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CONSTRAINED PSEUDO-MARKET EQUILIBRIUM

FEDERICO ECHENIQUE, ANTONIO MIRALLES, AND JUN ZHANG

Abstract. We propose a pseudo-market solution to resource allocation prob-

lems subject to constraints. Our treatment of constraints is general: including

bi-hierarchical constraints due to considerations of diversity in school choice, or

scheduling in course allocation; and other forms of constraints needed to model,

for example, the market for roommates, combinatorial assignment problems, and

knapsack constraints. Constraints give rise to pecuniary externalities, which are

internalized via prices. Agents pay to the extent that their purchases affect the

value the of relevant constraints at equilibrium prices. The result is a constrained-

efficient market-equilibrium outcome. The outcome is fair to the extent that con-

straints treat agents symmetrically.
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1. Introduction

We analyze the use of pseudo-markets for assignment problems under constraints

in market design environments where resources are indivisible and monetary trans-

fers are forbidden. A pseudo-market is an artificial marketplace where agents are

given fixed budgets of “funny money” that is only useful within the marketplace.

Agents use artificial money to buy affordable probability shares of preferred goods

at market clearing prices. By assigning probability shares to agents, it is possible

to get (ex-ante) efficiency and fairness among agents. The pseudo-market idea was

first proposed by Hylland and Zeckhauser (1979) to solve the allocation of indivisible

goods to an equal number of agents under unit demand and unit supply constraints.

By pricing goods, Hylland and Zeckhauser (HZ) prove that market-clearing prices

exist, and the equilibrium outcome is efficient and fair.1

We substantially generalize and expand the scope of applicability of pseudo-

markets. We consider assignment problems under various constraints. These prob-

lems include familiar constrained assignment problems, such as job assignments

under regional “ceiling” and “floor” quotas (Kamada and Kojima, 2015), and con-

trolled school choice due to considerations of gender or demographic balance (Ehlers,

Hafalir, Yenmez, and Yildirim, 2014). Our approach also handles problems that had

not been analyzed via markets before, such as the well-known roommate problem

from matching theory, and coalition formation problems.

The key idea in our proposal is to price constraints. Think of two workers, Alice

and Bob, in HZ’s model. Jobs are in fixed supply. If Alice buys a probability share of

job J, there is less left for Bob. Such “pecuniary” externalities are handled in pseudo-

markets by pricing J.2 In our proposal, we think of the price of J as the price on the

supply constraint for J: the constraint saying that the total demand for J cannot

exceed its supply. HZ show that pecuniary externalities can be correctly internalized

by equilibrium prices, and that an efficient outcome results in equilibrium. In the

present paper, we interpret all sorts of constraints, well beyond supply constraints, as

giving rise to pecuniary externalities. In consequence, we use prices to align agents’

choices with constraints and to find an efficient outcome. Under standard continuity,

convexity, and monotonicity assumptions, we prove the existence of pseudo-market

1If there are only supply constraints, efficiency is the result of the first welfare theorem. In HZ’s

model, however, there are also unit demand constraints and the first welfare theorem fails.
2We refer to pecuniary externalities as those that can be internalized through prices. It is

common to use the same term to speak of the effects that agents may have on prices.



4 ECHENIQUE, MIRALLES, AND ZHANG

equilibria. Every equilibrium outcome is (constrained) efficient. When constraints

do not single out any particular agent, every equilibrium outcome is fair.

Specifically, we differ from the literature in that we do not take as primitive

a formal description of constraints. In this sense, our work is orthogonal to the

question of implementability of random assigments, which is the main concern of

the influential work by Budish, Che, Kojima, and Milgrom (2013) and the recent

development by Akbarpour and Nikzad (2020). We start from a set of feasible ex-

post assignments, without specifying the constraints that the feasible assignments

must satisfy. The set of random assignments that comply with the constraints is the

convex hull of feasible ex-post assignments, and thus implementable by construction.

Our primitive is this convex hull: a polytope in finite assignment problems.3 We

proceed by using linear inequalities to characterize the “upper-right” boundary of

the convex hull. These linear inequalities include the standard supply constraints

and additional constraints in specific applications. Each constraint is then priced.

When Alice purchases one unit of good J, she will have to pay to the extent that her

purchase affects other agents through different constraints. For example, if there is

a ceiling constraint on how many units of J can go to a group of agents, the agents

in the group will pay the price of the constraint when they buy units of J. If those

agents are also involved in other constraints, then the final personalized prices they

face can be different. But if two agents are always involved in the same constraints,

they will face equal prices. Equal budgets then ensure that they will not envy each

other in the resulting equilibrium outcome.

The idea may seem familiar from the role of shadow prices in optimization with

constraints, but the familiarity is deceptive. Imagine using the dual variables (or

Lagrange multipliers) associated with each constraint in order to decentralize an

allocation that is constrained efficient. We run into two issues. One is that some

constraints that impose lower bounds on consumed quantities would lead to nega-

tive prices. The other is that decentralizing a constrained efficient allocation would

require transfers, as in the second welfare theorem.4 With endogenous transfers,

one cannot ensure a fair outcome. Our approach, in contrast, can ensure fairness

because our prices constitute market equilibria. By pricing only constraints on the

3Therefore, we can address any constraints that pin down a well-defined set of feasible ex-post

assignments.
4We discuss the second welfare theorem without transfers developed by Miralles and Pycia

(2020) in the related literature section (Section 8). Note that the outcome of the second welfare

theorem may induce envy, even in a textbook economy with only supply constraints.
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“upper-right” boundary, we ensure that all prices in our approach are nonnegative

(Sections 2.5 and 3). Yet we prove that the equilibrium outcome satisfies all con-

straints. As long as the constraints do not themselves induce unfairness by treating

agents differently, we can obtain a fair outcome. Finally, observe that existing results

on the computational complexity of finding HZ equilibria (Vazirani and Yannakakis,

2020) imply that it is impossible to obtain our results through convex programming

duality because HZ’s model is a special case of ours.

We turn to a discussion of specific applications that motivate our approach, and

where our results deliver new insights.

1.1. Motivation.

1.1.1. Matching jobs to workers. HZ illustrated the use of pseudo-markets by way

of assigning jobs to workers. Each worker is to receive at most one job, which we

call a unit demand constraint. Each job is in unit supply, so the sum of probability

shares of a particular job assigned to workers cannot exceed one, which we call a

unit supply constraint. As we shall see, constraints that only involve an individual

agent, such as unit demand constraints, have no external effects and do not need to

be priced.

Importantly, there is one supply constraint for each good. The price that corre-

sponds to the supply constraint for good l is the familiar “price of good l.” Think of

the constraint as capturing a pecuniary externality. When Alice purchases good l,

the supply constraint implies that there is less good l available for Bob. By pricing

supply constraints we ensure that Alice internalizes the effects that her purchase

has on Bob. As we shall see, in problems with more complex constraints, we may

not be able to ascribe a specific good to each specific price; but the logic of using

prices to internalize the external effects induced by constraints extends.

In the jobs-to-workers application, priced constraints affect all agents in the same

way. As a consequence, the prices are equal for all agents, and we can show the

existence of a market equilibrium outcome that is both efficient and fair.

Finally, the methodology in our paper extends the HZ approach to combinatorial

assignments; see Section 4.2 (and Budish (2012) for an overview).5

1.1.2. Assigning doctors to hospital positions. The problem of assigning doctors to

hospitals is similar to the jobs-to-workers example, but with an important twist.

5In combinatorial assignments, the relevant set of constraints that need to be priced does not

necessarily coincide with the set of items or the set of bundles. See Section 4.2 for a brief discussion.
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Hospitals belong to different geographical regions, and the system seeks to ensure a

minimum number of doctors per region (Kamada and Kojima, 2015). So we have

unit demand and supply constraints as before; but there is now a lower bound — a

floor constraint — on the number of doctors assigned to each region. Our solution

turns these constraints into upper bounds.

There are then two kinds of non-individual constraints that must be priced: supply

constraints and the upper bounds derived from the original floor constraints. When

Alice buys into a popular hospital position, she causes a pecuniary externality on

Bob, who may have to take a position in a less-demanded regional hospital. The

price on the derived upper bounds ensures that she pays more for the popular

hospital than if she were only facing the supply constraint. In an equilibrium, now,

prices ensure that demand spills over into less attractive regions so as to meet the

lower bound for each region.

In the doctors-to-hospitals application, again, all agents are treated in the same

way by the priced constraints. In consequence, all agents face the same prices,

and we obtain a market equilibrium that is efficient and fair. The application to

doctor-hospital matching with regional constraints is discussed in Section 4.1.2.

1.1.3. Roommates. A set of college students need to pair up as roommates. Each

student has a utility function defined over her possible roommates. We formulate

the model as an assignment problem, where we assign objects to agents by treating

objects as copies of agents. Each student has two roles: one as agent seeking to

match to an object, and one as object that can be matched to different agents. In

addition to the familiar unit demand and supply constraints, we must now impose

a symmetry constraint. If agent Alice is matched to object Bob, then agent Bob

must be matched to object Alice. The symmetry constraints involve more than

one agents, and must therefore be priced. When Alice purchases some of the “Bob

good” she is committing Bob to consume an equal amount of the “Alice good.” In

our pseudo-market, this pecuniary external effect is internalized via prices.

Our result delivers an efficient equilibrium in the market for roommates, but the

finding is significant because it is well known that stable matchings may not exist

in the model of roommates. Market equilibria capture a different notion of stability,

one that is not game theoretic in nature, ensuring that agents are optimizing at the

equilibrium outcome.



CONSTRAINTS 7

The application to roommates is discussed in Section 6, where we also outline

how pseudo-markets can be used in more general matching and coalition formation

problems.

1.2. Related literature. Constrained resource allocation has received a lot of at-

tention in recent years. The work by Kojima, Sun, and Yu (2020), Gul, Pesendorfer,

and Zhang (2019) and ours seems to be the first to look at constrained allocation

by way of a market mechanism. The former two papers study the role of gross sub-

stitutes in a general model of discrete allocation. Despite a similar focus on markets

and constraints, the results in our papers are very different; see Section 8 for more

details. In studying constraints, we are motivated by the early work of Budish, Che,

Kojima, and Milgrom (2013), Ehlers, Hafalir, Yenmez, and Yildirim (2014) and

Kamada and Kojima (2015). Our results apply to constraints well beyond those

considered by these authors, and we differ substantially in methodology.

We provide a detailed discussion of the related literature in Section 8, once our

results have been explained. We also provide a detailed comparison with other work

on the pseudo-market equilibrium in that section.

2. The model

2.1. Notational conventions. For vectors x, y ∈ Rn, x ≤ y means that xi ≤ yi

for all i = 1, . . . , n; x < y means that x ≤ y and x 6= y; and x � y means that

xi < yi for all i = 1, . . . , n. The set of all x ∈ Rn with 0 ≤ x is denoted by Rn
+, and

the set of all x ∈ Rn with 0� x is denoted by Rn
++. Inner products are denoted as

x · y =
∑

i xiyi.

Let X ⊆ Rn be convex. A function u : X → R is

• quasi-concave if, for any x, z ∈ X and λ ∈ (0, 1),

min{u(z), u(x)} ≤ u(λz + (1− λ)x).

• semi-strictly quasi-concave if it is quasi-concave, and for any x, z ∈ X and

λ ∈ (0, 1), u(z) 6= u(x) implies that

min{u(z), u(x)} < u(λz + (1− λ)x).6

• concave if, for any x, z ∈ X and λ ∈ (0, 1),

λu(z) + (1− λ)u(x) ≤ u(λz + (1− λ)x).

6See Avriel, Diewert, Schaible, and Zang (2010) for a discussion of semi-strictly quasi-concave

functions and their applications to economics.
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• expected utility if there exists a vector v ∈ Rn with u(x) = v ·x for all x ∈ X.

• strictly increasing if x > x′ implies that u(x) > u(x′).

Given a set A ⊆ Rn, let co(A) denote the convex hull of A in Rn: the intersection

of all convex sets that contain A.

A pair (a, b), with a ∈ Rn and b ∈ R, defines a linear inequality a ·x ≤ b. We say

that a linear inequality (a, b) has non-negative coefficients if a ≥ 0 and b ≥ 0. Any

linear inequality (a, b) defines a (closed) half-space {x ∈ Rn : a · x ≤ b}.
A polyhedron in Rn is a set that is the intersection of a finite number of closed

half-spaces. A polytope in Rn is a bounded polyhedron. Two special polytopes are

the simplex

∆n = {x ∈ Rn
+ :

n∑
l=1

xl = 1},

and the subsimplex

∆n
− = {x ∈ Rn

+ :
n∑

l=1

xl ≤ 1}.

When n is understood, we use the notations ∆ and ∆− respectively.

2.2. The economy. An economy is a tuple Γ = (I, O, (Zi, ui)i∈I , (ql)l∈O), where

• I is a finite set of agents, with N = |I|;
• O is a finite set of objects, with L = |O|;
• Zi ⊆ RL

+ is the consumption space of i ∈ I;

• ui : Zi → R is the utility function of i ∈ I;

• ql ∈ R++ is the amount of l ∈ O.

In an economy, N = |I| is the number of agents, and L = |O| is the number of

different objects. Each object l ∈ O is available in quantity ql. For now we restrict

attention to Zi = RL
+. Agents’ consumption spaces will be restricted further as we

introduce constraints.

An assignment in Γ is a vector

x = (xi,l)i∈I,l∈O with xi ∈ Zi,

where xi,l is the amount of object l received by agent i. Let A denote the set of all

assignments in Γ. Here we ignore the limited supply of objects. It will be imposed

further as we introduce supply constraints.

In discrete allocation problems we often interpret assignments as probabilistic

allocations: see Section 2.4. In this case, xi,l is the probability that agent i receives

a copy of an object l.
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2.3. Constraints. A constrained allocation problem is a pair (Γ, C) in which Γ is an

economy and C is a subset of the assignments in Γ. The assignments in C constitute

the assignments that satisfy exogenously imposed constraints, and we call them

feasible in (Γ, C).
Observe that the set of feasible assignments is a primitive of our model. Instead

of starting from an explicit description of how assignments are constrained, we work

directly with the set C of feasible assignments. In any application where constraints

are well-defined, the set C is also well-defined. Throughout the paper we require

that C be a polytope.

Our model applies to environments with infinitely divisible objects. Most market

design applications, however, require indivisible objects. We proceed to introduce

some language that is pertinent to the indivisible case.

2.4. Special case: discrete allocation. In many market design applications, ob-

jects are indivisible, and randomization over deterministic assignments is used to

ensure fairness. In these applications, we say that an assignment x is deterministic

if every xi,l is an integer. When an assignment is not deterministic we call it a

random assignment.

Constraints can take many different forms. For example, constraints are often

imposed as linear inequalities on deterministic assignments. The usual unit-demand

constraints require that
∑

l∈O xi,l ≤ 1 for all i ∈ I, and the supply constraints

require that
∑

i∈I xi,l ≤ ql for all l ∈ O. Given a set of constraints, a deterministic

assignment is feasible if it satisfies all constraints. A random assignment is feasible

if it belongs to the convex hull of feasible deterministic assignments. That is, a

random assignment is feasible if it can be implemented as a randomization over

deterministic assignments that satisfy all constraints. As the number of feasible

deterministic assignments is finite, its convex hull, we denote by C, is a polytope.

The literature often directly imposes constraints on random assignments. When

there are only unit demand and supply constraints, this approach is without loss

of generality, because the Birkhoff-von Neumann theorem (Birkhoff, 1946; von Neu-

mann, 1953) guarantees that every random assignment satisfying those constraints

is a randomization over deterministic assignments that satisfy those constraints.

Budish, Che, Kojima, and Milgrom (2013) generalize this approach by character-

izing constraint structures that ensure the implementation of random assignments

(see Section 4). By taking C as a primitive, we circumvent the implementation issue.

That is how our approach works for “any” finite collection of constraints.
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2.5. Pre-processing of constraints. Our approach involves pricing constraints,

but not all constraints get a price. For example, in HZ’s model, unit demand

constraints are not priced; only supply constraints get a price. Here we proceed

with a general constrained allocation problem (Γ, C), and “pre-process” C so as to

obtain the constraints that have to be assigned a price.

Recall that C is a polytope. Define the lower contour set of C to be

lcs(C) = {x ∈ RNL
+ : ∃x′ ∈ C such that x ≤ x′}.

Lemma 1. There exists a finite set Ω of linear inequalities with non-negative coef-

ficients such that

lcs(C) =
⋂

(a,b)∈Ω

{x ∈ RLN
+ : a · x ≤ b}.7

Proof. Consider

D = {x′ ∈ RNL : x′ ≤ x for some x ∈ C}

and note that lcs(C) = D∩RNL
+ . Write D as C−RNL

+ ; thus, since C is a polytope, D

is finitely generated. Then by Theorem 19.1 in Rockafellar (1970) D is polyhedral,

and therefore the intersection of finitely many halfspaces. Let Ω be the set of linear

inequalities (a, b) defining this collection of halfspaces, so for each (a, b) ∈ Ω we have

the halfspace {x′ ∈ RNL : a · x′ ≤ b}. Since for each i and l there is x′ ∈ D with

arbitrarily small x′i,l, we must have a ≥ 0. If C = {0} we may take b = 0. If there is

x ∈ C with x > 0 then b ≥ 0. Hence Ω defines a finite collection of linear inequalities

with non-negative coefficients.

To finish the proof, note that if z ∈ D \ lcs(C) then z /∈ RNL
+ . �

Intuitively, the set Ω of linear inequalities characterizes the “upper-right” bound-

ary of the feasibility set C. That is why every (a, b) ∈ Ω has non-negative coefficients.

Only pricing constraints with non-negative coefficients is crucial for our approach.

It will be clear after our equilibrium notion is defined and the existence theorem is

proved.8

7Lemma 1 is used by Balbuzanov (2019) to define a generalization of the probabilistic serial

mechanism that accommodates constraints.
8Computation of Ω can be done through the Avis-Fukuda algorithm (Avis and Fukuda, 1992),

which can optimize the number of relevant constraints to only include those that define a facet

of lcs(C). The consequence is fewer prices to be defined down the line. We thank an anonymous

referee for pointing out this observation.
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Remark 1. Pre-processing of constraints is needed for two reasons. First, C may

be described by enumerating its vertices, not by a description of its defining linear

inequalities. Second, the linear inequalities that define C may not be of the right

form that our method requires. The pre-processing step gives us the relevant linear

inequalities that must be priced.

We sometimes use c to denote a linear inequality, and write c = (ac, bc). For every

c ∈ Ω, define the support of c to be

supp(c) = {(i, l) ∈ I ×O : aci,l > 0}.

Let aci = (aci,l)l∈O be the vector of coefficients relevant to agent i in c.

There are two types of inequalities c in Ω: those with bc = 0 and those with

bc > 0. If bc = 0, then for all x ∈ C and all (i, l) ∈ supp(c), we must have xi,l = 0.

We can, without loss of generality, assume that there is exactly one such inequality;

because if there are two inequalities (a, 0), (a′, 0) ∈ Ω then they can be substituted

by ((max{ai,l, a′i,l})(i,l)∈I×O, 0), and if there is no inequality c with bc = 0 then we

can include the trivial inequality (0, 0) in Ω. Thus we can let (a0, 0) ∈ Ω be the

unique inequality with b = 0. When (a0, 0) is nontrivial, it forbids some agents

from consuming certain objects. So we say that l is a forbidden object for agent i if

a0
i,l > 0.

Among the remaining inequalities Ω\{(a0, 0)}, we say c is an individual constraint

for agent i if for all j 6= i and l ∈ O, acj,l = 0. In words, c only restricts i’s

consumption. Let Ωi denote the set of all individual constraints for i. We use (a0, 0)

and individual constraints to refine every i’s consumption space. Let Xi be the set

of vectors xi ∈ Zi such that xi,l = 0 if l is a forbidden object for i and xi satisfies

all of i’s individual constraints. That is,

Xi = {xi ∈ Zi : a0
i · xi ≤ 0 and aci · xi ≤ bc for all c ∈ Ωi}.

Let Ω∗ = Ω\
(
{(a0, 0)}

⋃
∪i∈IΩi

)
collect all constraints that involve more than one

agent, including, for example, any supply constraints. The elements of Ω∗ will be

“priced.” By pricing these constraints we seek to ensure that one agent’s pecuniary

externality on others, imposed via the constraints present in C, are internalized.

Remark 2. It is important to set aside and not price individual constraints because it

will allow our fairness conclusion to be stronger. For example, in the special case of
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the HZ’s model, our approach avoids personalized prices altogether; in consequence

we obtain (unqualified) envy-freeness (see the definition below).9

Fairness considerations aside, recall our motivation in terms of pricing external-

ities. Only the inequalities in Ω∗ generate externalities, so it makes sense to price

these, and not individual constraints.

2.6. Normative properties. Given a constrained allocation problem (Γ, C), we

analyze constrained versions of efficiency and fairness: the efficiency and fairness

properties that can be achieved subject to how assignments are constrained.

A feasible assignment x ∈ C is weakly C-constrained Pareto efficient if there is

no feasible assignment y ∈ C such that ui(yi) > ui(xi) for all i. And x ∈ C is

C-constrained Pareto efficient if there is no feasible assignment y ∈ C such that

ui(yi) ≥ ui(xi) for all i with a strict inequality for at least one agent.

Fairness rules out envy among agents who are treated symmetrically by the prim-

itive constraints. We say that two agents i and j are of equal type if Xi = Xj and,

for all c ∈ Ω∗, aci = acj. An agent i envies another agent j at an assignment x if

ui(xj) > ui(xi). An assignment x ∈ C is envy-free if no agent envies another agent

at x, and equal-type envy-free if no agent envies another agent of equal type at x.

2.7. Equilibrium. For each c ∈ Ω∗, we introduce a price pc. When agent i pur-

chases xi,l, she affects other agents’ purchases through the role of aci,l in constraint

c. Prices are meant to internalize such effects, just as the price of good l classically

internalizes the effect that i has on other agents through the supply constraint for

good l. Given a price vector p = (pc)c∈Ω∗ ∈ RΩ∗ , the personalized price vector faced

by any agent i is defined to be pi = (pi,l)
L
l=1 such that

pi,l =
∑
c∈Ω∗

aci,lpc.

Remark 3. If agents i and j are of equal type, then pi = pj. Thus prices are only

personalized to the extent that constraints are personalized. We present several

applications where all agents face the same prices.

A pair (x∗, p∗) is a pseudo-market equilibrium for (Γ, C) if

(1) x∗i ∈ arg maxxi∈Xi
{ui(xi) : p∗i · xi ≤ 1};

(2) x∗ ∈ C;

9That said, there is no additional difficulty in proving our main result if we were to include

prices for the constraints in each Ωi.
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(3) for every c ∈ Ω∗, ac · x∗ < bc implies that p∗c = 0.

Remark 4. Condition (3) means that “oversupplied” constraints should be free. It

is a “complementary slackness” property that rules out trivial equilibria. We follow

Budish, Che, Kojima, and Milgrom (2013) in imposing (3) directly on the definition

of equilibrium.

3. Main theorem

Theorem 1. Suppose that agents’ utility functions are continuous, quasi-concave

and strictly increasing.

• There exists a pseudo-market equilibrium (x∗, p∗) in which x∗ is weakly C-

constrained Pareto efficient.

• If agents’ utility functions are semi-strictly quasi-concave, there exists a

pseudo-market equilibrium (x∗, p∗) in which x∗ is C-constrained Pareto ef-

ficient.

• Every pseudo-market equilibrium assignment is equal-type envy-free.

Theorem 1 provides conditions under which there exists a constrained Pareto

efficient and fair equilibrium allocation, but it does not say that all equilibria are ef-

ficient. In fact, the first welfare theorem does not hold in our model: one can exhibit

examples of Pareto inefficient pesudo-market equilibria, and even of Pareto-ranked

equilibrium allocations. Crucial to Theorem 1 is the cheapest bundle property: a

pair (x, p) satisfies the cheapest-bundle property if, for each i, xi minimizes expen-

diture pi · zi among all the zi ∈ Xi for which ui(zi) = ui(xi). The cheapest bundle

property, and its role in obtaining efficiency, was already established by HZ. When

agents’ utility functions are semi-strictly quasi-concave, we show the existence of a

pseudo-market equilibrium with the cheapest-bundle property, which in consequence

is C-constrained Pareto efficient. Semi-strict quasi-concavity is slightly stronger than

quasi-concavity.

While constrained efficiency is a property of some equilibria, fairness, in the sense

of no envy among agents of equal types, holds for all. The idea is simple. Because

agents have equal budgets, and agents of equal type face equal prices, agents of

equal type cannot envy each other. When all agents are of equal type — we say

that the constraints are anonymous — we obtain an unqualified notion of fairness,

envy-freeness.



14 ECHENIQUE, MIRALLES, AND ZHANG

The proof of Theorem 1 follows standard ideas. Our main contribution is not

in devising a new equilibrium proof, but rather in showing how pre-processing of

constraints leads to a model that is amenable to the standard argument. So, given

a price vector p, we increase the price of constraints that are violated. Consumers

will tend to consume less of the goods that affect the most expensive constraints. A

fixed point argument serves to establish an equilibrium price, and the corresponding

assignment satisfies all constraints in Ω. Recall that the constraints in Ω only

characterize the “upper-right” boundary of C. Strict monotonicity of ui ensures

that x∗ must actually lie in C.10

We present an example of controlled school choice (Example 1) in Section 4.1.2

to illustrate how our approach works.

4. Discrete allocation

The main applications of our approach are to problems of assigning indivisible

objects. Each object l is available in fixed integer supply, and we seek efficient and

fair random assignments subject to constraints. We discuss different applications,

and show how to deal with different kinds of constraints. In Section 4.1 we assume

that each agent demands at most one copy of any object, and C is defined from

explicit constraint structures that form a bi-hierarchy, as in Budish, Che, Kojima,

and Milgrom (2013). We discuss examples with and without floor constraints; as well

as applications to hospital-resident matching and school choice. Then in Section 4.2

we discuss examples that go beyond bihierarchy constraints; and look at applications

to course bidding and refugee resettlement.

4.1. Bihierarchy constraints. Consider constraints of the form q
S
≤
∑

(i,l)∈S xi,l ≤
qS, where S ⊂ I × O is a set of agent-object pairs termed a constraint set, and

qS = (q
S
, qS) is a pair of non-negative integers that represent floor and ceiling quo-

tas. A constraint structure H is a collection of constraint sets. Given a constraint

structure H, the set of assignments that satisfy a vector of quotas q = (qS)S∈H is

defined to be

C = {x ∈ RNL
+ : q

S
≤
∑

(i,l)∈S

xi,l ≤ qS for all S ∈ H}.

10If x∗ ∈ lcs(C) but x∗ /∈ C, there exists x ∈ C such that x∗ < x. For every (i, l) such that

x∗i,l < xi,l, all constraints c ∈ Ω∗ with (i, l) ∈ supp(c) must not be binding at x∗, and thus the

price of l faced by i in p∗ must be zero. So i must wish to buy more of l, contradicting that x∗i is

i’s optimal consumption.
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Note that C could be different from the convex hull of the deterministic assignments

satisfying the quotas q. When they coincide, C is called implementable.

Budish, Che, Kojima, and Milgrom (2013) prove that if H includes all singleton

sets {(i, l)}, a sufficient condition for C to be implementable for all possible quotas

is that H is a bihierarchy, and this is also necessary if H further includes all so-

called rows {i}×O and all so-called columns I ×{l}. A constraint structure H is a

hierarchy if for every distinct S, S ′ ∈ H, either S ⊂ S ′, or S ′ ⊂ S, or S ∩ S ′ = ∅. H
is a bihierarchy if there exist two hierarchies H1 and H2 such that H = H1∪H2 and

H1 ∩H2 = ∅. In applications, H1 usually consists of sub-rows, rows, and sup-rows,

representing constraints from the perspective of agents, while H2 consists of sub-

columns, columns, and sup-columns, representing constraints from the perspective

of objects.11

Now we explain how our approach deals with bihierarchy constraints. We discuss

two cases.

First, if H is a bihierarchy, and all floor quotas are zero, then C as defined above

will be the set of feasible assignments that we take as a primitive of our model. More

important is that the constraints in H under any (zero floor) quotas q define exactly

the linear inequalities that characterize lcs(C). Indeed, in this case lcs(C) = C. So

we can directly price such inequalities, and no pre-processing is needed. We discuss

this case in detail in Section 4.1.1.

We emphasize that, even under zero floor quotas, our idea of pricing constraints is

new. In their generalization of HZ’s mechanism, Budish, Che, Kojima, and Milgrom

assume that all floor quotas are zero, and that among the two hierarchies H1 and

H2 that constitute H, H1 includes only rows, subrows, and singleton sets, while H2

includes only columns. Their method is to use individual constraints in H1 to refine

agents’ consumption spaces, and price objects as HZ do. Our approach handles

more kinds of zero-floor bihierarchy constraints, and does so by pricing them.

Second, ifH is a bihierarchy, and there are nontrivial floor quotas, then we will still

take C as a primitive in our model, but we will need to derive the linear inequalities

that characterize lcs(C). Pre-processing is needed. Floor constraints are common

in real life, but they are well-known to be difficult to deal with in market design.

Our approach is to derive a new set of ceiling constraints implied by the ceiling and

floor constraints present in H. Pricing ceiling constraints (including the new ceiling

11A sub-row is of the form {i} ×O′ where O′ is subset of objects, and a sup-row is of the form

I ′ ×O where I ′ is a subset of agents. Sub-columns and sup-columns are similar.
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constraints we introduce in pre-processing) will cause demand to spill over to satisfy

the floor constraints. In Section 4.1.2, we discuss two concrete examples and show

how the new ceiling constraints are derived. The two examples, the Japanese medical

residency match and controlled school choice, are real-life problems where there are

often a large number of participants, but constraints are simple. In practice, we

expect that an our methods could be operationalized along the lines of our discussion

in Section 7.

4.1.1. Bihierarchy constraints with zero floors. Budish, Che, Kojima, and Milgrom

suppose that H is a bihierarchy, and that all floor quotas are zero. Then C = lcs(C),
and we can directly price non-individual constraints. Let H∗ denote the set of non-

individual constraint sets (i.e., those that are not singleton sets, sub-rows, and rows).

Given ceiling quotas (qS)S∈H∗ , the set of linear inequalities Ω∗ that we will price is

{(1S, qS) ∈ RLN
+ ×R+ : S ∈ H∗}.12

Under our assumptions on utilities, an efficient pseudo-market equilibrium exists.

It is interesting to discuss the fairness properties of such equilibria. Two agents,

i and j, are of equal type if Xi = Xj and, for all S ∈ H∗ and l ∈ O, (i, l) ∈ S

if and only if (j, l) ∈ S. We say that H is anonymous if every two agents are of

equal type. If H is anonymous, every constraint set in H∗ must be a column or sup-

column. Under anonymous constraint structures, every pseudo-market equilibrium

is envy-free. An example is the Japanese medical residency match with regional

caps studied by Kamada and Kojima (2015). Suppose that agents are doctors and

objects are hospitals. Each constraint set takes the form I×O′ where O′ ⊆ O is the

set of hospitals in a geographic region (a city or a prefecture). The ceiling quota q̄O′

is the regional cap used to control the maximum number of doctors that the region

O′ can employ. A collection of such constraint sets is anonymous because they do

not distinguish among the identities of individual doctors.

4.1.2. Bihierarchy constraints with nontrivial floors. When H is a bihierarchy and

floor quotas are nontrivial, we need to derive new ceiling constraints to capture the

implications of the ceiling and floor constraints present in H. We use a simple school

choice example to illustrate the methodology, and how pre-processing works. Then

we turn to a more general discussion of two applications: the Japanese medical

residency match, and the problem of controlled school choice.

12By 1S we denote the indicator vector of the set S.



CONSTRAINTS 17

Example 1 (An illustration of our approach). Consider an environment where five

students are to be assigned seats in three schools. Three students belong to a ma-

jority group: M1,M2,M3, while two students m1 and m2 are minorities. There are

three schools A,B, and C, each having two seats. School A aims to admit at least

one minority student (a floor quota qm
A

= 1), while school B aims to admit at most

one majority student (a ceiling quota qMB = 1). There are no other diversity con-

straints. Suppose that students have expected utility preferences, with the following

von Neumann-Morgenstern utilities.

ui(A) ui(B) ui(C)

M1 2 3 1

M2 2 3 1

M3 2 3 1

m1 1 2 3

m2 1 2 3

To obtain the inequalities in Ω, we first calculate new ceiling quotas for the di-

versity constraints: qMA = 1, qmB = 1, and qmC = 1; and a new ceiling quota for the

union of B and C: qmBC = 1.13 The reasoning is that, because A needs to admit at

least one minority student, it can admit at most one majority student, and B and

C can jointly admit at most one minority student. Then Ω will consist of the unit

demand constraints, and the following inequalities:

(1)



0 ≤ xM1,A + xM2,A + xM3,A + xm1,A + xm2,A ≤ 2, (e.1)

0 ≤ xM1,B + xM2,B + xM3,B + xm1,B + xm2,B ≤ 2, (e.2)

0 ≤ xM1,C + xM2,C + xM3,C + xm1,C + xm2,C ≤ 2, (e.3)

0 ≤ xM1,A + xM2,A + xM3,A ≤ 1, (e.4)

0 ≤ xM1,B + xM2,B + xM3,B ≤ 1, (e.5)

0 ≤ xm1,B + xm2,B ≤ 1, (e.6)

0 ≤ xm1,C + xm2,C ≤ 1, (e.7)

0 ≤ xm1,B + xm2,B + xm1,C + xm2,C ≤ 1, (e.8)

13We omit the ceiling quotas for other unions of schools because they are implied by the in-

equalities in (1).
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Inequalities (e.1)-(e.3) are supply constraints, while the rest arise from the diver-

sity constraints. Importantly, after pre-processing, there are no floor constraints

(other than non-negativity), and all inequalities involve positive coefficients. The

unit demand constraints go into each agent’s consumption space. The remaining

inequalities must be priced: denote the price of (e.i) by pi. Majority students will

face prices pM,A = p1 + p4, pM,B = p2 + p5, and pM,C = p3; while minority students

face pm,A = p1, pm,B = p2 + p6 + p8, pm,C = p3 + p7 + p8.

In equilibrium, each majority student chooses the lottery x∗M = (1/3A, 1/3B, 1/3C),

facing prices p∗M = (1, 2, 0); each minority student chooses the lottery x∗m = (1/2A, 1/2C),

facing prices p∗m = (0, 2, 2). The equilibrium prices are such that p∗4 = 1, p∗5 = 2,

p∗8 = 2, and every other price p∗i = 0 (one may verify that (e.2) and (e.6) are not

binding).

Note that A is the worst school for minority students. In equilibrium, we price

B high enough for minority students to cause their demand to spill over and satisfy

the minority floor quota of school A; but this spill-over is not achieved by directly

pricing the supply constraint of B. In fact, B is oversupplied in equilibrium. The

spill-over is achieved by pricing the constraint (e.8) for the union of B and C, an

inequality that was derived in our pre-processing of diversity constraints.

Now we turn to a more general discussion of two applications. The first ap-

plication is the Japanese medical residency match. By introducing regional caps

to restrict the number of doctors assigned to urban hospitals, the Japanese gov-

ernment wants to increase the number of doctors assigned to rural hospitals. We

can interpret this procedure as an application of our approach: the government’s

ideal distribution of doctors can be described by constraints with floor and ceiling

quotas both. Specifically, in the Japanese medical residency match, the hospitals

O are located in K disjoint regions. Accordingly, there is a partition of hospitals

O = R1 ∪ R2 ∪ · · · ∪ RK such that each Rk denotes the set of hospitals in a region.

So we simply refer to each Rk as a region. For each region Rk, there is a constraint

q
Rk
≤
∑
l∈Rk

∑
i∈I

xi,l ≤ qRk
.

Assume that there are enough hospital positions to assign each doctor a position

(we can always add extra “null” hospitals when that is not the case), and that

there are enough doctors to meet all floor constraints (that is, N ≥
∑K

k=1 qRk
).

We also assume that for each Rk, q
Rk
≤
∑

l∈Rk
ql. That is, the floor quota for
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each Rk does not exceed the total capacity of the hospitals in Rk. Below we derive

the inequalities in Ω that characterize lcs(C), and show that they are anonymous.

Theorem 1 delivers a pseudo-market equilibrium that satisfies all constraints, and

is efficient and envy-free.

Let R = {R1, R2, . . . , RK} denote the set of regions. For each ` ∈ {1, 2, . . . , K},
let R` be the collection of sets that are the union of ` distinct regions. That is,

R` = {Rk1 ∪Rk2 ∪ · · · ∪Rk` : {k1, k2, . . . , k`} ⊂ {1, 2, . . . , K}}.

In particular, R1 = R.

Consider the following inequalities

(2)


0 ≤

∑
l∈O xi,l ≤ 1 for all i ∈ I,

0 ≤
∑

i∈I xi,l ≤ ql for all l ∈ O,

0 ≤
∑

i∈I,l∈R xi,l ≤ q∗R for all ` ∈ {1, . . . , K} and R ∈ R`,

where q∗R is defined according to the following procedure:

• For every R ∈ R1, redefine its ceiling quota to be

q∗R := min
{
qR, N −

∑
R′∈R\{R}

q
R′

}
.

Note that q∗R ≥ q
R

because N ≥
∑

R′∈R qR′ , and q∗R is weakly smaller than

the original ceiling quota qR.

• For every R = Rk1 ∪Rk2 ∈ R2, define its ceiling quota to be

q∗R := min
{
q∗Rk1

+ q∗Rk2
, N −

∑
R′∈R\{Rk1

,Rk2
}

q
R′

}
.

• Inductively, for every R = Rk1 ∪Rk2 ∪ · · ·∪Rk` ∈ R`, define its ceiling quota

to be

q∗R := min
{
q∗R\Rkx

+ q∗Rkx
∀x ∈ {1, 2, . . . , `}, N −

∑
R′∈R\{Rk1

,...,Rk`
}

q
R′

}
.

Our next result states the needed pre-processing.

Proposition 1. lcs(C) = {x ∈ RNL
+ : x satisfies the inequalities in (2)}.

Note that among the inequalities in (2), the first two lines are unit demand and

supply constraints. What is new is the third line, where we redefine ceiling quotas

for each region, and define new ceiling quotas for unions of regions. The new ceiling

quotas capture the implications of the existing ceiling and floor constraints in H.
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Aside from unit demand constraints, which are not priced, the remaining inequal-

ities in (2) do not distinguish among doctors’ identities. So all doctors face equal

prices, and every pseudo-market equilibrium is envy-free.

Our next second application is to controlled school choice, generalizing our dis-

cussion in Example 1. When implementing a school choice program, many school

districts care about diversity. We present a model in which each school uses floor

and ceiling quotas to control the number of minority and majority students it ad-

mits. We assume that the students I are classified into minority Im and majority

IM students, with Ik having cardinality Nk. Each school l has a pair of quotas

(qml , q
m
l

) for minority, and a pair of quotas (qMl , q
M
l

) for majority students. So, aside

from supply constraints, each school l must meet the constraints

qml ≤
∑

i∈Im xi,l ≤ qml ,

qM
l
≤
∑

i∈IM xi,l ≤ qMl .

Of course, we assume that qm
l

+ qM
l
≤ ql.

The inequalities that characterize lcs(C) can be derived similarly to how we dealt

with regional hospitals above. The only difference is that we need to take into

account the interaction between the quotas for the two student types within each

school. After that, we can deal with the assignments for two types separately.

Formally, consider the following inequalities

(3)



0 ≤
∑

l∈O xi,l ≤ 1 for all i ∈ I,

0 ≤
∑

i∈I xi,l ≤ ql for all l ∈ O,

0 ≤
∑

i∈Im,l∈O′ xi,l ≤ qm∗O′ for all nonempty O′ ⊂ O,

0 ≤
∑

i∈IM ,l∈O′ xi,l ≤ qM∗O′ for all nonempty O′ ⊂ O,

where qm∗O′ and qM∗O′ are defined as follows:

• For every l ∈ O, redefine the ceiling quotas to be

qm∗l := min{qml , ql − qMl , N
m −

∑
l′∈O\{l}

qm
l′
},

qM∗l := min{qMl , ql − qml , N
M −

∑
l′∈O\{l}

qM
l′
}.
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• Inductively, for every non-singleton O′ ⊂ O, define its ceiling quotas to be

qm∗O′ := min{qm∗O′\{l} + qm∗l ∀l ∈ O′, Nm −
∑

l′∈O\O′
qm
l′
},

qM∗O′ := min{qM∗O′\{l} + qM∗l ∀l ∈ O′, NM −
∑

l′∈O\O′
qM
l′
}.

Now, pre-processing characterizes lcs(C) by the inequalities in (3).

Proposition 2. lcs(C) = {x ∈ RNL
+ : x satisfies the inequalities in (3)}.

The proof of Proposition 2 is similar to that of Proposition 1 and thus omitted.

Aside from unit demand constraints, the inequalities in (3) do not distinguish

among the identities of students within each type. So in every pseudo-market equi-

librium, minority students will not envy other minority students, and majority stu-

dents will not envy other majority students.

4.2. Non-bihierarchy constraints. Our approach works with constrained alloca-

tion problems where the constraints do not arise from a bihierarchy. We discuss two

specific examples: course allocation and refugee resettlement. Another example is

in Section 6. Aside from the bi-hierarchy issue, the applications we have discussed

so far impose a unit demand constraint, our next application does not.14

Course bidding. Course allocation is a combinatorial assignment problem in which

agents demand bundles of objects. The agents are students and the objects are

courses. There are obvious supply constraints, stemming from course capacities,

but there may exist additional, and more problematic, constraints. For example, if

two courses l and l′ are complements for some students, so that they must take both

of them or neither, then we have the constraint xi,l = xi,l′ for every such student i.

These constraints cannot be described by inequalities of the form studied by Budish,

Che, Kojima, and Milgrom (2013). Our next example illustrates that one cannot

solve the problem by using bundles as the primitive objects.

Example 2. Suppose there are three students 1, 2, 3 and three courses a, b, c. Each

student has to take a bundle of two courses or nothing, and each course has one

14In the absence of unit demand constraints, the assumption that ui only depends on i’s marginal

distribution over assignments may be problematic, and may require ui to be linear. This happens

if there are multiple implementations of a random assignment, and an agent could obtain different

numbers of objects in different ex-post assignments. The problem is avoided in cases such as

Example 2.
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seat. Let O = {ab, ac, bc}. The following random assignment looks feasible because

it satisfies unit demand constraints for students and supply constraints for courses.

But it is actually not feasible because bundles are not independent objects. When

a bundle is assigned, the other two bundles become unavailable.

i ab ac bc

1 1/2 0 0

2 0 1/2 0

3 0 0 1/2

In our approach, we can describe C by considering its vertices: the deterministic

allocations that satisfy the relevant constraints. Let A be the basic set of “items,”

each of which has a number of copies. Let O ⊂ 2A be the set of bundles under

consideration. A deterministic assignment is represented by a matrix x ∈ {0, 1}NL

such that xi,l = 1 if and only if i obtains the bundle l ∈ O. Now, let C be the

convex hull of the set of deterministic assignments. Starting from C, one needs to

pre-process lcs(C) and our theorem will deliver a pseudo-market equilibrium with

the desirable normative properties.

Refugee resettlement. The agents are refugee families, and objects are geograph-

ical “localities,” places where they can be assigned a living space. Refugee families

differ in size. When they are resettled to a new locality, a larger family will occupy

more resources than a smaller one. We discuss the refugee resettlement model due

to Delacretaz, Kominers, and Teytelboym (2019), and explain how the resulting

knapsack constraints will result in new difficulties for random assignment problems.

In the model, I is a set of families and O is a set of localities. To accommodate

a family, every locality l ∈ O must provide facilities of multiple dimensions, the set

of which is denoted by D. The demand size of every family i is a vector (νdi )d∈D ∈
Z|D|≥0 . The capacity of every locality l is a vector (qdl )d∈D ∈ Z|D|≥0 . A deterministic

assignment x assigns every family to at most one locality without violating the

capacity of any locality in any dimension. So x has to satisfy the constraints:

(4)

0 ≤
∑

l∈O xi,l ≤ 1, for all i ∈ I,

0 ≤
∑

i∈I v
d
i · xi,l ≤ qdl , for all l ∈ O, d ∈ D.

These are simply the unit demand constraints for families and supply constraints

for localities, but supply constraints take the form of “knapsack inequalities,” dif-

ferent from those studied by Budish, Che, Kojima, and Milgrom (2013). So their
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implementation theorem does not apply. Below is a simple example with a single

knapsack inequality that illustrates the problem.

Example 3 (Knapsack constraints). There is only one locality l, and it provides only

one facility (i.e., |D| = 1). We assume ql = 3. There are two individuals (families of

size one) 1, 2 and one family 3 with two members. Consider a random assignment

x in which x1,l = x2,l = 1, and x3,l = 1/2. It is clear that x satisfies unit demand

constraints, and the only knapsack constraint 0 ≤ x1,l +x2,l +2x3,l ≤ 3. But x is not

implementable, because when 1, 2 are accommodated by l, the remaining capacity

of l is not enough to accommodate the family 3.

Despite the difficulties in implementing an allocation, our approach can be ap-

plied to the refugee resettlement problem. The feasible integer allocations can be

described, and C defined as their convex hull.

In the course allocation, and refugee resettlement applications, obtaining a com-

plete characterization of C can be difficult. With knapsack constraints a complete

characterization is only known in certain special cases.15 But characterizing the

linear inequalities that define lcs(C) can be easier than working with C, and as a

practical matter, one can obtain the set of inequalities Ω from the vertex description

of C by an application of the Avis-Fukuda algorithm (Avis and Fukuda, 1992). As

we note in Section 7, open source software is readily available. With Ω in hand, our

theorem provides a pseudomarket solution that is both efficient and fair.

5. A pseudo-market for “bads”

So far we have assumed that objects are “goods,” in the sense that agents’ utility

functions are strictly increasing. In some applications, however, objects are “bads.”

They could represent duties, or tasks, that agents dislike. Other examples are waste

disposal, or pollution. Suppose that a certain minimum amount of such bads have

to be allocated: the question is to whom, and in which quantities.

The presence of bads gives rise to floor constraints, but we cannot use our previous

methods directly as all agents will choose zero consumption from their consumption

space. We can, however, borrow an idea from the standard model of labor markets:

15See Pisinger, Kellerer, and Pferschy (2013). When there is only one knapsack inequality, Weis-

mantel (1996) obtains a complete characterization when the weights νdi take only two values. The

obtained inequalities are complicated. Dahl and Foldnes (2003) obtain a simpler characterization

in a special case where every weight is either 1 or a fixed larger integer.
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labor supply is often described as consumption of leisure. We endow every agent

with a copy of every bad, and allow them to buy the options of not consuming a

bad. Such options become “goods,” and our previous methods apply.

Specifically, for every l ∈ O, ql denotes the minimum number of copies of l that

have to be assigned. Every agent can be assigned at most one object (unit demand).

If
∑

l∈O ql = N , then every agent must obtain an object so that the problem becomes

the one studied by Hylland and Zeckhauser (1979). So we assume that
∑

l∈O ql < N .

For every x ∈ ∆− and every i ∈ I, ui(x) is strictly decreasing in x: if x′ > x, then

ui(x
′) < ui(x).

We consider a dual problem (I, Õ, ∆̃−, (ũi)i∈I , (ql̃)l̃∈Õ) in which

• The set of objects is Õ = {l̃}l∈O where every l̃ is an artificial object dual to

l ∈ O, and its supply is ql̃ = N − ql. When an agent i consumes an amount

z of l̃, it is understood that i consumes 1 − z of l. Because at least ql of l

need to be assigned, the number of copies of l̃ is N − ql.
• The consumption space for every agent is ∆̃− = {x ∈ RL

+ : xl̃ ∈ [0, 1] for every l ∈
Õ,
∑

l̃∈Õ xl̃ ∈ [L− 1, L]}. So the amount of objects in O that i will consume

is L−
∑

l̃∈Õ xl̃ ∈ [0, 1].

• Every agent i has the utility function ũi such that for every x ∈ ∆̃−, ũi(x) =

ui(1 − x). When ui is (semi-strictly) quasi-concave and strictly decreasing,

ũi is (semi-strictly) quasi-concave and strictly increasing.

In the dual problem, agents can consume multiple artificial objects. We impose

floor constraints on individual consumption, and can derive the inequalities to char-

acterize lcs(C) as in Section 4.1.2. Then Theorem 1 applies to give a desirable

outcome. We omit the details.

6. A pseudo-market for roommates, and coalition formation

Our model accommodates very general assignment problems with constraints.

Some problems that are usually not described as assignment problems can be ex-

pressed as special cases of our model. In this section we discuss the roommates

problem as an illustration of the power of our approach.

The roommates problem is arguably the best-known example in matching theory

where game-theoretic stability solutions fail to exist. As a corollary of our main

theorem, we obtain the existence of efficient pseudo-market equilibrium assignments.

Equilibria embody a form of stability: optimizing agents do not want to change their

behavior in the market. In this sense, our results offer a possible way out of the
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non-existence of stable matchings. In contrast with some of the other applications in

our paper, the main point is not that the allocations are normatively appealing, but

rather that, in a model where game-theoretic stability is impossible, market stability

(understood as individual optimizing and market-clearing) provides a solution.

Consider a set of agents I that constitute the potential roommates or partners.

Let O be a copy of I, so N = L, and think of i ∈ O as the alter ego of agent i ∈ I.

If x is an assignment, interpret xi,j = 1 as agents i and j forming a partnership, or

becoming roommates. When i is alone without a roommate, we have xi,i = 1. In

consequence, we restrict attention to assignments x where xi,j = xj,i, meaning that

the matrix (xi,j)i∈I,j∈I is symmetric.

We say that an assignment x is a matching if (1) xi,j ∈ {0, 1} for all (i, j) ∈ I× I,

(2) x is symmetric, and (3) x satisfies the unit demand constraints with equality

(
∑

j xi,j = 1). Define C to be the convex hull of all matchings.

Note that C is not equal to the set of symmetric assignments that satisfy the unit

demand constraints, dropping the integrality constraints xi,j ∈ {0, 1}. Katz (1970)

proves that the latter set is the convex hull of all matrices of the form (1/2)(P +P ′)

(P ′ is the transpose of P ) where P is a permutation matrix with no even cycles

greater than 2. A celebrated result of Edmonds (1965) provides a characterization

of C, which we will use in the proof of Proposition 3 below.

To operationalize our approach, we need to work out the set of inequalities Ω for

the roommates problem. To this end, let F be the set of subsets F ⊆ I × I such

that (1) for all i, (i, i) /∈ F and (2) for every (i, j) ∈ F , (j, i) /∈ F . For each F ∈ F ,

let GF be the graph with vertex set I and edge set {{i, j} : (i, j) ∈ F or (j, i) ∈ F}.
Denote the cardinality of the maximum independent edge set of GF by kF . For

every i ∈ I, let Ji be the set of subsets J ⊂ ({i}× I)∪ (I ×{i}) such that (i, i) ∈ J
and for every j 6= i, either (i, j) ∈ J or (j, i) ∈ J but not both. Then lcs(C) is

characterized by the following inequalities.

Proposition 3.

lcs(C) =

( ⋂
∅6=F∈F

{x ∈ RI×I
+ :

∑
(i,j)∈F

xi,j ≤ kF}
)⋂( ⋂

i∈I,J∈Ji

{x ∈ RI×I
+ :

∑
(i′,j′)∈J

xi′,j′ ≤ 1}
)
.

A pseudo-market equilibrium implies a random matching x∗ (a probability distri-

bution over matchings) that is Pareto efficient. Of course, x∗ needs not be stable in

the game theoretic sense, but it corresponds to individual agents’ optimizing behav-

ior, as long as these agents take prices as given. Price taking behavior is a plausible
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assumption in a large centrally-run market for partnerships, like for example a mar-

ket for roommates in college dormitories. A pseudo-market could be set up by the

college, and equilibrium prices could be enforced.

We finalize with a numerical example where stable matchings fail to exist, but

where our results deliver an efficient equilibrium.

Example 4 (A market for roommates). Let I = {1, 2, 3}. For each agent i, consuming

object l is the same as having agent l as her roomate. Suppose that the agents’

utilities are as the following table.

ui(1) ui(2) ui(3)

1 1 2 3

2 3 1 2

3 2 3 1

In words, 1 prefers 3 to 2, and prefers 2 to herself (the utilities are respectively 3,

2, and 1).

With these preferences, there are no stable matchings. However, there is a pseudo-

market equilibrium. In the equilibrium, the price of the following constraint is two:

x2,1 + x1,3 + x3,2 ≤ 1,

the price of the following constraint is one:

x1,2 + x2,3 + x3,1 ≤ 1,

and the price of every other constraint is zero. Then, agent 1’s personalized price

vector is (0, 1, 2), 2’s personalized price vector is (2, 0, 1), and 3’s personalized price

vector is (1, 2, 0). All of them choose the consumption (1/3, 1/3, 1/3), and this is

the equilibrium assignment.

The application to the roommates problem can be adapted to a general coalition

formation problem. Given a set of agents I and an integer k, let O be the set of

all size-k coalitions from I; that is all subsets of I of cardinality k. A deterministic

assignment is a partition of agents into coalitions, and can be represented by a

matrix x ∈ {0, 1}NL such that xi,l = 1 if and only if i joins the coalition l ∈ O.

Unit demand constraints will imply that agents are members of a single coalition.

We let C be the convex hull of the set of deterministic assignments. Then there

exists a pseudo-market equilibrium, and the equilibrium assignment is a probability

distribution over coalitions.
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7. Practical implementation

The pseudo-market approach raises a number of practical issues. The first is incen-

tives. Agents should be price-takers, and not seek to manipulate market outcomes

by misreporting their preferences. We do not include a detailed result on incen-

tive compatibility in our paper, but one can use standard arguments to show that,

when there are many agents, and under certain regularity assumptions, agents have

no significant incentives to misreport their preferences. Price-taking is important

in practice because it simplifies agents’ strategies, makes the mechanism’s perfor-

mance robust, and provides policy makers with information about the agents’ true

preferences. Such information is useful for welfare analysis and policy evaluation.

Because our pseudo-market equilibria are generally not unique, we define the

pseudo-market mechanism (PMM) as a mechanism that makes an arbitrary selection

from the set of equilibria. It is well-known that PMM is manipulable, even in

the simple HZ environment.16 In our model, agents who are treated selectively by

the constraints may have particularly strong reasons to manipulate prices. But

if there are enough agents of each type (classes within which agents are treated

symmetrically by the constraints), then any gains from manipulation will be small,

and vanish as the market grows. This can be formalized as the strategy-proofness in

the large (SP-L) property proposed by Azevedo and Budish (2019). SP-L is a notion

of approximate (interim) incentive compatibility, requiring that truthful reporting

be approximately optimal for every agent against any full-support, independent and

identical distribution of other agents’ reports. SP-L is stronger than approximate

Bayes-Nash incentive compatibility used by the literature. Azevedo and Budish

prove that any anonymous and envy-free mechanism is SP-L, and extend this result

to mechanisms that classify agents into groups and satisfy anonymity and envy-

freeness within each group. Because PMM is anonymous and envy-free within agents

of equal type, it is SP-L. So we do not worry about incentives in PMM when the

market is large and rich in agents’ types.17

A second practical issue is computation, and has several specific aspects. It is of-

ten infeasible to ask agents to report their preferences over all possible assignments,

so it is important to design a concise but expressive preference-reporting language.

16This issue is discussed by Hylland and Zeckhauser, who also anticipate the resolution when

there are many agents.
17Alternatively, we could follow the approach of He, Miralles, Pycia, and Yan (2018) to prove

that PMM is asymptotically strategy-proof.
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In many problems, it is acceptable to assume that agents have additively separable

utilities, and therefore ask agents to report utilities over individual objects. Ad-

ditive separability makes preference reporting relatively easy for agents. Next, a

practical implementation of pseudomarkets should leave all the computational bur-

den to computer algorithms. This means that, after agents submit their utilities, an

algorithm computes their demand functions, and adjusts prices to find an equilib-

rium. The problem of computing equilibria is the focus of an extensive literature in

computer science, and we shall not go into any details here. Suffice it to say that,

while computing equilibria is understood to be computationally hard (see Vazirani

and Yannakakis (2020)), there are algorithms that work in practice for real-world

implementations of pseudomarket mechanisms. One such algorithm is described in

Othman, Budish, and Sandholm (2010), and implemented in course bidding at the

Wharton School of Business (Budish, Cachon, Kessler, and Othman, 2017).

A third practical issue is the computation of the inequalities in Ω. Computing

these inequalities is specific to the pseudomarket approach we propose in this paper,

and the bulk of our preceding discussion has dealt with how Ω is determined in var-

ious applications. In applications where the inequalities are directly available (e.g.,

bihierarchy constraints with zero floors as in Section 4.1.1), the task of computing Ω

is immediate. In other applications, such as the Japanese medical residency match

problem and the controlled school choice problem, this task is also easy. When

constraints are complex, the task of computing Ω can be difficult, but it can also be

automated: we have already referred to the Avis-Fukuda algorithm several times.

There is existing software to determine the facets of a polytope from a description

of its vertices.18

We finish our discussion of practical issues by describing a specific application for

which we can easily access the practically relevant numerical magnitudes. The point

is to illustrate how our methods fit in with an existing real-world implementation

of pseudomarkets. The application is to course bidding in business schools, as first

studied by Krishna and Ünver (2008) and Sönmez and Ünver (2010). We use the

implementation of course bidding at the Wharton School of Business as a realistic

guide to the number of students and courses present in the problem.

18See the open source software polymake: https://polymake.org/doku.php. We note that

our approach only needs to characterize the “upper-right” boundary of C, which can be easier than

characterizing C.

https://polymake.org/doku.php
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The number of students and courses in a school can be large, but the set of

permissible courses for a specific student in any given semester is not large, and

a student can freely choose only a few courses (especially when some core courses

are exogenously chosen by the school for the student). Let Oi denote the set of

permissible courses for student i, and let di denote the maximum number of courses

student i can choose from Oi. The most important constraint students face in real

life is that they cannot choose courses that have an overlapping meeting time. This

constraint can be described through a linear inequality. Partition courses O into

disjoint subsets O1, O2, . . . , OK such that every Ok consists of courses with overlap-

ping meeting times. Then we require that, for every student i, 0 ≤
∑

l∈Ok
xi,l ≤ 1

for every Ok. The constraints imposed on courses are also simple. Aside from ca-

pacity constraints, the school may desire to control the student composition of each

class. It can have diversity objectives, or want a balance between first- and second-

year students. Suppose that the set of students I is partitioned into disjoint types

I1, I2, . . . , IT . Every course l sets a upper bound qtl on the type It students who can

take course l. Then we obtain the constraint 0 ≤
∑

i∈It xi,l ≤ qtl .

To sum up, we will have the following constraints in a course allocation problem:

(5)



0 ≤
∑

l∈O xi,l ≤ di for every i, (demand constraints)

0 ≤
∑

l∈Ok
xi,l ≤ 1 for every i and Ok, (schedule constraints)

0 ≤
∑

i∈I xi,l ≤ ql for every l, (supply constraints)

0 ≤
∑

i∈It xi,l ≤ qtl for every l and It. (diversity constraints)

We also have the feasibility constraints that, for every i and l, 0 ≤ xi,l ≤ 1 if l ∈ Oi

and xi,l = 0 if l /∈ Oi. Such constraints, together with the demand and schedule

constraints, are individual and do not need to be priced. The resulting constraint

structure is a bihierarchy and all floor quotas are zero. So we can directly price the

above supply and diversity constraints in our implementation. See the discussion in

Section 4.1.1.

Next, the PMM requires the following steps.

(1) Students report utilities for the courses they wish to take, say assigning

positive integers between 1 and 100 to desirable courses, and 0 to courses

that they do not wish to take.

(2) Compute and select a pseudo-market equilibrium (x∗, p∗).

(3) Announce the equilibrium (x∗, p∗).
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Now we argue that PMM would work well in practice in a situation like Whar-

ton’s. Wharton has about 1,700 students and offers up to 350 courses. In every

semester, every student takes four to six credit units of courses, which often means

no more than ten courses. The system in Wharton implements a competitive equi-

librium outcome from equal incomes, as documented in Budish, Cachon, Kessler,

and Othman (2017). There are about 14 meeting slots, meaning that K = 14. If

Wharton wants to introduce diversity constraints, then the price vector will have the

dimension of 350(1+T ), where T = 2 if students are grouped by seniority or gender.

Our approach, adding constraints and pricing them, does not lead to a significantly

more complicated problem (either computationally, or for students to comprehend)

than the existing implementation in Wharton Business School. The complexity of

the students preference submission stage is similar, as is demand computation. The

problem of finding an equilibrium is similar, and does not involve substantially more

prices than in Wharton.

8. Related Literature

Constrained resource allocation has received a lot of attention in recent years.

Budish, Che, Kojima, and Milgrom (2013) identify the bihierarchy structure of con-

straint blocks in the assignment matrix as the sufficient and necessary condition

for implementation. Akbarpour and Nikzad (2020) extend this result by relaxing

some constraints and considering approximate implementation. We circumvent the

implementation issue by taking the set of implementable assignments as the primi-

tive. Budish et al. allow for floor constraints in implementation but rule out them

in their applications. In their extension of the pseudo-market mechanism, they

consider column constraints, row constraints and sub-row constraints. By incorpo-

rating all row and sub-row constraints into agents’ consumption spaces, they prove

the existence of equilibria much like Hylland and Zeckhauser’s. Their extension is

a special case of ours. We can deal with more general constrains on both rows and

columns, and allow for floor constraints. When there are no floor constraints, we

directly price ceiling constraints, and when there are floor constraints, we translate

floor constraints into a different set of ceiling constraints.

Ehlers, Hafalir, Yenmez, and Yildirim (2014) focus on the problem of controlled

school choice, whereby children have to be assigned seats at different schools to
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satisfy some diversity objective.19 Kamada and Kojima (2015) are mainly (but not

exclusively) motivated by the problem of allocating doctors to hospitals to satisfy

geographic quotas. The objective of the quotas is to avoid an excessive concentration

of doctors in urban areas.20 Both papers proceed by adapting the notion of stability

to capture the presence of constraints, and to add structure to the constraints being

considered. To address more general constraints, Kamada and Kojima (2020) relax

stability and focus on feasible, individually rational, and fair assignments. They

demonstrate that the class of general upper-bound constraints on individual schools

are the most permissive constraints under which a student-optimal fair matching

exists. That class rules out floor constraints. Our paper can deal with the same kinds

of constraints in the above papers, but we follow a different methodological tradition.

Instead of a two-sided game-theoretic matching model, we consider object allocation

and propose a competitive equilibrium solution. The above papers also investigate

the role of incentives in their mechanisms. Our pseudo-market mechanism will be

incentive compatible in large markets, as discussed in Section 7, but we choose to

focus on existence, efficiency and fairness in the paper.

The recent work of Balbuzanov (2019) considers a version of the probabilistic

serial mechanism for object allocation subject to constraints. Like us, he works on

a one-sided object allocation model, but the focus on probabilistic serial makes his

analysis clearly distinct from ours. We borrow from this paper the idea, expressed

in Lemma 1, allowing us to focus on non-negative linear inequalities.

The use of markets over lottery shares to solve centralized allocation problems

was first proposed by Hylland and Zeckhauser (1979). They assume no constraints

other than unit demands and limited supply. They emphasize that equilibrium may

not be efficient, and introduce the “cheapest bundle” property that we employ as

well in our version of the first welfare theorem. Many other papers have followed

Hylland and Zeckhauser in analyzing competitive equilibria as solutions in market

design; see for instance, Budish (2011), Ashlagi and Shi (2015), Hafalir and Miralles

(2015), He, Miralles, Pycia, and Yan (2018). Miralles and Pycia (2020) establish the

second welfare theorem for the market with satiated preferences and token money:

19Controlled school choice is introduced by Abdulkadiroğlu and Sönmez (2003), and also in-

vestigated by, among others, Ehlers (2010), Hafalir, Yenmez, and Yildirim (2013), Kominers and

Sönmez (2013), Westkamp (2013), Echenique and Yenmez (2015), Fragiadakis and Troyan (2017),

Aygun and Bó (2017), and Nguyen and Vohra (2019).
20See Kamada and Kojima (2017) for an overview.
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every Pareto efficient assignment may be supported in a Walrasian equilibrium with

properly chosen budgets. None of these papers consider constrained allocation prob-

lems.21

Kojima, Sun, and Yu (2020) and Gul, Pesendorfer, and Zhang (2019) consider

market equilibrium in economies with gross substitutes utilities and constraints. Ko-

jima et. al characterize the constraints that preserve the gross substitutes property

of firms’ demands in a transferable utility model (Kelso and Crawford’s (1982) job

matching model). Gross substitutes ensure equilibrium existence, and Kojima et. al

show that the constraint structures have to take the form of “interval constraints.”

Gul et. al prove the existence of equilibrium in discrete resource allocation, with

limited transfers or no transfers. They show that equilibrium requires random al-

locations and can be approached by the equilibrium with full transfers. They also

show that equilibrium allocations satisfying certain constraints can be constructed

by building these constraints into utility functions or into a production technol-

ogy. Different than them, we price constraints and can accommodate more general

preferences and constraint structures.

Related to our applications, Manjunath (2016) proposes a competitive equilib-

rium notion for a two-sided fractional matching market. The double-indexed price

system in his notion resembles our personalized price system, but he needs to deal

with both sides’ preferences. As a consequence, his equilibrium exists when there

are transfers, but only approximately exists when transfers are forbidden. Bogo-

molnaia, Moulin, Sandomirskiy, and Yanovskaia (2017, 2019) study the competitive

equilibrium allocation of a mixed manna that contains “goods” and “bads”. They

prove that an equilibrium always exists. Our model is different than theirs in that

agents have unit-demand constraints. So their existence result does not hold in our

paper.

Finally, the recent work by Root and Ahn (2020) looks at constrained allocation

from a mechanism design perspective. They allow for very general constraint sets,

and prove a characterization of group strategy-proof mechanisms that assign objects

in a deterministic way. This makes their result distinct from ours.

21He, Miralles, Pycia, and Yan (2018) consider priority-based constraints, which are different

from the class of constraints studied here. Miralles and Pycia (2020) do not focus on constraints,

but can accommodate linear and individual constraints.
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9. Proof of Theorem 1

We first prove Theorem 1 by assuming that all utility functions are semi-strictly

quasi-concave. We then explain in Remark 5 the differences when utility functions

are only quasi-concave.

We define a price ceiling

p̄ =
NL

min{bc : c ∈ Ω∗}
+ 1,

and a price space P = [0, p̄]Ω
∗
. We may assume wlog that each Xi is bounded.22

We write
∑

l∈O pi,lxi,l as pi · xi. For every p ∈ P , we define

vi = max{ui(xi) : xi ∈ Xi},

Bi(p) = {xi ∈ Xi : pi · xi ≤ 1},

di(p) = argmax{ui(xi) : xi ∈ Bi(p)},

di(p) = argmin{p · xi : xi ∈ di(p)},

Vi(p) = max{ui(xi) : xi ∈ Bi(p)}.

Lemma 2. If Vi(p) < vi then di(p) = di(p).

Proof. Let xi ∈ di(p). We shall prove that pi · xi = 1, which means we are done

because it implies that all bundles in di(p) cost the same at prices p. Let zi ∈ Xi be

such that ui(zi) = vi > ui(xi). For any ε ∈ (0, 1), since Xi is convex, εzi+(1−ε)xi ∈
Xi. By the semi-strict quasi-concavity of ui, ui(εzi +(1−ε)xi) > ui(xi). This means

that, for any ε ∈ (0, 1),

εpi · zi + (1− ε)pi · xi > 1.

But this is only possible, for arbitrarily small ε, if pi · xi ≥ 1. Since xi ∈ Bi(p), we

have pi · xi = 1. �

Lemma 3. If Vi(p) = vi, then

di(p) = arg min{pi · xi : ui(xi) = vi and xi ∈ Xi}.

Proof. Let xi ∈ di(p). Then for any zi ∈ Xi with pi·zi < pi·xi, we have zi ∈ Bi(p). So

ui(zi) < vi by definition of di. Therefore, if zi ∈ argmin{pi ·xi : ui(xi) = vi and xi ∈
Xi}, then

pi · zi = pi · xi,
22The reason is that C is bounded, so we can add the individual constraint that xi,l ≤ M for

each agent i and l, for a large enough M . Such a constraint will not bind in equilibrium.
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and therefore

di(p) ⊇ arg min{pi · xi : ui(xi) = vi and xi ∈ Xi}.

The converse set inclusion follows similarly because if xi is not in the right-hand set,

there would exist zi ∈ Xi with pi · zi < pi · xi and ui(zi) = vi, which is not possible

as such zi would be in Bi(p). �

Lemma 4. di is upper hemi-continuous.

Proof. To prove upper hemi-continuity, we shall prove that di has a closed graph.

Let (xni , p
n) → (xi, p), with xni ∈ di(pn) for all n. We prove that xi ∈ di(p). Since

xni ∈ Bi(p
n), in the limit we have xi ∈ Bi(p). Suppose that there is x′i ∈ Bi(p) with

ui(x
′
i) > ui(xi). If pi · x′i < 1, then this strict inequality will be true for pn with

n large enough; a contradiction, as ui is continuous. If pi · x′i = 1, then there is

λ ∈ (0, 1) large enough that ui(λx
′
i) > ui(xi), pi · (λx′i) < 1, and λx′i ∈ Xi (recall

that the construction of Xi ensures that this is the case)). Then the above argument

applies again. �

Lemma 5. di(p) is upper hemi-continuous.

Proof. Let (xni , p
n)→ (xi, p) with xni ∈ di(pn) for all n. We prove that xi ∈ di(p).

First, consider the case where Vi(p) < vi. By the maximum theorem, Vi is contin-

uous, so Vi(p
n) < vi for all large enough n. Then Lemma 2 implies that xi ∈ di(p)

as di is upper hemi-continuous.

Second, consider the case where Vi(p) = vi. We know that xi ∈ di(p) as di is

upper hemi-continuous. Suppose (towards a contradiction) that xi /∈ di(p). Then

there is yi ∈ di(p) with

pi · yi < pi · xi ≤ 1.

Then for all n large enough,

pni · yi < 1.

Since yi ∈ di(p) and Vi(p) = vi, ui(yi) = vi. This means that Vi(p
n) = vi for all

n large enough, as yi ∈ Bi(p
n). Then, by Lemma 3, xni ∈ argmin{pni · xi : ui(xi) =

vi and xi ∈ Xi} for all n large enough. But the correspondence

p 7→ argmin{pi · x : ui(x) = vi and x ∈ Xi}.

is upper hemicontinous, by the maximum theorem. So

xi ∈ argmin{pi · x : ui(x) = vi and x ∈ Xi},



CONSTRAINTS 35

which, by Lemma 3, implies xi ∈ di(p); a contradiction. �

It is easy to see that di(p) is nonempty, compact- and convex-valued. So di(p) is

also nonempty, compact- and convex-valued. For every c ∈ Ω∗, define the aggregate

demand on c by

Dc(p) =
∑

(i,l)∈supp(c)

aci,ldi,l(p) = ∪{ac · x : x ∈ ×idi(p)}.

Define the aggregate demand correspondence by

D(p) = (Dc(p))c∈Ω∗ ,

and the excess demand correspondence by

z(p) = D(p)− {b},

where b = (bc)c∈Ω∗ .

Consider the correspondence ϕ : P → P defined by

ϕc(p) = {min{max{0, zc + pc}, p̄} : z ∈ z(p)} for all c ∈ Ω∗.

D(p), and therefore z(p), are upper hemi-continuous, convex-valued, and compact-

valued. Thus, ϕ is upper hemi-continuous, convex-valued and compact-valued. By

Kakutani’s fixed point theorem, there exists p∗ ∈ P with p∗ ∈ ϕ(p∗).

Note that there exists z∗ ∈ z(p∗) such that

(6) p∗c = min{max{0, z∗c + p∗c}, p̄} for all c ∈ Ω∗.

Choose x∗ ∈ RNL
+ such that x∗i ∈ di(p∗) for all i and ac ·x∗−bc = z∗c for all c ∈ Ω∗.

We shall prove that (x∗, p∗) is a pseudo-market equilibrium.

Lemma 6. p∗ · z∗ ≥ 0.

Proof. If p∗ · z∗ < 0, then there is some c ∈ Ω∗ with p∗c > 0 and z∗c < 0. By

Equation 6, then, either p∗c = p∗c + z∗c ≤ p̄, or p∗c = p̄ ≤ p∗c + z∗c , both of which are

not possible as z∗c < 0. �

Lemma 7. p∗c < p̄ for all c ∈ Ω∗.

Proof. Suppose towards a contradiction that there exists c ∈ Ω∗ for which p∗c = p̄.

Then, z∗c + p∗c ≥ p̄ implies that z∗c ≥ 0. So
∑

(i,l)∈supp(c) a
c
i,lx
∗
i,l ≥ bc, and for every

(i, l) ∈ supp(c), p∗i,l ≥ aci,lp
∗
c . However, this is impossible because∑

(i,l)∈supp(c) a
c
i,lx
∗
i,l ≤

∑
(i,l)∈supp(c) a

c
i,l

1

p∗i,l
≤
∑

(i,l)∈supp(c)

1

p∗c
≤ NL

p∗c
< bc.
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�

Proof of Theorem 1. We claim that (x∗, p∗) is a pseudo-market equilibrium. For

every c ∈ Ω∗, if p∗c > 0, since p∗c < p̄, then p∗c = z∗c + p∗c , which implies z∗c = 0. If

p∗c = 0, then z∗c + p∗c ≤ 0, which implies z∗c ≤ 0. Recall that z∗c = ac · x∗ − bc. So

this means that x∗ satisfies all inequalities in Ω∗. Because for every i, x∗i ∈ Xi, x
∗

satisfies then all inequalities in Ω. Hence,

x∗ ∈ lcs(C).

Moreover, if z∗c < 0, it must be that p∗c = 0, as p∗c > 0 implies z∗c = 0.

It remains to show that x∗ ∈ C. Suppose to the contrary that x∗ /∈ C. Since

x∗ ∈ lcs(C), there exists x′ ∈ C such that x∗ ≤ x′. Then x∗ 6= x′. So there is

(i∗, l∗) ∈ I ×O with x∗i∗,l∗ < x′i∗,l∗ . By definition of C, x′i∗ ∈ Xi∗ .

Consider yi∗ defined as yi∗,l = x∗i∗,l for all l 6= l∗, and yi∗,l∗ = x′i∗,l∗ . Since x′ ∈ C
and x′i∗,l∗ > 0, l∗ cannot be a forbidden object for i∗. Hence, yi∗ ∈ Xi∗ .

Moreover, for any c ∈ Ω∗, if (i∗, l∗) ∈ supp(c), then ac · x∗ < ac · x′ ≤ bc and

therefore z∗c < 0 (c must not be binding at x∗). Hence, p∗c = 0. In consequence,

p∗i∗ · yi∗ =
∑
l 6=l∗

p∗i∗,lyi∗,l +
(∑
c∈Ω∗

p∗ca
c
i∗,l∗︸ ︷︷ ︸

=0

)
yi∗,l∗

=
∑
l 6=l∗

p∗i∗,lx
∗
i∗,l

≤ 1.

Thus yi∗ ∈ Bi∗(p
∗) and x∗i∗ < yi∗ , contradicting the strict monotonicity of ui∗ and

that x∗i∗ ∈ di∗(p∗).
We next prove that x∗ is C-constrained Pareto efficient. Suppose towards a contra-

diction that x is an feasible assignment that Pareto dominates x∗. Given that x ∈ C,
xi ∈ Xi. Then, for all i ∈ I, ui(xi) ≥ ui(x

∗
i ), and for some j ∈ I, uj(xj) > uj(x

∗
j).

So by definition of di we have that

p∗i · xi ≥ p∗i · x∗i for all i ∈ I, and p∗j · xj > p∗j · x∗j .

Thus, ∑
i∈I

p∗i · xi >
∑
i∈I

p∗i · x∗i .

This is equivalent to∑
c∈Ω∗

p∗c

( ∑
(i,l)∈supp(c)

aci,lxi,l

)
>
∑
c∈Ω∗

p∗c

( ∑
(i,l)∈supp(c)

aci,lx
∗
i,l

)
.
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So there must exist c ∈ Ω∗ such that p∗c > 0 and∑
(i,l)∈supp(c)

aci,lxi,l >
∑

(i,l)∈supp(c)

aci,lx
∗
i,l.

However, p∗c > 0 implies that z∗c = 0 (i.e., c is binding at x∗), and thus x violates c

and is not feasible, which is a contradiction.

Equal-type envy-freeness follows the fact that agents of equal type have equal

consumption spaces and equal budgets, and face equal personalized prices. �

Remark 5. The proof uses semi-strict quasi-concavity only in the proof of upper

hemi-continuity of di. To prove existence of an equilibrium without imposing the

cheapest-bundle property, observe that continuity and quasiconcavity of ui is enough

to ensure that di is upper hemi-continuous, and convex- and compact-valued. If z

is defined from di in place of di, the proof can be written same as above. To prove

that every pseudo-market equilibrium assignment x∗ is weakly C-constrained Pareto

efficient, suppose towards a contradiction that there exists a feasible assignment x

such that for all i ∈ I, ui(xi) > ui(x
∗
i ). By utility maximization, for all i ∈ I,

p∗i · xi > p∗i · x∗i .

Thus, ∑
i∈I

p∗i · xi >
∑
i∈I

p∗i · x∗i .

So we obtain a contradiction as before.

10. Proofs of Proposition 1 and Proposition 3

Proof of Proposition 1. Let A denote the set on the right-hand side of the proposi-

tion. It is easy to see that A = lcs(A). By the procedure to define q∗R, all elements

of C satisfy (2). So C ⊂ A and thus lcs(C) ⊂ A. To prove A ⊂ lcs(C), we first prove

a claim.

Claim. For every ` ∈ {2, . . . , K}, every R = Rk1 ∪Rk2 ∪ · · · ∪Rk` ∈ R`, and every

x ∈ {1, . . . , `},

q∗R ≥ q
Rkx

+ q∗R\Rkx
.

Proof of the claim. Base case ` = 2: For every R = Rk1 ∪ Rk2 ∈ R2, if q∗R =

q∗Rk1
+q∗Rk2

, then the claim holds obviously. Otherwise, q∗R = N−
∑

R′∈R\{Rk1
,Rk2

} qR′ .

By definition, N −
∑

R′∈R\{Rk1
} qR′ ≥ q∗Rk1

. So q∗R = N −
∑

R′∈R\{Rk1
,Rk2

} qR′ ≥
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q∗Rk1
+
∑

R′∈R\{Rk1
} qR′ −

∑
R′∈R\{Rk1

,Rk2
} qR′ = q∗Rk1

+ q
Rk2

. Similarly, we prove that

q∗R ≥ q
Rk1

+ q∗Rk2
.

Induction step: Suppose the claim is true for 2, . . . , `. We then prove that it is

also true for `+ 1. For any R = Rk1 ∪Rk2 ∪· · ·∪Rk`+1
∈ R`+1, if q∗R = q∗R\Rkx

+ q∗Rkx

for some x ∈ {1, 2, . . . , ` + 1}, then it is obvious that q∗R ≥ q∗R\Rkx
+ q

Rkx

. By

the induction assumption, for every y 6= x, q∗R\Rkx
≥ q

Rky

+ q∗R\(Rkx∪Rky ). So q∗R ≥
q
Rky

+ q∗R\(Rkx∪Rky ) + q∗Rkx
≥ q

Rky

+ q∗R\Rky
.

Otherwise, we must have q∗R = N −
∑

R′∈R\{Rk1
,...,Rk`+1

} qR′ . By definition, for

every x ∈ {1, 2, . . . , ` + 1}, N −
∑

R′∈R\{Rk1
,...,Rk`+1

}∪{Rkx}
q
R′
≥ q∗R\Rkx

. So q∗R ≥
q∗R\Rkx

+ q
Rkx

.

By induction, we complete the proof of the claim.

Define A′ = {x ∈ A : @x′ ∈ A such that x < x′}. It is clear that A = lcs(A′). We

prove that A′ ⊂ C. Suppose there exists x ∈ A′ such that x /∈ C. Because x satisfies

all original ceiling constraints that define C, x must violate the floor constraint for

some Rk. That is,
∑

i∈I,l∈Rk
xi,l < q

Rk
. Then there must exist some doctor i such

that
∑

l∈O xi,l < 1, since otherwise
∑

i∈I,l∈O\Rk
xi,l = N−

∑
i∈I,l∈Rk

xi,l > N−q
Rk
≥

q∗O\Rk
, which contradicts the assumption that x ∈ A′ ⊂ A. Because q

Rk
≤
∑

l∈Rk
ql,

there must exist l ∈ Rk such that
∑

i∈I xi,l < ql. Now consider a new assignment

x′ such that x′i,l = xi,l + ε where 0 < ε < min{1 −
∑

l∈O xi,l, ql −
∑

i∈I xi,l, qRk
−∑

i∈I,l∈Rk
xi,l}, and x′ coincides with x in the other cells. So x < x′. Below we prove

that x′ ∈ A, which contradicts the assumption that x ∈ A′.
Suppose towards a contradiction that x′ /∈ A. Let ` > 1 be the smallest index

such that there exists R ∈ R` with
∑

i∈I,l∈R x
′
i,l > q∗R. It is clear that Rk ⊂ R. By

Claim, q∗R ≥ q
Rk

+ q∗R\Rk
. So ∑

i∈I,l∈R

x′i,l > q
Rk

+ q∗R\Rk
.

Because ε is chosen such that
∑

i∈I,l∈Rk
x′i,l < q

Rk
. So∑

i∈I,l∈R\Rk

x′i,l > q∗R\Rk
.

But it means that
∑

i∈I,l∈R\Rk
xi,l > q∗R\Rk

, which contradicts x ∈ A. So x′ ∈ A. �

Proof of Proposition 3. Let D denote the set on the right-hand side of the propo-

sition. We first prove that D ⊂ lcs(C). For every x ∈ D, consider the matrix x′

obtained by letting x′i,j = max{xi,j, xj,i} for all (i, j) ∈ I × I. Then x′ is symmet-

ric and x ≤ x′. We prove that x′ ∈ D. For any ∅ 6= F ∈ F , suppose towards
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a contradiction that
∑

(i,j)∈F x
′
i,j > kF . Then we define F ′ ⊂ I × I such that for

every (i, j) ∈ F , if xi,j ≥ xj,i, let (i, j) ∈ F ′, and otherwise let (j, i) ∈ F ′. So

GF ′ and GF have the same (undirected) edge set, and thus kF = kF ′ . However,∑
(i,j)∈F ′ xi,j =

∑
(i,j)∈F x

′
i,j > kF ′ , which contradicts that x ∈ D. Similarly we can

prove that for every i and every J ∈ Ji,
∑

(i′,j′)∈J x
′
i′,j′ ≤ 1. Thus, x′ ∈ D.

Now define another matrix y by (1) for every (i, j) ∈ I × I with i 6= j, let

yi,j = x′i,j, and (2) for every i ∈ I, let yi,i = 1 −
∑

j 6=i x
′
i,j. It is clear that y is

symmetric and that x′ ≤ y (as {i} × I ∈ Ji). For any F ∈ F , (i, i) /∈ F ; hence∑
(i,j)∈F yi,j =

∑
(i,j)∈F x

′
i,j ≤ kF . Since x′ is symmetric and x′ ∈ D, for every i and

every J ∈ Ji,
∑

(i′,j′)∈J yi′,j′ = 1. So y ∈ D and it is a bistochastic matrix.

Now we prove that y ∈ C. Edmonds (1965) proves that a symmetric bistochastic

matrix z belongs to C if and only if, for every r ∈ N and every I ′ ⊂ I with |I ′| =

2r+1,
∑

(i,j)∈F zi,j ≤ r, where F ⊂ I ′×I ′ is such that there does not exist (i, i) ∈ F
and for every (i, j) ∈ I ′ × I ′ with i 6= j, either (i, j) ∈ F or (j, i) ∈ F but not

both. For any such F , kF = r because I ′ is odd and we can form r pairs among

the 2r elements of I ′ that can be paired. Since F ∈ F , then, y satisfies Edmonds’

inequalities and thus y ∈ C. Since x ≤ x′ ≤ y, x ∈ lcs(C). This means that

D ⊂ lcs(C).
To prove lcs(C) ⊂ D, consider any x ∈ C. Then x is the convex combination of

deterministic matchings xk. For each ∅ 6= F ∈ F and each i, there is at most one j

with xki,j = 1. By the definition of independent edge set, then
∑

(i,j)∈F x
k
i,j ≤ kF . So∑

(i,j)∈F xi,j ≤ kF . It is clear that x satisfies the other inequalities related to every

Ji. So x ∈ D. Then it means that lcs(C) ⊂ D. �
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