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B Perturbed Subjective Expected Utility

We study the model of subjective expected utility (SEU), in which beliefs are not known. Instead,
beliefs are subjective and unobservable. The analysis will be analogous to what we did for OEU,
and therefore proceed at a faster pace. In particular, all the definitions and results parallel those of
the section on OEU. The proof of the main result (the axiomatic characterization) is substantially
more challenging here because both beliefs and utilities are unknown: there is a classical problem
in disentangling beliefs from utility. The technique for solving this problem was introduced in
Echenique and Saito (2015).

The following definition formalizes the concept of as-if choices.

Definition 10. A dataset (x*, pk)ff=1 is Subjective Expected Utility (SEU) rational if there exist
u € Ay (S) and a concave and strictly increasing function u : R, — R such that, for all k € K,
ye Bpb,pt xf) = > pays) < ) poud).
SES SES
Given a non-negative number e, we say that a dataset is e-belief-perturbed subjective expected
utility (SEU) rational, if it can be rationalized using expected utility with perturbed beliefs for

which the ratios of likelihood ratios do not differ by more than e.

Definition 11. Let e € R,. A dataset (x*, p* le is e-belief-perturbed SEU rational if there exist
1* € Ay (S) for each k € K and a concave and strictly increasing function u : Ry — R such that,
forallk € K,

y € BoMpb-xf) = ) pbulyy) < ) pu(b)

seS seS

and for each k,l € K ands,t € S
M
ui/
Note that the definition of e-belief-perturbed SEU rationality differs from the definition of

<1l+e. (15)

e-belief-perturbed OEU rationality, only in condition (15), establishing bounds on perturbations.
Here there is no objective probability from which we can evaluate the deviation of the set {y*}

of beliefs. Thus we evaluate perturbations among beliefs, as in (15).

Remark B.1. The constraint on the perturbation applies for each k,l € K ands,t € S, so it implies
foreachk,l € K ands,t € S

L

Lte ™ pi/m ~
Hence, when e = 0, it must be that p* /u* = pl/pl. This implies that i = y' for a dataset that is
0-belief perturbed SEU rational.

1+e.



Next, we propose perturbed SEU rationality with respect to prices.

Definition 12. Let e € R,. A dataset (x*, pk)f=1 is e-price-perturbed SEU rational if there exist

1 € Ay, (S) and a concave and strictly increasing functionu : Ry — R and e* € R|+S| foreachk € K
such that, for allk € K,

ye B(ﬁk’ﬁk ’ xk) == Z/Jsu(ys) < Zﬂsu(xf),

seS seS
where for eachk € K ands € S
P = ples,
and for each k,l € K ands,t € S
e /et
S <1+e. (16)

el/el
Again, the definition differs from the corresponding definition of price-perturbed OEU ratio-

nality only in condition (16), establishing bounds on perturbations. In condition (16), we measure

the size of the perturbations by
k .k
& /gt

sﬁ/et

not e/ €f asin (5). This change is necessary to accommodate the existence of subjective beliefs. By
choosing subjective beliefs appropriately, one can neutralize the perturbation in prices if ¢/ sf =
e /el for all k,I € K. That is, as long as e¥/ek = ¢l /el for all k,1 € K, if we can rationalize the
dataset by introducing the noise with some subjective belief y, then without using the noise, we
can rationalize the dataset with another subjective belief yi’ such that ¥/ /ef ! = pig/ .

Finally, we define utility-perturbed SEU rationality.

Definition 13. Lete € R,. A dataset (x*, pk)f:1 is e-utility-perturbed SEU rational if there exist

i € Ay y(S), a concave and strictly increasing function u : Ry — R, and £° € RLS| foreachk € K
such that, for allk € K,

y e Bpb,ptxf) = > pefulyy) < ) pefuleb),
seS seS
and for each k,l € K ands,t € S
ek /ek
s t

eé/gf

<1l+e.

As in the previous section, given e, we can show that these three concepts of rationality are

equivalent.



Theorem 3. Let e € R, and D be a dataset. The following are equivalent:

e D is e-belief-perturbed SEU rational;
e D is e-price-perturbed SEU rational;

e D is e-utility-perturbed SEU rational.

In light of Theorem 3, we shall speak simply of e-perturbed SEU rationality to refer to any of
the above notions of perturbed SEU rationality.

Echenique and Saito (2015) prove that a dataset is SEU rational if and only if it satisfies a
revealed-preference axiom termed the Strong Axiom for Revealed Subjective Expected Utility
(SARSEU). SARSEU states that, for any test sequence (xff, x:{’{ ), if each s appears as s; (on the

left of the pair) the same number of times it appears as s; (on the right), then

SARSEU is no longer necessary for perturbed SEU rationality. This is easy to see, as we allow
the decision maker to have a different belief ,uk for each choice k, and reason as in our discussion
of SAROEU. Analogous to our analysis of OEU, we introduce a perturbed version of SARSEU to
capture perturbed SEU rationality. Let e € R;.

Axiom 2 (e-Perturbed SARSEU (e-PSARSEU)). For any test sequence (xfii, xf{’{ )L, = o, if eachs
appears as s; (on the left of the pair) the same number of times it appears as s, (on the right), then

n k,‘
[] B s,
i=1 P/

We can easily see the necessity of e-PSARSEU by reasoning from the first-order conditions,
as in our discussion of e-PSAROEU. The main result of this section shows that e-PSARSEU is not

only necessary for e-perturbed SEU rationality, but also sufficient.
Theorem 4. Let e € R, and D be a dataset. The following are equivalent:

D is e-perturbed SEU rational;

e D satisfies e-PSARSEU.
It is easy to see that 0-PSARSEU is equivalent to SARSEU, and that by choosing e to be ar-

bitrarily large it is possible to rationalize any dataset. As a consequence, we shall be interested
in finding a minimal value of e that rationalizes a dataset. Echenique et al. (2019) apply the idea
to datasets of choice under uncertainty collected in the laboratory as well as on the large-scale

online survey of the general U.S. population.



B.1 Proof of Theorem 3

First, we prove a lemma that establishes Theorem 3 and proves useful for the sufficiency part of

Theorem 4. This lemma provides “Afriat inequalities” for the problem at hand.
Lemma 6. Given e € Ry, and let (xk,pk)lk(:1 be a dataset. The following statements are equivalent.
(a) (x*,p* I,le is e-belief-perturbed SEU rational.

(b) There are strictly positive numbers vf, Ak, ,uf, fors € S and k € K, such that

k,k _ 1k k k K’ k k'
psvg = ANps,  xg > xg = vy < U, (17)

and for each k,l € K ands,t € S,

pk
phf

<1l+e. (18)

(c) (x*,pk )Ik{=1 is e-price-perturbed SEU rational.

(d) There are strictly positive numbers vf ik, Us, and ef fors € S and k € K, such that

~k 2k k, k k k’ ~k
UsOg = Atecps, x5 > x5 = 0
and for allk,l € K ands,t € S,
k / .k
& /€

gﬁ/eg

<1l+e.

(e) (x*,p* Ille is e-utility-perturbed SEU rational.

(f) There are strictly positive numbers 0F, Ak, tis, and é€ fors € S and k € K, such that

Ak ~k 2k, k k k’ ~k Ak’
Hs€s Us :Aps’ X >xs’ - Us Svs”
and for allk,l € K ands,t € S,
£/ éf
T <1l+e.
&/&

Proof. The equivalence between (a) and (b), the equivalence between (c) and (d), and the equiv-
alence between (e) and (f) follow from standard arguments: see Echenique and Saito (2015) for
details. Moreover, it is easy to see the equivalence between (d) and (f) with e¥ = 1/&* for each
k € K and s € S. Hence, to prove the result, it suffices to show that (b) and (d) are equivalent.



To show that (d) implies (b), define v = 9 and

uf=”—,ﬁ/ Zﬂs

sesS

foreachk € Kands € S and

2k :ik/ Z Hs
ses €

k = 2kpk. Moreover, for

for each k € K. Then, p* € A, (S). Since p,0F = Akes Pk, we have pkot
eachk,l € Kands,t € S,

il ef/e

lut ellel

To show (b) implies (d), for all s € S define ¥ = v and

ik
-k

<1l+e.

ke
Then, p € A4+(S). For all k € K, Ak = )k Forallk € K and s € S, define
k_ Hs
& = —.
Tk
For each k € K and s € S, since pfvf = 1*p¥, we have p0f = ikefpf. Finally, for each k,l € K

ands,t € S,
eslef _ pr/us

;i <1+e.
gs/gt .”t/,us

B.2 Proof of the Necessity Direction of Theorem 4

Lemma 7. Given e € R, if a dataset is e-belief-perturbed SEU rational then the dataset satisfies
e-PSARSEU.

Proof. Fix any sequence (xfi’ , xs;’ )%, = o of pairs that satisfies conditions (i) and (ii) in Definition 7
and another condition that each s appears as s; (on the left of the pair) the same number of times
it appears as s; (on the right), which we refer to as condition (iii) throughout this section. By the

) . _ . I T
standard argument using the concavity of u, for each i, there exist vfil, v/, Ak Aki ,uflf, Ky such

K’ k
kz{ ki ki lpsl k, A zp '
that v, > v and vg] = ,and v/ = . Thus, we have
Si ‘usi Si ,ll ,
. . 4
n A i ’1 .1 n i
s H; Ps; _ l_l .U_ psl
- 2K ki ki ki K
i=1 s,P ;o i=1 Hs; i=1 P,

S



where the second equality holds by condition (ii). See the proof of Lemma 10 of Echenique and
Saito (2015) for detail. Thus,

n ki n ki
PS; < ”Si
[ k!

i=1 p / i=1 H

In the following, we evaluate the rlght—hand side. For each (k, s), we first cancel out the same
¥ as much as possible both from the denominator and the numerator. Then, the number of y*
remained in the numerator is d(o, k, s) as defined in Definition 8. Since the number of terms in
the numerator and the denominator must be the same, the number of the remaining fractions is

m(0) = Yses Zkekd(o.k.s)>0 405k, s). So by relabeling the index i to j if necessary, we obtain

ki m(o) kj
ﬁ IJSi 'Lls

=11+

i=1 H =1 pu;
i ,Usi j
kj\m(o)

. . kj . . .
Consider the corresponding sequence (x; , x . Since the sequence is obtained by can-

sJ/. j=1
celing out x¥ from the first element and the second element of the pairs the same number of
times; and since the original sequence (xflf, x,/ )i, satisfies conditions (ii) and (iii), it follows that
ki K . iy .. L
(x5, x7 ]m:(f ) satisfies conditions (ii) and (iii).
j .
By condition (iii), we can assume without loss of generality that s; = sJ’. for each j. Fix s* € S.

Then by condition (15) of e-belief perturbed SEU, for each j € {1,...,m(0)},

uoou Y
Sj SJ
= <(1+ )—.
K usj l‘s*
Moreover by condition (ii),
k'
=1
k;
j=1 ﬂs*
Therefore,
n k; m(o)  k; n kJ/'
Hs; Hsi m(o) Hg m(o)
= < + — = +
- - <(1+e) [ =a+om.
i=1 o j=1 'us’. J=1 ius*
i J
and hence,
n pk,
:{ <(1+e)™9)



B.3 Proof of the Sufficiency Direction of Theorem 4

The outline of the argument is the same as the proof of Theorem 2 and Echenique and Saito
(2015). As in the proof of Theorem 2, we need three lemmas to prove the sufficiency direction.

We know from Lemma 6 that it suffices to find a solution to the Afriat inequalities (actually
first-order conditions). So we set up the problem to find a solution to a system of linear inequal-
ities obtained from using logarithms to linearize the Afriat inequalities in Lemma 6.

The first lemma, Lemma 8, establishes that e-PSARSEU is sufficient for e-belief-perturbed SEU
rationality when the logarithms of the prices are rational numbers.

The second lemma, Lemma 9, establishes that we can approximate any dataset satisfying e-
PSARSEU with a dataset for which the logarithms of prices are rational, and for which e-PSARSEU
is satisfied.

Finally, Lemma 10 establishes the result by using another version of the theorem of the alter-
native, stated as Lemma 11 above.

The statements of the lemmas follow. The rest of the section is devoted to the proof of these

lemmas.

Lemma 8. Given e € Ry, let a dataset (x*, pk)i=1 satisfy e-PSARSEU. Suppose that log(pX) € Q for
allk and s andlog(1+e) € Q. Then there are numbers v, Ak, u* fors € S and k € K satisfying (17)
and (18) in Lemma 6.

Lemma 9. Given e € Ry, let a dataset (x*, p* i:l satisfy e-PSARSEU. Then for all positive numbers
E, there exist a positive real number e’ € [e,e + 2| and g* € [p* —%,p¥] for all s € S and k € K such

thatlog g* € Q and the dataset (x*, qk),’z=1 satisfy e’-PSARSEU.

Lemma 10. Given e € R,, let a dataset (xk,pk)iz1 satisfy e-PSARSEU. Then there are numbers vf,
AKX, 1k fors € S and k € K satisfying (17) and (18) in Lemma 6.

B.3.1 Proof of Lemma 8

The proof is similar to the proof of Echenique and Saito (2015), which corresponds to the case
with e = 0. By log-linearizing system (17), and inequality (18) in Lemma 6, we have for all s € S
and k € K, such that

log yf + log vf =log AF + 1ogpf, (19)
xk > xf,/ — logo* < log vf,/, (20)

and forallk,/ € Kands,t € S,
log ¥ — log ,uf —log ,ui + log ,ui <log(1+e). (21)

7



We are going to write the system of inequalities (19)-(21) in matrix form. The formulation
follows Echenique and Saito (2015), with some modifications.

Let A be a matrix with K X |S| rows and 2(K X |S|) + K + 1 columns, defined as follows: We
have one row for every pair (k, s), two columns for every pair (k, s), one column for each k, and
one last column. In the row corresponding to (k, s), the matrix has zeroes everywhere with the
following exceptions: it has 1’s in columns for (k, s); it has a —1 in the column for k; it has — log p¥

in the very last column. The matrix A looks as follows:

ok ok ol o S S, S S B 2k »
(k.5) 1 0 0 0 1 0 0 0 -1 0 --- | —logpk
(k.t) 0 1 0 0 01 0 0 -1 —log pk
(L) 0 0 1 0 0 0 1 0 -1 -+ | —logpl
(1) 0 0 0 1 0 0 0 1 -1 -+ | —logpl

Next, we write the system of inequalities (20) and (21) in matrix form. There is one row in
matrix B for each pair (k, s) and (k’, s") for which x* > xf,,. In the row corresponding to x* > xf,,,
we have zeroes everywhere with the exception of a —1 in the column for (k,s) and a 1 in the
column for (k’,s”). Matrix B has additional rows, that capture the system of inequalities (21):

We do not need a constraint for each quadruple (k, [, s, t), as some of them would be redundant.

k, k 1y,,1
Specifically, we need the constraints /; S,;Z L < 1+e, and 5 ,j;z £ < 1+ e, which is equivalent to
s t s t
k/,k 1y,,1 1,1 k/,k
/Js/l‘t > 1 1 /Jt/,us 3 ”t/ys — /Js/yt
> + e). But note that < 1 + e is redundant, as = . So for each (s, t
HE/u} [+e) Ll ik T ke (5.

with s < t, and each k # [ we are going to have the constraint (k, [, s, t).! For each such (k, [, s, 1)
we have two rows. One of these rows has a 1 in the column for ;¥ and yi, a —1 in the column for
,uf and g, and log(1 + e) in the very last column; one of these rows has a 1 in the column for ,uff
and g}, a 1 in the column for ¥ and !, and log(1 + e) in the very last column. So this part of

matrix B is as follows:

ok ok ol ol R S S Y B w2k »
00 00 -+ | o+ =1 1 1 =1+ |-+ 0 0 - | log(1+e)
1 =1 =1 1 o | ==« 0 0 --- | log(1+e)

The inequality s < t is simply a device to ensure that we choose only one of the two ordered pairs of s and t.



Finally, we have a matrix E which has a single row and has zeroes everywhere except for 1 in
the last column.
To sum up, there is a solution to the system (19)-(21) if and only if there is a vector u €

RAKXISD+E+1 that solves the system of equations and linear inequalities

Au =0,
S1: SBu >0,
Eu > 0.

The entries of A, B, and E are either 0, 1 or —1, with the exception of the last column of A
and B. Under the hypotheses of the lemma we are proving, the last column consists of rational
numbers. By Motzkin’s theorem, then, there is such a solution u to S1 if and only if there is no

rational vector (0, 5, 7) that solves the system of equations and linear inequalities

0-A+n-B+m-E=0,
S2: }720,

a > 0.

In the following, we shall prove that the non-existence of a solution u implies that the dataset
must violate e-PSARSEU. Suppose then that there is no solution u and let (0, n, ) be a rational
vector as above, solving system S2.

The outline of the rest of the proof is similar to the proof of Theorem 2. Since (0, n, 7) are
rational vectors, by multiplying all of their entries by a large enough integer, we can without loss
of generality assume that (6, 5, 7) are integer vectors.

Then we transform the matrices A and B using 6 and 5. (i) If 6, > 0, then create 6, copies
of the rth row; (ii) omitting row r when 6, = 0; and (iii) if 6, < 0, then 6, copies of the rth row
multiplied by —1.

Similarly, we create a new matrix by including the same columns as B and 7, copies of each
row (and thus omitting row r when 7, = 0; recall that n, > 0 for all ).

By using the transformed matrices and the fact that - A+n-B+ 7 -E =0and n > 0, we can

prove the following claims:

. . Y s . . o . sy e .
Claim. There exists a sequence (xfi’, x,/ )i, of pairs that satisfies conditions (i) and (ii) in Defini-

tion 7.
Proof. The proof is the same as in the proof of Lemma 11 in Echenique and Saito (2015). O

. . k/ * % .
Claim. In the sequence (xfi’, x,/)i_; = o, each s appears as s; (on the left of the pair) the same

number of times it appears as s; (on the right).



Proof. Recall our construction of the matrix B. We have a constraint for each quadruple (k, 1, s, t)

k/,k
with s < t. Denote the weight on the rows capturing 715, ?fl; < 1+ebyn(k,1,s,t). Let n(xX) = #{i |
S t

i . k! . .
xk = xfi’} and n'(xX) = #{i | x¥ = x,/ }. For notational convenience, define n(k, I, s, ) = 0 for all

quadruples (k, 1, s, t) with t <s.
For each k € K and s € S, in the column corresponding to ;¥ in matrix A, remember that we

k k

k!
have 1 if we have x{ = xs ' for some i and -1 if we have x; = x/ for some i. This is because a row

in A must have 1 (—1) in the column corresponding to vs if and only if it has 1 (-1, respectively)
in the column corresponding to ;. By summing over the column corresponding to u¥, we have
n(xy) = 1 (x;).

Now we consider matrix B. In the column corresponding to ¥ and s < t, we have —1 in
the row multiplied by n(k, [, s, t) and 1 in the row multiplied by 5(l, k, s, t). By summing over the
column corresponding to yf, we also have — > 2ias Nk, L s, 1) + Dok 2ras DL Ky 8, ).

For each k € K and s € S, the column corresponding to ¥ of matrices A and B must sum up
to zero; so we have

n(xk) = n'(x5) - Z Z n(k,1,s,t) + Z Z n(l,k,s,t) = 0.
Ik t#s I#k t#s

Therefore, for each s,

PR ECIECIEDY

Z Z nk,l,s,t) — Z Z n(l, k,s, t)}

keK keK Li#k t#s I#k t#s
:Z Zzn(k’las’t)_Zzn(lak"s’t)l
t#s LkeK l+k keK 1k
=0.

This means that each s appears as s; (on the left of the pair) the same number of times it appears

as s; (on the right). O

Claim. []} 1(Ps, /p ) > (1+ e)m(")

Proof. By the fact that the last column must sum up to zero and E has one at the last column, we

have

Zlog (ZZZZ (klst))log(1+e)——7r<0

keK Ik seS t#s
Hence, by multiplying —1, we have

il ps’ (Zzzzn(k Ls, t))log(1+e)>0
i=1

/ keK l#k seS t#s

10



Remember that for all k € K and s € S,

n(xf) - n’(xf) =+ Z Z nk,l,s,t) — Z Z n(l, k,s,t) < Z Z n(k,l,s,t).

I#k t#s I#k t#s Ik t#s

Since d(c*, k,s) = n(xf) - n’(xf), we have

m(c*) = Z Z d(c*,k,s) = Z Z max{n(x¥) — n’(x¥), 0}

s€S keK:d(a*,k,s)>0 seS ke

<3 nlk s b).

s€S keK l#k t#s

Therefore,
n* pk,
Z log % > Z Z Z Z n(k,1,s,t)|log(1 +e) > m(c*)log(1 + e).
i=1 Py \keK Ik s€S t#s
This is a contradiction. m]

B.3.2 Proof of Lemma 9

Let X = {x* | k € K,s € S}. Consider the set of sequences that satisfy conditions (i) and (ii) in
Definition 7, and (iii) in e-PSARSEU:

ki _ki\n . .. . ..

K x.', x )" satisfies conditions (i) and (ii

o Il B Wand @ 4.
i in Definition 7 and (iii) for some n

For each sequence o € 3, we define a vector t, € NK’IS, For each pair (xfii, xf,;), we shall identify
the pair with ((k;, s;), (k],s})). Let t;((k,s), (k’,s’)) be the number of times thlat the pair (xf,xf,')
appears in the sequence ¢. One can then describe the satisfaction of e-PSARSEU by means of the
vectors t,. Observe that ¢ depends only on (xk)I]f:1 in the dataset (x*, pk)le. It does not depend
on prices.

For each ((k,s), (K',s")) such that x* > x¥, define &((k,s), (kK',s")) = log(p¥/pF). And define
5((k,s), (k’,s")) = 0 when x¥ < xX". Then, § is a K?|S|*-dimensional real-valued vector. If o =

K
(xfil, xs;l)?zl’ then

n ki

’ ’ 7 Psi

Sitg= D (k) (K Mto((kss), (K, ) = log | | | =
((k,5),(K".57) (K XS)? =1 py

So the dataset satisfies e-PSARSEU if and only if § - t, < m(c)log(1 + e) forall o € 3.

11



Enumerate the elements in X in increasing order: y; < y, < -+ < yy, and fix an arbitrary
£ € (0, 1). We shall construct by induction a sequence {(e (n))}nN: » Where eX(n) is defined for all
(_k, s) with x¥ = y,,.

By the denseness of the rational numbers, and the continuity of the exponential function, for
each (k, s) such that x¥ = y;, there exists a positive number ¢X(1) such that log(p¥¢¥(1)) € Q and
£ < ef(1) < 1. Let £(1) = min{e*(1) | x¥ = y1}.

" In second place, for each (k,s) such that x¥ = y,, there exists a positive £(2) such that
log(pkek(2)) € Q and & < £F(2) < £(1). Let £(2) = min{eX(2) | x¥ = y,}.

In third place, and reasoning by induction, suppose that ¢(n) has been defined and that ¢ <
e(n). For each (k, s) such that x¥ = y,,1, let £(n + 1) > 0 be such that log(pFef(n + 1)) € Q, and
£<ef(n+1) <e(n). Lete(n+ 1) = min{eF(n + 1) | x¥ = y,.}.

" This defines the sequence (¢X(n)) by induction. Note that e(n+1)/e(n) < 1foralln. Let £ < 1
be such that ¢5(n + 1)/e(n) < £.

For each k € K and s € S, let ¢* = pFe¥(n), where n is such that x* = y,. We claim that the
dataset (x¥, g* I,le satisfies e-PSARSEU. Let 6* be defined from (qk)Ik(=1 in the same manner as §
was defined from (p* K

For each pair ((k, s), (k’, ")) with x* > xf,/, if n and m are such that x* = y, and xf,’ = Ypm, then

n > m. By definition of ¢,

B

< <1.
K em) < °
Hence,
k .k k k
5((k, s), (K, s")) = log igT(”) <log P tlog € < log 22 = 5((k,s), (K, 5').
Py &g (m) Py Py

Now we choose e’ such that ¢’ > e and log(1 +¢’) € Q.

Thus, forallo € 3, 6% t, < §-t, < m(o)log(1+e) < m(o)log(1+e€’)ast > 0and the dataset
(xF, pF)E_| satisfies e-PSARSEU.

Therefore, the dataset (x*, qk)f:1 satisfies e’-PSARSEU. Finally, note that £ < £5(n) < 1 for all
n and each k € K,s € S. So that by choosing ¢ close enough to 1 we can take (g~ I,le to be as

close to (p *_, as desired. We also can take €’ to be as close to e as desired.

B.3.3 Proof of Lemma 10

Consider the system comprised by (19), (20), and (21) in the proof of Lemma 8. Let A, B, and E be
constructed from the dataset as in the proof of Lemma 8. The difference with respect to Lemma 8
is that now the entries of A4 and B4 may not be rational. Note that the entries of E, B;, and A;, for

i =1,2,3 are rational.
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Suppose, towards a contradiction, that there is no solution to the system comprised by (19), (20),
and (21). Then, by the argument in the proof of Lemma 8 there is no solution to system S1.
Lemma 11 (in Appendix B.4) with F = R implies that there is a real vector (8, 5, r) such that
0-A+n-B+rx-E=0andn > 0,7 > 0. Recall that E, = 1, so we obtain that 0- Ay +1-B;+ 71 = 0.

Let (qk)I,f:1 vectors of prices and a positive real number e’ be such that the dataset (x*, g~ Ille
satisfies ¢’-PSARSEU and log ¢* € Q for all k and s and log(1 + ¢’) € Q. (Such (¢ le and e’ exist
by Lemma 9.) Construct matrices A’, B, and E’ from this dataset in the same way as A, B, and
E is constructed in the proof of Lemma 8. Since only prices ¢* and the bound e’ are different in
this dataset, only A} and B may be different from A4 and By, respectively. So E’ = E, B = B; and
Al =Aifori=1,2,3.

By Lemma 9, we can choose prices ¢ and ¢’ such that |(0 Ay +1n-B))—(0-As+n-By)| < /2.
We have shown that 6 - Ay + - By = —, so the choice of prices ¢* and e’ guarantees that
0-A,+n-B, <0.Letn'=-0-A,—n-B,>0.

Note that 0-A'+n-B/+7'E; = 0fori = 1,2,3, as (0, n, ) solves system S2 for matrices A, B and
E,and A} = A;, B; = Biand E; = Ofori = 1,2, 3. Finally, 0- A} +n-B,+7'Ey = 0-A} +n-Bj+7" = 0.
We also have that n > 0 and 7’ > 0. Therefore 0, n, and 7’ constitute a solution to S2 for matrices
A’,B,and E'.

Lemma 11 then implies that there is no solution to system S1 for matrices A’, B’, and E’.
So there is no solution to the system comprised by (19), (20), and (21) in the proof of Lemma 8.
However, this contradicts Lemma 8 because the dataset (x*, g¥) satisfies e’-PSARSEU, log(1+¢’) €
Q. and log g € Qforallk € K and s € S.

B.4 Theorem of the Alternative

We shall use the following lemma, which is a version of the Theorem of the Alternative. This is
Theorem 1.6.1 in Stoer and Witzgall (1970). We shall use it here in the cases where F is either the
real or the rational number field.

Lemma 11. Let A be an m X n matrix, B be an | X n matrix, and E be an r X n matrix. Suppose that
the entries of the matrices A, B, and E belong to a commutative ordered field F. Exactly one of the

following alternatives is true.
1. There isu € F" such that Au = 0, Bu > 0, Eu > 0.
2. Thereis@ € ¥',n € F., and = € F™ such that@-A+n-B+n1-E=0;7>0andn > 0.

The next lemma is a direct consequence of Lemma 11. See Lemma 12 in Chambers and

Echenique (2014) for proof.

13



Lemma 12. Let A be an m X n matrix, B be an | X n matrix, and E be an r X n matrix. Suppose that
the entries of the matrices A, B, and E are rational numbers. Exactly one of the following alternatives

is true.
1. There isu € R" such that Au = 0, Bu > 0, and Eu > 0.

2. Thereis@ € Q",neQl,andm € Q™ suchthat®-A+n-B+mx-E=0;7>0andn > 0.

14



C Computing e,

We demonstrate how to calculate e, given a dataset of choice under risk. To calculate the value,
it is easier to use price-perturbed OEU rationality, rather than belief-perturbed OEU rationality.
Formally, for a given dataset (x*, pk)llle, we want to compute e, such that the dataset is price per-
turbed OEU rational given the number e. We can transform this problem into an easier problem

with the following remark.

Remark C.1. Given e € Ry, a dataset (x*, p* le is e-price-perturbed OEU rational if and only if

there are strictly positive numbers vf, Ak, Us, and Ef fors € S and k € K, such that

o = Aefpl, x> xf = o <o,

and forallk € K ands,t € S

1 gf
<—=—<X1+e
1+e gl]f

By the remark, e, can be obtained by solving the following problem:

e
k
t

min max
(ps 0K AR 8y s kK€K s €S €

w k k k, k
st pivg = Ategps,
xf > xf,, - vf < vf,/.
We replace ¢ in the objective function using the equality constraint gfvf = Akekpk. By
canceling out A* and log-linearizing, we obtain the following:
min max (log u’ + log ¥ —log p¥) — (log i + log v~ — log pF)
(0F)i. s KEK 5,tES (%)

s.t. xf > xK

s’

| = logvi< < logvf,’.
We have the following result:

Remark C.2. For any dataset (x*, p I,le, e. is the solution of the problem (%), which always exists.

Implementation. Inthe empirical applications, we solve the problem (%) using Matlab (Math-
Works).
For each subject, the decision in every trial is characterized by a tuple (a;, az, x1, x2) where q;

represents the intercept of the budget line on each axis (here we call the x-axis “account 1” and the
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y-axis “account 2”), and x; represents the subject’s allocation to account i. In order to rewrite the
choice data in a price-consumption format as in the theory, we set prices p; = 1 (normalization)
and p, = ay/a,. This gives us a dataset (x*, pk)I,f:1

Remember that the problem we are going to solve is:

min max (log u + log ¥ —log pX) — (log i + log v~ — log pF)
(Uk)k keXK,s,teS (*)

s.t. xf > xf, — log vf < log vf,.

Our main task is to express this problem in matrix form.
Let z be a column vector of length K X |S| + K X |S| +|S|, whose first K X |S| entries correspond
to each of log vf and the last K X |S| + |S| entries are all 1.

—_
—_

Z/: . s logv‘iC o o 1 .- 1

Kx|S| Kx|S] Is|
This vector contains the control variables of the problem, (vF); ;. The reason why we have K x
|S| + |S| additional rows of 1 in the vector will become clear shortly.

We construct two matrices A and B. The first matrix A has K X |S| X (|S| — 1) rows and
K x |S| + K X |S| + |S| columns, and looks as follows:

k k 1 1 k k

Vs Up Vs Y Ps pi Ps P: Hs  Hi
kst) [+ 1 =1 0 0 -+ | - —logpt logpf 0 I SR
kts) | o+ =1 1 0 0 -+ | -+ logpk ~—logpF o0 I
Ust) | ==+ 0 0 1 =1 --o | «o- 0 0 ~logpl logpl -+ | - 1 -1
o) | =+ 0 0 =1 1 oo | .o 0 0 logpl —logpl -+ | -+ -1 1

Similarly, the second matrix B has K X |S| + K X |S| + |S| columns. There is one row for every
pair (k, s) and (k’, ") with x¥ > xf,/. In the row corresponding to (k, s) and (k’, s”) we have zeroes
everywhere with the exception of a —1 in the column for v and a 1 in the column for vf,/.

Note that Az is a vector in which each of the K x |S| X (|S| — 1) elements corresponds to
(log it + log vF — log p¥) — (log i + log vF — log pF) for some combination of k € K and s, ¢ € S.
Hence, the objective function of the problem (%) can be written as

max (log yi* + log vf —log p¥) — (log yi + log vf — log pF) = max (Az);,
keK,s,teS

where (Az); denotes the ith element of vector Az. Similarly, each element of the vector Bz is

—log vk + logv " where (k,s) and (k’,s’) are such that xk > x ,. Hence, Bz > 0 captures the

constraint of the problem (x).
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Taken together, we can express the problem (%) in matrix form:
min max (Az);
z 1
st. Bz>0

We use the Matlab function fmincon to find a solution z* of this convex programming problem.

Finally, we obtain e, from the optimized value of the problem:

e. = exp (log(1 +e.)) — 1 =exp (max (AZ*)i) -1

17



D Illustration with Two-Budget Examples

D.1 Perturbed OEU Rationalization and e.

We present simple examples of pairs of observations, in order to gain some insights about (per-
turbed) OEU rationalization and minimal e. For simplicity, we assume that there are two equally
likely states (u; = p; = 0.5). Consider two budget sets BF(pk, M) with (p', 1Y) = ((1,2/3),32)
and (p?,I%) = ((1,1/2), 18), which are shown in Figure D.1, panel A. Let ¥ = Ik/pi< denote the
maximum amount of x; one can choose in budget k (i.e., the x;-intercept of the budget line).

We generate synthetic choice data on these budgets. For each budget B, we first take 31
equally-spaced points {0, 25/30, 23?’1“/30, cee ff} on the set [0, Xf] of all possible x{‘. Each of these
xi‘ specifies a point x* = (xf, xé‘) on the frontier of budget B¥, given by (rp?lf /30, (30 — 17)325 /30),
n=0,1,...,30. We now have a set of 31 equally-spaced points on the frontier of budget B* and,
by taking all possible combinations of x! and x? from these sets, we generate 961 synthetic choice
data. We then calculate e, for each of these synthetic datasets.

We find that there are five possible values of e, (0, 0.155, 0.5, 0.732, 1) when choices are made
on these two budget sets. Figure D.1B shows that we can partition the space [0, x{] x [0, 7] into

five regions, depending on the value of e,.?

A 50 B :
< I
40 ] .
g 15 e
G) 1
o] 1
30+ 3 [T i
4N £ 101 I
< I
20 = (b) @ : (¢ ()
X 1
N—r 5_ :
10_ N><H :
0 0 : L .
0 10 20 30

X; (%, from budget 1)

FIGURE D.1: Example. (A) Two budgets B*(p*, I¥), k = 1,2. (B) e. for all combinations of x! and x? from
two budgets. Notes: In panel B, darker colors correspond to larger e, and the gray area corresponds to

e, = 0. The vertical (horizontal) dashed line indicates the value of x] (x¥) at which x{ = x} (x} = x2) holds.

2Choices in areas (e) and (f) have the same value of e,. We treat them separately for later discussion.
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TaBLE D.1: Two-budget examples for illustration of e,.

Intercept Income  Price  Allocation Perturbed price

Example k xt xF I* phopk Xk Xk P Pk ex

1 32 48 32 1 2/3 150 255 - -

(a) 0.000
2 18 36 18 1 1/2 80 20.0 - -
1 32 48 32 1 2/3 50 405 1.127 0.651

(b) 0.155
2 18 36 18 1 12 80 20.0 00921 0.532
1 32 48 32 1 2/3 240 12.0 0.889 0.889

(©) 0.500
2 18 36 18 1 1/2 80 200 0.788 0.585
1 32 48 32 1 2/3 300 3.0 0.956 1.104

(d) 0.732
2 18 36 18 1 12 80 200 0.711 0.616
1 32 48 32 1 2/3 150 255 0.790 0.790

(e) 1.000
2 18 36 18 1 1/2 150 6.0 0.857 0.857
1 32 48 32 1 2/3 240 12.0 0.889 0.889

(f) 1.000
2 18 36 18 1 1/2 150 6.0 0.857 0.857

Now, to dig deeper, we choose six examples of choice data, one from each area (a)-(f). See
Table D.1 for the corresponding list of six datasets and their associated e.. The dataset in exam-
ple (a) is rationalized by OEU and hence e, = 0. Let us investigate the other five examples which

are not OEU rationalizable.

Example (b). The dataset in example (b) is not OEU rationalizable. To see this, consider a

sequence consisting of two pairs o = ((x,x]), (x;,x5)). It satisfies the requirement of a test

sequence (Definition 7 in Section 3) since we have x> > x] and x, > x2 and each k € {1,2}

appears once on the left of the pair and once on the right of the pair. However, it does not satisfy
the conclusion of SAROEU since

propy 112
Following Definition 8, we obtain the number m(c) = 2. Then the sequence ¢ satisfies the con-
clusion of e-PSAROEU with e = 0.155:

PP

1 2/3 4
L——>1.
3

< (1+0.155)%.

W |
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Remark D.1. Figure D.2 presents a geometrical argument for why this dataset is not OEU rational.
Suppose, toward a contradiction, that the dataset is OEU rational. In panel B of Figure D.2, we include
a budget set B> that has the same relative prices as the budget set B* but with a larger income so that
the budget line passes through x' (i.e, B> is a parallel shift of B?). Since the demand function of a
risk-averse OEU agent is normal, the agent’s choice x* from budget B> must be larger than the choice
x? from budget B, which is indicated by the dash-dotted lines. The choice X> must lie in the line
segment on B® that consists of bundles larger than x*. However, such a choice would violate WARP.
Hence, the (counterfactual) choice implied by risk-averse OEU at budget B> would be inconsistent
with utility maximization, contradicting the assumption of OEU rationality. See Echenique and

Saito (2015) for a similar discussion.
A 50

40+

L 30

204

101

F1cure D.2: Example (b) in Table D.1 is not OEU rationalizable. (A) The original dataset. (B) New budget
set B* is added.

Examples (c)-(f). Next, we consider choices in regions (c)-(f), which are not OEU rationalizable
because they involve violations of FOSD-monotonicity under the assumption of yj = p; = 0.5.
When there are two equally likely states, choosing an option (x1,x;) at prices (pq, p2) violates
monotonicity with respect to first-order stochastic dominance (FOSD-monotonicity) when either
(i) p1 > p2 and x; > x or (ii) p, > p; and x, > x; holds. Since the two states have the same
objective probability in our datasets, choosing a larger payoff in the more expensive state violates
FOSD-monotonicity. In Figure D.1B above, any allocation that appears on the right or above the

dashed lines violates FOSD-monotonicity.
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FIGURE D.3: Minimal price perturbation. Notes: Black lines represent the original, “true”, budget lines, and

red lines represent the minimally perturbed budget lines. Choices in example (a) are OEU rationalizable.

Minimal price perturbation. Let us consider how we rationalize choices in examples (b)-(f)
with perturbed prices. Solving the constrained minimization problem described in Section C gives
us a collection of ratios of perturbations {e’f / 8'2‘ }kexe that corresponds to e, (these are simply part

of the output of the minimization program). We can compute perturbed relative prices

Pi_nia
2
Note that perturbed budgets must pass through the chosen bundles. Assuming that the income
I* is unchanged, we obtain perturbed prices [3’1‘ and 13’2‘ (see Table D.1). Figure D.3 illustrates
these “minimally-perturbed” budget lines under which observed choices are e.-perturbed OEU
rationalizable.
Consider again the sequence o = ((x%,x]), (x;,x5)) in example (b). We established above

that it does not satisfy SAROEU under the original prices, but it does satisfy the conclusion of
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SAROEU under the perturbed prices:

p; by 0.921 0.651 _

P2 1127 0532
Note that the argument in Remark D.1 does not work in the perturbed dataset since perturbed

budget lines are parallel to each other:

Py 0.651 0.532 p3
L= =578 —— =2
L1127 0.921 47

Let us now move on to examples involving violations of FOSD-monotonicity. Consider ex-
ample (c), in which allocation x! violates FOSD-monotonicity. A price perturbation eliminates
this violation of FOSD-monotonicity by rotating budget B' so that p; = p,. Example (d) is similar
to example (c), but allocation x! is located further away from the 45-degree line while the other
allocation x? is fixed. In this case, unlike example (c), rotating budget B! just to make p; = p is
not enough— we need to rotate it more and make p; < pj.

In examples (e) and (f), violation of FOSD-monotonicity occurs on the “most extreme” bud-
get in the dataset, which is B2.3 In this case, the size of the minimal perturbation necessary to
eliminate the FOSD-monotonicity violation (rotating it so that perturbed prices become p? = p5)
dominates and the location of x! on budget B! does not matter (see Figure D.1B). In other words,

e, for this case is determined by the relative price max{p?/p3, p5/p?} = 2.

Budget B® is more extreme than budget B' in the sense that max{p?/p3, p/p?} = 2 > 3/2 = max{p} /p;. p;/p1 }-
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D.2 Comparing e, and the GRID Method

Polisson et al. (2020) develop a general method called the Generalized Restriction of Infinite Do-
main (GRID) for testing consistency with models of choice under risk and uncertainty. Using
GRID, they provide a way to calculate CCEI for departures from OEU (called EU-CCEI) and risk-
averse OEU (called cEU-CCEI).

In Section 4.2, we discuss the relationship between e, and EU-CCEI as well as cEU-CCEI using
real datasets from three experiments. To have a better understanding about the similarities and
differences between our approach and the GRID method, we look at simple examples with two
equally likely states and two budgets, as in Section D.1.

We consider seven examples listed in Table D.2, which cover different configurations of budget
lines, exhibiting different properties (such as the point at which they cross, and relative steep-
ness). We generated synthetic choice data following the same procedure as in Section D.1. Three
measures, e,, cEU-CCEI and EU-CCEI, were calculated for each synthetic dataset.

TaBLE D.2: Two-budget examples for comparing measures of deviation from OEU.

Intercept Price Allocation Measure
Example k xF xF pF  pb k X EU-CCEI EU-CCEI
xample X7 X, py Py X3 X, e. cEU U

1 32 48 1 2/3 50 405

(a) 0.155  0.985 1.000
2 18 36 1 1/2 8.0 200
1 32 48 1 2/3 50 405

(b) 0.080  0.993 1.000
2 28 16 1 7/4 15.0 7.4
1 32 48 1 2/3 15.0 255

() 0.162  0.969 1.000
2 36 40 1 9/10 50 344
1 32 48 1 2/3 15.0 255

(d) 0.061 0.995 1.000
2 40 30 1 4/3 30.0 7.5
1 32 48 1 2/3  80.0 306.0

(e) 0.155  0.986 1.000
2 40 20 1 2 20.0 10.0
1 32 36 1 8/9 6.0 29.25

(f) 0333  0.959 1.000
2 40 20 1 2 20.0 10.0
1 32 33 1 32/33 6.0 2638

() 0393  0.952 0.980
2 40 20 1 2 20.0 10.0
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In Figures D.4 and D.5, we plot two budgets in each example (first column), e, under each
pair (x{, x?) of payoffs in state 1 (second column), cEU-CCEI (third column), and EU-CCEI (fourth
column). Observations in the gray regions are rationalizable by risk-averse OEU (second and third
columns) or general OEU (fourth column). Otherwise, the darker the region is, the further the
observation is from risk-averse OEU (second and third columns) or general OEU (fourth column).
For ease of interpretation, we show a sample pair of choices (x!, x*) represented by hollow circles
in the panels in the first column. The values of e., cEU-CCEL and EU-CCEI associated with these
sample choices are shown in the last three columns of Table D.2.

We observe that properties of e, discussed in Section D.1 are general and not specific to the
budget lines used in that particular example: The space [0,x]] x [0,%Z] is partitioned into five
areas depending on the value of e,, and a violation of FOSD-monotonicity is penalized more if it
occurs on the most extreme budget line.

In Figures D.4 and D.5, the comparison between the second column (e,) and the third column
(cEU-CCEI) highlights some differences between our perturbed OEU and the GRID method. The
comparison between these two columns and the fourth column (EU-CCEI) shows an implication

of assuming risk aversion.
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Ficure D.5: Examples (e)-(g). Notes: In the second to fourth columns, darker colors correspond to a larger
distance from (risk-averse or general) OEU. The vertical (horizontal) dashed line indicates the value of x]

(x?) at which x] = x} (x? = x2) holds.
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Treatment of violations of FOSD-monotonicity. Perturbed OEU and the GRID treat vio-
lations of FOSD-monotonicity differently and the difference is most visible when the violation
occurs on the most extreme budget line. Suppose that budget B! is more extreme than budget
B? (as in examples (c)-(d) in Figure D.4) and x! violates FOSD-monotonicity. In our perturbed
OEU framework, it does not matter how far away x! is from the 45-degree line. It also does not
matter the location of the other choice x? on budget B?. In the GRID method, the distance from
risk-averse OEU depends on both of these factors. The value of cEU-CCEI decreases as x! moves
away from the 45-degree line, and it is also influenced by the location of x?.

The following Figure D.6 illustrates the first point clearly.

A 501 Minimal e = 0.5 504 ceEu-cCEI=0.927 B 501 Minimal e = 0.5 504 ceu-ccEl=0.771
40 - 401
30 30
o o
< <
201 20
10 104
0 — 0 —\ 0 —— 0 —
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
X1 X1 X1 X1

FiGure D.6: Correcting violation of FOSD-monotonicity using price perturbation and the GRID method.

Consider a budget line characterized by prices p* = p? = (1,2/3) and income I* = I8 = 32,
and two choices from this budget which violate FOSD-monotonicity: x* = (22,15) in panel A
and x® = (28, 6) in panel B. Both approaches, perturbed OEU and the GRID method, eliminate
the violation of FOSD-monotonicity by modifying the budget line so that it passes through the
original choice and its “mirror image” (which is shown as a hollow circle in Figure D.6). Perturbed
OEU rotates the budget line to achieve this while the GRID method shifts it down.* This explains
why the value of e, is the same in both cases while the value of cEU-CCEI is smaller for x® than
for x4,

Consider another budget p© = (1, 2) and income I = 40 and a choice on the budget x© =
(10, 15), which violates FOSD-monotonicity. The value of cEU-CCEI associated with this dataset
is 0.875 (Figure D.7C). Now, let us add this observation (p©, x©) to previous single-budget examples
(Figure D.6). Since budget (p©, I®) is more extreme than budgets (p?, I') and (p®, I?), the size of

4Following the terminology in Polisson et al. (2020), a shrunken version of budget B* for a given number e € [0, 1]
is defined by B¥(e) = {z € R? : p* - z < ep* - x¥} U {x*}. The downward extension of a shrunken budget is given
by {z € R? : p¥ .z < ep* - x¥} U {z € R? : z < x¥}. Blue lines in Figure D.6 show the frontiers of the downward
extension of B¥ (ek ), where ek is set at the value of cEU-CCEL
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Ficure D.7: Correcting violations of FOSD-monotonicity using the GRID method.

minimal perturbation is fully determined by the slope of budget C and the location of the other
choice (x* or xP) does not matter (as discussed in Section D.1). The value of cEU-CCEI, however,
depends on the location of the other choice x* or x5, fixing x the same.

Figure D.7 illustrates the point. In panel A, x© is a more severe violation of FOSD-monotonicity
(0.875 < 0.927). In panel B, x® is a more severe violation (0.875 > 0.771).
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E Minimum Perturbation Test

We provide a detailed exposition of how we formulate our statistical test. Our approach is inspired
by the methodology laid out in Varian (1985), Echenique et al. (2011), and Echenique et al. (2016).

Let Dgps = (pk,xk)f:1 denote an observed dataset and Diye = (ﬁk, xk)llf=l denote the “true”
dataset, the one the agent had in mind. Let us suppose that observed prices and the “true” prices
are related in the following way: p¥ = pk&¥, where &F > 0 for all s € S and k € K.

The null hypothesis we consider is
Hy : The “true” dataset Diye = ([3’“, xk)f:1 is OEU rational.
If we could (somehow) observe the “true” dataset Dyyye, we could compute the “test statistic”

E = max —sk
keK.s,teS éf
and we would reject the null hypothesis if & is “too large” in the sense that it exceeds the critical
value.

There are two major challenges in this approach. First, we do not observe the “true” dataset
Dyye and hence we cannot compute the test statistic & itself. Second, we need to impose some
assumptions to derive the distribution of &.

We address how we tackle each of these issues below.

Lower bound on &. Under the null hypothesis that the “true” dataset is OEU rational, a slight
modification of Lemma 7 in Echenique and Saito (2015) implies that there exist strictly positive
numbers 7¥ and A¥ for all s € S and k € K such that

log it +log 7% —log A¥ —logpfF =0 and x* > xK' = log oF < log ok .
Substituting the relationship p¥ = p¥&¥ for all s € S and k € K yields

log i +log oF —log A¥ —logpX —logék =0 and xF > x& = logoF < logd¥.

N

This implies that the tuple (0%, A, #)cs e satisfies the constraints (but is not necessarily a

solution) of the optimization problem:

. e
min max —

k
(U§’Ak’g§)s’k keXK,s,teS &

st. logp +log vk —log Ak —logpF —logeF =0

k k' k K’
xg > x, = logvg <loguyg, .
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Note that this optimization problem is the one we use to calculate e, given the observed
dataset Dops (see Section C above). Therefore, under the null hypothesis, e, gives an observable

lower bound on the test statistic &:

~k
k kK €
e (P X jmy) < kK ares §_s’<

t

(By writing e.((p*, x* )I]le), we make it explicit that e, is calculated from the observed dataset.)
With this observation in mind, we construct a test, using e*((pk, xk)Ille) instead of &, as fol-
lows:

(o)

Reject the null hypothesis if / fe(z)dz < a.
ex((PF k)
where  is the size of the test and f3 is the density function of the distribution of & = max; , £ /&F.
Given a nominal size &, we can find a critical value C, satisfying Pr[E > C,] = a. So we reject
the null hypothesis if e.((p, xk)le) > C,, and we are certain that & > C, is indeed the case
(since e.((pF, xk)le) < &). This also means that our test is conservative since the true size of the
test is smaller than a: Pr[e*((pk,xk)llle) > C4 | Hy is true] < Pr[E > C, | Hy is true] = a).

Parameter tuning for the distribution of noise. In order to perform the test, we need to
know the distribution of & and the critical value C, given a significance level «. We obtain
the distribution of & by assuming that the noise term ¢ follows a log-normal distribution, ¢ ~
A(v, £%).° In other words, noise terms £ in the “true” dataset are i.i.d. draws from A(v, £2).

The crucial step in our approach is the selection of parameters (v, £2). Once we know (v, £2),
we can simulate the distribution of & = maxy, £&/&F. It is natural to choose these parameters
so that there is no price perturbation on average (i.e., E[¢] = 1). However, there is no objective
guide to choosing an appropriate level of Var(e). Therefore, we use variation in (relative) prices
observed in the data.

Let p and p denote random variables of observed prices and “true” prices, respectively. As-

suming that the noise term ¢ is independent of the random selection of prices p in the experiment,

Note that parameters (v, £2) correspond to the mean and the variance of the random variable in the log-scale.
In other words, loge ~ N(v, £?). The moments of the log-normal distribution ¢ ~ A(v, £?) are then calculated by
E[e] = exp(v + £2/2) and Var(e) = exp(2v + £2)(exp(£?) — 1).
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we have

Var(p) = Var(p) - Var(e) + Var(p) - E[¢]* + E[p]? - Var(¢)

Var(f) _ E[p]
Var(m‘E[‘?]Z*(1 Va ())V )
_ (Var(p) -
&= Var(e) = (Var(p) )( Var(p)) ) (22)

We use the variation in prices observed in the data, (pf )ses.kek as proxies for E[p] and Var(p).
In this way, we transform the question of selecting the variance of the noise term, Var(¢), into a

question of selecting “reasonable” variance of perturbed prices, Var(p).

Price misperception as a hypothesis test. Let us consider an agent who has trouble telling
the distributions of prices, p and p, apart (that is why the agent misperceives prices). In particular,
we assume that the agent has trouble telling the two variances apart.

Let us consider an agent who has trouble telling the two variances apart. More generally, the
agent has trouble telling the distributions of prices apart, which is why she is confusing actual
and perceived prices, but the distribution depends only on the variance; so we focus on variance.
Consider a hypothesis test for the null hypothesis that the variance of a normal random variable
with known mean has variance o¢ against the alternative that 6? > o7. Let 67 be the sample

variance.

The agent performs an upper-tailed chi-squared test defined as
HOA . o =ag,
H‘f ot > og.
The test statistic is:

(n - 1)62

2
0y

T, =

where n is the sample size (i.e., the number of budget sets). The sampling distribution of the test
statistic T, under the null hypothesis follows a chi-squared distribution with n — 1 degrees of
freedom.®

We consider the probability 5’ of rejecting the null hypothesis when it is true, a type I error;
and the probability 7" of failing to reject the null hypothesis when the alternative o2 = o> gl

is true, a type II error. The test rejects the null hypothesis that the variance is of if

2
Tn > Xl—a,n—l

The superscript A in Hg‘ and Hf‘ is to distinguish the hypothesis test, which the agent is assumed to perform,
from the one we (researchers) perform to interpret the magnitude of e, discussed above.
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where y? «n_1 18 the critical value of a chi-squared distribution with n — 1 degree of freedom at
the significance level a, defined by Pr[y? < )(12_0(’”_1] =1- nI 7

Under the alternative hypothesis that 6? = 67 > of, the statistic (o7 /0?) - T, follows a chi-
squared distribution (with n — 1 degrees of freedom). Then, the probability 77 of making a type II

error is given by

2 2
o, o,
I _ 2 Co s o2 =pr |2 0,2
n" =Pr[T, < x{_gn-1 | Hi: 0] > 0y is true] = Pr [0_2 T, < — )(l_a,n_l]
1 1

2 2

%
=Pr X < — " Xi-an-1| -
0

Let X;,n—l be the value that satisfies Pr[y? < )(E,n_l] = . Then, given n' and ", we obtain

2 2
lof lof
2 0 2 _ I 0 2 _ .2
Pry® < — " Xi—apn-1| =10 ; " Xi—an-1 = Xgn-1
1 1
2 2
0'1 _ Xl—a,n—l
— o2 - 2 :
o Xgn-1

As a consequence, given a measured variance ag, calculated from observed prices, and as-

sumed values for 7’ and ", we can back out the minimum “detectable” value of the variance ol.

From this variance of prices, we obtain Var(¢) using equation (22).

7 An alternative approach, without assuming that a distribution for T}, and based on a large sample approximation

to the distribution of T,,, yields very similar results. Calculations and empirical findings are available from the authors

upon request.
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F Supplementary Empirical Analysis

F.1 Summary Statistics of e,

TaBLE F.1: Summary Statistics of e,

N Mean SD Q1 Median Q3 Min Max
Panel A: All data
CKMS 1182 3.034 1.816 1.563 2.729 4.184 0.035 8.772
CMW 1119 2480 1.126 1.659 2.533 3.592 0.000 4.387
CS 1423 2490 1.707 1.157 2.081 3.370 0.000 10.021
Panel B: CCEI = 1
CKMS 270 3.058 2.176 1.154 2.662 4868 0.035 8.637
CMW 210 2.534 1505 0.786 3.087 3.592 0.000 4.387
CS 315 2.103 1.971 0.693 1.156 3.044 0.000 8.858

Notes: Q1 and Q3 indicate the first and the third quartile, respectively.
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F.2 First-Order Stochastic Dominance

In the portfolio allocation environment studied in the three studies we looked at, choosing an
allocation (x1, x7) from a budget line defined by prices (p1, p2) violates monotonicity with respect
to first-order stochastic dominance (FOSD-monotonicity) when either (i) p; > p; and x; > x; or (ii)
p2 > p1 and x; > x; (i.e., the choice involves more allocation toward more-expensive security).
Table F.2 presents the average fraction (out of 25) of choices violating FOSD-monotonicity
and the number of subjects without FOSD-monotonicity violations. On average, subjects made
24-34% violations of FOSD-monotonicity. The number of subjects who made no FOSD-violating
choices is less than 10% for all datasets. As discussed in Choi et al. (2014), choices can be consistent
with GARP even with violations of FOSD-monotonicity. The average fraction of FOSD-violating
choices calculated from the subsample of GARP-compliant (CCEI = 1) subjects is close to the one

we obtain from the whole sample. The entire distributions are presented in Figure F.1.

TaBLE F.2: FOSD violation.

All subjects CCEI=1

CKMS CMW CS CKMS CMW CS

Number of subjects 1,182 1,119 1,423 270 210 315
Average fraction of FOSD-mon. violations 0.335 0.320 0.239 0364 0.308 0.220
Fraction of subjects without FOSD-mon. violations ~ 0.025 0.047 0.067  0.067 0.176 0.159

A 100 B 100]
0.75- 0.75 -
o a
O 0.501 O 0.501
0.251 — ckms 0257 — CKMS
— CMW — CMW
0.00 1 . . . — CS 0.00 4 . . . — CS
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Frac. FOSD—mon violation Frac. FOSD—mon violation

F1Gure F.1: Empirical CDFs of the fraction of choices that violate FOSD-monotonicity. (A) All subjects. (B)
Subjects with CCEI = 1.
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F.3 Choices on the 45-Degree Line

In the experiments, subjects made choices of allocations (x1, x2) by clicking on the budget line
graphically presented on the screen. Note that points on the 45-degree line correspond to equal
allocations between the two accounts (x; = x;) and therefore involve no risk (i.e., the 45-degree
line is the “full insurance” line). If a subject’s all choices are on the 45-degree line (call such
pattern diagonal allocations), we can rationalize the data with EU and hence e, = 0.

It is, however, extremely difficult (or almost impossible) to choose the point “exacctly” on the
45-degree line in practice. Actual choices subjects made may be slightly off from the 45-degree
line, and it can generate large e, (through violations of the downward-sloping demand) while
CCEI and EU-CCEI stay close to 1 (see Figure 8, panel D). In this section, we examine how much
of the disagreement between e, and CCEI or EU-CCEI is driven by small deviations from the
diagonal allocations.

To this end, we first redefine diagonal allocations. Instead of requiring all choices to be exactly
on the 45-degree line, we call a data almost diagonal allocations if all choices are inside small balls
(with fixed radius r) drawn around the intersections of budget lines and the 45-degree line. We can
control the size of acceptable deviations by changing the radius r of the ball. The idea is shown
in Figure F.2. In this example, chosen allocations (black dots) are not exactly on the 45-degree
line, but they are inside the balls around the diagonal allocations (red circles).®

X2

A

[\
7

X1

FiGUre F.2: Almost diagonal allocations.

8These choices also violate FOSD-monotonicity. We would expect relatively large e, from this choice pattern,
but its CCEI is 1 because it satisfies GARP.
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TaBLE F.3: Fraction of subjects who made almost diagonal allocations.

Radius of the ball (r)

Study N 0.05 0.20 0.50 1.00

CKMS 1182 0.000 0.000 0.035 0.083
CMW 1119 0.008 0.040 0.097 0.120
CS 1423 0.005 0.022 0.048 0.060

Table F.3 shows the fraction of subjects who made almost diagonal allocations (in all 25 ques-
tions) under different sizes of r. Between 6% and 12% of subjects made such a choice pattern when
the radius is set to r = 1.

Figures F.3 and F.4 below show the relationship between e, and CCEI as well as EU-CCEI, as
in Figure 9 (Section 4.2). The bottom panels in each figure focus on subjects who made almost
diagonal allocations (the radius of the ball is set to r = 1) in all 25 questions, and the top panels
present the rest of the subjects.

The bottom panels in each figure confirm that almost diagonal allocations yield values of
CCEI and EU-CCEI that are close to 1. The same subjects have dispersed values of e, including
the highest value in each experiment.

It does not mean that the disagreement between e, and CCEI-based measures comes mainly
from slight deviations from the diagonal allocations. The top panels in each figure show that
there are choice patterns, other than almost diagonal allocations, that have CCEI/EU-CCEI ~ 1

and large e,.
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Ficure F.3: Correlation between e, and CCEL The top panels show subjects who did not choose almost
diagonal allocations and the bottom panels show those who selected almost diagonal allocations. Panels:
(A) CKMS, (B) CMW, (C) CS. Notes: The radius of the ball is set to r = 1.
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diagonal allocations and the bottom panels show those who selected almost diagonal allocations. Panels:
(A) CKMS, (B) CMW, (C) CS. Notes: The radius of the ball is set to r = 1.
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F.4 Sensitivity

As is clear from the definition, our measure e, is a bound that has to hold across all observations
and states (see conditions (4), (5), and (6) in the definitions of e-perturbed OEU in Section 3). It is
possible that a couple of “bad” choices significantly influence the measure. This section presents
several robustness checks for the main empirical result.
Dropping critical mistakes. In this robustness check, we recalculate e, using subsets of ob-
served choices that exclude outliers. More precisely, for each subject, we calculate e, for all
combinations of 25 — m choices and pick the smallest e,. We do this for m = 1, 2.

By construction, dropping critical mistakes shifts the distribution of the measure (Figure F.5).
However, it does not dramatically change the correlational patterns between e, and CCEI (Fig-

ure F.6) nor between e, and demographic characteristics (Figures F.7 and F.8). In this sense, the

main empirical results are robust to the presence of a small number of bad choices.

Alj 00 Bl 00 €1 g0
0.751 0.75 0.754
a
O 0501 0.50 0.50 1
0.251 — Al 0.25 0.251 — Al
— Drop 1 — Drop 1
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A2 ] B2 C2 ]
1004 1004 1009 A
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o
O 050 0.50 0.50 1
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0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
CCEl CCEl CCEl

Ficure F.5: Empirical CDFs of e, and CCEL using all observations or subsets of observations dropping one
or two critical mistakes. Panels: (A) CKMS, (B) CMW, (C) CS.
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“Average” perturbation. Let € be the solution to the following minimization problem:

1 k
min Z | o8 £s|
(ks keXK seS KS

st (xF, qk)l,f=1 is OEU rational

qf =pf€f foreachs € S,k e K

The idea behind this alternative measure is simple. As in the case of e-price-perturbed util-
ity, we search for sets of multiplicative noises (£¥); s which could rationalize the observed data.
Instead of looking at the uniform bound max; ;  (log e¥ —log £¥) and minimizing it, we take the av-
erage of these perturbations and minimize it. A similar idea was applied to quantify the distance
from several models of time preferences in Echenique et al. (2016).

Figure F.9 presents the relationship between ¢, e,, and CCEL Figure F.10 shows the correlation
between é and demographic variables. These figures do not show correlational patterns that
are markedly different from those presented in the main empirical results (Figures 9 and 10 in
Section 4.2).
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F1GURE F.9: Correlation between € and e, (top panels) and € and CCEI (bottom panels). Panels: (A) CKMS,
(B) CMW, (C) CS.
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F.5 Properties of e,

e. from observed and simulated choices. The statistical approach described in Section 4.3
is one way to assess “how big” the observed e.’s are. Another way is to simulate choice data
assuming some behavioral model and calculate e, on the simulated dataset.

Following Bronars (1987), we simulate synthetic subjects who choose an allocation uniformly
randomly from each budget line. Since subjects in CKMS and CS faced a randomly selected set of
budgets, we first randomly select one set of budgets (from the observed sets of budgets) and then
randomly choose allocations on these budgets. We calculate e., and CCEL using these simulated
choices. We repeat this 10,000 times for each of the three datasets.

Figure F.11 compares the observed and simulated e,. The distribution of observed e, locates
left of simulated e, in all three datasets (all differences are statistically significant, according to the
two-sample Kolmogorov-Smirnov test). The actual subjects’ behavior is thus closer to OEU ratio-
nality compared to random behavior (even though the uniformly random choice is unrestrictive
and may not be the best benchmark).

In the second simulation, we generate random choices that respect FOSD-monotonicity. The
distributions of e, in this simulation, shown in dark gray lines in Figure F.11, exhibit a stark
difference from those from real subjects: they have smaller median values and are distributed on
narrower ranges.

Figure F.12 looks at the correlation between e, and CCEI and compares the pattern in observed

and simulated datasets (panels A-C in the top row are the same as Figure 9).
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Upper bound of e.. The value of e, depends on the structure of the budgets an agent faces. In

particular, it is clear from e-PSAROEU that 1+e.. is bounded by the maximum ratio of risk-neutral
prices:
k
1+e. < max —2
keK,s,teS o

The right-hand side captures the slope of the “most extreme” budget line.

Since CKMS, CMW, and CS experiments all used two equally likely states, the ratio of risk-
neutral prices is equal to the ratio of prices (i.e., p¥/p¥ = p¥ /pF). Figure F.13 shows the relationship
between the observed e, and the participant-specific upper bound. (Since all subjects faced the
same set of budgets in the CMW study, there is only one vertical line in panel B.)

About 13% of the subjects (475/3724 in the merged data; 221/1182 in CKMS; 114/1119 in
CMW; 140/1423 in CS) have their e, exactly at the upper bound. The reason is that these subjects
made a violation of FOSD-monotonicity (choosing a larger payoff in a more expensive state) in the

most extreme budget among the set of budgets they faced during the experiment. See discussion
in Section D.1 above.
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FIGURE F.13: Bound of e,. The x-axis in each plot is the upper bound of e., given by maxy s, p¥/pF — 1.
Notes: There is no variation in bounds in the CMW data (panel B) since all subjects faced the same set of
budgets. In the CMW data (panel B), all points line up at 4.387, which is given by the most extreme budget
in that study with prices (p1,p2) = (1,5.387). In the CS data (panel C), the x-axis is cut at 10 for better
visualization. There are 22 additional observations in the data with the bounds ranging from 11 to 48.
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F.6 Illustration of e.-Perturbed OEU

In Figure 8, we present choice patterns of six selected subjects with CCEI = 1 and varying degrees
of e.. Panels A-F plot observed choices and panels a-f plot the relationship between log(x,/x1) and
log(p2/p1), which illustrates how much the dataset conforms to the downward-sloping demand.
The measure e, roughly speaking, captures the degree of deviation from the downward-sloping

demand.

K
k=1’

and ef > 0 forall s € S and k € K. Since we fix the chosen bundle (xk)I,f:1 and rotate the budget

lines around them, price perturbation “moves” points in panels a-f horizontally.

Consider an observed dataset (x*, p )I,le and a perturbed dataset (x, p¥)K_ where p = pkeF

To make the dataset e-price-perturbed OEU rational (Definition 4), we need to move the points
horizontally until they satisfy the downward-sloping demand. Note that the horizontal distance

for each observation k, before and after e-price perturbation, is given by

~k k ~k .k k

Py 2 5 /p; &
log|—= | —log|— | =log|— =log|—=|.

(p’f ) (p’f ) (p’f /pk ) e

We thus need to look at the maximal horizontal adjustment among observations, and the measure

e, is obtained by minimizing it.

Figure F.14 shows the idea behind the calculation of e, using price perturbation. It plots the
same six subjects as in Figure 8. In panels A-F, red dotted lines represent the original budgets
and blue solid lines represent perturbed budgets. In panels a-f, green circles represent the orig-
inal dataset and blue triangles represent the perturbed dataset. Red arrows connect points that
correspond to the maximal adjustment. The figure shows that e.-perturbed datasets are closer to
the downward-sloping demand in the sense of less dispersion.

We can draw several observations about the practical aspect of e,. First, observe that the
“cheapest” way for correcting choices violating FOSD-monotonicity is to perturb budgets corre-
sponding to these observations so that ﬁ’f = 13]2‘ Second, the figure provides an intuitive explana-
tion of why e, can be large for choice patterns like panel D. Since clicking on the point exactly
on the 45-degree line is a challenging task, choices would scatter around the 45-degree line, oc-
casionally falling in the region of FOSD-monotonicity. No matter how small these deviations
from the 45-degree line are, e-price perturbation requires horizontal adjustments to achieve the
downward-sloping demand. If the necessary adjustment is applied on a relatively extreme budget

line, e, for such a subject can be very high.
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F.7 Comparing Measures

We calculate CCEI at which a subject is consistent with a given model, stochastically monotone
utility maximization (Nishimura et al., 2017), EU, and concave EU, using the GRID method devel-
oped in Polisson et al. (2020).° We call these measures F-GARP, EU-CCEI, and cEU-CCEL. For a

given dataset, the measures are ordered as
cEU-CCEI < EU-CCEI < F-GARP < CCE],

since the models we look at are nested in this order. Note that Polisson et al. (2020) calculated
and reported CCEI, F-GARP, EU-CCEI and cEU-CCEI for the CKMS dataset but not for the CMW
and the CS datasets.

Figures F.15-F.17 compare e,, CCEl, and these three additional measures.!’ Panels on the
diagonal show the distribution of each measure. Pairwise scatter plots are presented below the
diagonal, and Spearman’s correlation coefficients are shown above the diagonal (all p < 0.001;
uncorrected for multiple comparisons).

The first column in each figure shows the relationship between e, and other measures. The
second and the fourth panels in this column (e, vs. CCEI and e, vs. EU-CCEI) are identical to
those presented in Figure 9. As we discussed in Section 4.2 of the paper, we see that there are a
significant number of subjects whose CCEI and EU-CCEI are close to one but their e,’s are widely
dispersed and further away from zero.

This observation is not specific to CCEI and EU-CCEL In the third and the fifth panels of the
same column, we can see a similar pattern between e, and F-GARP as well as e, and EU-CCEL
The pattern is a general feature that distinguishes the idea behind the measures: e, is based on
rotating budget lines while the other measures, which are all variants of CCEL are based on

shrinking budget sets.

?A stochastically monotone utility function gives strictly higher utility to bundle x compared to another bundle
y if x first-order stochastically dominates y and gives them the same utility if two bundles are stochastically equiv-
alent. In the environment we consider (two states with equally likely objective probabilities), a utility function is
stochastically monotone if and only if it is symmetric and strictly increasing.

Choi et al. (2014) also discuss a similar idea. They propose an additional measure, which jointly captures the extent
of GARP violations and violations of stochastic dominance, by combining the observed data and its “mirror-image”.
More precisely, they assume that if an allocation (x1, x3) is chosen under the budget constraint p;x; + p2x; = 1, then
(2, x1) would have been chosen under the mirror-image budget constraint p,x; + p;x, = 1. They then re-calculate

CCEI for the “combined” data consisting of 50 (25 budgets x 2) choices.
1%We did not compute cEU-CCEI for 23 subjects (8 in CMW, and 15 in CS) since the code spent a significantly long

computation time. (Polisson et al. (2020) used a high-performance computing facility.) We also treated cEU-CCEI
for six subjects in CS as missing values, since the code incorrectly returned cEU-CCEI = 0. Note that F-GARP and
EU-CCEI for these 29 subjects are included in Figures F.15-F.17.
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F.8 Choice Pattern: Additional Examples

Choice data from four subjects presented in Section 4.2, Figure 8, are not meant to be representa-
tive of the entire dataset consisting of more than 3,000 subjects. In this section, we present more
examples to understand the similarity and differences between e,, CCEL and EU-CCEL

We pick subjects from the CMW experiment, where all the subjects faced the same set of
25 budget lines. This feature of the design makes the variation of e, smaller than in the other
datasets (we observe several “jumps” in the empirical CDF of e, in Figure 5), but the comparison
across choice patterns becomes easier.

Figure F.18 is the scatterplot of e, and EU-CCEI in the CMW data. Dashed lines represent the
25th, 50th, and 75th percentiles of e, and EU-CCEI Two shaded areas represent combinations
of e, and EU-CCEI that “disagree”, in the sense that one measure says the subject is close to EU
(relative to the median subject) but the other measure says the same subject is far from EU (again,

relative to the median subject). Each subject’s choice pattern is shown below.
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FiGURe F.18: e, and EU-CCEI in CMW data. Notes: Vertical dashed lines represent the 25th, 50th, and 75th
percentiles of e.. Horizontal dashed lines represent the 25th, 50th, and 75th percentiles of EU-CCEL
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F.9 Estimating Risk Aversion

We used the dataset of choices from linear budget lines to measure the degree of deviations from
OEU. We can use the same dataset for the estimation of individual-level risk aversion parameters
assuming some functional form (Choi et al., 2007; Friedman et al., 2022).

Let us assume that the Bernoulli function takes the power form

xl—a

ifa#1

ux)=91-«a
logx ifa=1

where a > 0 is the Arrow-Pratt coeflicient of relative risk aversion. The interior solution to the

maximization problem satisfies the first-order condition

X1 _ (Pl//ll)_l/a
xa  (pafpz) Ve

X1 1 Pl//ll)
1 — ] =—=1 )
o8 (xz) a o8 (Pz/ﬂz

Assume that each subject i makes her choices (xik ,x;k) given prices (pik , pék), k=1,...,K,

according to the above log-linearized relationship with some additive mean-zero error. That is,

ik ik
log x_:k = filog P;k/ﬂl + ik,
X, b, /.UZ

We can take logarithms to obtain

where v

is a mean-zero error term. We can estimate the model with ordinary least squares. The
parameter of interest, @, is recovered via a nonlinear transformation ; = —1/ E and its standard
error is calculated using the Delta method.

A limitation of this approach is that the dependent variable is not defined at corner solutions.
Following Choi et al. (2007) and Friedman et al. (2022), we incorporate observations at the corners
by replacing the zero component with a small constant 1072,

The estimation result is summarized in Table F.4. As a benchmark, Choi et al. (2007) report
three quartiles of estimated a of 0.597, 0.826, and 1.426, respectively.

In the following figures F.19 and F.20, we show how estimated risk aversion parameters and

their standard errors, as well as measures of goodness-of-fit, are related to e, and CCEL
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TaBLE F.4: Summary statistics of estimated coefficient of relative risk aversion.

N Q1 Median Q3 a; <0

CKMS 1182 0.534 1.130 2.035 144
CMW 1119 0.522 1.074 2.141 91
CS 1423 0.328 0.710 1.479 54

Note: Q1 and Q3 indicate the first and the third quartile, respectively. The last column shows the number

of subjects whose estimated @; is smaller than zero.
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