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B Perturbed Subjective Expected Utility

We study the model of subjective expected utility (SEU), in which beliefs are not known. Instead,

beliefs are subjective and unobservable. The analysis will be analogous to what we did for OEU,

and therefore proceed at a faster pace. In particular, all the de�nitions and results parallel those of

the section on OEU. The proof of the main result (the axiomatic characterization) is substantially

more challenging here because both beliefs and utilities are unknown: there is a classical problem

in disentangling beliefs from utility. The technique for solving this problem was introduced in

Echenique and Saito (2015).

The following de�nition formalizes the concept of as-if choices.

De�nition 10. A dataset (xk ,pk)K
k=1

is Subjective Expected Utility (SEU) rational if there exist
µ ∈ ∆++(S) and a concave and strictly increasing function u : R+ → R such that, for all k ∈ K ,

y ∈ B(pk ,pk · xk) =⇒
∑
s∈S

µsu(ys) ≤
∑
s∈S

µsu(x
k
s ).

Given a non-negative number e , we say that a dataset is e-belief-perturbed subjective expected

utility (SEU) rational, if it can be rationalized using expected utility with perturbed beliefs for

which the ratios of likelihood ratios do not di�er by more than e .

De�nition 11. Let e ∈ R+. A dataset (xk ,pk)K
k=1

is e-belief-perturbed SEU rational if there exist
µk ∈ ∆++(S) for each k ∈ K and a concave and strictly increasing function u : R+ → R such that,
for all k ∈ K ,

y ∈ B(pk ,pk · xk) =⇒
∑
s∈S

µksu(ys) ≤
∑
s∈S

µksu(x
k
s )

and for each k, l ∈ K and s, t ∈ S
µks /µ

k
t

µls/µ
l
t

≤ 1 + e . (15)

Note that the de�nition of e-belief-perturbed SEU rationality di�ers from the de�nition of

e-belief-perturbed OEU rationality, only in condition (15), establishing bounds on perturbations.

Here there is no objective probability from which we can evaluate the deviation of the set {µk}

of beliefs. Thus we evaluate perturbations among beliefs, as in (15).

Remark B.1. The constraint on the perturbation applies for each k, l ∈ K and s, t ∈ S , so it implies
for each k, l ∈ K and s, t ∈ S

1

1 + e
≤
µks /µ

k
t

µls/µ
l
t

≤ 1 + e .

Hence, when e = 0, it must be that µks /µ
k
t = µls/µ

l
t . This implies that µk = µl for a dataset that is

0-belief perturbed SEU rational.
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Next, we propose perturbed SEU rationality with respect to prices.

De�nition 12. Let e ∈ R+. A dataset (xk ,pk)K
k=1

is e-price-perturbed SEU rational if there exist
µ ∈ ∆++(S) and a concave and strictly increasing function u : R+ → R and εk ∈ R|S |+ for each k ∈ K
such that, for all k ∈ K ,

y ∈ B(p̃k , p̃k · xk) =⇒
∑
s∈S

µsu(ys) ≤
∑
s∈S

µsu(x
k
s ),

where for each k ∈ K and s ∈ S
p̃ks = p

k
s ε

k
s ,

and for each k, l ∈ K and s, t ∈ S
εks /ε

k
t

εls/ε
l
t

≤ 1 + e . (16)

Again, the de�nition di�ers from the corresponding de�nition of price-perturbed OEU ratio-

nality only in condition (16), establishing bounds on perturbations. In condition (16), we measure

the size of the perturbations by

εks /ε
k
t

εls/ε
l
t

,

not εks /ε
k
t as in (5). This change is necessary to accommodate the existence of subjective beliefs. By

choosing subjective beliefs appropriately, one can neutralize the perturbation in prices if εks /ε
k
t =

εls/ε
l
t for all k, l ∈ K . That is, as long as εks /ε

k
t = εls/ε

l
t for all k, l ∈ K , if we can rationalize the

dataset by introducing the noise with some subjective belief µ, then without using the noise, we

can rationalize the dataset with another subjective belief µ′ such that εks µ
′
s/ε

k
t µ
′
t = µs/µt .

Finally, we de�ne utility-perturbed SEU rationality.

De�nition 13. Let e ∈ R+. A dataset (xk ,pk)K
k=1

is e-utility-perturbed SEU rational if there exist
µ ∈ ∆++(S), a concave and strictly increasing function u : R+ → R, and εk ∈ R|S |+ for each k ∈ K

such that, for all k ∈ K ,

y ∈ B(pk ,pk · xk) =⇒
∑
s∈S

µsε
k
s u(ys) ≤

∑
s∈S

µsε
k
s u(x

k
s ),

and for each k, l ∈ K and s, t ∈ S
εks /ε

k
t

εls/ε
l
t

≤ 1 + e .

As in the previous section, given e , we can show that these three concepts of rationality are

equivalent.
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Theorem 3. Let e ∈ R+ and D be a dataset. The following are equivalent:

• D is e-belief-perturbed SEU rational;

• D is e-price-perturbed SEU rational;

• D is e-utility-perturbed SEU rational.

In light of Theorem 3, we shall speak simply of e-perturbed SEU rationality to refer to any of

the above notions of perturbed SEU rationality.

Echenique and Saito (2015) prove that a dataset is SEU rational if and only if it satis�es a

revealed-preference axiom termed the Strong Axiom for Revealed Subjective Expected Utility

(SARSEU). SARSEU states that, for any test sequence (xkisi ,x
k ′i
s ′i
)ni=1

, if each s appears as si (on the

left of the pair) the same number of times it appears as s′i (on the right), then

n∏
i=1

pkisi

p
k ′i
s ′i

≤ 1.

SARSEU is no longer necessary for perturbed SEU rationality. This is easy to see, as we allow

the decision maker to have a di�erent belief µk for each choice k , and reason as in our discussion

of SAROEU. Analogous to our analysis of OEU, we introduce a perturbed version of SARSEU to

capture perturbed SEU rationality. Let e ∈ R+.

Axiom 2 (e-Perturbed SARSEU (e-PSARSEU)). For any test sequence (xkisi ,x
k ′i
s ′i
)ni=1
≡ σ , if each s

appears as si (on the left of the pair) the same number of times it appears as s′i (on the right), then
n∏
i=1

pkisi

p
k ′i
s ′i

≤ (1 + e)m(σ ).

We can easily see the necessity of e-PSARSEU by reasoning from the �rst-order conditions,

as in our discussion of e-PSAROEU. The main result of this section shows that e-PSARSEU is not

only necessary for e-perturbed SEU rationality, but also su�cient.

Theorem 4. Let e ∈ R+ and D be a dataset. The following are equivalent:

• D is e-perturbed SEU rational;

• D satis�es e-PSARSEU.

It is easy to see that 0-PSARSEU is equivalent to SARSEU, and that by choosing e to be ar-

bitrarily large it is possible to rationalize any dataset. As a consequence, we shall be interested

in �nding a minimal value of e that rationalizes a dataset. Echenique et al. (2019) apply the idea

to datasets of choice under uncertainty collected in the laboratory as well as on the large-scale

online survey of the general U.S. population.
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B.1 Proof of Theorem 3

First, we prove a lemma that establishes Theorem 3 and proves useful for the su�ciency part of

Theorem 4. This lemma provides “Afriat inequalities” for the problem at hand.

Lemma 6. Given e ∈ R+, and let (xk ,pk)Kk=1
be a dataset. The following statements are equivalent.

(a) (xk ,pk)K
k=1

is e-belief-perturbed SEU rational.

(b) There are strictly positive numbers vks , λ
k , µks , for s ∈ S and k ∈ K , such that

µksv
k
s = λ

kpks , xks > xk
′

s ′ =⇒ vks ≤ v
k ′

s ′ , (17)

and for each k, l ∈ K and s, t ∈ S ,

µks /µ
k
t

µls/µ
l
t

≤ 1 + e . (18)

(c) (xk ,pk)K
k=1

is e-price-perturbed SEU rational.

(d) There are strictly positive numbers v̂ks , ˆλk , µs , and εks for s ∈ S and k ∈ K , such that

µsv̂
k
s =

ˆλkεks p
k
s , xks > xk

′

s ′ =⇒ v̂ks ≤ v̂
k ′

s ′ ,

and for all k, l ∈ K and s, t ∈ S ,
εks /ε

k
t

εls/ε
l
t

≤ 1 + e .

(e) (xk ,pk)K
k=1

is e-utility-perturbed SEU rational.

(f) There are strictly positive numbers v̂ks , ˆλk , µs , and ε̂ks for s ∈ S and k ∈ K , such that

µs ε̂
k
s v̂

k
s =

ˆλkpks , xks > xk
′

s ′ =⇒ v̂ks ≤ v̂
k ′

s ′ ,

and for all k, l ∈ K and s, t ∈ S ,
ε̂ks /ε̂

k
t

ε̂ls/ε̂
l
t

≤ 1 + e .

Proof. The equivalence between (a) and (b), the equivalence between (c) and (d), and the equiv-

alence between (e) and (f) follow from standard arguments: see Echenique and Saito (2015) for

details. Moreover, it is easy to see the equivalence between (d) and (f) with εks = 1/ε̂ks for each

k ∈ K and s ∈ S . Hence, to prove the result, it su�ces to show that (b) and (d) are equivalent.
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To show that (d) implies (b), de�ne v = v̂ and

µks =
µs

εks

/ (∑
s∈S

µs

εks

)
for each k ∈ K and s ∈ S and

λk = ˆλk

/ (∑
s∈S

µs

εks

)
for each k ∈ K . Then, µk ∈ ∆++(S). Since µsv̂

k
s =

ˆλkεks p
k
s , we have µksv

k
s = λkpks . Moreover, for

each k, l ∈ K and s, t ∈ S ,

µks /µ
k
t

µls/µ
l
t

=
εkt /ε

k
s

εlt/ε
l
s

≤ 1 + e .

To show (b) implies (d), for all s ∈ S de�ne v̂ = v and

µs =
∑
k∈K

µks
K
.

Then, µ ∈ ∆++(S). For all k ∈ K ,
ˆλk = λk . For all k ∈ K and s ∈ S , de�ne

εks =
µs

µks
.

For each k ∈ K and s ∈ S , since µksv
k
s = λ

kpks , we have µsv
k
s =

ˆλkεks p
k
s . Finally, for each k, l ∈ K

and s, t ∈ S ,

εks /ε
k
t

εls/ε
l
t

=
µkt /µ

k
s

µlt/µ
l
s

≤ 1 + e .

�

B.2 Proof of the Necessity Direction of Theorem 4

Lemma 7. Given e ∈ R+, if a dataset is e-belief-perturbed SEU rational then the dataset satis�es
e-PSARSEU.

Proof. Fix any sequence (xkisi ,x
k ′i
s ′i
)ni=1
≡ σ of pairs that satis�es conditions (i) and (ii) in De�nition 7

and another condition that each s appears as si (on the left of the pair) the same number of times

it appears as s′i (on the right), which we refer to as condition (iii) throughout this section. By the

standard argument using the concavity of u, for each i , there exist vkisi ,v
k ′i
s ′i
, λki , λk

′
i , µkisi , µ

k ′i
s ′i

such

that v
k ′i
s ′i
≥ vkisi and vkisi =

λkip
ki
si

µ
ki
si

, and v
k ′i
s ′i
=

λk
′
i p

k ′i
s ′i

µ
k ′i
s ′i

. Thus, we have

1 ≥

n∏
i=1

λki µ
k ′i
s ′i
pkisi

λk
′
i µkisi p

k ′i
s ′i

=

n∏
i=1

µ
k ′i
s ′i

µkisi

n∏
i=1

pkisi

p
k ′i
s ′i

,
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where the second equality holds by condition (ii). See the proof of Lemma 10 of Echenique and

Saito (2015) for detail. Thus,

n∏
i=1

pkisi

p
k ′i
s ′i

≤

n∏
i=1

µkisi

µ
k ′i
s ′i

.

In the following, we evaluate the right-hand side. For each (k, s), we �rst cancel out the same

µks as much as possible both from the denominator and the numerator. Then, the number of µks
remained in the numerator is d(σ ,k, s) as de�ned in De�nition 8. Since the number of terms in

the numerator and the denominator must be the same, the number of the remaining fractions is

m(σ ) ≡
∑

s∈S

∑
k∈K :d(σ ,k,s)>0

d(σ ,k, s). So by relabeling the index i to j if necessary, we obtain

n∏
i=1

µkisi

µ
k ′i
s ′i

=

m(σ )∏
j=1

µ
kj
sj

µ
k ′j
s ′j

.

Consider the corresponding sequence (x
kj
sj ,x

k ′j
s ′j
)
m(σ )
j=1

. Since the sequence is obtained by can-

celing out xks from the �rst element and the second element of the pairs the same number of

times; and since the original sequence (xkisi ,x
k ′i
s ′i
)ni=1

satis�es conditions (ii) and (iii), it follows that

(x
kj
sj ,x

k ′j
s ′j
)
m(σ )
j=1

satis�es conditions (ii) and (iii).

By condition (iii), we can assume without loss of generality that sj = s′j for each j. Fix s∗ ∈ S .

Then by condition (15) of e-belief perturbed SEU, for each j ∈ {1, . . . ,m(σ )},

µ
kj
sj

µ
k ′j
s ′j

=
µ
kj
sj

µ
k ′j
sj

≤ (1 + e)
µ
k ′j
s∗

µ
kj
s∗

.

Moreover by condition (ii),

m(σ )∏
j=1

µ
k ′j
s∗

µ
kj
s∗

= 1.

Therefore,

n∏
i=1

µkisi

µ
k ′i
s ′i

=

m(σ )∏
j=1

µ
kj
si

µ
k ′j
s ′j

≤ (1 + e)m(σ )
n∏
j=1

µ
k ′j
s∗

µ
kj
s∗

= (1 + e)m(σ ),

and hence,

n∏
i=1

pkisi

p
k ′i
s ′i

≤ (1 + e)m(σ ).

�
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B.3 Proof of the Su�ciency Direction of Theorem 4

The outline of the argument is the same as the proof of Theorem 2 and Echenique and Saito

(2015). As in the proof of Theorem 2, we need three lemmas to prove the su�ciency direction.

We know from Lemma 6 that it su�ces to �nd a solution to the Afriat inequalities (actually

�rst-order conditions). So we set up the problem to �nd a solution to a system of linear inequal-

ities obtained from using logarithms to linearize the Afriat inequalities in Lemma 6.

The �rst lemma, Lemma 8, establishes that e-PSARSEU is su�cient for e-belief-perturbed SEU

rationality when the logarithms of the prices are rational numbers.

The second lemma, Lemma 9, establishes that we can approximate any dataset satisfying e-

PSARSEU with a dataset for which the logarithms of prices are rational, and for which e-PSARSEU

is satis�ed.

Finally, Lemma 10 establishes the result by using another version of the theorem of the alter-

native, stated as Lemma 11 above.

The statements of the lemmas follow. The rest of the section is devoted to the proof of these

lemmas.

Lemma 8. Given e ∈ R+, let a dataset (xk ,pk)kk=1
satisfy e-PSARSEU. Suppose that log(pks ) ∈ Q for

all k and s and log(1+e) ∈ Q. Then there are numbersvks , λ
k , µks for s ∈ S and k ∈ K satisfying (17)

and (18) in Lemma 6.

Lemma 9. Given e ∈ R+, let a dataset (xk ,pk)kk=1
satisfy e-PSARSEU. Then for all positive numbers

ε , there exist a positive real number e′ ∈ [e, e + ε] and qks ∈ [p
k
s − ε,p

k
s ] for all s ∈ S and k ∈ K such

that logqks ∈ Q and the dataset (xk ,qk)k
k=1

satisfy e′-PSARSEU.

Lemma 10. Given e ∈ R+, let a dataset (xk ,pk)kk=1
satisfy e-PSARSEU. Then there are numbers vks ,

λk , µks for s ∈ S and k ∈ K satisfying (17) and (18) in Lemma 6.

B.3.1 Proof of Lemma 8

The proof is similar to the proof of Echenique and Saito (2015), which corresponds to the case

with e = 0. By log-linearizing system (17), and inequality (18) in Lemma 6, we have for all s ∈ S

and k ∈ K , such that

log µks + logvks = log λk + logpks , (19)

xks > xk
′

s ′ =⇒ logvks ≤ logvk
′

s ′ , (20)

and for all k, l ∈ K and s, t ∈ S ,

log µks − log µkt − log µls + log µlt ≤ log(1 + e). (21)
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We are going to write the system of inequalities (19)-(21) in matrix form. The formulation

follows Echenique and Saito (2015), with some modi�cations.

Let A be a matrix with K × |S | rows and 2(K × |S |) + K + 1 columns, de�ned as follows: We

have one row for every pair (k, s), two columns for every pair (k, s), one column for each k , and

one last column. In the row corresponding to (k, s), the matrix has zeroes everywhere with the

following exceptions: it has 1’s in columns for (k, s); it has a −1 in the column for k ; it has − logpks
in the very last column. The matrix A looks as follows:



··· vks vkt vls vlt ··· ··· µks µkt µls µlt ··· ··· λk λl ··· p

...
...
...
...

...
...
...
...

...
...

...

(k,s) · · · 1 0 0 0 · · · · · · 1 0 0 0 · · · · · · −1 0 · · · − logpks
(k,t) · · · 0 1 0 0 · · · · · · 0 1 0 0 · · · · · · −1 0 · · · − logpks
(l ,s) · · · 0 0 1 0 · · · · · · 0 0 1 0 · · · · · · 0 −1 · · · − logpls
(l ,t) · · · 0 0 0 1 · · · · · · 0 0 0 1 · · · · · · 0 −1 · · · − logpls

...
...
...
...

...
...
...
...

...
...

...


.

Next, we write the system of inequalities (20) and (21) in matrix form. There is one row in

matrix B for each pair (k, s) and (k′, s′) for which xks > xk
′

s ′ . In the row corresponding to xks > xk
′

s ′ ,

we have zeroes everywhere with the exception of a −1 in the column for (k, s) and a 1 in the

column for (k′, s′). Matrix B has additional rows, that capture the system of inequalities (21):

We do not need a constraint for each quadruple (k, l , s, t), as some of them would be redundant.

Speci�cally, we need the constraints
µks /µ

k
t

µls/µ
l
t
≤ 1 + e , and

µls/µ
l
t

µks /µ
k
t
≤ 1 + e , which is equivalent to

µks /µ
k
t

µls/µ
l
t
≥ 1/(1 + e). But note that

µlt /µ
l
s

µkt /µ
k
s
≤ 1 + e is redundant, as

µlt /µ
l
s

µkt /µ
k
s
=

µks /µ
k
t

µls/µ
l
t
. So for each (s, t)

with s < t , and each k , l we are going to have the constraint (k, l , s, t).1 For each such (k, l , s, t)

we have two rows. One of these rows has a 1 in the column for µks and µlt , a −1 in the column for

µkt and µls , and log(1 + e) in the very last column; one of these rows has a 1 in the column for µkt
and µls , a −1 in the column for µks and µlt , and log(1 + e) in the very last column. So this part of

matrix B is as follows:



··· vks vkt vls vlt ··· ··· µks µkt µls µlt ··· ··· λk λl ··· p

...
...
...
...

...
...
...
...

...
...

...

· · · 0 0 0 0 · · · · · · −1 1 1 −1 · · · · · · 0 0 · · · log(1 + e)

· · · 0 0 0 0 · · · · · · 1 −1 −1 1 · · · · · · 0 0 · · · log(1 + e)
...
...
...
...

...
...
...
...

...
...

...


.

1
The inequality s < t is simply a device to ensure that we choose only one of the two ordered pairs of s and t .
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Finally, we have a matrix E which has a single row and has zeroes everywhere except for 1 in

the last column.

To sum up, there is a solution to the system (19)-(21) if and only if there is a vector u ∈

R2(K×|S |)+K+1
that solves the system of equations and linear inequalities

S1 :


Au = 0,

Bu ≥ 0,

Eu > 0.

The entries of A, B, and E are either 0, 1 or −1, with the exception of the last column of A

and B. Under the hypotheses of the lemma we are proving, the last column consists of rational

numbers. By Motzkin’s theorem, then, there is such a solution u to S1 if and only if there is no

rational vector (θ ,η,π ) that solves the system of equations and linear inequalities

S2 :


θ · A + η · B + π · E = 0,

η ≥ 0,

π > 0.

In the following, we shall prove that the non-existence of a solution u implies that the dataset

must violate e-PSARSEU. Suppose then that there is no solution u and let (θ ,η,π ) be a rational

vector as above, solving system S2.

The outline of the rest of the proof is similar to the proof of Theorem 2. Since (θ ,η,π ) are

rational vectors, by multiplying all of their entries by a large enough integer, we can without loss

of generality assume that (θ ,η,π ) are integer vectors.

Then we transform the matrices A and B using θ and η. (i) If θr > 0, then create θr copies

of the r th row; (ii) omitting row r when θr = 0; and (iii) if θr < 0, then θr copies of the r th row

multiplied by −1.

Similarly, we create a new matrix by including the same columns as B and ηr copies of each

row (and thus omitting row r when ηr = 0; recall that ηr ≥ 0 for all r ).

By using the transformed matrices and the fact that θ ·A+η · B + π · E = 0 and η ≥ 0, we can

prove the following claims:

Claim. There exists a sequence (xkisi ,x
k ′i
s ′i
)n
∗

i=1
of pairs that satis�es conditions (i) and (ii) in De�ni-

tion 7.

Proof. The proof is the same as in the proof of Lemma 11 in Echenique and Saito (2015). �

Claim. In the sequence (xkisi ,x
k ′i
s ′i
)n
∗

i=1
≡ σ ∗, each s appears as si (on the left of the pair) the same

number of times it appears as s′i (on the right).

9



Proof. Recall our construction of the matrix B. We have a constraint for each quadruple (k, l , s, t)

with s < t . Denote the weight on the rows capturing
µks /µ

k
t

µls/µ
l
t
≤ 1+e by η(k, l , s, t). Let n(xks ) ≡ #{i |

xks = xkisi } and n′(xks ) ≡ #{i | xks = x
k ′i
s ′i
}. For notational convenience, de�ne η(k, l , s, t) = 0 for all

quadruples (k, l , s, t) with t < s .

For each k ∈ K and s ∈ S , in the column corresponding to µks in matrix A, remember that we

have 1 if we have xks = xkisi for some i and −1 if we have xks = x
k ′i
s ′i

for some i . This is because a row

in A must have 1 (−1) in the column corresponding to vks if and only if it has 1 (−1, respectively)

in the column corresponding to µks . By summing over the column corresponding to µks , we have

n(xks ) − n
′(xks ).

Now we consider matrix B. In the column corresponding to µks and s < t , we have −1 in

the row multiplied by η(k, l , s, t) and 1 in the row multiplied by η(l ,k, s, t). By summing over the

column corresponding to µks , we also have −
∑

l,k

∑
t,s η(k, l , s, t) +

∑
l,k

∑
t,s η(l ,k, s, t).

For each k ∈ K and s ∈ S , the column corresponding to µks of matrices A and B must sum up

to zero; so we have

n(xks ) − n
′(xks ) −

∑
l,k

∑
t,s

η(k, l , s, t) +
∑
l,k

∑
t,s

η(l ,k, s, t) = 0.

Therefore, for each s ,∑
k∈K

(
n(xks ) − n

′(xks )
)
=

∑
k∈K

[∑
l,k

∑
t,s

η(k, l , s, t) −
∑
l,k

∑
t,s

η(l ,k, s, t)

]
=

∑
t,s

[∑
k∈K

∑
l,k

η(k, l , s, t) −
∑
k∈K

∑
l,k

η(l ,k, s, t)

]
= 0.

This means that each s appears as si (on the left of the pair) the same number of times it appears

as s′i (on the right). �

Claim.
∏n∗

i=1
(pkisi /p

k ′i
s ′i
) > (1 + e)m(σ

∗)
.

Proof. By the fact that the last column must sum up to zero and E has one at the last column, we

have

n∗∑
i=1

log

p
k ′i
s ′i

pkisi
+

(∑
k∈K

∑
l,k

∑
s∈S

∑
t,s

η(k, l , s, t)

)
log(1 + e) = −π < 0.

Hence, by multiplying −1, we have

n∗∑
i=1

log

pkisi

p
k ′i
s ′i

−

(∑
k∈K

∑
l,k

∑
s∈S

∑
t,s

η(k, l , s, t)

)
log(1 + e) > 0.

10



Remember that for all k ∈ K and s ∈ S ,

n(xks ) − n
′(xks ) = +

∑
l,k

∑
t,s

η(k, l , s, t) −
∑
l,k

∑
t,s

η(l ,k, s, t) ≤
∑
l,k

∑
t,s

η(k, l , s, t).

Since d(σ ∗,k, s) = n(xks ) − n
′(xks ), we have

m(σ ∗) ≡
∑
s∈S

∑
k∈K :d(σ ∗,k,s)>0

d(σ ∗,k, s) =
∑
s∈S

∑
k∈K

max{n(xks ) − n
′(xks ), 0}

≤
∑
s∈S

∑
k∈K

∑
l,k

∑
t,s

η(k, l , s, t).

Therefore,

n∗∑
i=1

log

pkisi

p
k ′i
s ′i

>

(∑
k∈K

∑
l,k

∑
s∈S

∑
t,s

η(k, l , s, t)

)
log(1 + e) ≥ m(σ ∗) log(1 + e).

This is a contradiction. �

B.3.2 Proof of Lemma 9

Let X = {xks | k ∈ K, s ∈ S}. Consider the set of sequences that satisfy conditions (i) and (ii) in

De�nition 7, and (iii) in e-PSARSEU:

Σ =

{
(xkisi ,x

k ′i
s ′i
)ni=1
⊂ X2

����� (xkisi ,xk
′
i

s ′i
)ni=1

satis�es conditions (i) and (ii)

in De�nition 7 and (iii) for some n

}
.

For each sequence σ ∈ Σ, we de�ne a vector tσ ∈ NK2 |S |2
. For each pair (xkisi ,x

k ′i
s ′i
), we shall identify

the pair with ((ki , si), (k
′
i , s
′
i )). Let tσ ((k, s), (k

′, s′)) be the number of times that the pair (xks ,x
k ′

s ′ )

appears in the sequence σ . One can then describe the satisfaction of e-PSARSEU by means of the

vectors tσ . Observe that t depends only on (xk)K
k=1

in the dataset (xk ,pk)K
k=1

. It does not depend

on prices.

For each ((k, s), (k′, s′)) such that xks > xk
′

s ′ , de�ne δ ((k, s), (k′, s′)) = log(pks /p
k ′

s ′ ). And de�ne

δ ((k, s), (k′, s′)) = 0 when xks ≤ xk
′

s ′ . Then, δ is a K2 |S |2-dimensional real-valued vector. If σ =

(xkisi ,x
k ′i
s ′i
)ni=1

, then

δ · tσ =
∑

((k,s),(k ′,s ′))∈(K×S)2

δ ((k, s), (k′, s′))tσ ((k, s), (k
′, s′)) = log

©­«
n∏
i=1

pkisi

p
k ′i
s ′i

ª®®¬ .
So the dataset satis�es e-PSARSEU if and only if δ · tσ ≤ m(σ ) log(1 + e) for all σ ∈ Σ.
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Enumerate the elements in X in increasing order: y1 < y2 < · · · < yN , and �x an arbitrary

ξ ∈ (0, 1). We shall construct by induction a sequence {(εks (n))}
N
n=1

, where εks (n) is de�ned for all

(k, s) with xks = yn.

By the denseness of the rational numbers, and the continuity of the exponential function, for

each (k, s) such that xks = y1, there exists a positive number εks (1) such that log(pks ε
k
s (1)) ∈ Q and

ξ < εks (1) < 1. Let ε(1) = min{εks (1) | x
k
s = y1}.

In second place, for each (k, s) such that xks = y2, there exists a positive εks (2) such that

log(pks ε
k
s (2)) ∈ Q and ξ < εks (2) < ε(1). Let ε(2) = min{εks (2) | x

k
s = y2}.

In third place, and reasoning by induction, suppose that ε(n) has been de�ned and that ξ <

ε(n). For each (k, s) such that xks = yn+1, let εks (n + 1) > 0 be such that log(pks ε
k
s (n + 1)) ∈ Q, and

ξ < εks (n + 1) < ε(n). Let ε(n + 1) = min{εks (n + 1) | xks = yn}.

This de�nes the sequence (εks (n)) by induction. Note that εks (n+1)/ε(n) < 1 for all n. Let
¯ξ < 1

be such that εks (n + 1)/ε(n) < ¯ξ .

For each k ∈ K and s ∈ S , let qks = pks ε
k
s (n), where n is such that xks = yn. We claim that the

dataset (xk ,qk)K
k=1

satis�es e-PSARSEU. Let δ ∗ be de�ned from (qk)K
k=1

in the same manner as δ

was de�ned from (pk)K
k=1

.

For each pair ((k, s), (k′, s′)) with xks > xk
′

s ′ , if n andm are such that xks = yn and xk
′

s ′ = ym, then

n > m. By de�nition of ε ,
εks (n)

εk
′

s ′ (m)
<
εks (n)

ε(m)
< ¯ξ < 1.

Hence,

δ ∗((k, s), (k′, s′)) = log

pks ε
k
s (n)

pk
′

s ′ ε
k ′
s ′ (m)

< log

pks

pk
′

s ′

+ log
¯ξ < log

pks

pk
′

s ′

= δ ((k, s), (k′, s′)).

Now we choose e′ such that e′ ≥ e and log(1 + e′) ∈ Q.

Thus, for all σ ∈ Σ, δ ∗ · tσ ≤ δ · tσ ≤ m(σ ) log(1+e) ≤ m(σ ) log(1+e′) as t· ≥ 0 and the dataset

(xk ,pk)K
k=1

satis�es e-PSARSEU.

Therefore, the dataset (xk ,qk)K
k=1

satis�es e′-PSARSEU. Finally, note that ξ < εks (n) < 1 for all

n and each k ∈ K, s ∈ S . So that by choosing ξ close enough to 1 we can take (qk)K
k=1

to be as

close to (pk)K
k=1

as desired. We also can take e′ to be as close to e as desired.

B.3.3 Proof of Lemma 10

Consider the system comprised by (19), (20), and (21) in the proof of Lemma 8. Let A, B, and E be

constructed from the dataset as in the proof of Lemma 8. The di�erence with respect to Lemma 8

is that now the entries of A4 and B4 may not be rational. Note that the entries of E, Bi , and Ai , for

i = 1, 2, 3 are rational.
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Suppose, towards a contradiction, that there is no solution to the system comprised by (19), (20),

and (21). Then, by the argument in the proof of Lemma 8 there is no solution to system S1.

Lemma 11 (in Appendix B.4) with F = R implies that there is a real vector (θ ,η,π ) such that

θ ·A+η ·B+π ·E = 0 and η ≥ 0,π > 0. Recall that E4 = 1, so we obtain that θ ·A4+η ·B4+π = 0.

Let (qk)K
k=1

vectors of prices and a positive real number e′ be such that the dataset (xk ,qk)K
k=1

satis�es e′-PSARSEU and logqks ∈ Q for all k and s and log(1 + e′) ∈ Q. (Such (qk)K
k=1

and e′ exist

by Lemma 9.) Construct matrices A′, B′, and E′ from this dataset in the same way as A, B, and

E is constructed in the proof of Lemma 8. Since only prices qk and the bound e′ are di�erent in

this dataset, only A′
4

and B′
4

may be di�erent from A4 and B4, respectively. So E′ = E, B′i = Bi and

A′i = Ai for i = 1, 2, 3.

By Lemma 9, we can choose prices qk and e′ such that |(θ ·A′
4
+η ·B′

4
)− (θ ·A4+η ·B4)| < π/2.

We have shown that θ · A4 + η · B4 = −π , so the choice of prices qk and e′ guarantees that

θ · A′
4
+ η · B′

4
< 0. Let π ′ = −θ · A′

4
− η · B′

4
> 0.

Note that θ ·A′i+η ·B
′
i+π

′Ei = 0 for i = 1, 2, 3, as (θ ,η,π ) solves system S2 for matricesA, B and

E, andA′i = Ai , B
′
i = Bi and Ei = 0 for i = 1, 2, 3. Finally, θ ·A′

4
+η ·B′

4
+π ′E4 = θ ·A

′
4
+η ·B′

4
+π ′ = 0.

We also have that η ≥ 0 and π ′ > 0. Therefore θ , η, and π ′ constitute a solution to S2 for matrices

A′, B′, and E′.

Lemma 11 then implies that there is no solution to system S1 for matrices A′, B′, and E′.

So there is no solution to the system comprised by (19), (20), and (21) in the proof of Lemma 8.

However, this contradicts Lemma 8 because the dataset (xk ,qk) satis�es e′-PSARSEU, log(1+e′) ∈

Q, and logqks ∈ Q for all k ∈ K and s ∈ S .

B.4 Theorem of the Alternative

We shall use the following lemma, which is a version of the Theorem of the Alternative. This is

Theorem 1.6.1 in Stoer and Witzgall (1970). We shall use it here in the cases where F is either the

real or the rational number �eld.

Lemma 11. Let A be anm ×n matrix, B be an l ×n matrix, and E be an r ×n matrix. Suppose that
the entries of the matrices A, B, and E belong to a commutative ordered �eld F. Exactly one of the
following alternatives is true.

1. There is u ∈ Fn such that Au = 0, Bu ≥ 0, Eu � 0.

2. There is θ ∈ Fr , η ∈ Fl , and π ∈ Fm such that θ · A + η · B + π · E = 0; π > 0 and η ≥ 0.

The next lemma is a direct consequence of Lemma 11. See Lemma 12 in Chambers and

Echenique (2014) for proof.
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Lemma 12. Let A be anm ×n matrix, B be an l ×n matrix, and E be an r ×n matrix. Suppose that
the entries of the matricesA, B, and E are rational numbers. Exactly one of the following alternatives
is true.

1. There is u ∈ Rn such that Au = 0, Bu ≥ 0, and Eu � 0.

2. There is θ ∈ Qr , η ∈ Ql , and π ∈ Qm such that θ · A + η · B + π · E = 0; π > 0 and η ≥ 0.

14



C Computing e∗
We demonstrate how to calculate e∗ given a dataset of choice under risk. To calculate the value,

it is easier to use price-perturbed OEU rationality, rather than belief-perturbed OEU rationality.

Formally, for a given dataset (xk ,pk)K
k=1

, we want to compute e∗ such that the dataset is price per-

turbed OEU rational given the number e . We can transform this problem into an easier problem

with the following remark.

Remark C.1. Given e ∈ R+, a dataset (xk ,pk)K
k=1

is e-price-perturbed OEU rational if and only if
there are strictly positive numbers vks , λ

k , µs , and εks for s ∈ S and k ∈ K , such that

µ∗sv
k
s = λ

kεks p
k
s , xks > xk

′

s ′ =⇒ vks ≤ v
k ′

s ′ ,

and for all k ∈ K and s, t ∈ S
1

1 + e
≤
εks

εkt
≤ 1 + e .

By the remark, e∗ can be obtained by solving the following problem:

min

(µs ,v
k
s ,λk ,ε

k
s )k,s

max

k∈K,s,t∈S

εks

εkt

s.t. µ∗sv
k
s = λ

kεks p
k
s ,

xks > xk
′

s ′ =⇒ vks ≤ v
k ′

s ′ .

We replace εks in the objective function using the equality constraint µ∗sv
k
s = λkεks p

k
s . By

canceling out λk and log-linearizing, we obtain the following:

min

(vks )k,s

max

k∈K,s,t∈S
(log µ∗s + logvks − logpks ) − (log µ∗t + logvkt − logpkt )

s.t. xks > xk
′

s ′ =⇒ logvks ≤ logvk
′

s ′ .

(?)

We have the following result:

Remark C.2. For any dataset (xk ,pk)K
k=1

, e∗ is the solution of the problem (?), which always exists.

Implementation. In the empirical applications, we solve the problem (?) using Matlab (Math-

Works).

For each subject, the decision in every trial is characterized by a tuple (a1,a2,x1,x2) where ai

represents the intercept of the budget line on each axis (here we call the x-axis “account 1” and the
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y-axis “account 2”), and xi represents the subject’s allocation to account i . In order to rewrite the

choice data in a price-consumption format as in the theory, we set prices p1 = 1 (normalization)

and p2 = a1/a2. This gives us a dataset (xk ,pk)K
k=1

.

Remember that the problem we are going to solve is:

min

(vks )k,s

max

k∈K,s,t∈S
(log µ∗s + logvks − logpks ) − (log µ∗t + logvkt − logpkt )

s.t. xks > xk
′

s ′ =⇒ logvks ≤ logvk
′

s ′ .

(?)

Our main task is to express this problem in matrix form.

Let z be a column vector of length K × |S |+K × |S |+ |S |, whose �rst K × |S | entries correspond

to each of logvks and the last K × |S | + |S | entries are all 1.

z′ =
[
· · · logvks · · ·︸                 ︷︷                 ︸

K×|S |

1 · · · 1︸        ︷︷        ︸
K×|S |

1 · · · 1︸        ︷︷        ︸
|S |

]
.

This vector contains the control variables of the problem, (vks )k,s . The reason why we have K ×

|S | + |S | additional rows of 1 in the vector will become clear shortly.

We construct two matrices A and B. The �rst matrix A has K × |S | × (|S | − 1) rows and

K × |S | + K × |S | + |S | columns, and looks as follows:



··· vks vkt vls vlt ··· ··· pks pkt pls plt ··· ··· µ∗s µ∗t ···

...
...
...
...
...

...
...

...
...

...
...

(k,s,t) · · · 1 −1 0 0 · · · · · · − logpks logpkt 0 0 · · · · · · 1 −1 · · ·

(k,t ,s) · · · −1 1 0 0 · · · · · · logpks − logpkt 0 0 · · · · · · −1 1 · · ·

(l ,s,t) · · · 0 0 1 −1 · · · · · · 0 0 − logpls logplt · · · · · · 1 −1 · · ·

(l ,t ,s) · · · 0 0 −1 1 · · · · · · 0 0 logpls − logplt · · · · · · −1 1 · · ·
...

...
...
...
...

...
...

...
...

...
...


.

Similarly, the second matrix B has K × |S | + K × |S | + |S | columns. There is one row for every

pair (k, s) and (k′, s′) with xks > xk
′

s ′ . In the row corresponding to (k, s) and (k′, s′) we have zeroes

everywhere with the exception of a −1 in the column for vks and a 1 in the column for vk
′

s ′ .

Note that Az is a vector in which each of the K × |S | × (|S | − 1) elements corresponds to

(log µ∗s + logvks − logpks ) − (log µ∗t + logvkt − logpkt ) for some combination of k ∈ K and s, t ∈ S .

Hence, the objective function of the problem (?) can be written as

max

k∈K,s,t∈S
(log µ∗s + logvks − logpks ) − (log µ∗t + logvkt − logpkt ) = max

i
(Az)i ,

where (Az)i denotes the ith element of vector Az. Similarly, each element of the vector Bz is

− logvks + logvk
′

s ′ where (k, s) and (k′, s′) are such that xks > xk
′

s ′ . Hence, Bz ≥ 0 captures the

constraint of the problem (?).
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Taken together, we can express the problem (?) in matrix form:

min

z
max

i
(Az)i

s.t. Bz ≥ 0

We use the Matlab function fmincon to �nd a solution z∗ of this convex programming problem.

Finally, we obtain e∗ from the optimized value of the problem:

e∗ = exp (log(1 + e∗)) − 1 = exp

(
max

i
(Az∗)i

)
− 1.
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D Illustration with Two-Budget Examples

D.1 Perturbed OEU Rationalization and e∗

We present simple examples of pairs of observations, in order to gain some insights about (per-

turbed) OEU rationalization and minimal e . For simplicity, we assume that there are two equally

likely states (µ∗
1
= µ∗

2
= 0.5). Consider two budget sets Bk(pk , Ik) with (p1, I 1) = ((1, 2/3), 32)

and (p2, I 2) = ((1, 1/2), 18), which are shown in Figure D.1, panel A. Let x̄ks = Ik/pks denote the

maximum amount of xs one can choose in budget k (i.e., the xs-intercept of the budget line).

We generate synthetic choice data on these budgets. For each budget Bk , we �rst take 31

equally-spaced points {0, x̄k
1
/30, 2x̄k

1
/30, . . . , x̄k

1
} on the set [0, x̄k

1
] of all possible xk

1
. Each of these

xk
1

speci�es a point xk = (xk
1
,xk

2
) on the frontier of budget Bk , given by (ηx̄k

1
/30, (30 − η)x̄k

2
/30),

η = 0, 1, . . . , 30. We now have a set of 31 equally-spaced points on the frontier of budget Bk and,

by taking all possible combinations of x1
and x2

from these sets, we generate 961 synthetic choice

data. We then calculate e∗ for each of these synthetic datasets.

We �nd that there are �ve possible values of e∗ (0, 0.155, 0.5, 0.732, 1) when choices are made

on these two budget sets. Figure D.1B shows that we can partition the space [0, x̄1

1
] × [0, x̄2

1
] into

�ve regions, depending on the value of e∗.
2
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Figure D.1: Example. (A) Two budgets Bk (pk , Ik ), k = 1, 2. (B) e∗ for all combinations of x1
and x2

from

two budgets. Notes: In panel B, darker colors correspond to larger e∗ and the gray area corresponds to

e∗ = 0. The vertical (horizontal) dashed line indicates the value of x1

1
(x2

1
) at which x1

1
= x1

2
(x2

1
= x2

2
) holds.

2
Choices in areas (e) and (f) have the same value of e∗. We treat them separately for later discussion.
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Table D.1: Two-budget examples for illustration of e∗.

Intercept Income Price Allocation Perturbed price

Example k x̄k
1

x̄k
2

Ik pk
1

pk
2

xk
1

xk
2

p̃k
1

p̃k
2

e∗

(a)

1 32 48 32 1 2/3 15.0 25.5 – –

0.000

2 18 36 18 1 1/2 8.0 20.0 – –

(b)

1 32 48 32 1 2/3 5.0 40.5 1.127 0.651

0.155

2 18 36 18 1 1/2 8.0 20.0 0.921 0.532

(c)

1 32 48 32 1 2/3 24.0 12.0 0.889 0.889

0.500

2 18 36 18 1 1/2 8.0 20.0 0.788 0.585

(d)

1 32 48 32 1 2/3 30.0 3.0 0.956 1.104

0.732

2 18 36 18 1 1/2 8.0 20.0 0.711 0.616

(e)

1 32 48 32 1 2/3 15.0 25.5 0.790 0.790

1.000

2 18 36 18 1 1/2 15.0 6.0 0.857 0.857

(f)

1 32 48 32 1 2/3 24.0 12.0 0.889 0.889

1.000

2 18 36 18 1 1/2 15.0 6.0 0.857 0.857

Now, to dig deeper, we choose six examples of choice data, one from each area (a)-(f). See

Table D.1 for the corresponding list of six datasets and their associated e∗. The dataset in exam-

ple (a) is rationalized by OEU and hence e∗ = 0. Let us investigate the other �ve examples which

are not OEU rationalizable.

Example (b). The dataset in example (b) is not OEU rationalizable. To see this, consider a

sequence consisting of two pairs σ = ((x2

1
,x1

1
), (x1

2
,x2

2
)). It satis�es the requirement of a test

sequence (De�nition 7 in Section 3) since we have x2

1
> x1

1
and x1

2
> x2

2
and each k ∈ {1, 2}

appears once on the left of the pair and once on the right of the pair. However, it does not satisfy

the conclusion of SAROEU since

p2

1

p1

1

·
p1

2

p2

2

=
1

1

·
2/3

1/2
=

4

3

> 1.

Following De�nition 8, we obtain the number m(σ ) = 2. Then the sequence σ satis�es the con-

clusion of e-PSAROEU with e = 0.155:

p2

1

p1

1

·
p1

2

p2

2

=
4

3

≤ (1 + 0.155)2.
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Remark D.1. Figure D.2 presents a geometrical argument for why this dataset is not OEU rational.
Suppose, toward a contradiction, that the dataset is OEU rational. In panel B of Figure D.2, we include
a budget set B3 that has the same relative prices as the budget set B2 but with a larger income so that
the budget line passes through x1 (i.e., B3 is a parallel shift of B2). Since the demand function of a
risk-averse OEU agent is normal, the agent’s choice x3 from budget B3 must be larger than the choice
x2 from budget B2, which is indicated by the dash-dotted lines. The choice X 3 must lie in the line
segment on B3 that consists of bundles larger than x2. However, such a choice would violate WARP.
Hence, the (counterfactual) choice implied by risk-averse OEU at budget B3 would be inconsistent
with utility maximization, contradicting the assumption of OEU rationality. See Echenique and
Saito (2015) for a similar discussion.
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Figure D.2: Example (b) in Table D.1 is not OEU rationalizable. (A) The original dataset. (B) New budget

set B3
is added.

Examples (c)-(f). Next, we consider choices in regions (c)-(f), which are not OEU rationalizable

because they involve violations of FOSD-monotonicity under the assumption of µ∗
1
= µ∗

2
= 0.5.

When there are two equally likely states, choosing an option (x1,x2) at prices (p1,p2) violates

monotonicity with respect to �rst-order stochastic dominance (FOSD-monotonicity) when either

(i) p1 > p2 and x1 > x2 or (ii) p2 > p1 and x2 > x1 holds. Since the two states have the same

objective probability in our datasets, choosing a larger payo� in the more expensive state violates

FOSD-monotonicity. In Figure D.1B above, any allocation that appears on the right or above the

dashed lines violates FOSD-monotonicity.
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Figure D.3: Minimal price perturbation. Notes: Black lines represent the original, “true”, budget lines, and

red lines represent the minimally perturbed budget lines. Choices in example (a) are OEU rationalizable.

Minimal price perturbation. Let us consider how we rationalize choices in examples (b)-(f)

with perturbed prices. Solving the constrained minimization problem described in Section C gives

us a collection of ratios of perturbations {εk
1
/εk

2
}k∈K that corresponds to e∗ (these are simply part

of the output of the minimization program). We can compute perturbed relative prices

p̃k
1

p̃k
2

=
pk

1

pk
2

εk
1

εk
2

.

Note that perturbed budgets must pass through the chosen bundles. Assuming that the income

Ik is unchanged, we obtain perturbed prices p̃k
1

and p̃k
2

(see Table D.1). Figure D.3 illustrates

these “minimally-perturbed” budget lines under which observed choices are e∗-perturbed OEU

rationalizable.

Consider again the sequence σ = ((x2

1
,x1

1
), (x1

2
,x2

2
)) in example (b). We established above

that it does not satisfy SAROEU under the original prices, but it does satisfy the conclusion of
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SAROEU under the perturbed prices:

p̃2

1

p̃1

1

·
p̃1

2

p̃2

2

=
0.921

1.127

·
0.651

0.532

= 1.

Note that the argument in Remark D.1 does not work in the perturbed dataset since perturbed

budget lines are parallel to each other:

p̃1

2

p̃1

1

=
0.651

1.127

= 0.578 =
0.532

0.921

=
p̃2

2

p̃2

1

.

Let us now move on to examples involving violations of FOSD-monotonicity. Consider ex-

ample (c), in which allocation x1
violates FOSD-monotonicity. A price perturbation eliminates

this violation of FOSD-monotonicity by rotating budget B1
so that p̃1

1
= p̃1

2
. Example (d) is similar

to example (c), but allocation x1
is located further away from the 45-degree line while the other

allocation x2
is �xed. In this case, unlike example (c), rotating budget B1

just to make p̃1

1
= p̃1

2
is

not enough— we need to rotate it more and make p̃1

1
< p̃1

2
.

In examples (e) and (f), violation of FOSD-monotonicity occurs on the “most extreme” bud-

get in the dataset, which is B2
.
3

In this case, the size of the minimal perturbation necessary to

eliminate the FOSD-monotonicity violation (rotating it so that perturbed prices become p̃2

1
= p̃2

2
)

dominates and the location of x1
on budget B1

does not matter (see Figure D.1B). In other words,

e∗ for this case is determined by the relative price max{p2

1
/p2

2
,p2

2
/p2

1
} = 2.

3
Budget B2

is more extreme than budget B1
in the sense that max{p2

1
/p2

2
,p2

2
/p2

1
} = 2 > 3/2 = max{p1

1
/p1

2
,p1

2
/p1

1
}.
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D.2 Comparing e∗ and the GRID Method

Polisson et al. (2020) develop a general method called the Generalized Restriction of In�nite Do-

main (GRID) for testing consistency with models of choice under risk and uncertainty. Using

GRID, they provide a way to calculate CCEI for departures from OEU (called EU-CCEI) and risk-

averse OEU (called cEU-CCEI).

In Section 4.2, we discuss the relationship between e∗ and EU-CCEI as well as cEU-CCEI using

real datasets from three experiments. To have a better understanding about the similarities and

di�erences between our approach and the GRID method, we look at simple examples with two

equally likely states and two budgets, as in Section D.1.

We consider seven examples listed in Table D.2, which cover di�erent con�gurations of budget

lines, exhibiting di�erent properties (such as the point at which they cross, and relative steep-

ness). We generated synthetic choice data following the same procedure as in Section D.1. Three

measures, e∗, cEU-CCEI, and EU-CCEI, were calculated for each synthetic dataset.

Table D.2: Two-budget examples for comparing measures of deviation from OEU.

Intercept Price Allocation Measure

Example k x̄k
1

x̄k
2

pk
1

pk
2

xk
1

xk
2

e∗ cEU-CCEI EU-CCEI

(a)

1 32 48 1 2/3 5.0 40.5

0.155 0.985 1.000

2 18 36 1 1/2 8.0 20.0

(b)

1 32 48 1 2/3 5.0 40.5

0.080 0.993 1.000

2 28 16 1 7/4 15.0 7.4

(c)

1 32 48 1 2/3 15.0 25.5

0.162 0.969 1.000

2 36 40 1 9/10 5.0 34.4

(d)

1 32 48 1 2/3 15.0 25.5

0.061 0.995 1.000

2 40 30 1 4/3 30.0 7.5

(e)

1 32 48 1 2/3 8.0.0 36.0

0.155 0.986 1.000

2 40 20 1 2 20.0 10.0

(f)

1 32 36 1 8/9 6.0 29.25

0.333 0.959 1.000

2 40 20 1 2 20.0 10.0

(g)

1 32 33 1 32/33 6.0 26.8

0.393 0.952 0.980

2 40 20 1 2 20.0 10.0
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In Figures D.4 and D.5, we plot two budgets in each example (�rst column), e∗ under each

pair (x1

1
,x2

1
) of payo�s in state 1 (second column), cEU-CCEI (third column), and EU-CCEI (fourth

column). Observations in the gray regions are rationalizable by risk-averse OEU (second and third

columns) or general OEU (fourth column). Otherwise, the darker the region is, the further the

observation is from risk-averse OEU (second and third columns) or general OEU (fourth column).

For ease of interpretation, we show a sample pair of choices (x1,x2) represented by hollow circles

in the panels in the �rst column. The values of e∗, cEU-CCEI, and EU-CCEI associated with these

sample choices are shown in the last three columns of Table D.2.

We observe that properties of e∗ discussed in Section D.1 are general and not speci�c to the

budget lines used in that particular example: The space [0, x̄1

1
] × [0, x̄2

1
] is partitioned into �ve

areas depending on the value of e∗, and a violation of FOSD-monotonicity is penalized more if it

occurs on the most extreme budget line.

In Figures D.4 and D.5, the comparison between the second column (e∗) and the third column

(cEU-CCEI) highlights some di�erences between our perturbed OEU and the GRID method. The

comparison between these two columns and the fourth column (EU-CCEI) shows an implication

of assuming risk aversion.
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Figure D.4: Examples (a)-(d). Notes: In the second to fourth columns, darker colors correspond to a larger

distance from (risk-averse or general) OEU. The vertical (horizontal) dashed line indicates the value of x1

1

(x2

1
) at which x1

1
= x1

2
(x2

1
= x2

2
) holds.
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Figure D.5: Examples (e)-(g). Notes: In the second to fourth columns, darker colors correspond to a larger

distance from (risk-averse or general) OEU. The vertical (horizontal) dashed line indicates the value of x1

1

(x2

1
) at which x1

1
= x1

2
(x2

1
= x2

2
) holds.
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Treatment of violations of FOSD-monotonicity. Perturbed OEU and the GRID treat vio-

lations of FOSD-monotonicity di�erently and the di�erence is most visible when the violation

occurs on the most extreme budget line. Suppose that budget B1
is more extreme than budget

B2
(as in examples (c)-(d) in Figure D.4) and x1

violates FOSD-monotonicity. In our perturbed

OEU framework, it does not matter how far away x1
is from the 45-degree line. It also does not

matter the location of the other choice x2
on budget B2

. In the GRID method, the distance from

risk-averse OEU depends on both of these factors. The value of cEU-CCEI decreases as x1
moves

away from the 45-degree line, and it is also in�uenced by the location of x2
.

The following Figure D.6 illustrates the �rst point clearly.
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Figure D.6: Correcting violation of FOSD-monotonicity using price perturbation and the GRID method.

Consider a budget line characterized by prices pA = pB = (1, 2/3) and income IA = IB = 32,

and two choices from this budget which violate FOSD-monotonicity: xA = (22, 15) in panel A

and xB = (28, 6) in panel B. Both approaches, perturbed OEU and the GRID method, eliminate

the violation of FOSD-monotonicity by modifying the budget line so that it passes through the

original choice and its “mirror image” (which is shown as a hollow circle in Figure D.6). Perturbed

OEU rotates the budget line to achieve this while the GRID method shifts it down.
4

This explains

why the value of e∗ is the same in both cases while the value of cEU-CCEI is smaller for xB than

for xA.

Consider another budget pC = (1, 2) and income IC = 40 and a choice on the budget xC =

(10, 15), which violates FOSD-monotonicity. The value of cEU-CCEI associated with this dataset

is 0.875 (Figure D.7C). Now, let us add this observation (pC ,xC) to previous single-budget examples

(Figure D.6). Since budget (pC , IC) is more extreme than budgets (pA, IA) and (pB, IB), the size of

4
Following the terminology in Polisson et al. (2020), a shrunken version of budget Bk for a given number e ∈ [0, 1]

is de�ned by Bk (e) = {z ∈ R2

+ : pk · z ≤ epk · xk } ∪ {xk }. The downward extension of a shrunken budget is given

by {z ∈ R2

+ : pk · z ≤ epk · xk } ∪ {z ∈ R2

+ : z ≤ xk }. Blue lines in Figure D.6 show the frontiers of the downward

extension of Bk (ek ), where ek is set at the value of cEU-CCEI.
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cEU−CCEI = 0.875
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Figure D.7: Correcting violations of FOSD-monotonicity using the GRID method.

minimal perturbation is fully determined by the slope of budget C and the location of the other

choice (xA or xB) does not matter (as discussed in Section D.1). The value of cEU-CCEI, however,

depends on the location of the other choice xA or xB , �xing xC the same.

Figure D.7 illustrates the point. In panel A,xC is a more severe violation of FOSD-monotonicity

(0.875 < 0.927). In panel B, xB is a more severe violation (0.875 > 0.771).
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E Minimum Perturbation Test

We provide a detailed exposition of how we formulate our statistical test. Our approach is inspired

by the methodology laid out in Varian (1985), Echenique et al. (2011), and Echenique et al. (2016).

Let Dobs = (p
k ,xk)K

k=1
denote an observed dataset and Dtrue = (p̃

k ,xk)K
k=1

denote the “true”

dataset, the one the agent had in mind. Let us suppose that observed prices and the “true” prices

are related in the following way: p̃ks = p
k
s ε̃

k
s , where ε̃ks > 0 for all s ∈ S and k ∈ K .

The null hypothesis we consider is

H0 : The “true” dataset Dtrue = (p̃
k ,xk)Kk=1

is OEU rational.

If we could (somehow) observe the “true” dataset Dtrue, we could compute the “test statistic”

E = max

k∈K,s,t∈S

ε̃ks

ε̃kt

and we would reject the null hypothesis if E is “too large” in the sense that it exceeds the critical

value.

There are two major challenges in this approach. First, we do not observe the “true” dataset

Dtrue and hence we cannot compute the test statistic E itself. Second, we need to impose some

assumptions to derive the distribution of E.

We address how we tackle each of these issues below.

Lower bound on E. Under the null hypothesis that the “true” dataset is OEU rational, a slight

modi�cation of Lemma 7 in Echenique and Saito (2015) implies that there exist strictly positive

numbers ṽks and
˜λk for all s ∈ S and k ∈ K such that

log µ∗s + log ṽks − log
˜λk − log p̃ks = 0 and xks > xk

′

s ′ =⇒ log ṽks ≤ log ṽk
′

s ′ .

Substituting the relationship p̃ks = p
k
s ε̃

k
s for all s ∈ S and k ∈ K yields

log µ∗s + log ṽks − log
˜λk − logpks − log ε̃ks = 0 and xks > xk

′

s ′ =⇒ log ṽks ≤ log ṽk
′

s ′ .

This implies that the tuple (ṽks ,
˜λk , ε̃ks )s∈S,k∈K satis�es the constraints (but is not necessarily a

solution) of the optimization problem:

min

(vks ,λk ,ε
k
s )s,k

max

k∈K,s,t∈S

εks

εkt

s.t. log µ∗s + logvks − log λk − logpks − log εks = 0

xks > xk
′

s ′ =⇒ logvks ≤ logvk
′

s ′ .
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Note that this optimization problem is the one we use to calculate e∗ given the observed

dataset Dobs (see Section C above). Therefore, under the null hypothesis, e∗ gives an observable

lower bound on the test statistic E:

e∗((p
k ,xk)Kk=1

) ≤ max

k∈K,s,t∈S

ε̃ks

ε̃kt
.

(By writing e∗((p
k ,xk)K

k=1
), we make it explicit that e∗ is calculated from the observed dataset.)

With this observation in mind, we construct a test, using e∗((p
k ,xk)K

k=1
) instead of E, as fol-

lows:

Reject the null hypothesis if

∫ ∞

e∗((pk ,xk )
K
k=1
)

fE(z)dz < α .

whereα is the size of the test and fE is the density function of the distribution ofE = maxk,s,t ε̃
k
s /ε̃

k
t .

Given a nominal size α , we can �nd a critical value Cα satisfying Pr[E > Cα ] = α . So we reject

the null hypothesis if e∗((p
k ,xk)K

k=1
) > Cα , and we are certain that E > Cα is indeed the case

(since e∗((p
k ,xk)K

k=1
) ≤ E). This also means that our test is conservative since the true size of the

test is smaller than α : Pr[e∗((p
k ,xk)K

k=1
) > Cα | H0 is true] ≤ Pr[E > Cα | H0 is true] = α ).

Parameter tuning for the distribution of noise. In order to perform the test, we need to

know the distribution of E and the critical value Cα given a signi�cance level α . We obtain

the distribution of E by assuming that the noise term ε follows a log-normal distribution, ε ∼

Λ(ν , ξ 2). 5
In other words, noise terms ε̃ks in the “true” dataset are i.i.d. draws from Λ(ν , ξ 2).

The crucial step in our approach is the selection of parameters (ν , ξ 2). Once we know (ν , ξ 2),

we can simulate the distribution of E = maxk,s,t ε̃
k
s /ε̃

k
t . It is natural to choose these parameters

so that there is no price perturbation on average (i.e., E[ε] = 1). However, there is no objective

guide to choosing an appropriate level of Var(ε). Therefore, we use variation in (relative) prices

observed in the data.

Let p and p̃ denote random variables of observed prices and “true” prices, respectively. As-

suming that the noise term ε is independent of the random selection of prices p in the experiment,

5
Note that parameters (ν , ξ 2) correspond to the mean and the variance of the random variable in the log-scale.

In other words, log ε ∼ N (ν , ξ 2). The moments of the log-normal distribution ε ∼ Λ(ν , ξ 2) are then calculated by

E[ε] = exp(ν + ξ 2/2) and Var(ε) = exp(2ν + ξ 2)(exp(ξ 2) − 1).
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we have

Var(p̃) = Var(p) · Var(ε) + Var(p) · E[ε]2 + E[p]2 · Var(ε)

⇐⇒
Var(p̃)

Var(p)
= E[ε]2 +

(
1 +

E[p]2

Var(p)

)
Var(ε)

⇐⇒ Var(ε) =

(
Var(p̃)

Var(p)
− 1

) (
1 +

E[p]2

Var(p)

)−1

. (22)

We use the variation in prices observed in the data, (pks )s∈S,k∈K , as proxies for E[p] and Var(p̃).

In this way, we transform the question of selecting the variance of the noise term, Var(ε), into a

question of selecting “reasonable” variance of perturbed prices, Var(p̃).

Price misperception as a hypothesis test. Let us consider an agent who has trouble telling

the distributions of prices, p and p̃, apart (that is why the agent misperceives prices). In particular,

we assume that the agent has trouble telling the two variances apart.

Let us consider an agent who has trouble telling the two variances apart. More generally, the

agent has trouble telling the distributions of prices apart, which is why she is confusing actual

and perceived prices, but the distribution depends only on the variance; so we focus on variance.

Consider a hypothesis test for the null hypothesis that the variance of a normal random variable

with known mean has variance σ 2

0
against the alternative that σ 2 ≥ σ 2

0
. Let σ̂ 2

n be the sample

variance.

The agent performs an upper-tailed chi-squared test de�ned as

H
A
0

: σ 2 = σ 2

0
,

H
A
1

: σ 2 > σ 2

0
.

The test statistic is:

Tn =
(n − 1)σ̂ 2

n

σ 2

0

where n is the sample size (i.e., the number of budget sets). The sampling distribution of the test

statistic Tn under the null hypothesis follows a chi-squared distribution with n − 1 degrees of

freedom.
6

We consider the probability ηI of rejecting the null hypothesis when it is true, a type I error;

and the probability ηII of failing to reject the null hypothesis when the alternative σ 2 = σ 2

1
> σ 2

0

is true, a type II error. The test rejects the null hypothesis that the variance is σ 2

0
if

Tn > χ 2

1−α ,n−1

6
The superscript A in HA

0
and HA

1
is to distinguish the hypothesis test, which the agent is assumed to perform,

from the one we (researchers) perform to interpret the magnitude of e∗ discussed above.
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where χ 2

1−α ,n−1
is the critical value of a chi-squared distribution with n − 1 degree of freedom at

the signi�cance level α , de�ned by Pr[χ 2 < χ 2

1−α ,n−1
] = 1 − ηI . 7

Under the alternative hypothesis that σ 2 = σ 2

1
> σ 2

0
, the statistic (σ 2

0
/σ 2

1
) · Tn follows a chi-

squared distribution (with n− 1 degrees of freedom). Then, the probability ηII of making a type II

error is given by

ηII = Pr[Tn < χ 2

1−α ,n−1
| H1 : σ 2

1
> σ 2

0
is true] = Pr

[
σ 2

0

σ 2

1

·Tn <
σ 2

0

σ 2

1

· χ 2

1−α ,n−1

]
= Pr

[
χ 2 <

σ 2

0

σ 2

1

· χ 2

1−α ,n−1

]
.

Let χ 2

β ,n−1
be the value that satis�es Pr[χ 2 < χ 2

β ,n−1
] = ηII . Then, given ηI and ηII , we obtain

Pr

[
χ 2 <

σ 2

0

σ 2

1

· χ 2

1−α ,n−1

]
= ηII ⇐⇒

σ 2

0

σ 2

1

· χ 2

1−α ,n−1
= χ 2

β,n−1

⇐⇒
σ 2

1

σ 2

0

=
χ 2

1−α ,n−1

χ 2

β ,n−1

.

As a consequence, given a measured variance σ 2

0
, calculated from observed prices, and as-

sumed values for ηI and ηII , we can back out the minimum “detectable” value of the variance σ 2

1
.

From this variance of prices, we obtain Var(ε) using equation (22).

7
An alternative approach, without assuming that a distribution forTn , and based on a large sample approximation

to the distribution ofTn , yields very similar results. Calculations and empirical �ndings are available from the authors

upon request.
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F Supplementary Empirical Analysis

F.1 Summary Statistics of e∗

Table F.1: Summary Statistics of e∗

N Mean SD Q1 Median Q3 Min Max

Panel A: All data

CKMS 1182 3.034 1.816 1.563 2.729 4.184 0.035 8.772

CMW 1119 2.480 1.126 1.659 2.533 3.592 0.000 4.387

CS 1423 2.490 1.707 1.157 2.081 3.370 0.000 10.021

Panel B: CCEI = 1

CKMS 270 3.058 2.176 1.154 2.662 4.868 0.035 8.637

CMW 210 2.534 1.505 0.786 3.087 3.592 0.000 4.387

CS 315 2.103 1.971 0.693 1.156 3.044 0.000 8.858

Notes: Q1 and Q3 indicate the �rst and the third quartile, respectively.
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F.2 First-Order Stochastic Dominance

In the portfolio allocation environment studied in the three studies we looked at, choosing an

allocation (x1,x2) from a budget line de�ned by prices (p1,p2) violates monotonicity with respect
to �rst-order stochastic dominance (FOSD-monotonicity) when either (i) p1 > p2 and x1 > x2 or (ii)

p2 > p1 and x2 > x1 (i.e., the choice involves more allocation toward more-expensive security).

Table F.2 presents the average fraction (out of 25) of choices violating FOSD-monotonicity

and the number of subjects without FOSD-monotonicity violations. On average, subjects made

24-34% violations of FOSD-monotonicity. The number of subjects who made no FOSD-violating

choices is less than 10% for all datasets. As discussed in Choi et al. (2014), choices can be consistent

with GARP even with violations of FOSD-monotonicity. The average fraction of FOSD-violating

choices calculated from the subsample of GARP-compliant (CCEI = 1) subjects is close to the one

we obtain from the whole sample. The entire distributions are presented in Figure F.1.

Table F.2: FOSD violation.

All subjects CCEI = 1

CKMS CMW CS CKMS CMW CS

Number of subjects 1,182 1,119 1,423 270 210 315

Average fraction of FOSD-mon. violations 0.335 0.320 0.239 0.364 0.308 0.220

Fraction of subjects without FOSD-mon. violations 0.025 0.047 0.067 0.067 0.176 0.159
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Figure F.1: Empirical CDFs of the fraction of choices that violate FOSD-monotonicity. (A) All subjects. (B)

Subjects with CCEI = 1.

34



F.3 Choices on the 45-Degree Line

In the experiments, subjects made choices of allocations (x1,x2) by clicking on the budget line

graphically presented on the screen. Note that points on the 45-degree line correspond to equal

allocations between the two accounts (x1 = x2) and therefore involve no risk (i.e., the 45-degree

line is the “full insurance” line). If a subject’s all choices are on the 45-degree line (call such

pattern diagonal allocations), we can rationalize the data with EU and hence e∗ = 0.

It is, however, extremely di�cult (or almost impossible) to choose the point “exacctly” on the

45-degree line in practice. Actual choices subjects made may be slightly o� from the 45-degree

line, and it can generate large e∗ (through violations of the downward-sloping demand) while

CCEI and EU-CCEI stay close to 1 (see Figure 8, panel D). In this section, we examine how much

of the disagreement between e∗ and CCEI or EU-CCEI is driven by small deviations from the

diagonal allocations.

To this end, we �rst rede�ne diagonal allocations. Instead of requiring all choices to be exactly

on the 45-degree line, we call a data almost diagonal allocations if all choices are inside small balls

(with �xed radius r ) drawn around the intersections of budget lines and the 45-degree line. We can

control the size of acceptable deviations by changing the radius r of the ball. The idea is shown

in Figure F.2. In this example, chosen allocations (black dots) are not exactly on the 45-degree

line, but they are inside the balls around the diagonal allocations (red circles).
8

x1

x2

Figure F.2: Almost diagonal allocations.

8
These choices also violate FOSD-monotonicity. We would expect relatively large e∗ from this choice pattern,

but its CCEI is 1 because it satis�es GARP.
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Table F.3: Fraction of subjects who made almost diagonal allocations.

Radius of the ball (r )

Study N 0.05 0.20 0.50 1.00

CKMS 1182 0.000 0.000 0.035 0.083

CMW 1119 0.008 0.040 0.097 0.120

CS 1423 0.005 0.022 0.048 0.060

Table F.3 shows the fraction of subjects who made almost diagonal allocations (in all 25 ques-

tions) under di�erent sizes of r . Between 6% and 12% of subjects made such a choice pattern when

the radius is set to r = 1.

Figures F.3 and F.4 below show the relationship between e∗ and CCEI as well as EU-CCEI, as

in Figure 9 (Section 4.2). The bottom panels in each �gure focus on subjects who made almost

diagonal allocations (the radius of the ball is set to r = 1) in all 25 questions, and the top panels

present the rest of the subjects.

The bottom panels in each �gure con�rm that almost diagonal allocations yield values of

CCEI and EU-CCEI that are close to 1. The same subjects have dispersed values of e∗, including

the highest value in each experiment.

It does not mean that the disagreement between e∗ and CCEI-based measures comes mainly

from slight deviations from the diagonal allocations. The top panels in each �gure show that

there are choice patterns, other than almost diagonal allocations, that have CCEI/EU-CCEI ≈ 1

and large e∗.
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Figure F.3: Correlation between e∗ and CCEI. The top panels show subjects who did not choose almost

diagonal allocations and the bottom panels show those who selected almost diagonal allocations. Panels:

(A) CKMS, (B) CMW, (C) CS. Notes: The radius of the ball is set to r = 1.
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Figure F.4: Correlation between e∗ and EU-CCEI. The top panels show subjects who did not choose almost

diagonal allocations and the bottom panels show those who selected almost diagonal allocations. Panels:

(A) CKMS, (B) CMW, (C) CS. Notes: The radius of the ball is set to r = 1.
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F.4 Sensitivity

As is clear from the de�nition, our measure e∗ is a bound that has to hold across all observations

and states (see conditions (4), (5), and (6) in the de�nitions of e-perturbed OEU in Section 3). It is

possible that a couple of “bad” choices signi�cantly in�uence the measure. This section presents

several robustness checks for the main empirical result.

Dropping critical mistakes. In this robustness check, we recalculate e∗ using subsets of ob-

served choices that exclude outliers. More precisely, for each subject, we calculate e∗ for all

combinations of 25 −m choices and pick the smallest e∗. We do this form = 1, 2.

By construction, dropping critical mistakes shifts the distribution of the measure (Figure F.5).

However, it does not dramatically change the correlational patterns between e∗ and CCEI (Fig-

ure F.6) nor between e∗ and demographic characteristics (Figures F.7 and F.8). In this sense, the

main empirical results are robust to the presence of a small number of bad choices.
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Figure F.5: Empirical CDFs of e∗ and CCEI, using all observations or subsets of observations dropping one

or two critical mistakes. Panels: (A) CKMS, (B) CMW, (C) CS.
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Figure F.6: Correlation between e∗ and CCEI. (Top panels) All 25 observations. (Middle panels) Drop one

critical mistake. (Bottom panels) Drop two critical mistakes.

39



1.4

1.6

1.8

2.0

2.2

Female Male

Gender

M
in

im
al

 e
 (

dr
op

 1
)

A

1.4

1.6

1.8

2.0

2.2

16−34 35−49 50−64 65+

Age

M
in

im
al

 e
 (

dr
op

 1
)

B

1.4

1.6

1.8

2.0

2.2

Low Medium High

Education level

M
in

im
al

 e
 (

dr
op

 1
)

C

1.4

1.6

1.8

2.0

2.2

No Yes

Working

M
in

im
al

 e
 (

dr
op

 1
)

D

1.4

1.6

1.8

2.0

2.2

0 1 2 3

CRT score

M
in

im
al

 e
 (

dr
op

 1
)

E1

1.4

1.6

1.8

2.0

2.2

Slower Faster

Stroop RT
M

in
im

al
 e

 (
dr

op
 1

)

E2

1.4

1.6

1.8

2.0

2.2

0−2.5k 2.5k−3.5k 3.5k−5k 5k+

Monthly income (Euro)

M
in

im
al

 e
 (

dr
op

 1
)

F1

1.4

1.6

1.8

2.0

2.2

Less than 20k More than 20k

Annual income (USD)

M
in

im
al

 e
 (

dr
op

 1
)

F2

1.4

1.6

1.8

2.0

2.2

0−30k 30k−60k 60k−100k 100k+

Annual income (USD)

M
in

im
al

 e
 (

dr
op

 1
)
F3

CKMS CMW CS

Figure F.7: Robustness of demographic correlations in Figure 10. For each subject, e∗ is recalculated after

dropping one critical mistake. Notes: Dots represent mean e∗ and bars represent standard errors of means.
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Figure F.8: Robustness of demographic correlations in Figure 10. For each subject, e∗ is recalculated after

dropping two critical mistakes. Notes: Dots represent mean e∗ and bars represent standard errors of means.
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“Average” perturbation. Let ē be the solution to the following minimization problem:

min

(εks )k,s

∑
k∈K

∑
s∈S

��
log εks

��
KS

s.t. (xk ,qk)Kk=1
is OEU rational

qks = p
k
s ε

k
s for each s ∈ S,k ∈ K

The idea behind this alternative measure is simple. As in the case of e-price-perturbed util-

ity, we search for sets of multiplicative noises (εks )k,s which could rationalize the observed data.

Instead of looking at the uniform bound maxs,t ,k(log εks −log εkt ) and minimizing it, we take the av-

erage of these perturbations and minimize it. A similar idea was applied to quantify the distance

from several models of time preferences in Echenique et al. (2016).

Figure F.9 presents the relationship between ē , e∗, and CCEI. Figure F.10 shows the correlation

between ē and demographic variables. These �gures do not show correlational patterns that

are markedly di�erent from those presented in the main empirical results (Figures 9 and 10 in

Section 4.2).
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Figure F.9: Correlation between ē and e∗ (top panels) and ē and CCEI (bottom panels). Panels: (A) CKMS,

(B) CMW, (C) CS.
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Figure F.10: Correlation between ē and demographic variables. Notes: Dots represent mean ē and bars

represent standard errors of means.
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F.5 Properties of e∗

e∗ from observed and simulated choices. The statistical approach described in Section 4.3

is one way to assess “how big” the observed e∗’s are. Another way is to simulate choice data

assuming some behavioral model and calculate e∗ on the simulated dataset.

Following Bronars (1987), we simulate synthetic subjects who choose an allocation uniformly

randomly from each budget line. Since subjects in CKMS and CS faced a randomly selected set of

budgets, we �rst randomly select one set of budgets (from the observed sets of budgets) and then

randomly choose allocations on these budgets. We calculate e∗, and CCEI, using these simulated

choices. We repeat this 10,000 times for each of the three datasets.

Figure F.11 compares the observed and simulated e∗. The distribution of observed e∗ locates

left of simulated e∗ in all three datasets (all di�erences are statistically signi�cant, according to the

two-sample Kolmogorov-Smirnov test). The actual subjects’ behavior is thus closer to OEU ratio-

nality compared to random behavior (even though the uniformly random choice is unrestrictive

and may not be the best benchmark).

In the second simulation, we generate random choices that respect FOSD-monotonicity. The

distributions of e∗ in this simulation, shown in dark gray lines in Figure F.11, exhibit a stark

di�erence from those from real subjects: they have smaller median values and are distributed on

narrower ranges.

Figure F.12 looks at the correlation between e∗ and CCEI and compares the pattern in observed

and simulated datasets (panels A-C in the top row are the same as Figure 9).
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Figure F.11: Comparison between observed and simulated e∗ (top panels) and CCEI (bottom panels). Pan-

els: (A) CKMS, (B) CMW, (C) CS.
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Figure F.12: Correlation between e∗ and CCEI. Panels: (A) CKMS, (B) CMW, (C) CS. Notes: Measures are

calculated using observed choices (top row), uniformly random choices (middle row), and uniformly ran-

dom choices satisfying FOSD-monotonicity (bottom row). Panels A1-C1 are identical to those in Figure 9.
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Upper bound of e∗. The value of e∗ depends on the structure of the budgets an agent faces. In

particular, it is clear from e-PSAROEU that 1+e∗ is bounded by the maximum ratio of risk-neutral

prices:

1 + e∗ ≤ max

k∈K,s,t∈S

ρks

ρkt
.

The right-hand side captures the slope of the “most extreme” budget line.

Since CKMS, CMW, and CS experiments all used two equally likely states, the ratio of risk-

neutral prices is equal to the ratio of prices (i.e., ρks /ρ
k
t = p

k
s /p

k
t ). Figure F.13 shows the relationship

between the observed e∗ and the participant-speci�c upper bound. (Since all subjects faced the

same set of budgets in the CMW study, there is only one vertical line in panel B.)

About 13% of the subjects (475/3724 in the merged data; 221/1182 in CKMS; 114/1119 in

CMW; 140/1423 in CS) have their e∗ exactly at the upper bound. The reason is that these subjects

made a violation of FOSD-monotonicity (choosing a larger payo� in a more expensive state) in the

most extreme budget among the set of budgets they faced during the experiment. See discussion

in Section D.1 above.
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Figure F.13: Bound of e∗. The x-axis in each plot is the upper bound of e∗, given by maxk,s,t p
k
s /p

k
t − 1.

Notes: There is no variation in bounds in the CMW data (panel B) since all subjects faced the same set of

budgets. In the CMW data (panel B), all points line up at 4.387, which is given by the most extreme budget

in that study with prices (p1,p2) = (1, 5.387). In the CS data (panel C), the x-axis is cut at 10 for better

visualization. There are 22 additional observations in the data with the bounds ranging from 11 to 48.
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F.6 Illustration of e∗-Perturbed OEU

In Figure 8, we present choice patterns of six selected subjects with CCEI = 1 and varying degrees

of e∗. Panels A-F plot observed choices and panels a-f plot the relationship between log(x2/x1) and

log(p2/p1), which illustrates how much the dataset conforms to the downward-sloping demand.

The measure e∗, roughly speaking, captures the degree of deviation from the downward-sloping

demand.

Consider an observed dataset (xk ,pk)K
k=1

and a perturbed dataset (xk , p̃k)K
k=1

, where p̃ks = p
k
s ε

k
s

and εks ≥ 0 for all s ∈ S and k ∈ K . Since we �x the chosen bundle (xk)K
k=1

and rotate the budget

lines around them, price perturbation “moves” points in panels a-f horizontally.

To make the dataset e-price-perturbed OEU rational (De�nition 4), we need to move the points

horizontally until they satisfy the downward-sloping demand. Note that the horizontal distance

for each observation k , before and after e-price perturbation, is given by

log

(
p̃k

2

p̃k
1

)
− log

(
pk

2

pk
1

)
= log

(
p̃k

2
/pk

2

p̃k
1
/pk

1

)
= log

(
εk

2

εk
1

)
.

We thus need to look at the maximal horizontal adjustment among observations, and the measure

e∗ is obtained by minimizing it.

Figure F.14 shows the idea behind the calculation of e∗ using price perturbation. It plots the

same six subjects as in Figure 8. In panels A-F, red dotted lines represent the original budgets

and blue solid lines represent perturbed budgets. In panels a-f, green circles represent the orig-

inal dataset and blue triangles represent the perturbed dataset. Red arrows connect points that

correspond to the maximal adjustment. The �gure shows that e∗-perturbed datasets are closer to

the downward-sloping demand in the sense of less dispersion.

We can draw several observations about the practical aspect of e∗. First, observe that the

“cheapest” way for correcting choices violating FOSD-monotonicity is to perturb budgets corre-

sponding to these observations so that p̃k
1
= p̃k

2
. Second, the �gure provides an intuitive explana-

tion of why e∗ can be large for choice patterns like panel D. Since clicking on the point exactly

on the 45-degree line is a challenging task, choices would scatter around the 45-degree line, oc-

casionally falling in the region of FOSD-monotonicity. No matter how small these deviations

from the 45-degree line are, e-price perturbation requires horizontal adjustments to achieve the

downward-sloping demand. If the necessary adjustment is applied on a relatively extreme budget

line, e∗ for such a subject can be very high.
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Figure F.14: Illustration of e-price-perturbed OEU rationalization. (A-F) Perturbed budgets (blue solid
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F.7 Comparing Measures

We calculate CCEI at which a subject is consistent with a given model, stochastically monotone

utility maximization (Nishimura et al., 2017), EU, and concave EU, using the GRID method devel-

oped in Polisson et al. (2020).
9

We call these measures F-GARP, EU-CCEI, and cEU-CCEI. For a

given dataset, the measures are ordered as

cEU-CCEI ≤ EU-CCEI ≤ F-GARP ≤ CCEI,

since the models we look at are nested in this order. Note that Polisson et al. (2020) calculated

and reported CCEI, F-GARP, EU-CCEI, and cEU-CCEI for the CKMS dataset but not for the CMW

and the CS datasets.

Figures F.15-F.17 compare e∗, CCEI, and these three additional measures.
10

Panels on the

diagonal show the distribution of each measure. Pairwise scatter plots are presented below the

diagonal, and Spearman’s correlation coe�cients are shown above the diagonal (all p < 0.001;

uncorrected for multiple comparisons).

The �rst column in each �gure shows the relationship between e∗ and other measures. The

second and the fourth panels in this column (e∗ vs. CCEI and e∗ vs. EU-CCEI) are identical to

those presented in Figure 9. As we discussed in Section 4.2 of the paper, we see that there are a

signi�cant number of subjects whose CCEI and EU-CCEI are close to one but their e∗’s are widely

dispersed and further away from zero.

This observation is not speci�c to CCEI and EU-CCEI. In the third and the �fth panels of the

same column, we can see a similar pattern between e∗ and F-GARP as well as e∗ and EU-CCEI.

The pattern is a general feature that distinguishes the idea behind the measures: e∗ is based on

rotating budget lines while the other measures, which are all variants of CCEI, are based on

shrinking budget sets.

9
A stochastically monotone utility function gives strictly higher utility to bundle x compared to another bundle

y if x �rst-order stochastically dominates y and gives them the same utility if two bundles are stochastically equiv-

alent. In the environment we consider (two states with equally likely objective probabilities), a utility function is

stochastically monotone if and only if it is symmetric and strictly increasing.

Choi et al. (2014) also discuss a similar idea. They propose an additional measure, which jointly captures the extent

of GARP violations and violations of stochastic dominance, by combining the observed data and its “mirror-image”.

More precisely, they assume that if an allocation (x1,x2) is chosen under the budget constraint p1x1 +p2x2 = 1, then

(x2,x1) would have been chosen under the mirror-image budget constraint p2x1 + p1x2 = 1. They then re-calculate

CCEI for the “combined” data consisting of 50 (25 budgets × 2) choices.

10
We did not compute cEU-CCEI for 23 subjects (8 in CMW, and 15 in CS) since the code spent a signi�cantly long

computation time. (Polisson et al. (2020) used a high-performance computing facility.) We also treated cEU-CCEI

for six subjects in CS as missing values, since the code incorrectly returned cEU-CCEI = 0. Note that F-GARP and

EU-CCEI for these 29 subjects are included in Figures F.15-F.17.
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Figure F.15: Comparing measures of rationality in the CKMS data.
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Figure F.16: Comparing measures of rationality in the CMW data.
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Figure F.17: Comparing measures of rationality in the CS data.
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F.8 Choice Pattern: Additional Examples

Choice data from four subjects presented in Section 4.2, Figure 8, are not meant to be representa-

tive of the entire dataset consisting of more than 3,000 subjects. In this section, we present more

examples to understand the similarity and di�erences between e∗, CCEI, and EU-CCEI.

We pick subjects from the CMW experiment, where all the subjects faced the same set of

25 budget lines. This feature of the design makes the variation of e∗ smaller than in the other

datasets (we observe several “jumps” in the empirical CDF of e∗ in Figure 5), but the comparison

across choice patterns becomes easier.

Figure F.18 is the scatterplot of e∗ and EU-CCEI in the CMW data. Dashed lines represent the

25th, 50th, and 75th percentiles of e∗ and EU-CCEI. Two shaded areas represent combinations

of e∗ and EU-CCEI that “disagree”, in the sense that one measure says the subject is close to EU

(relative to the median subject) but the other measure says the same subject is far from EU (again,

relative to the median subject). Each subject’s choice pattern is shown below.
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F.9 Estimating Risk Aversion

We used the dataset of choices from linear budget lines to measure the degree of deviations from

OEU. We can use the same dataset for the estimation of individual-level risk aversion parameters

assuming some functional form (Choi et al., 2007; Friedman et al., 2022).

Let us assume that the Bernoulli function takes the power form

u(x) =


x1−α

1 − α
if α , 1

logx if α = 1

where α ≥ 0 is the Arrow-Pratt coe�cient of relative risk aversion. The interior solution to the

maximization problem satis�es the �rst-order condition

x1

x2

=
(p1/µ1)

−1/α

(p2/µ2)
−1/α
.

We can take logarithms to obtain

log

(
x1

x2

)
= −

1

α
log

(
p1/µ1

p2/µ2

)
.

Assume that each subject i makes her choices (xik
1
,xik

2
) given prices (pik

1
,pik

2
), k = 1, . . . ,K ,

according to the above log-linearized relationship with some additive mean-zero error. That is,

log

(
xik

1

xik
2

)
= βi log

(
pik

1
/µ1

pik
2
/µ2

)
+ ν ik ,

where ν ik is a mean-zero error term. We can estimate the model with ordinary least squares. The

parameter of interest, α , is recovered via a nonlinear transformation α̂i = −1/β̂i and its standard

error is calculated using the Delta method.

A limitation of this approach is that the dependent variable is not de�ned at corner solutions.

Following Choi et al. (2007) and Friedman et al. (2022), we incorporate observations at the corners

by replacing the zero component with a small constant 10
−3

.

The estimation result is summarized in Table F.4. As a benchmark, Choi et al. (2007) report

three quartiles of estimated α of 0.597, 0.826, and 1.426, respectively.

In the following �gures F.19 and F.20, we show how estimated risk aversion parameters and

their standard errors, as well as measures of goodness-of-�t, are related to e∗ and CCEI.
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Table F.4: Summary statistics of estimated coe�cient of relative risk aversion.

N Q1 Median Q3 α̂i < 0

CKMS 1182 0.534 1.130 2.035 144

CMW 1119 0.522 1.074 2.141 91

CS 1423 0.328 0.710 1.479 54

Note: Q1 and Q3 indicate the �rst and the third quartile, respectively. The last column shows the number

of subjects whose estimated α̂i is smaller than zero.
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Figure F.19: Parametric estimation of relative risk aversion and e∗.

0

1

2

3

4

0.25 0.50 0.75 1.00

CCEI

R
R

A

0

2

4

6

0.25 0.50 0.75 1.00

CCEI

S
E

 (
R

R
A

)

0

1

2

3

0.25 0.50 0.75 1.00

CCEI

R
es

id
ua

l S
D

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00

CCEI
R

−
sq

ua
re

d

0

1

2

3

4

0.4 0.6 0.8 1.0

CCEI

R
R

A

0

2

4

6

0.4 0.6 0.8 1.0

CCEI

S
E

 (
R

R
A

)

0

2

4

0.4 0.6 0.8 1.0

CCEI

R
es

id
ua

l S
D

0.00

0.25

0.50

0.75

1.00

0.4 0.6 0.8 1.0

CCEI

R
−

sq
ua

re
d

0

1

2

3

0.4 0.6 0.8 1.0

CCEI

R
R

A

0.0

0.5

1.0

1.5

0.4 0.6 0.8 1.0

CCEI

S
E

 (
R

R
A

)

0

2

4

0.4 0.6 0.8 1.0

CCEI

R
es

id
ua

l S
D

0.00

0.25

0.50

0.75

1.00

0.4 0.6 0.8 1.0

CCEI

R
−

sq
ua

re
d

Figure F.20: Parametric estimation of relative risk aversion and CCEI.
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