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COMPARATIVE STATICS BY ADAPTIVE DYNAMICS AND THE
CORRESPONDENCE PRINCIPLE

BY FEDERICO ECHENIQUE!

1. INTRODUCTION

THE INTUITION BEHIND COMPARATIVE STATICS results is usually dynamic in nature.
The economic explanation for why differences in endogenous variables result from varia-
tions in exogenous variables often takes the form of some sequential adjustment process.
For example, consider the account by Milgrom, Qian, and Roberts (1991) of technological
and organizational changes in modern manufacturing: “. . . the falling costs of high-speed
data communication, data processing, and flexible, multitask equipment lead to increases
in the directly affected activities, which through a web of complementarities then lead to
increases in a set of related activities as well.”

Despite the prevalence of dynamic economic explanations, the formal analysis is static.
In games of strategic complementarities (GSC; Topkis (1979), Vives (1990)), parameter-
ized by a variable that is complementary to the choice variables, the existing results on
monotone comparative statics of equilibria are summarized by a theorem of Milgrom and
Roberts (1990; MR hereafter): the largest and smallest equilibria in a parameterized GSC
are increasing in the parameter.’

GSC can have a large number of equilibria and there are no a priori reasons to expect
the largest or smallest equilibrium to be played. Thus the MR result only tells us how a
rather coarse summary statistic of the equilibrium set behaves. Moreover, a local approach
using the implicit function theorem can give a conclusion opposite to the MR result (see
Section 2). I claim that if we refine away equilibria that are unstable for adaptive dynamics,
we obtain unambiguous “monotone” comparative statics.

This paper presents results for economic models with complementarities; GSC are its
most important application. The paper has two main results. First, if players behave adap-
tively after a parameter increase, their choices in each round of play will be larger than
play before the increase. Second, if the GSC is parameterized by ¢ and e(t) is a selector
of equilibria—for all ¢, e(¢) is an equilibrium—that is continuous but not increasing in
t, then e(¢) selects equilibria that are unstable with respect to a broad class of adaptive
dynamics. These two results rely only on complementarity assumptions, and require no
topological structure on the models.

The second result above is a version of Samuelson’s Correspondence Principle. Samuel-
son (1947) obtains unambiguous comparative statics by refining away unstable equilibria:

! This paper is a shortened version of the third chapter of my dissertation at U.C. Berkeley. I
am very grateful to my advisors, Ilya Segal and Chris Shannon, for their encouragement and help.
I thank Rabah Amir, Robert Anderson, Juan Dubra, Néstor Gandelman, Ernesto Lopez Cérdova,
Marcelo Moreira, Charles Pigh, Matthew Rabin, Tarun Sabarwal, and Miguel Villas-Boas. I also
wish to thank two anonymous referees for their thoughtful comments; and seminar participants at
U.C. Berkeley, the 1999 LACEA conference, the conference in honor of Rolf Mantel organized by
universities Di Tella and San Andrés, and the 2000 World Congress of the Econometric Society.

2See also Lippman, Mamer, and McCardle (1987), Sobel (1988), and Milgrom and Shannon
(1994). Topkis (1998) contains an exposition of the theory.
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he applies the Implicit Function Theorem to smooth “equilibrium conditions” and inte-
rior, stable, equilibria of simple one-dimensional economic models. It turns out that, in
multi-dimensional models, the principle does not yield unambiguous comparative statics
(see Arrow and Hahn (1971) and Echenique (2000)). In general, stability is not enough
to determine the direction of comparative statics.

This paper shows that Samuelson’s principle holds in models with complementarities,
in particular in GSC and in general equilibrium models with gross substitutes. The Corre-
spondence Principle presented here has the same advantage over Samuelson’s as the new
comparative statics methods—the theorems of Topkis and Milgrom and Shannon—have
over the use of the Implicit Function Theorem (see Milgrom and Shannon (1994)). No
convexity or smoothness of the maps or spaces involved is needed, no Inada conditions,
no need to restrict to Euclidean spaces. Given the importance of increasing returns and
other nonconvexities in many areas of economics, it is important to have methods that do
not require convexity. A final advantage of this version of the Correspondence Principle
is that the dynamics used encompass a wide array of behavioral assumptions. In this sense
the results are robust to the specification of out-of-equilibrium dynamics. In Echenique
(2000) I present Farrell and Saloner’s (1985) network externalities model as an example
that brings out these points: for comparative statics in network externalities models, none
of the existing comparative statics methods are useful.

I also prove that comparative statics that is monotone selects equilibria that are stable—
a converse to the Correspondence Principle. This result requires topological assumptions.
Thus, with some qualifications, monotone comparative statics in models with complemen-
tarities is the same as stability.’

In GSC with continuous payoffs and compact choice sets, Vives’s (1990) results on
learning imply that Cournot dynamics converges to a larger equilibrium after an increase
in a parameter. I isolate the effect of the parameter increase on the subsequent dynamics
from the continuity and compactness necessary to obtain convergence to an equilibrium.
The distinction is analogous to monotone comparative statics for decision problems—
where topological conditions are needed to guarantee that optima exist but the compar-
ative statics conclusion does not depend on them. I work with adaptive dynamics that
is more general than Cournot. The resulting theorem allows me to prove a version of
the Correspondence Principle that is free from topological assumptions and robust to the
specification of (adaptive) learning.

The paper proceeds as follows. Section 2 motivates and gives some intuition for my
results. Section 3 presents definitions and notation. Section 4 contains the main results.
Section 5 discusses the limiting behavior of learning after a parameter change, and the
converse to the Correspondence Principle.

2. MOTIVATION AND INTUITION

We find ourselves confronted with this paradox: in order for the comparative statics analysis
to yield fruitful results, we must first develop a theory of dynamics.
Samuelson (1947, p. 262).

3 In a smooth model with local strategic complementarities, Dierker and Dierker (1999) show that
local comparative statics is monotone if and only if a dominant diagonal condition is satisfied. This
condition can be related to stability with respect to best-response dynamics; this is, to the best of my
knowledge, the only precedent to my result.
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Consider the following game. Two workers choose simultaneously the effort level x €
[0, 1] that they put into a common task. They use a common technology whose productivity
is indexed by a real number ¢; a higher value of ¢ implies a higher productivity. Let 3;(x, t)
be worker i’s optimal choice of effort when the other worker chooses x, i.e. her best-
response function. Then, B(x, t) = 8;(B,(x, t), t) is called the composed best-response
function, and the Nash equilibria of the game coincide with the fixed points of B(., ¢).
Assume that the players’ efforts are complementary so that 3;(x, ¢) is increasing in x,
and that higher productivity makes each agent want to work harder so that B;(x, ) is
increasing in t. Figure 1 shows a typical best-response function for a GSC like the one
described. The dotted graph represents the game after an increase in the parameter and
%(t) is the equilibrium set.

Figure 1 shows that, in accordance with the MR result, the smallest and largest equi-
libria increase after an increase in . We might expect agents to be playing equilibrium e,,
in which case the results for extremal equilibria are silent. On the other hand, for small
parameter changes the Implicit Function Theorem gives local comparative statics at each
equilibrium. If we expect e, to be played we obtain a conclusion opposite to MR’s result:
e, the closest “new” equilibrium, is smaller than e,.

Samuelson’s Correspondence Principle (CP) says that, selecting equilibria that are sta-
ble for some reasonable out-of-equilibrium dynamics gives unambiguous comparative stat-
ics results. Note that e, and €} are unstable for the “Cournot best-response dynamics,”
x, = B(x,_y, t). It seems then that, unless there is a reason for selecting extremal equilib-
ria, the old methods of comparative statics coupled with the selection criterion of choosing
stable equilibria have an advantage over the new literature.*
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FIGURE 1.—An increase in ¢.

4 Pareto optimality or coalition proofness are reasons to select extremal equilibria in, e.g., games
of coordination failures. But also in many of these examples the interesting feature of the model is
that the socially optimal equilibria may not be selected (as in network externalities or macroeconomic
coordination failures).
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In the example, since all increasing selections of equilibria pick stable points, the
Implicit Function Theorem coupled with the CP yields unambiguous comparative statics
results. MR’s result does not give a conclusive answer to how the endogenous variables
change after an increase in ¢. This paper shows that if the new methods are endowed with
the CP, then they too yield unambiguous comparative statics. The two main ideas can be
illustrated using the example:

1. If the workers are at an equilibrium and there is an increase in productivity, then
each one will desire to increase her effort. If both agents realize this, then, because of
complementarity between efforts, they will want to further increase their efforts. This
suggests that any prediction of play after an increase in the parameter should involve
larger efforts than the original equilibrium. For example, consider the “Cournot best-
response dynamics,” where, in each round, players select a best response to last round’s
play. In Figure 1 it is easy to see that this dynamic in the #’-game, starting at any of the
three equlibria for the #-game, converges to a larger equilibrium (illustrated by the arrows
in Figure 1).

2. What is wrong with equilibrium e,? Since e, has arbitrarily close smaller equilibria
corresponding to larger parameter values, then, by starting at any of these smaller equi-
libria, decreasing the parameter to ¢ and reasoning as in item 1 we obtain a prediction of
play that is yet smaller. For this reason, e, must be unstable under any dynamics obtained
by reasoning as in item 1.

On the other hand, by looking at the change from e, to €] and from e; to €} it can
be seen that these selections are increasing and select stable equilibria. Hence, in this
picture, stability is the same as monotonicity. Since instability of equilibria usually leads
game theorists (and probably players too) to doubt that players will select a particular
equilibrium, my results imply that we should be at least suspicious about a selection of
equilibria that is not monotone in the parameter.

3. DEFINITIONS AND NOTATION
3.1. Standard Definitions

A detailed discussion of the concepts defined in this subsection can be found in Topkis
(1998). A set X with a transitive, reflexive, antisymmetric binary relation < is a lattice if
whenever x, y € X, both x Ay =inf{x, y} and x vy =sup{x, y} exist in X. It is complete
if for every nonempty subset 4 of X, inf A,sup A4 exist in X. A nonempty subset A
of X is a sublattice if for all x,y € A, x Ay y,xVyy € A, where x Ay y and x Vv y are
obtained taking the infimum and supremum as elements of X (as opposed to using the
relative order on A). A nonempty subset A C X is subcomplete if B C A, B # & implies
inf y B, supy B € A, again taking inf and sup of B as a subset of X. I will use < to denote
the order on lattices and < to refer to the order on indexes and R. The set {z € X : x < z}
will be denoted [x, M].

Say that a correspondence ¢ : Z — X is weakly increasing if, for any x, x’ € X with x < x/,
we have inf ¢(x) < inf ¢(x") and sup ¢(x) < sup ¢(x'). Say that ¢ is strongly increasing if,
for any x,x’ € X with x < x’, we have sup ¢(x) < inf ¢(x"). When ¢ is a function, i.e.
single valued, both concepts coincide with the usual notion of “monotone increasing.”

A function g: T — X is nowhere weakly increasing over an interval [t, 7] if ¢,¢ € [¢,7]
and ¢ < ¢’ implies g(x) £ g(x’). This is not just the negation of weakly increasing; it rules
out the existence of any subinterval of [¢, 7] over which the function is increasing.
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3.2. The Model

I present results for a parameterized family of models that possesses a complementarity
property. The main examples of such a class of models are games of strategic complements
(GSC). GSC were developed by Topkis (1979) and first introduced into economics by
Vives (1990). GSC are very common in economic applications; see Topkis (1998) and
Vives (1999) for an exposition of the theory and many economic examples.

Let T be a partially ordered set. An increasing family of correspondences (¢,,t € T) is
a correspondence ¢ : X x T'— X such that x > ¢,(x) is weakly increasing and ¢ — ¢,(x)
is strongly increasing. Let X be endowed with the order-interval topology (see Topkis
(1998)). If, in addition, x > ¢,(x) is upper-hemicontinuous and subcomplete-sublattice-
valued, then it will be called an increasing family of uhc correspondences. Let € ={x € X :
x € ¢(x)} be the set of fixed points of ¢. When (¢,, t € T') is a family of correspondences,
the notation will be €(¢) = {x € X : x € ¢,(x)}.

Each ¢, can be interpreted as the best-response correspondence of a parameterized
game. The fixed points of ¢, are the Nash equilibria of the game when the parameter
takes value . In Echenique (2000) I show that if a game satisfies Milgrom and Shannon’s
(1994) complementarity assumptions (theirs is an ordinal generalization of the class of
GSC), then its best-responses are an increasing family of correspondences. If, in addition,
it satisfies Milgrom and Shannon’s continuity assumptions, then its best-responses are an
increasing family of uhc correspondences. This implies that the reduced forms of Topkis’
(1979) and Vives’ (1990) definitions of GSC fall within the framework of this paper.
Besides generality and parsimony, an advantage of this model is that comparison with
non-GSC results (such as Milgrom and Roberts (1994) and Villas-Boas (1997)) is easy.

3.3. Dynamics

Think of ¢ : X - X as the best-response correspondence of a game. I shall use the
information about the game contained in ¢ to specify sequences {x,} in X. For exam-
ple, Cournot dynamics is given by x, € ¢(x,_;); it is called an adaptive learning process
because in each period k players adapt their choices to past play x,_;. I shall work with
families of such learning dynamics, specified adaptively, but in an otherwise fairly general
manner.’ Given a sequence {x;} in X, let H, = {x,,...,x,_,} be the history at k.

DEFINITION 1: Let X be a lattice and ¢ : X - X a correspondence. A sequence {x;}
in X is called generalized adaptive dynamics from ¢ if inf ¢(inf Hy) < x, < sup ¢(sup Hy)
for all £ > 1. Let 9(xy, ¢) be the set of all sequences that are generalized adaptive
dynamics from ¢ and start at x,.

Consider a Bertrand oligopoly game and let ¢ be its best-response correspondence.
A sequence {x,} of price choices by firms in Bertrand competition is in @(x,, ¢) if: in
each period k, firms choose prices that are larger than the smallest optimal prices if they
conjecture that all other firms choose their lowest prices in the history of play; but smaller
than the largest optimal prices if they conjecture that all the other firms will choose the
largest prices they have chosen so far. Suppose there are three firms and let k£ = 3. If firms
One and Two have set prices (1, 3) and (3, 1) in the last two periods, then firm Three is

> When ¢ is the reduced form of a general equilibrium model, or an IS-LM model, instead of a
game, the dynamics will have tatonnement-like interpretations.
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“allowed” to set any price between its smallest best response to (1, 1) and its largest best
response to (3, 3).

In GSC, examples of generalized adaptive dynamics include fictitious play (as
best response to historic frequency of play) and, when players’ choices are one-
dimensional, also local “better-response” dynamics like gradient optimization algorithms.
See Echenique (2000) for a comparison with the general adaptive dynamics in Milgrom
and Roberts (1990) and Milgrom and Shannon (1994).5 7 An important example of adap-
tive dynamics is s4(x, ¢) = {{x; 7y : Xo =%, X, € ¢(x,_1), k = 1}, the class of simple adap-
tive dynamics. The members of s¢(x, ¢) take the form of Cournot dynamics in games and
tatonnement price adjustment in market models. Clearly, ((x, ¢) C U(x, ¢).

A correspondence ¢ : X — X here defines a class of dynamics, as opposed to the
unique trajectories generated in the dynamical systems that are normally studied. This
introduces ambiguity in the usual notions of stability. The following definitions capture
this ambiguity.

DEFINITION 2: Let ¢: X —» X and, for all x € X, %(x, ¢) C X(x, $). A point £ € X is
best-case stable for (., ¢) if there is a neighborhood V of £ in X such that for all x in
V, there is a sequence {x,} € F(x, ¢) with x, — £. A point £ € X is worst-case stable for
(., ¢) if there is a neighborhood V' of £ in X such that for all x in V' and all sequences
{x:} € B(x, p), x, — .

Worst case is a (much) stronger notion of stability than best case. The results in this
paper give the strongest possible conclusions: “wrong” comparative statics choose equilib-
ria that are not even best-case stable, while “correct” comparative statics select worst-case
stable equilibria.

4. DIRECTION OF DYNAMICS AND THE CORRESPONDENCE PRINCIPLE

The paper’s main results are presented as Theorems 1 and 2. Theorem 1 captures, in a
general framework, the intuition in Section 2 for GSC. It provides the comparative statics
conclusion that the state of a system that is perturbed upwards is permanently larger.
Think of e as the state of the system before the change, of ¢(e) as the state immediately
after the change, and suppose that the elements of (e, ¢) describe the future evolution
of the system.

THEOREM 1: Let ¢ : X —» X be a correspondence on a lattice X. If e < ¢(e) and ¢ is
weakly increasing on [e, M|, then e is a lower bound on any sequence {x;} in %(e, ¢).

PROOF: 1 will show by induction that e is a lower bound on H, for all k, which proves
the theorem. First, since {e} = H; the statement is true for k = 1. Second, if e is a
lower bound on H,_,, then inf H,_; € [e, M]. Since ¢ is weakly increasing in this interval,

6 The backward-looking behavior implicit in adaptive play may seem too naive. The definition also
allows some degree of forward-looking behavior. Any finite number of rounds of “I know that you
know ... that I play a best response to H,” will satisfy the definition since they are just iterations
of ¢.

7 Dynamics in @(x, ¢) need not be monotone, but, crucially, the “extremal” members of %(x, ¢)—
those that select the smallest and largest feasible play in each round—are monotone in the cases
studied in the paper.
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inf ¢(e) < inf ¢(inf H,_,). Now, e < inf ¢(e) and inf ¢(inf H,_,) < x, imply that e < x,.
Since H, = H,_; U{x,}, the inductive hypothesis and e < x, imply that e is a lower bound
on H,. Q.E.D.

For GSC with continuous payoffs and compact choice sets, that dynamics in s{(e, ¢)
converge to a larger equilibrium after an increase in a parameter can be obtained as a con-
sequence of Vives’s (1990) results on learning (his Theorem 5.1; see also Theorem 2.1 in
Vives (1999)).2 Theorem 1 isolates the effect of the increase on the subsequent dynamics
from the continuity and compactness assumptions that are needed to ensure convergence
to an equilibrium. It is a simple fact about the order structure of the problem; there is no
implication for convergence to equilibria beyond the remark that if play converges it has
to be to a point that is larger than e.

Theorem 2 proves that a continuous selector e(¢) € €(¢) that is not monotone increasing
must be picking unstable equilibria. The intuition is simple. If, in any neighborhood of e(¢)
there is e(¢") with ¢’ < ¢ and e(¢') £ e(t), then, starting the ¢,-dynamics at e(¢) Theorem 1
says that play is bounded below by e(¢') and hence cannot converge to e(¢). Thus e(¢) is
unstable.

THEOREM 2: Let (¢,,t € T) be an increasing family of correspondences on a lattice X
and T C R" be convex. Let e: T — X be a continuous selection from (€(t):teT). If
e is nowhere weakly increasing over some interval [t,t] in T then, for all t € [t,7] with
t<t=<1,e(t) is not best-case stable for %(., $,).

PROOF: Let ¢ € [¢,7] with t <t <7 and let V' be a neighborhood of e(f). Choose
fee ' (V)N[t, 7] with £ < ¢, so e(f) £ e(t). Then e(f) e V. Let {x,} € D(e(?), ¢,). Now,
e(?) € ¢p;(e(?)) and 7 < t so e(f) < inf ¢,(e(?)). By Theorem 1, e(f) is a lower bound on
{x,}, so any accumulation point a of {x,} satisfies ¢(f) < a. Then e(f) £ e(t) implies
a # e(t). In particular x;, - e(?). Q.E.D.

REMARKS: (i) Theorem 2 does not impose any topological structure on the model.
(ii) Theorem 2 applies when elements of {e(¢) : ¢ € [¢,7]} are not ordered. (iii) Since
si(e(t), ¢,) C D(e(t), ¢,), nonincreasing selections are not best-case stable with respect

to si(., b,).

The meaning of Theorem 2 is that, if ¢ — e(¢) is not monotone, a perturbation in ¢
will move the system away from e(¢). The continuity assumption in ¢ > e(¢) casts this
fact as instability. Alternatively, we could not impose continuity on ¢ > e(¢) and say that
nonmonotone selectors will make predictions that are not robust to perturbations in the
parameter.’

5. LIMITS OF ADAPTIVE DYNAMICS AND A CONVERSE TO
THE CORRESPONDENCE PRINCIPLE

I present results on the limit behavior of adaptive dynamics after a system is subject
to a parameter change. I use these results to prove a converse to the Correspondence
Principle.

8 The first to use complementarities to obtain a result of this kind seem to be Deneckere and
Davidson (1985), in an analysis of mergers in a differentiated Bertrand setting (I am grateful to a
referee for pointing this out).

° For results on stability without imposing continuity of ¢ — e(t), see Echenique (2000).
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To obtain results on the limit behavior of learning dynamics, the effect of events that
occurred a long time ago must eventually disappear. Given a sequence {x,} in X, let
H} ={x;_,,..., %} denote the history of length v at time k (set x_, =x, for 1</ <7y
to simplify notation). Let @/ (x,, ¢) be the set of sequences {x,} for which there is y € N
with the property that inf ¢ (inf H]) < x; < sup ¢(sup H}) for all k > 1. Thus, &/ (x,, ¢)
are the sequences of choices that are justified in terms of, possibly long, but bounded
histories of play. Note that s(x, ¢) C 2/ (x, ¢) C D(x, ¢). I will denote the set of limits
of adaptive dynamics starting at x € X by F(x,¢)={ze X : Hx,} € @/ (x,d) s.t. z =
limy, x; }.

Theorem 3 requires an uhc correspondence. The main application is to continuous
functions and best-response correspondences arising from GSC with continuous payoffs.
For GSC with continuous payoffs, item 3 in the Theorem follows from Vives (1990,
Theorem 5.1). But Theorem 3 provides additional information about the limits of adap-
tive behavior after an increase in a parameter: the limits have a largest and a smallest
element that are equilibria larger than the state before the parameter increase—and all
accumulation points of adaptive behavior after a parameter increase are bounded by these
extremal equilibria. The proof of Theorem 3 is in the Appendix.

THEOREM 3: Let X be a complete lattice and x € X. Let ¢ : X — X be an uhc corre-
spondence that is weakly increasing on [x, M. If x <inf ¢(x), then:

1. F(x,¢) has a smallest and a largest element, infF(x,¢) and sup F(x, ¢), with
infF(x, ¢), sup F(x, ¢) € € and inf F(x, $) =inf{z € € : x < z};1°

2. for all {x;} € % (x, ¢),inf F(x, ¢) < liminf, x, < limsup, x, <sup F(x, ¢);

3. if, in addition, ¢ is strongly increasing over [x, M), then for all {x,} € s(x, ¢), lim x;
exists, x <lim x;, and limx; € F(x, $)NE.

Theorem 3 implies that {z € €: x < z} is nonempty. This fact yields a simple proof of
MR’s comparative statics result for extremal equilibria (and of Milgrom and Shannon’s
(1994) generalization to ordinal GSC).

COROLLARY 1 (Milgrom and Roberts (1990), Milgrom and Shannon (1994)): Let
(¢,,t € T) be an increasing family of uhc correspondences. Let t,t' € T such that t < t'.
Then inf €(¢) <inf €(t') and sup€(t) < supE(t’).

PROOF: Suprema and infima are well defined since by Zhou (1994) the set of fixed
points is a complete lattice. Let e = sup €(¢). Then, by Theorem 3, e < inf F(e, ¢,) <
sup €(¢’) since inf F(e, ¢,) € E(¢'). The result for infima follows analogously. Q.E.D.

I show that monotone comparative statics imply stable equilibria. It is rather strong that
stability follows from the comparative statics property of the selection of equilibria alone;
this comes at the cost of imposing more structure on the problem: Euclidean spaces,
stronger monotonicity assumptions and locally isolated equilibria.

A fixed point e(t) € B(¢) of the correspondence ¢, is isolated if there is a neighbor-
hood V of e(¢) in X such that V' NE(t) = {e(¢)}. The interior of the interval [¢,7] in R" is
denoted by [¢, 7]°. The role of local isolation and strict monotonicity is to produce “asymp-
totic stability”—that the dynamics converge back to the equilibrium after a perturbation.
A weaker stability conclusion, that the dynamics remain “close by,” can be obtained with-
out these two hypotheses.

10 ¥  R", then inf F(x, ¢) is also the closest larger equilibrium.
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THEOREM 4: Let X CR" and (¢,, t € T) be an increasing family of uhc correspondences
with T C R" convex.!! Let e : T — X be a continuous selection from (€(t):teT). If e is
strictly increasing'? over some interval [t, 7] and e(t) is isolated, with t € [t, T]°, then e(t) is
worst-case stable for 37 (., ¢,).

PROOF: Let f € [¢,7]° be such that e(z) is isolated. Let N be a neighborhood of e(¢)
with NNE(t) = {e(¢)}, and let P ={x € R™ : 0 < x} be the positive cone in R". Let B,
and B,, be open balls contained in N with center e(f) and radii r and 2r, respectively.
Take £, 1, € e”}(B,)N[t, 7]° with £, € < t,. Note then that [e(t,), e(t;)] C B,,. To see
this, set e(¢) = 0 without loss of generality. If x € [e(t), e(;)], then x Vv 0 < e(¢;) and
(—x) A0 =< —e(ty). Then

x| =xVO0+(=x)A0 =< e(t;) —e(ty)
=0V (e(t;) +e(t)) =0 (e(ty) +etg)) = le(ty) +e(ty)]
so, since || - || is a lattice norm, ||x|| < |le(#,) +e(t,)||. But e(¢,), e(t,) € B, so

llx]l = 2max{lle(so) ], lle(e)ll} < 27

Hence x € B,,.

Now, e(t)) < e(t) K e(t), i.e. e(t) € e(ty) + P° and e(t) € e(t;) — P°. Let V = (e(ty) +
P°)yn(e(t;) — P°)N X, an X-relatively open neighborhood of e(¢). The claim is that V'
satisfies the definition of worst-case stability.

Let the sequences {y,} and {z,} be such that y, = e(t),z, = e(t,;), and y, =
inf ¢,(y,_1), z, =sup¢,(z,_;) for all n>1. Then {y,} and {z,} are simple adaptive play
from ¢, and, by Theorem 3, y, — ¢’ and z, — ¢” with €', ¢” € %(t). Now, for any x € V/, let
{x,} be some arbitrary generalized adaptive play from ¢, starting at x, = x. By Lemma 1
in the Appendix applied twice, y, < liminf, x, <limsup, x; <z, for all n. This implies
that ¢’ < liminf, x;, < limsup, x;, < e”. But ¢,¢” € [e(ty), e(t;)] C B,, C N and there-
fore ¢’ = ¢” = e(t) by local isolation. Then, e(¢) < liminf, x, < limsup, x; < e(t), so that
x; — e(t). Thus V satisfies the definition of worst-case stability. Q.E.D.

Facultad de Ciencias Sociales, Universidad de la Repiiblica, and Departamento de
Economia, Universidad Torcuato di Tella, Mifiones 2177, C14284TG Buenos Aires, Argentina
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APPENDIX: PROOF OF THEOREM 3

The following lemma is a version of MR’s Theorem 8 for the present context. It is used here as
an auxiliary result in the proof of Theorem 3.

Define iterations of the lower selections from ¢ by ¢’(x) = inf ¢(x), @"(x) = inf ¢(f”‘1(x)) for
all x and n > 1. Define iterations of the upper selections ¢ (x) similarly.

"' The theorem is true when X is a subset of a Banach lattice whose order cone has a nonempty
interior; the proof uses only this structure.
12 A function f on a Euclidean space is strictly increasing if x < y implies f(x) < f(y).
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LEMMA 1: Let X be a complete lattice and ¢ : X - X. Fix x € X and {x;} € 9/ (x,¢). If x <
inf ¢(x) and ¢ is a uhc correspondence that is weakly increasing on [x, M], then, for all n € N, there
exists K, € N such that k > K, implies x, € [¢"(x), ¢"(M)].

PROOF: The proof proceeds by induction on n. To get the result for » = 0, do induction on
k using K, = 1: First, note that H} = {x,} and x, = x so x, € [¢(inf H)), J)(suley)] implies that
G(x) = x; =< ¢(x). Also, by weak monotonicity on [x, M], ¢(x) < ¢(M) so x, € [¢(x), (M)]. Suppose
now that ¢(x) < x, for all 1 </ <k —1, so ¢(x) is a lower bound on H. Then x <inf $(x) = ¢(x) <
inf H}. So, inf H] e [x, M] and weak monotonicity of ¢ gives inf ¢(x) =< inf ¢(inf H]). But then
inf ¢ (mf H]) < x;. Also, M is an upper bound on H} and x < inf H; <sup H} < M. By monotonicity
on [x, M],x,\, < ¢(sup H) = supd(sup H}) < sup p(M) = $(M). Hence, x, € [¢(x), $(M)]. This
establishes the result for n =0 with K, =1. -

Now, let K,_, work for n—1 in the statement of the lemma. Set K, = K,_, +v. Pick any k > K,,. By
the inductive hypothesis, for any x, € H], g"—'(x) =< x;. Thus g""(x) is a lower bound on H] so we
get ¢"7'(x) < inf H). This implies that inf ¢(¢"~' (x)) < inf $(inf H]) because ¢ is weakly increasing
on [x,M] (and x < g"'l(x) by x <inf ¢(x) < Q”'l(x)). Thus, ¢"(x) < ¢(inf H]) < x;. Similarly,
by the inductive hypothesis, ¢"~ '(M) is an upper bound on H] and therefore sup ¢(sup H)) <
sup ¢(¢"~'(M)). This gives x, < ¢"(M). QE.D.

LEMMA 2: If {x,} is a monotone sequence in a complete lattice X, then {x,} is convergent and
lim, x, =V, x;."

PROOF: Let A4 be the range of {x,} and x* =sup 4 =/, x,. Note that x* is also the supremum
of the range of any subsequence of {x,} since by monotonicity the range of any subsequence has the
same set of upper bounds. Let V' be any neighborhood of x*. The claim is that eventually x, € V'
for all k. Since V¢ is closed and the closed order intervals are a sub-basis for the closed sets in the
order interval topology, there is a collection {UJ_,[a!, b ]:i e I} with V¢ =, U_,[a., b ] (this
is without loss of generality since any al or b} may be inf X or sup X because X is complete). But
x* & V¢ so there is j € I with x* ¢ U,,, 1[am, m] Now, for any m = 1. .. n; there can only be a finite
number of elements of {x;} in [am, bl ). To see this note that if there i 1s a subsequence {x,, } with
al, < X, < b}, foralll e N then a}, < x,, < x* and b), is an upper bound on the subsequence so
x* <bl. Hence x* €[al,, bl ], a contradiction. Since #; is finite, there can only be a finite number of
elements of {x,} in U»M [ai, b)]. Hence, eventually, X & Mier Uni_i[al,, bl ] = V*. Since V was an

arbitrary neighborhood, x; — x*. Q.E.D.

m >Tm

PROOF OF THEOREM 3: Define the sequences {x.}, {y,} by x, =y, = x and x;, = f"(x) and
yi = ¢*(x) for k > 1 (all infima and suprema are well defined by the completeness of X). First I will
show by induction that {x, } and {y,} are sequences in [x, M]. Since x <inf ¢(x) < sup p(x), xo=x <
X, =y, If x < x4, then x, x,_, € [x, M]. By weak monotonicity of ¢ on [x, M], then, x < inf ¢(x) <
inf ¢(x,_,). This implies that x, € [x, M]. The argument for {y,} is identical.

Now, ¢ is weakly increasing on [x, M] and x, < x; < y,, s0 x,_; < x; and y,_, <y, for all k. Thus,
{x} and {y,} are monotone sequences in X. By Lemma 2, x, — x* =\/, x, and y, = y* =\, y:.

Also, ¢ is subcomplete and sublattice valued on [x, M], so x;, € ¢(x,_,) for all k > 1 and thus
{x;} € A(x, d) € D (x, ¢). This implies that x* € F(x, ¢), and thus F(x, ¢) is nonempty. Now, set
z, = Xy € ¢(x,) for all k > 1. Since x, — x* and ¢ is upper hemicontinuous on [x, M] and closed
valued (see Theorem 14.17 in Aliprantis and Border (1994)), there is z € ¢(x*) and a subsequence
{zi,} of {z;} such that z, — z. But {z,,} is also a subsequence of {x,}, and the order interval
topology on X is Hausdorff because X is a complete lattice, so z = x*. Then x* € ¢(x*) so x* € 8.
Clearly, x = x, < x* since x* = sup A. The reasoning for {y,} is analogous and gives y, — V¥ €
F(x, p)NE.

13 The notation V. X, refers to the supremum of the range of the sequence {x,}.
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Let {z;} € 2'(x, ¢) and let {x,} and {y,} be defined as above. I will show by induction that
{y:} is pointwise larger than {z,}. First, x, < z, < y, trivially. If x, <z, <y, forall 1 <l <k-1,
then z,_, € [x, M], and y,_, =sup{y, : 1 < <k —1} is an upper bound on H;. Then sup H} < y,_;.
By weak monotonicity, then z, < sup ¢(sup H}) < sup ¢(y,_,) = y,. Hence, {y,} is pointwise larger
than {z,}, which implies that the set of upper bounds of the range of {y,} is contained in the set of
upper bounds of {z,}. But y, — y* =\/, y, so limsup, z, < y*. By Lemma 1, for all n, x,, = ¢"(x) <
liminf z,. Thus liminf z, is an upper bound on the range of {x,}. But x, — \/, x, = x*, so we get
x* = liminf z,. Hence, x* < liminf z, < limsupz, < y*. In particular, if {z,} € 9/ (x, ¢) is convergent
the corresponding limit will also be in [x*, y*]. Thus, x* and y* are, respectively, lower and upper
bounds on F(x,¢) and since x*, y* € F(x, ¢) this implies x* = inf F(x, ¢) and y* = sup F(x, ¢).
Hence F(x,¢) is nonempty and has a smallest element, inf F(x, ¢) € €, and a largest element,
sup F(x, ¢) € €. This proves the first half of item 1 and item 2.

To finish the proof of item 1, first note that x < inf F(x, ¢), since inf F(x, ¢) = \/, x,. Together
with inf F(x, ¢) € € this implies that {z € €:x <z} # @. Let e € {z € €: x < z}. By induction I
show that e is an upper bound on the range of {x,}. First note that x, = x < e implies x, e € [x, M].
Then, x,_; < e and weak monotonicity of ¢ on [x, M] imply that x, = inf ¢(x,_,) < inf ¢(e) and
X € [x, M]. But e € ¢(e) so inf ¢p(e) < e. Thus, x, < e for all k. Since inf F(x, ¢) =/, x, this implies
that inf F(x, ¢) is a lower bound on {z € €: x < z}. But we proved that inf F(x, ¢) € {z€ €:x <z},
thus proving item 1 of Theorem 3.

Finally, assume that ¢ is strongly increasing over [x, M]. Let {z,} € s¢(x, ¢). By the argument
above, {z,} is a sequence in [x, M] and z, = x < z,. Since ¢ is strongly increasing, z,_, < z;_,2z;_; €
¢(z,_,) and z, € ¢(z,_;), we conclude that z,_, < z,. Inductively, then, {z,} is monotone. By repeat-
ing the argument made above for the infimum selection {x,}, we obtain that lim, z, exists and
lim, z, € €. Since {z,} € ¢(x, ) C W' (x, ¢),lim, z, € F(x, ¢). This proves item 3 in Theorem 3.

QE.D.
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