p̃3

p̃3 + p̃4 h′ )u
′
)

is increasing iff (1− (1−β̃)p̃3
p̃3+p̃4 h′ )u

′ is decreasing, since u′−1 is strictly decreasing. Hence,

g′ ≥ 0 iff

0 ≥
(
(1− (1− β̃)p̃3

p̃3 + p̃4 h′ )u
′)′ = (β p̃3 + p̃4 h

′)u′′

p̃3 + p̃4 h′ +
(1− β) p̃3 p̃4 h

′′

(p̃3 + p̃4 h′)2
u′;

equivalently,

−u′′

u′ ≥
(1− β̃) p̃3 p̃4 h

′′

(p̃3 + p̃4 h′)(β̃ p̃3 + p̃4 h′)
for any (β̃, δ̃, p̃).

Given that B = β̃ δ̃ p̃3
p̃4
,

(1− β̃) p̃3 p̃4 h
′′

(p̃3 + p̃4 h′)(β̃ p̃3 + p̃4 h′)
=

1
(p̃4)2

(1− β̃) p̃3 p̃4 h
′′

1
p̃4
(p̃3 + p̃4 h′) 1

p̃4
(β̃ p̃3 + p̃4 h′)

=
( p̃3
p̃4

− B
δ̃
)h′′

( p̃3
p̃4

+ h′)(B
δ̃
+ h′)

,

which is independent of β̃. For any given B, we can find β̃ < 1 such that δ̃ = 1 and
p̃3
p̃4

is sufficiently large. Since

lim
p̃3
p̃4

→∞

( p̃3
p̃4

− B
δ̃
)h′′

( p̃3
p̃4

+ h′)(B
δ̃
+ h′)

=
h′′

(B + h′)

when δ̃ = 1, for any fixed B, we can find β̃ < 1 and p̃3
p̃4

such that

(1− β̃) p̃3 p̃4 h
′′

(p̃3 + p̃4 h′)(β̃ p̃3 + p̃4 h′)
≥ 0.9h′′

(B + h′)
.

Step 4. AR(x2)
AR(x3)

≥ R(p)(p3
p2

− 1
9
).

By Equation (9), g satisfies

u′(x2) = u′(x3)δ
p2
p3

(β p3 + p4 h
′(x3)

p3 + p4 h′(x3)

)
= u′(g(x2))δ

p2
p3

(β p3 + p4 h
′(g(x2))

p3 + p4 h′(g(x2))

)
.
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By the chain rule,

u′′(x2) = u′′(x3) g
′(x2)δ

p2
p3

(β p3 + p4 h
′(g(x2))

p3 + p4 h′(g(x2))

)
+ u′(g(x2)) δ

p2
p3

(β p3 + p4 h
′(g(x2))

p3 + p4 h′(g(x2))

)′

x2

= u′′(x3) g
′(x2)

u′(x2)

u′(x3)
+ u′(x3) δ

p2
p3

(
1− (1− β) p3

p3 + p4 h′(g(x2))

)′

x2

= u′′(x3) g
′(x2)

u′(x2)

u′(x3)
+ u′(x3) δ

p2
p3

((1− β) p3 p4 h
′′(x3)

(p3 + p4 h′(x3))2

)
g′(x2).

Hence,

g′(x2) =
u′′(x2)

u′′(x3)
u′(x2)
u′(x3)

+ u′(x3)δ
p2
p3

(1−β) p3 p4 h′′(x3)
(p3+p4 h′(x3))2

=
AR(x2)/AR(x3)

1 + u′(x3)
u′′(x3)

(1−β) p3 p4 h′′(x3)
(β p3+p4 h′(x3))(p3+p4 h′(x3))

.

Suppose first that h′′(x3) ≤ 0. Then (x, p) ∈ GPS and Step 2 imply

R(p)(
p3
p2

− 1

9
) < R(p) ≤ g′(x2) ≤

AR(x2)

AR(x3)
.

Suppose now h′′(x3) > 0. Since u′′(x2) < 0 and 1
0.9

(β δ p3
p4

+ h′) ≥ u′

−u′′ h
′′ by Step 3,

we have

g′(x2) =
AR(x2)/AR(x3)

1 + u′(x3)
u′′(x3)

(1−β) p3 p4 h′′(x3)
(β p3+p4 h′(x3))(p3+p4 h′(x3))

≤ AR(x2)/AR(x3)

1− (1−β) p3

(
βδ p3+p4 h′(x3)

)
0.9 (β p3+p4 h′(x3))(p3+p4 h′(x3))

.

By Equation (13),

g′(x2) ≤
AR(x2)/AR(x3)

1− 1
0.9

(1−β) p3

(
βδ p3+p4 h′(x3)

)
(β p3+p4 h′(x3))(p3+p4 h′(x3))

=
AR(x2)/AR(x3)

1− 1
0.9

(
1− p3

δ p2

)βδ p3+p4 h′(x3)
β p3+p4 h′(x3)

.

Since βδ p3+p4 h′(x3)
β p3+p4 h′(x3)

≤ 1, we have

g′(x2) ≤
AR(x2)/AR(x3)

1− 1
0.9

(
1− p3

δ p2

) =
AR(x2)/AR(x3)

p3
δ 0.9 p2

− 1
9

<
AR(x2)/AR(x3)

p3
p2

− 1
9

,

which leads to the desired inequality.

Note that (x, p) ∈ GPS∗ means that x2 = x3 and R(p)(p3
p2

− 1
9
) > 1. Hence, by Step

4, we obtain 1 = AR(x2)
AR(x3)

≥ R(p)(p3
p2

− 1
9
) > 1, a contradiction.

□


