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Abstract. We characterize choice rules for schools that regard

students as substitutes, while at the same time expressing prefer-

ences for the diversity composition of the student body. The stable

(or fair) assignment of students to schools requires the latter to re-

gard the former as substitutes. Such a requirement is in conflict

with the reality of schools’ preferences for a diverse student body.

We show that the conflict can be useful, in the sense that certain

unique rules emerge from imposing both considerations.

. . . controlled choice provides local officials with a final

student assignment policy that maximizes family choice

and effective desegregation outcomes on a districtwide

basis, provides stability of assignment . . . , and makes

all schools and programs available to students of diverse

racial, ethnic, and socioeconomic backgrounds (Alves and

Willie, 1987, Page 75).

1. Introduction

Recent school choice programs seek to install a stable (or fair) as-

signment of students to schools (Abdulkadiroğlu and Sönmez, 2003;

Abdulkadiroğlu, Pathak, Roth, and Sönmez, 2005). This objective is

severely compromised by school districts’ concerns for diversity. Under

diversity considerations, a stable assignment may not exist, and the

mechanisms used in reformed school districts may not work.
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There is a very basic tension between diversity considerations and

the requirements of stable matching: diversity concerns will introduce

complementarities in schools’ preferences; the theory requires substi-

tutability. If a school is concerned with gender balance, for example,

then it may admit a mediocre male applicant only because it allows

the school to admit an excellent female applicant, while maintaining

gender balance. The two students are thus complements, not sub-

stitutes, for the school. Complementarities in the school’s choices of

students are a problem because the theory, and the mechanism pro-

posed in school choice programs, require that students are substitutes

in schools’ choices. We are far from the first to recognize this problem:

Section 1.1 below discusses the relevant literature. The idea that diver-

sity clashes with stability is very easy to recognize; in Section 1.2 we

present a particularly simple example of the incompatibility between

stability and diversity concerns.

Our paper seeks to reconcile diversity with the objective of seeking

a stable matching of students to schools. We characterize the schools’

choices that are compatible with both diversity considerations and the

theory of stable matchings. There is so much tension between substi-

tutability and diversity that one might think no choice rule can satisfy

both. We prove that this does not need to be the case: We study the

choices that satisfy certain normative axioms, one of them being sub-

stitutability, and show how combinations of axioms give rise to unique

choice procedures, some of which are already implemented in practice.

Our procedures allow schools to express concerns for diversity, while

allowing the standard mechanism (the one used in the school choice

programs guided by stable matching theory) to install a stable assign-

ment of students to schools.1

We assume that students belong to one of multiple types. Types

could be categories of gender, socioeconomic status, race or ethnicity.

1We do not propose any new mechanisms: we want a theory that will work
with the mechanisms that have already been accepted and adopted by multiple
school districts. Indeed, these mechanisms have been accepted across many different
market design problems (Roth, 2008), such as markets for entry-level professional
jobs, not only in the assignment of students to schools.
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In all our results, there is an “ideal” or “target” distribution that plays

a crucial role. For example, we axiomatize a rule that tries to minimize

the (Euclidean) distance between the distribution over types in the stu-

dent body, and some ideal distribution over types (see Section 4). A

common consideration is that each school should have a share of White,

Black, Hispanic, etc. children that matches, as close as possible, the

distribution of races and ethnicities in the relevant population (Alves

and Willie, 1987). Our rule operationalizes this consideration, where

the population distribution is the ideal to be reached for. The ax-

iomatization tells us what such a rule means, in terms of normative

qualitative criteria.

In two other rules, the school reserves a number of seats for each

type of students (majority quotas and minority reserves, see Section 5).

The number of seats reserved for each type is related to the target

distribution over types. Yet another rule (Section 4) seeks to maximize

a measure of diversity (for example the Theil measure of diversity, see

Theil (1967); Foster and Sen (1997)); the target distribution enters as

a parameter in the measure of diversity.

In Section 3 we give a brief overview of these rules and the cor-

responding axioms. The point of these results is that the rules are

uniquely determined by the normative considerations underlying our

axioms.

We imagine that a school district can discuss a menu of axioms, and

settle on the axioms that it deems most desirable. Basically, schools

have two sources of preferences. They have given “priorities,” which are

preferences over individual students. These priorities can result from

test scores, or from the distance of the student’s residence to the school

and other objective criteria. The school also has preferences over the

composition of the student body: these preferences come from concerns

over diversity. Now, the school or the district may combine these two

preferences in different ways. Our results give recommendations on how

the combination should be carried out so that the standard mechanism

in matching theory will work. If a school, or a district, agrees on a set

of axioms, then there will be a unique way of combining priorities and
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diversity preferences into a choice procedure for the school. As we shall

see, substitutability, imposed as an axiom, has very strong implications

for how priorities and preferences for the composition of the student

body should be combined.

As we explain in Sections 7 and 8, our rules are already similar to

policies being implemented around the world. We describe specific ex-

amples taken from the US and other countries. We argue that the

rules of minority reserves and majority quotas are similar in spirit and

implementation to many actual school admissions policies. Our results

provide a guide to the normative content of these policies, and show

how they can be tweaked to achieve a rule satisfying gross substitutes.

Ultimately we hope our paper can help guide the design of school ad-

missions for districts that wish to use stable matching mechanisms.

1.1. Related literature. Abdulkadiroğlu and Sönmez (2003) intro-

duced matching theory as a tool in school choice and noted the problem

with diversity concerns. Abdulkadiroğlu and Sönmez (2003) already

raise the issue of diversity; they offer a solution based on majority

quotas, one of the models we axiomatize below.

The last two years have seen multiple explorations into controlled

school choice and diversity concerns. Kojima (2010) shows that af-

firmative action policies based on majority quotas may hurt minority

students. To overcome this difficulty, Hafalir, Yenmez, and Yildirim

(2011) propose affirmative action based on minority reserves. They

show that the outcome of the deferred acceptance algorithm (DA) with

minority reserves Pareto dominates DA with majority quotas. More

generally, Ehlers, Hafalir, Yenmez, and Yildirim (2011) study affirma-

tive action policies when there are both type-specific upper and lower

bounds. They propose solutions based on whether the bounds are hard

or soft. In contrast, our paper seeks to endogenize the rules and con-

sider (possibly) all of them. Part of our research deals with the results

uncovered by Hafalir, Yenmez, and Yildirim (2011). There are other

papers that consider specific choice rules (Westkamp, 2010; Kominers

and Sönmez, 2012; Erdil and Kumano, 2012).
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In contrast with the other papers in the literature, our focus is not

on the market as a whole, but rather on the preferences or choices of

individual schools. We imagine the mechanism is fixed (the deferred

acceptance mechanism), and that we can design schools’ choices to

satisfy certain normative axioms.

We focus on school preferences, but student preferences may also in-

duce problems: for example students may care about their colleagues.

These problems are treated in Echenique and Yenmez (2007) and Pycia

(2012); they are outside the scope of the present analysis. We focus

here on diversity, and the effects of diversity on standard stable match-

ing theory. Our exercise pins down reasonable circumstances in which

schools may be concerned about diversity, and where the theory still

remains useful because schools satisfy gross substitutes.

Our paper is also related to the choice and social choice literature

since we study choice rules based on axiomatic properties. In par-

ticular, Rubinstein and Zhou (1999) characterize choice rules on the

Euclidean space given a reference point that chooses the closest point

in the set to the reference point. Our ideal point model is similar to

this in the sense that the distribution of the chosen set is closest to the

ideal point. However, the choice rule based on ideal points also needs

to specify the set of chosen students rather than just their distribution.

Some of the rules considered by ? are related to ours. For example we

also consider the “top N” rule for students of a given type. They do

not, however, discuss type composition as a consideration in choice.

1.2. Motivating example. In this example, we demonstrate the basic

conflict between diversity concerns and the existence of stable match-

ing. Suppose that there are two schools, c1 and c2, and two students,

s1 and s2. The students are of different “type.” For example, s1 and

s2 could be of different gender, race or ethnicity.

School c1 can admit two students, but it is constrained to mimic the

population representation of each type. So it must admit either both

students or none. School c2 has a single empty seat. It prefers to admit

student s1 over student s2.
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The students have preferences over schools as well: s1 prefers c1 over

c2, while s2’s favorite school is c2. The table below summarizes the

agents’ preferences.

c1 c2 s1 s2

{s1, s2} s1 c1 c2

s2 c2 c1

Now it is easy to see that no matching of students to schools is stable

(or “fair” to use the terminology in school choice). For example, if both

students are assigned to school c1 then s2 might request the empty slot

in school c2. School c2 finds s2 acceptable, so the pair (c2, s2) can

“block” this assignment (equivalently, s2’s claim to the empty seat is

“justified”). Similarly, if s2 is assigned to c2 then s1 would have no

place, as school c1 cannot admit an unbalanced student body. Then

s1 would claim s2’s spot in school c2. Since s1 has a higher priority

than s2 at that school, (c2, s1) can “block” this assignment. Thus the

assignment of s2 to c2 is unstable. Finally, if s1 is assigned to school c2

and s2 is unassigned, then both students would prefer school c1, and

school c1 prefers to get both of them. Therefore, (c1, {s1, s2}) can block

the assignment.

There exists no stable or fair assignment of students to schools in

this example. The reason is that c1’s preferences for diversity cause

the students s1 and s2 to be complements. Complementarities in the

school’s preference make it impossible to have a stable assignment.

2. Model

2.1. Notational conventions. For any vector x ∈ Zd
+, let ||x|| ≡∑d

i=1 xi be the sum of its coordinates. For any x, y ∈ Zd
+, let x ∧ y ≡

(min{x1, y1}, . . . ,min{xd, yd}) and x∨y ≡ (max{x1, y1}, . . . ,max{xd, yd})
be the infimum and supremum of x and y, respectively.

For a finite set A, |A| denotes the cardinality of A, and P(A) denotes

the power set of A.
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2.2. Admissions choices. We consider the admissions choices of an

individual school or college. A school’s admissions policy is described

by a choice rule that determines which students to admit from a pool

of applicants. Our model is therefore the model of abstract choice, one

of the most basic models in microeconomics: see for example Moulin

(1991), or Chapter 2 in Mas-Colell, Whinston, and Green (1995). Later

in the paper we study the market-wide implications of our results.

Let S be a nonempty finite set of all students . A choice rule is

a function C : P(S) \ {∅} → P(S) such that C(S) is a subset of S, for

all S ⊆ S. The interpretation of C is that, if a school had the ability

to admit its students out of the set S of students, then it would choose

C(S) to be its student body.

We shall assume that there is a positive number q such that |C(S)| ≤
q for all S ⊆ S. The number q is the capacity of the school: the

number of available seats that it has.

A priority or a preference on S is a binary relation on S that is

complete, transitive and antisymmetric (often called a linear order, or

a strict preference in the literature).

The set of students S is partitioned into students of different “types,”

these can be based on gender, socioeconomic factors, or race and eth-

nicity. Formally, there exists a set T ≡ {t1, . . . , td} of types , and a

type function τ : S → T ; τ(s) is the type of student s. Let St be the

set of type-t students, i.e., St ≡ {s ∈ S : τ(s) = t}. Similarly, for any

set of students S ⊆ S, let St ≡ S ∩ St.
We use a function ξ : P(S)→ Zd

+ to describe how many students of

each type a given set of students has. So we let

ξ(S) ≡ (|St1 |, . . . , |Std |) ∈ Zd
+,

which consists of the number of students of each type in S. We term

ξ(S) the distribution of students in S.
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We assume that the school is not large enough that it could admit

all students of a given type: q ≤ |St| for all t ∈ T .2

3. Characterizations of choice rules: Overview

Our paper deals with how to combine two considerations in forming a

school’s choice function. One consideration stems from the school’s pri-

orities over individual students. The second consideration is the com-

position of the student body, motivated by diversity concerns. There is

obviously a need to balance these two considerations because they are

not a priori compatible. As we have seen in Example 1.2, the conflict

between these two considerations can be resolved in a way that makes

stable matching impossible. Our guiding principle in performing this

balance is that stable matchings exist, and that the mechanism used

in school choice programs work as intended.

We achieve this principle by imposing the axiom of gross substitutes:

Axiom 1. Choice rule C satisfies gross substitutes (GS) if s ∈
S ⊆ S ′ and s ∈ C(S ′) imply that s ∈ C(S).

Gross substitutes says that if a student is rejected from S, and S ⊆
S ′, then she must be rejected from S ′. It says that no student should

be chosen because they complement another student. If all schools’

choices satisfy GS, then a stable matching exists and the mechanism

proposed by the recent school choice literature work well.3

Now, it so happens that GS plays more than one role in our theory.

All our rules allow a school to choose a high-priority student over a

low-priority student when they are of the same type, but they differ on

2This assumption is reasonable, but not important for our results. We only use
it because it makes it easier to write some of our proofs. As far as we know, none
of our results depend on it.

3GS was first studied by Kelso and Crawford (1982) and Roth (1984). GS is
sufficient for the existence of stable matchings and for the Gale-Shapley deferred
acceptance algorithm to find a stable matching. It is also in some sense necessary for
these properties to hold (Hatfield and Milgrom, 2005; Hatfield and Kojima, 2008).
Note that gross substitutes is formally identical to Sen’s α. The interpretation
is different, though, because here C(S) is the chosen subset of S, not a set of
alternatives that are “equally good.”



CONTROL CONTROLLED 9

when to use priorities in the choice between students of different types.

GS is desirable for two reasons. It guarantees that stable matching

exists and that the mechanisms used in school choice market behave

as they should. It also helps us give very sharp rules for how schools

should behave.

Model Diversity Rationality
GS Mon Dep Eff RM t-WARP A-SARP E-SARP

Ideal point X X X
Schur X X X X
Minority reserves X X X X
Majority quotas X X X X

We discuss four different rules in the paper: see the table for a

summary. One rule is “minority reserves,” in which a school reserves

a number of seats for each type. The school then tries to fill these

reserved seats; some of them may be unfilled if there are not enough

applicants of a given type. For the remaining seats students compete

“openly”. The rule uses reserves to limit when a high-priority student

over one time is chosen over a low-priority student of another type. The

reserves emerge partially though the use of a revealed-preference axiom

(E-SARP), but it is GS that ensures that they are used consistently by

the rule. The minority reserves rule illustrates well how GS helps pin

down a specific rule because the other axioms, A-SARP and Eff, are

relatively weak.

In the model of majority quotas, instead of seats being reserved for

a type, there is an upper bound, or quota, on how many students of a

given type may be accepted. Student compete “openly” for seats until

they hit the quota on their types. After that happens, a student may

be turned down in favor of a lower priority candidate whose quota has

not been obtained yet. As we explain in Section 7 and 8, majority

quotas are used in the Chicago school district in the US, and in col-

lege admissions in India. We argue that our results imply that these

school districts would be better off by switching to a system of minority

reserves.
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Aside from gross substitutes, we can classify the axioms in two cat-

egories, diversity and rationality axioms. The diversity axioms con-

strain distributions over types. We have looked at four such axioms:

The distribution-monotonicity axiom (Mon in the table) says that an

increase in the distribution over the set of applicants should result

in an increase in the distribution over the admitted students. The

distribution-dependence axiom (Dep) is a weaker form of monotonicity,

and requires that if two sets of applicants have the same distribution,

then the sets of admitted students should also have the same distribu-

tion. The efficiency axiom (Eff) states that a student should never be

rejected if there is an empty seat. Rejection maximality (RM) requires

that if a student is rejected from a school that has space for him, then

a maximal number of students of his type must have been achieved.

Rationality axioms deal with individual priorities. They are versions

of standard axioms from revealed preference theory. We use them here

to elicit a priority order over individual students that is compatible

with the choice rule. The type-weak axiom of revealed preference (t-

WARP) deals with comparisons between students of the same type.

We look at two versions of the strong axiom of revealed preference (E-

SARP and A-SARP), which become relevant once we compare students

of different types.4

We have described our two most flexible models, majority quotas

and minority reserves. We also characterize two rigid models. The

“ideal point” model tries first to achieve a distribution over types that

is as close as possible (in Euclidean distance) to some ideal distribution

over types. Given such a choice, it selects the best available, or highest

priority, students of each type. In the Schur model the distribution

does not try to approximate some ideal point but instead it seeks to

maximize some measure of the degree of diversity of the school. These

4One final axiom, irrelevance of rejected students, was omitted from the table.
It is a basic rationality criterion, and it is satisfied by all our models. Indeed, it
is hard to imagine a normative model of choice that would violate irrelevance of
rejected students.
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model do not allow the school to use priorities in choosing between

students of different types.

We start with the two rigid rules, and then turn to the two flexible

rules. There is a common approach in how we characterize these rules,

the approach involves mapping a choice C into a function that depends

on distributions. This is approach is developed in Section 9. For our

flexible rules, we need a correspondence instead of a function (see the

definition at the start of Section 4).

4. Ideal points and Schur concavity

We begin by analyzing the two least flexible rules discussed in Sec-

tion 3. These rules never allow a school to choose a high-profile student

of one type over a low-profile student of another.

A priority order over individual students still plays a role in the

school’s choices. It matters for choosing students of the same type. We

need to make sure that the choice satisfies basic revealed preference

axioms. The two axioms we use are versions of standard properties in

the decision theoretic literature, used in the study of abstract choice

rules and social choice (see, e.g., Moulin (1991)).5

Axiom 2. Choice rule C satisfies the type-weak axiom of revealed

preference (t-WARP) if, for any s, s′, S and S ′ such that τ(s) =

τ(s′) and s, s′ ∈ S ∩ S ′,

s ∈ C(S) and s′ ∈ C(S ′) \ C(S) imply s ∈ C(S ′).

The type-weak axiom of revealed preference is necessary for the ex-

istence of some underlying priority ordering over students. We need it

to ensure that a school admits the best students of each type, given

the underlying priority order.

Our second rationality axiom simply says that a rejected student

may be made unavailable without affecting the set of chosen students.

It has been used before in the matching context by Blair (1988), Alkan

5Rationality could instead require a preference relation over sets of students.
We are focusing on priorities over individual students because it seems to be what
most schools use in forming their preferences.
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(2002), Alkan and Gale (2003); and by Aygün and Sönmez (2012) for

markets with contracts.

Axiom 3. Choice rule C satisfies irrelevance of rejected students

(IRS) if C(S ′) ⊆ S ⊆ S ′ implies that C(S) = C(S ′).

To be clear, gross substitutes and the two rationality axioms capture

standard properties of choice. Gross substitutes is important given that

we want to apply our results to matching markets.

Next, we impose axioms capturing a concern for diversity. Differ-

ent axioms deliver different choice rules: we focus on those that are

generated by ideal points and Schur concave monotone functions.

4.1. Ideal points. A school may have an ideal distribution that it

tries to achieve. For example, it may strive for perfect gender balance,

or for a distribution over races and ethnicities that match those in the

population. Here we characterize those rules that try to minimize the

Euclidean distance from the distribution of admitted students to the

ideal distribution. In Sections 7 and 8 we give examples of how actual

school districts’ policies reflect this concern.

Choice rule C is generated by an ideal point if there is a vector

z∗ ∈ Zd
+ with ||z∗|| ≤ q and a strict priority � over S such that,6 for any

S ⊆ S, (1) ξ(C(S)) is the closest vector to z∗ (in Euclidean distance),

among those in B(ξ(S)) where

B(x) ≡ {z ∈ Zd
+ : z ≤ x and ||z|| ≤ q};

and (2) the students of type t in C(S) have higher priority than any

student of type t in S \ C(S), for any t.

Our next axiom states that an increase in the number of applicants

of every type should give rise to an increase in the admissions of every

type.

Axiom 4. Choice rule C satisfies distribution-monotonicity (Mon)

if ξ(S) ≤ ξ(S ′) implies that ξ(C(S)) ≤ ξ(C(S ′)).

6In all of our models, we assume that all students are acceptable to the school,
so � is over S instead of S ∪ ∅. The alternative can easily be incorporated such
that whenever ∅ � s, there exists no S such that s ∈ C(S).
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Distribution-monotonicity is responsible for the ideal-point rule’s

lack of flexibility. It “first” fixes a target distribution, and then chooses

the best student body to fit that distribution. The models of minority

reserves and majority bounds of Section 5 are much more flexible: they

do allow priorities to affect ξ(C(S)). We believe that the ideal point

model may still be a good approximation to how schools operate in

actuality because many schools have diversity targets independently of

the quality-composition of the body of applicants.7

Importantly, Mon is compatible with most forms of pure diversity

concerns, including choices that fail GS. The example in Section 1.2

satisfies the Mon axiom.

Theorem 1. A choice rule satisfies GS, t-WARP, IRS, and Mon, if

and only if it is generated by an ideal point.

The proof of Theorem 1 is in Section 10, as are all our proofs.

The result in Theorem 1 is surprising because the requirement of

gross substitutes has nothing to do with diversity. Rather, Mon says

that the school has type distribution of the student body as a primary

objective, but there are many ways in which diversity can be imple-

mented. The tension between gross substitutes and diversity is impor-

tant enough, however, that when we put the four axioms together, only

ideal point rules survive.

Remark 1. t-WARP alone does not suffice to give a rationalizing pri-

ority relation because it only rules out revealed preference cycles of

length two. Normally, one needs to rule out cycles of any length, and

thus a version of the strong axiom of revealed preference (or Richter’s

notion of consistency, see Richter (1966)).8 It turns out that GS aids

7In fact it is likely that schools do not care about all possible S, but only a few
S in a vicinity of their current student body. In that case, they do not face very
different priority distributions when they need to make actual choices.

8Alternatively, one may have to observe choice from all sets with two or three
elements, but such a condition is not useful in the present model. Ehlers and
Sprumont (2008) is one study of behavior described by WARP, allowing for cyclic
choices. In our case it turns out that cycles are ruled out by the interaction of
t-WARP with GS and IRS.
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t-WARP in establishing a rationalizing priority relation, so we can do

without a stronger axiom.

4.2. Schur concave. The distance to an ideal distribution is a reason-

able criterion, but it may lead to inefficiencies. A school that is deeply

committed to diversity may leave some seats empty (or under-report

its capacity) when additional students would upset the distribution

over gender, or race/ethnicity, of the student body. Some inefficiency

may, then, be an unavoidable consequence of a strong preference for

diversity.

That said, it may be reasonable to require schools to be efficient in

the sense of never leaving a seat empty if they can fill it. To this end,

we now substitute the monotonicity axiom that we used above for an

efficiency axiom: the school is required to fill all seats that it can fill.

Axiom 5. Choice rule C satisfies efficiency (Eff) if C(S) = S when

|S| ≤ q, and |C(S)| = q when |S| > q.

We still need to ensure that the school cares primarily about di-

versity: that it sets a diversity objective independently of its body of

applicants, this is the inflexibility we have talked about, and that we

relax in Section 5. Thus, we impose the following weakening of the

distribution-monotonicity axiom.

Axiom 6. Choice rule C satisfies distribution-dependence (Dep)

if ξ(S) = ξ(S ′) implies that ξ(C(S)) = ξ(C(S ′)).

When a choice rule is distribution-dependent, then for any two sets

with the same distribution the set of admitted students also have the

same distribution. However, in contrast with Mon, it does not say

anything about two sets that have different distributions.

As a result of these axioms, the choice of a distribution is guided by

a measure of diversity. Researchers studying diversity often consider

numerical measures of diversity (such as entropy, or Theil’s index).

For example, the ecological diversity studied by Weitzman (1992) is

a special case of entropy. These numerical measures are often Schur

concave: a property that we shall not define here. Instead, we shall
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use a canonical construction of a Schur concave function (see Marshall,

Olkin, and Arnold (2010)). A school satisfying our axioms will seek

to maximize the sum of values of a monotone increasing and concave

function.9

Say that C is Schur-generated if there is a point z∗ ∈ Zd
+ with

||z∗|| ≤ q, a strictly increasing and concave function g : R→ R, and a

strict priority � over S such that

(1)
∑d

t=1 g(xt − z∗t ) achieves a maximum in B(ξ(S)) at ξ(C(S));

(2) ξ(C(S)) = ξ(C(S ′)) for any S and S ′ with ξ(S) = ξ(S ′); and

(3) students of type t in C(S) have higher priority than any student

of type t in S \ C(S).

Theorem 2. A choice rule satisfies GS, t-WARP, IRS, Eff, and Dep,

if and only if it is Schur-generated.

The interpretation of this model is as follows. Suppose that z∗ = 0.

Then, since g is concave, the maximization of
∑d

t=1 g(xt) involves values

of xt which are as close to each other as possible. That is, it seeks to

obtain equal representation of all types in the school. Otherwise, when

z∗ > 0, then the maximum is going to be achieved at a point when

x ≥ z∗ and xt− z∗t are as close to each other as possible. Equivalently,

the school tries to achieve a distribution of students z∗ and tries to get

the same number of students in excess.

5. Minority reserves and majority quotas

We now turn to two models that allow priorities to guide the choice

between students of different types, as long as it does not violate the

school’s (flexible) diversity objectives.

We use revealed preference axioms that infer a revealed preference

in some circumstances but not others. In standard choice theory, one

alternative s is revealed preferred to s′ when s is chosen, and s′ is

not chosen, from a set that contains both. Here we shall not infer a

9Note that monotonicity of the measure is an important difference with the
objective of minimizing distance in the ideal point rule. The latter will not be a
special case of Schur-generated.
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revealed preference from all such situations. Only in situations that are

tied to our ultimate goal of finding either minority reserves or majority

bounds.

It is important to emphasize, though, that the revealed preference

axioms (E-SARP and A-SARP below) alone do not suffice to establish

our rules. The GS axiom makes sure that the reserves/bounds that

we infer from revealed preferences are used consistently by the school’s

choices. Much as in the results of Section 4, GS has strong implications

for the form of the choice rule.

5.1. Majority quotas. A school may want to limit the number of

admitted students who have the same type, so it may have a type-

specific limit or quota for each type. However, as long as these quotas

are not exceeded, the school does not differentiate between students

with different types. This is the model studied in Abdulkadiroğlu and

Sönmez (2003). As we explain in Section 7, and 8, majority quotas are

used in the US in Chicago, and in Indian college admissions.

Choice rule C is generated by majority quotas if there exist a

strict priority � over S, and a vector (rt)t∈T ∈ Zd
+, such that for any

S ⊆ S,

(1) |C(S)t| ≤ rt;

(2) if s ∈ C(S), s′ ∈ S \ C(S) and s′ � s, then it must be the case

that τ(s) 6= τ(s′) and
∣∣C(S)τ(s

′)
∣∣ = rτ(s′); and

(3) if s ∈ S \ C(S), then either |C(S)| = q or
∣∣C(S)τ(s)

∣∣ = rτ(s).

In this case, rt is an upper bound on the number of students of type

t that the school can accept. The school considers all students and

chooses the highest ranked ones conditional on not exceeding any of

the quotas. In particular, if ||r|| ≤ q then this model is equivalent to

the ideal point model.

Say that S is ineffective for t if there is S ′ such that |St| = |S ′t| with

|C(S)t| < |C(S ′)t|. In words, a set is ineffective for type t when the

school does not accept the maximum number of type t students among

the sets with the same number of type t applicants. This notion of

ineffectiveness is crucial in our axiom below.
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Axiom 7. Choice rule C satisfies the effective strong axiom of

revealed preference (E-SARP) if there are no sequences {sk}Kk=1

and {Sk}Kk=1, of students and sets of students, respectively, such that,

for all k

(1) sk+1 ∈ C(Sk+1) and sk ∈ Sk+1 \ C(Sk+1);

(2) τ(sk+1) = τ(sk) or Sk+1 is ineffective for τ(sk).

(using addition mod K).

E-SARP rules out cycles in the revealed preference of the choice

rule, but it is careful as to where it infers a revealed preference from

choice. The subtlety in the definition is the second part that requires

either τ(sk+1) = τ(sk) or that Sk+1 is ineffective for τ(sk). In the first

case, when sk+1 and sk have the same type, it is revealed that sk+1 has

a higher priority than sk. However, when they have different types,

sk+1 is revealed preferred to sk only when Sk+1 is ineffective for τ(sk)

implying that the school could admit more students of type τ(sk). It

is easy to see that E-SARP implies t-WARP.

Our next axiom is a diversity axiom. It states that whenever a

student of type t is rejected from a set of students S when there is an

empty seat in the school, then it must be the case that the school has

admitted the most number of type t students for any possible set of

applicants.

Axiom 8. Choice rule C satisfies rejection maximality (RM) if

s ∈ S \ C(S) and |C(S)| < q imply that
∣∣C(S)τ(s)

∣∣ ≥ ∣∣C(S ′)τ(s)
∣∣ for

every S ′.

In words, if a student of type t is rejected when there is an empty

seat, then it must be that the school has admitted the most number

of type t students. Rejection maximality is the main axiom we use to

construct the majority quotas.

Theorem 3. Choice rule C satisfies GS, E-SARP, and RM if and only

if C is generated by majority quotas.

Remark 2. We characterize choice rules that are generated by majority

quotas in terms of GS, E-SARP and RM. However, it is easy to see that
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if a choice rule C is generated by majority quotas then it also satisfies

IRS. We reconcile this observation with the result above by showing

that if a choice rule satisfies GS and RM then it also satisfies IRS.

Suppose that choice rule C satisfies GS and RM. Let S ′ and S be such

that C(S ′) ⊆ S ⊆ S ′. By GS, C(S ′) ⊆ C(S). Suppose for contradiction

that there exists s ∈ C(S) \ C(S ′). This implies that s ∈ S ′ \ C(S ′)

and |C(S ′)| < q. By RM,
∣∣C(S ′)τ(s)

∣∣ ≥ ∣∣∣C(Ŝ)τ(s)
∣∣∣ for any Ŝ. Letting

Ŝ = S yields,
∣∣C(S ′)τ(s)

∣∣ ≥ ∣∣C(S)τ(s)
∣∣, which is a contradiction since

C(S ′) ⊆ C(S) and s ∈ C(S) \ C(S ′). Therefore, there does not exist

s ∈ C(S) \ C(S ′), so C(S) = C(S ′) and IRS is satisfied.

Even when ||r|| > q a choice rule that is generated by majority quotas

r can be inefficient. For example, suppose that all applicants have the

same type and their quota is less than the capacity of the school. In

this case, the school is not going to fill its capacity. Next, we impose

efficiency and IRS instead of rejection maximality and get a different

model that can be characterized by minority reserves.

5.2. Minority reserves. Our second flexible rule is based on reserv-

ing seats for each type, instead of bounding the number of seats that

each type can get. The rule gives flexibility to choose the highest

priority students, regardless, of type, as long as a minimum number

of students for each type has been reached. Minority reserves is the

model studied in Ehlers, Hafalir, Yenmez, and Yildirim (2011).10 We

argue in Section 7, and 8 that the districts now using majority quotas,

such as Chicago and Indian college admissions, may be better of using

minority reserves.

A choice rule C is generated by minority reserves if there exist

a strict priority � over S, and a vector (rt)t∈T ∈ Zd
+ with ||r|| ≤ q,

such that for any S ⊆ S,

(1) |C(S)t| ≥ rt ∧ |St|;
(2) if s ∈ C(S), s′ ∈ S \ C(S) and s′ � s, then it must be the case

that τ(s) 6= τ(s′) and
∣∣C(S)τ(s)

∣∣ ≤ rτ(s); and

10To be more precise, Ehlers, Hafalir, Yenmez, and Yildirim (2011) study a more
general model with both lower and upper bounds that could be either hard or soft.
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(3) if ∅ 6= S \ C(S), then |C(S)| = q.

In words, the school reserves rt seats for students of type t. Given

a pool of students S, it admits the best rt ∧ |St| students according to

priority �. In a second stage, it admits the best (according to priority

�) students regardless of type, among the remaining students.

Say that t ∈ T is saturated at S if there is S ′ such that |St| = |S ′t|
with S ′t \ C(S ′)t 6= ∅. The interpretation is that when t is saturated

at S then the school is not obliged to accept all St out of diversity

considerations.

Axiom 9. Choice rule C satisfies the adapted strong axiom of

revealed preference (A-SARP) if there are no sequences {sk}Kk=1

and {Sk}Kk=1, of students and sets of students, respectively, such that,

for all k

(1) sk+1 ∈ C(Sk+1) and sk ∈ Sk+1 \ C(Sk+1);

(2) τ(sk+1) = τ(sk) or τ(sk+1) is saturated at Sk+1

(using addition mod K).

The adapted SARP rules out the existence of certain cycles in re-

vealed preference, where again we are careful as to when we infer the

existence of a revealed preference. It is stronger than t-WARP. The

difference between E-SARP and A-SARP is the second component of

the definition, when we require that τ(sk+1) is saturated at Sk+1. When

this happens, even though the school could admit fewer type τ(sk+1)

students, it accepts more. Thus in the revealed preference, sk+1 is pre-

ferred to sk even if they have different types. This axiom allows us to

construct a priority order over students.

Note that the notion of A-SARP, and out definition of saturation,

already incorporates something similar to reserves. GS is crucial, how-

ever, to ensure that the school uses reserves consistently, in the matter

described in the definition of minority reserves.11

Theorem 4. Choice rule C satisfies GS, A-SARP, IRS and Eff if and

only if C is generated by minority reserves.

11This is achieved by Lemma 6 in the proof of Theorem 4.
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6. Implications for school choice and matching markets

A matching market is a tuple 〈C,S, (�s)s∈S , (Cc)c∈C〉, in which C
is a finite set of schools , S is a finite set of students , for each s ∈ S;

�s is a strict preference order over C ∪ {s} where {s} is the outside

option for student s,12 and for each c ∈ C; Cc is a choice rule over S.

A matching (or an assignment) µ is a function on the set of

agents such that

(1) µ(c) ⊆ S for all c ∈ C and µ(s) ∈ C ∪ {s} for all s ∈ S;

(2) s ∈ µ(c) if and only if µ(s) = c for all c ∈ C and s ∈ S.

In a matching market, we would like to find stable matchings that

satisfy individual rationality and fairness properties that we formalize

below.

Definition 1. A matching µ is stable if

(1) (individual rationality) Cc(µ(c)) = µ(c) for all c ∈ C, µ(s) �s
{s} for all s ∈ S; and

(2) (no blocking) there exists no (c, S ′) such that S ′ 6⊆ µ(c) such

that S ′ ⊆ Cc(µ(c) ∪ S ′) and c �s µ(s) for all s ∈ S ′.

Stability requires both individual rationality and no blocking. First,

individual rationality for schools means that no school can be better

off by rejecting some of the admitted students; whereas for students it

means that each student prefers their assigned schools to their outside

options. Second, no blocking implies that there exists no coalition

of agents who can beneficially rematch among themselves. This is the

standard definition of stability used in many-to-one matching problems

(Roth and Sotomayor, 1990).

For matching markets, stability has proved to be a useful solution

concept because mechanisms that find stable matchings are successful

in practice (Roth, 2008). Moreover, finding stable matchings is rela-

tively easy. In particular, the deferred acceptance algorithm (DA) of

Gale and Shapley (1962) finds a stable matching and DA has other

12The outside option for student s can be going to a private school or being
homeschooled.
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attractable properties.13 Therefore, it also serves as a recipe for mar-

ket design. For example, it has been adapted in New York and Boston

school districts (see Abdulkadiroğlu, Pathak, Roth, and Sönmez (2005)

and Abdulkadiroğlu, Pathak, and Roth (2005)). For completeness, we

provide a description of the student-proposing deferred acceptance al-

gorithm.

Deferred Acceptance Algorithm (DA)

Step 1: Each student applies to her most preferred school. Sup-

pose that S1
c is the set of students who applied to school c.

School c tentatively admits students in Cc(S
1
c ) and permanently

rejects the rest. If there are no rejections, stop.

Step k: Each student who was rejected at Step k − 1 applies

to their next preferred school. Suppose that Skc is the set of

new applicants and students tentatively admitted at the end of

Step k − 1 for school c. School c tentatively admits students

in Cc(S
k
c ) and permanently rejects the rest. If there are no

rejections, stop.

The algorithm ends in finite time since at least one student is rejected

at each step.

Usually the only strategic component of a matching market is the

student preference profile (�s)s∈S ; schools’ choice rules are fixed by

laws and regulations. Therefore, we only worry that students and their

families state their preferences truthfully. To this end, we consider a

group strategyproofness concept for students.

Let PS be the set of student preference profiles (�s)s∈S and M be

the set of matchings between C and S. A mechanism is a function

Φ : PS →M.

Definition 2. Mechanism Φ is group strategy-proof for students

if there exists no group of students S ′, preference profiles (�s)s∈S , and

(�′s)s∈S′ such that

Φ((�′s)s∈S′ , (�s)s∈S\S′) �s Φ((�s)s∈S)

13For a history of the deferred acceptance algorithm, see Roth (2008).
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for all s ∈ S ′.

In words, a mechanism is group strategy-proof for students if there

exists no group of students who can jointly manipulate their preferences

to be matched with better schools.

The following axiom for choice rules plays a critical role in establish-

ing the desirable properties of the deferred acceptance algorithm.

Axiom 10. Choice rule C satisfies the law of aggregate demand

(LAD) if S ⊆ S ′ implies |C(S)| ≤ |C(S ′)|.

The law of aggregate demand requires that the number of students

chosen from a subset of a set of students S ′ should not be bigger than

the number of students chosen from S ′. This property was first intro-

duced in Alkan (2002) and Alkan and Gale (2003) for matching markets

without transfers (or contracts), and by Hatfield and Milgrom (2005)

for markets with contracts. All of the choice rules that we have studied

in Sections 4 and 5 satisfy LAD. In particular, it is easy to see that

distribution-monotonicity or efficiency implies LAD.

The following result is well-known (see Roth and Sotomayor (1990),

Hatfield and Milgrom (2005), Hatfield and Kojima (2009), and Aygün

and Sönmez (2012)). We state it here to highlight the role of the

properties that we have studied in Sections 4 and 5.

Theorem 5. Suppose that schools’ choice rules satisfy IRS and GS,

then DA produces the stable matching that is simultaneously the best

stable matching for all students. Suppose, furthermore, that choice

rules satisfy LAD, then DA is group strategy-proof for students and

each school is matched with the same number of students in any stable

matching.

We refer the outcome of DA, as the student-optimal stable match-

ing . Below we study how the student-optimal stable matching changes

with the choice rules.

Theorem 6. Consider two choice rule profiles (Cc)c∈C and (C ′c)c∈C such

that, for each school c, Cc and C ′c satisfy IRS and GS and, furthermore,
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Cc(S) ⊆ C ′c(S) for every set of students S. Let µ and µ′ be the student-

optimal stable matchings with (Cc)c∈C and (C ′c)c∈C, respectively. Then

µ′(s) �s µ(s) for all s.

In words, if choice rule C ′ selects a superset of students chosen by

choice rule C, then all students weakly prefer DA with C ′ to DA with C.

In fact, a slightly more general statement is true: Suppose that, for each

c, C ′c satisfies IRS and GS and µ′ is the student-optimal stable matching

with (C ′c)c∈C. Then if (C)c∈C is a choice rule profile such that Cc(S) ⊆
C ′c(S) for every S ⊆ S, c ∈ C and µ is a stable matching with (C)c∈C,

then µ′(s) �s µ(s) for all s. In other words, we do not need to make

any assumptions about (C)c∈C as long as there is a stable matching.

We make such assumptions in Theorem 6 to make the statement easier.

Otherwise, we need to assume that there exists a stable matching with

respect to (C)c∈C.

In particular, we can compare the outcome of DA with choice rules

that are generated by minority reserves and majority quotas:

Corollary 1. Suppose that Cc is generated by majority quotas (rct )t∈T

and C ′c is generated by minority reserves (rct )t∈T where ||rc|| ≤ qc for

every school c with the same priority �. Let µ and µ′ be the student-

optimal stable matchings with (Cc)c∈C and (C ′c)c∈C, respectively. Then

µ′(s) �s µ(s) for all s.

This follows directly from Theorem 6 above. Indeed, if student s is

rejected by C ′c from S, i.e., if s ∈ S \ C ′c(S), then ξ(C ′c(S))τ(s) ≥ rτ(s)

and for any s′ ∈ C ′c(S) with τ(s′) = τ(s) we have s′ �c s. Therefore, s

cannot be chosen by choice rule C from S since there are at least rτ(s)

students of type τ(s) who have higher ranking than s in S.

Corollary 1 also implies that students weakly prefer Schur-generated

choice rules to ideal point generated choice rules with the same refer-

ence point whenever DA is used. In fact, we can say more than that

for particular reference points:

Theorem 7. Suppose that Cc satisfies GS and distribution-dependence

and that there are two types (d = 2). Let z∗c = ξ(Cc(S)) for each c. Let
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µ be the DA outcome using choice profile (Cc)c∈C, µi the DA outcome

using choice profile with rules that are generated by ideal points z∗c for

each c, and µs be the DA outcome using choice rules that are Schur-

generated z∗c for each c. Then

µs(s) �s µ(s) �s µi(s),

for all s.

Therefore, with this particular choice of z∗, we get that students

prefer the outcome of DA using the Schur-generated choice rules, to DA

using the original choice profile to DA using the ideal point generated

choice rules.

Finally, in the next result, we consider matching markets in which

schools’ choice rules are generated by majority quotas. For this market,

we establish a type specific “rural hospitals theorem”:

Theorem 8. Suppose that choice rule Cc is generated by majority

quotas rc for each school c. If there exists a stable matching µ such

that |µt(c)| < rtc and |µ(c)| < qc then for any stable matching µ′,

µ′t(c) = µt(c).

This result follows immediately from Kojima (2012). He shows that

the same conclusion holds when school preferences satisfy a more gen-

eral condition called separable with affirmative action constraints.

In particular, if schools’ choice rules are generated by ideal points

then each school’s student distribution is the same in all stable match-

ings, i.e., the diversity of schools are the same in all stable matchings.

Therefore, as long as the school district implements a stable match-

ing, each school’s incoming student distribution is fixed and does not

depend on the stable matching.

7. Controlled school choice in the US

The legal background on diversity in school admissions is compli-

cated. Since the landmark 1954 Brown vs. Board of Education supreme

court ruling, which ended school segregation, many school districts

have attempted to achieve more integrated schools. The current legal
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environment is summarized in the 2011 guidelines issued by the US

departments of justice and education: “Guidance on the voluntary use

of race to achieve diversity and avoid racial isolation in elementary and

secondary schools.” (There is a separate set of guidelines for college ad-

missions.) We shall not summarize these guidelines here, but suffice it

say here that they are perfectly compatible with the theory developed

in this paper.

In particular, the “race neutral” approaches described in the guide-

lines can be carried out through our methods (race neutrality goes into

the definition of types). We proceed to briefly describe some of the

best known programs in the US.

7.1. Jefferson County. The Jefferson County (KY) School District is

prominent in promoting diversity among its schools, and the litigation

surrounding its admissions policies serve partly as basis for the 2011

US government guidelines mentioned above. The rules proposed by the

county violate the GS axiom, and therefore would be incompatible with

an assignment mechanism based on the deferred acceptance algorithm,

like Boston, New York City or Chicago. We believe that Jefferson

County’s objectives could be satisfied by using one of the rules we

propose in this paper–for example minority reserves.

Starting from the early 1970s, the student assignment plan used

in Jefferson County went through major changes. First, in order to

avoid segregation, a racial assignment plan was used and students were

bused to their schools. In the early 1990s a school choice system was

implemented, allowing parents to state their preferences over schools.

In 1996, schools were required to have between 15 and 50 percent of

African-American students. In 2002 a lawsuit was filed against the

Jefferson County School District because it had a racial admissions

policy. After a litigation process, the case came before the US Supreme

Court. The Supreme Court in 2007 ruled in favor of the plaintiffs, and

decided that race cannot be the only factor to use for admissions.
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Following this ruling, Jefferson County switched to an assignment

plan that considered the socioeconomic status of parents: Using cen-

sus data, the school district divided the county into two regions and

required all schools to have 15 and 50 percent of their students to be

from the first region. This rule violates GS.

The Jefferson County is undergoing yet another change at the mo-

ment. The new assignment plan, which was accepted by the school

district to be implemented in 2013/14 admissions cycle, divides stu-

dents into three types: Type 1, Type 2 and Type 3. These types are

determined by educational attainment, household income, and percent-

age of white residents in the census block group that the student lives

in. Then each school is assigned a diversity index, defined as the aver-

age of student types. The new admissions policy requires each school

to have a diversity index between 1.4 and 2.5.

These two assignment policies are in conflict with the GS axiom, so

it would be incompatible with a school choice plan that would seek to

install a stable (or fair) matching. It should be clear, however, that the

rules proposed in our paper can achieve similar objectives to the ones

in the current policies, while satisfying GS.

7.2. Chicago. Chicago Public Schools also strive for diversity (Pathak

and Sönmez, 2012; Kominers and Sönmez, 2012). To this end, they

have an affirmative action policy that uses socioeconomic status to

divide students into four types: Tier 1, Tier 2, Tier 3 and Tier 4. Stu-

dents who would like to attend selective high schools take a centralized

exam that is used to determine a score of each student. Each school

allocates 40 percent of their seats to the students with the highest rank

and then 15 percent of the seats are allocated to each tier separately.

In particular, if a school is divided into two fictitious schools one repre-

senting open seats and the other representing the rest, this affirmative

action policy can be viewed as the majority quotas model as follows:

For the first fictitious school, the quota for each type can be the capac-

ity of the school whereas for the second fictitious school the quota for

each type can be 15 percent of the total school capacity. In particular,
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the actual implementation of the affirmative action policy is very sim-

ilar to this. By Corollary 1, if the Chicago school district switched to

a minority reserves rule, that uses choice rules generated by minority

reserves rule for the second fictitious school with the same quotas, all

students would weakly benefit.14

Alternatively, the Chicago system could be modified to satisfy a

simple model of minority reserves. This would involve first filling the

spaces that are reserved to each type, and then having types compete

openly for the remaining spaces. Depending on the distribution of

scores for each type, the quotas could be calibrated to achieve the effect

desired by the school district. The rule has the advantage of fitting

directly into the existing stable matching school choice mechanism.

8. Controlled School Choice in Other Countries

Policies to enhance diversity can be found in many countries around

the world (Sowell, 2004). Some of these policies implement preferen-

tial policies whereas some of them implement policies based on quotas.

The preferential policies resemble the minority reserves rule that we

have studied, while policies based on quotas are similar to the major-

ity quotas model (with regional variations in actual implementation).

There are many countries that have similar policies including, but not

limited to, Brazil, China, Germany, Finland, Macedonia, Malaysia,

Norway, Romania, Sri Lanka, and the United States. Below we discuss

two particular examples: college admissions in India and high school

admissions in French-speaking Belgium.

8.1. Indian College Admissions. In India the caste system divides

society into hereditary groups, castes (“types” in our model). Histor-

ically, it enforces a particular division of labor and power in society,

and places severe limits on socioeconomic mobility. To overcome this,

the Indian constitution has since 1950 implemented affirmative action.

It enforces that the “scheduled castes” (SCs) and “scheduled tribes”

14Kominers and Sönmez (2012) has a different counterfactual in which students
either rank the fictitious school representing the open slots first or last.
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(STs) are represented in government jobs and public universities pro-

portional to their population percentage in the state that they belong

to. These percentages change from state to state. For example, in

Andhra Pradesh, each college reserves 15 percent of its seats for SCs,

6 percent for STs, 35 percent for other ‘backward classes’ and the re-

maining 44 percent is left open for all students.

The college admissions to these public schools is administered by

the state, and it works as follows. Students take a centralized exam

that determines their ranking. Then students are called one by one to

make their choices from the available colleges. In each college, first the

open seats are filled. Afterwards the reserved seats are filled only by

students for whom the seats are reserved. This model corresponds to

the situation described above for Chicago. Therefore, this affirmative

action policy fits into our majority quotas / ideal point model in which

we replace each school with two copies, the first representing the open

seats and the second representing the rest. For the first copy of the

college, each student is treated the same and the choice rule picks the

best available students regardless of their caste. Whereas for the second

copy, a choice model based on ideal point / majority quotas model is

used. Similar to the Chicago school district, if a soft quota policy was

used, all students would be weakly better off.

The Indian choice rule can also be generated by minority reserves in

which each quota is greater than the school’s capacity. But the second

copy of the college implements a choice rule that is generated by the

majority quota rule described in the previous paragraph.15

8.2. High Schools in French-Speaking Belgium. In French-speaking

Belgium, high school admissions is done to promote diversity. How-

ever, in contrast with many examples we have seen thus far, the target

of affirmative action policy is the set of students who have attended

“disadvantaged primary schools.” The administration announces these

primary schools, which may change each year depending on supply and

15For an empirical study of affirmative action policies in Andhra Pradesh see
Bagde, Epple, and Taylor (2011).



CONTROL CONTROLLED 29

demand. Each school is required to reserve at least 15 percent of their

seats to students from disadvantaged primary schools, and also some

seats for students living in the neighborhood of the school. If a reserved

seat for either group cannot be filled then it can also be allocated to

other students as long as there is no student from the privileged group

willing to take that seat. This choice corresponds to the minority re-

serves model described above.

9. Auxiliary lemmas

Our general approach is the following: We translate considerations

related to distributions into results on functions on Zd
+. Most of our

results follow from mapping C into a function or a correspondence de-

fined on Zd
+. In particular, it turns out that some of our axioms have

interesting counterparts as properties of such functions and correspon-

dences.

9.1. Notational Conventions. For A ⊆ Zd
+, ∂A ≡ {z ∈ A : z′ �

z ⇒ z′ /∈ A}, where z′ � z if and only if z′t > zt for all t and, similarly,

let ∂MA ≡ {z ∈ A : z′ > z ⇒ z′ /∈ A}.
Let et denote the unit vector in Zd

+. It is the vector with 0 in all its

entries except that corresponding to t, in which it has 1.

9.2. Ideal point model. We shall first introduce some simple lemmas

related to functions on Zd
+. Hopefully the discussion is suggestive of

how we use these lemmas in proving our main results: to this end we

use suggestive names for the relevant properties of these functions.

Let f : {x ∈ Zd
+ : 0 ≤ x ≤ ξ(S)} → Zd

+. We say that f is monotone

increasing if y ≤ x implies that f(y) ≤ f(x); monotone strictly

increasing if y < x implies that f(y) < f(x); f is within budget

if f(x) ∈ B(x) = {y : 0 ≤ y ≤ x, ||y|| ≤ q}; that f satisfies gross

substitutes if

y ≤ x⇒ f(x) ∧ y ≤ f(y).

A function f is generated by an ideal point if there is z∗ ∈ Zd
+

such that ||z∗|| ≤ q, and f(x) minimizes the Euclidean distance to z∗

among the vectors in B(x).
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Lemma 1. Function f is monotone increasing, within budget and sat-

isfies gross substitutes if and only if it is generated by an ideal point.

We need the following lemma:

Lemma 2. Let z∗ ∈ Zd
+ satisfy ||z∗|| ≤ q. Then x ∧ z∗ is the unique

minimizer of the Euclidean distance to z∗ among the vectors in B(x).

Proof of Lemma 2. First note that x ∧ z∗ ∈ B(x). The distance from

z to z∗ is minimized if
∑

t(zt − z∗t )2 is minimized. The lemma follows

from the observation that one can minimize, for each t, (zt − z∗t )2 by

setting zt = min{xt, z∗t }: when min{xt, z∗t } = z∗t this is trivial, and

when min{xt, z∗t } = xt then there are no z ∈ B(x) with zt > xt. Since

zt = min{xt, z∗t } for every t, we get z = x ∧ z∗. �

Proof of Lemma 1. We first show that if f is generated by an ideal

point z∗ with ||z∗|| ≤ q, then it is monotone increasing, within budget

and it satisfies gross substitutes. Suppose that the ideal point is z∗.

By Lemma 2, f(x) = x ∧ z∗. Then f(x) ≤ x and ||f(x)|| ≤ ||z∗|| ≤ q,

so f is within budget. Next we show monotonicity:

y ≤ x⇒ y ∧ z∗ ≤ x ∧ z∗ ⇒ f(y) ≤ f(x).

Last we show gross substitutes. Let y ≤ x. Then,

f(x) ∧ y = (x ∧ z∗) ∧ y = (x ∧ y) ∧ z∗ = y ∧ z∗ = f(y).

It will be useful to consider an additional property. We say that f

satisfies the boundary condition if f(x) ∈ ∂B(x).

We now turn to proving that the axioms are sufficient for generation

by an ideal point. We suppose that f : Zd
+ → Zd

+ is a function satisfying

monotonicity, gross substitutes, and it is within budget. We show that

it must be generated by some ideal point. We consider two different

cases, the case when f satisfies the boundary condition and when it

does not.
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First, suppose that f satisfies the boundary condition. Let x̂ such

that x̂t ≥ q for all t and z∗ ≡ f(x̂). Note that
∑

t z
∗
t = q because

f(x̂) ∈ ∂B(x̂) = {z ∈ Zd
+ :
∑
t

zt = q},

by the choice of x̂ and the boundary condition. We show that, for all

y, f(y) minimizes the distance to z∗ in B(y).

Note if y ≤ x then the monotonicity of f , and that f(y) ≤ y implies

that f(y) ≤ y ∧ f(x). Thus the gross substitutes axiom becomes:

(1) y ≤ x⇒ f(x) ∧ y = f(y).

Let y be arbitrary. We shall prove that f(y) = y∧z∗. Now, x̂ ≤ x̂∨y,

so z∗ = f(x̂) ≤ f(x̂ ∨ y), as f is monotone increasing. Then
∑

t z
∗
t = q

and f(x̂ ∨ y) ∈ ∂B(x̂ ∨ y) implies that z∗ = f(x̂ ∨ y). Now, y ≤ x̂ ∨ y
and the substitutes condition (1) gives us that

f(y) = y ∧ f(x̂ ∨ y) = y ∧ z∗.

By Lemma 2, f(y) minimizes the distance to z∗ in B(y).

We finish the proof by considering the case when f does not satisfy

the boundary condition. In this case there is z∗ such that f(z∗) 6∈
∂B(z∗). We shall prove that f is generated by ideal point f(z∗).

Let x ∈ Zd
+. Note that z∗ ∧ x ≤ z∗, monotonicity, and gross substi-

tutes, imply (using equation (1)) that

f(z∗ ∧ x) = (z∗ ∧ x) ∧ f(z∗) = (z∗ ∧ f(z∗)) ∧ x = f(z∗) ∧ x.

Similarly, z∗ ∧ x ≤ x gives us that

f(z∗ ∧ x) = (z∗ ∧ x) ∧ f(x) = (x ∧ f(x)) ∧ z∗ = f(x) ∧ z∗.

Thus, f(z∗) ∧ x = f(x) ∧ z∗. Now observe that f(z∗) 6∈ ∂B(z∗) means

that f(z∗)� z∗; so f(z∗)∧x� z∗. Then f(z∗)∧x = f(x)∧ z∗ is only

possible if f(z∗)∧ x = f(x). By Lemma 2 f(x) minimizes the distance

to f(z∗) in B(x). �

Remark 3. There are ideal point rules that violate the boundary condi-

tion, but when the ideal point z∗ is such that
∑

t z
∗
t = q, then the ideal
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point rule satisfies the boundary condition. To see this, suppose first

that z∗ ≤ x. Then
∑

t z
∗
t = q implies that f(x) = x∧ z∗ = z∗ ∈ ∂B(x).

If, on the other hand, z∗ � x then there is t such that xt = (x∧ z∗)t =

f(x)t; so if z � f(x) then z /∈ B(x), as zt > f(x)t = xt. Therefore,

f(x) ∈ ∂B(x).

9.3. Schur concavity. We say that f : {x ∈ Zd
+ : 0 ≤ x ≤ ξ(S)} →

Zd
+ is Schur-generated if there is z∗ ∈ Zd

+ such that ||z∗|| ≤ q and

a monotone strictly increasing and concave function g : R → R, such

that f(x) is a maximizer of
∑d

t=1 g(xt − z∗t ) in the set B(x) for all x.

Similarly, f is efficient if f(x) ∈ ∂M(B(x)) for all x.

Lemma 3. A function f is efficient and satisfies gross substitutes if

and only if it is Schur-generated.

Proof. Let f satisfy the two axioms. Let x̂ be such that x̂t > q for all

t, and let z∗ ≡ f(x̂). For any α ∈ R, let

g(α) ≡ α ∧ q + (α− α ∧ q)/2.

Notice that g is strictly monotone increasing and concave. Let ν(x) ≡∑
t g(xt + q− z∗t ). Since g is monotone increasing and concave, so is ν.

We shall prove that f(y) maximizes ν in B(y). To prove this, we

show that f(y) ≥ z∗ ∧ y. Note that this suffices because it says that

f(y)t ≥ z∗t when yt > z∗t , and f(y)t = yt (as f(y) ≤ y) when yt ≤ z∗t ;

by definition of ν and the axiom of efficiency, ν is maximized by such

an f .

Now, that f(y) ≥ z∗ ∧ y follows from gross substitutes in the case

that y ≤ x̂. Suppose then that y � x̂.

First, y∧ x̂ ≤ x̂ and gross substitutes imply that f(y∧ x̂) ≥ z∗∧ (y∧
x̂) = z∗ ∧ y, as z∗ = z∗ ∧ x̂.

Second, y ∧ x̂ ≤ y and gross substitutes imply that

f(y ∧ x̂) ≥ f(y) ∧ (y ∧ x̂) = (f(y) ∧ y) ∧ x̂ = f(y) ∧ x̂ = f(y).

Then y � x̂ implies that ||y|| > q, so efficiency of f implies that

||f(y)|| = q. Then f(y ∧ x̂) ≥ f(y) and ||f(y ∧ x̂)|| ≤ q give us that
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f(y∧ x̂) = f(y). We showed above that f(y∧ x̂) ≥ z∗∧ y, so we obtain

that f(y) ≥ z∗ ∧ y as desired. �

10. Proofs of results from Section 4

10.1. Proof of Theorem 1. Suppose that C satisfies the axioms. We

shall prove that it is generated by an ideal point. To this end, we show

that there exist an ideal point z∗ and a strict priority � such that the

choice function created by these coincides with C. The result follows

essentially from Lemma 1 above.

Define f as follows. For any x ≤ ξ(S), let S be such that x = ξ(S)

and let f(x) = ξ(C(S)). By distribution-monotonicity we know that

ξ(S) = ξ(S ′)⇒ ξ(C(S)) = ξ(C(S ′)), so the particular choice of S does

not matter; thus f is well defined. Moreover, when y ≤ x we have

f(y) ≤ f(x), again by distribution-monotonicity. So f is a monotone

increasing function. In addition, f(x) ≤ x and ||f(x)|| ≤ q, so f is

within budget. Let z∗ be as defined in the proof of Lemma 1. Since

f(z∗) = z∗, we have that ||z∗|| ≤ q.

Define a binary relation R by saying that s R s′ if τ(s) = τ(s′) and

there is some S 3 s, s′ such that s ∈ C(S) and s′ /∈ C(S). We shall

prove that R is transitive.

Lemma 4. If C satisfies GS, t-WARP and IRS, then R is transitive.

Proof. Let sR s′ and s′Rs′′; we shall prove that sR s′′. Let S ′ be such

that s′, s′′ ∈ S ′, s′ ∈ C(S ′), and s′′ /∈ C(S ′). Consider the set S ′ ∪ {s}.
First, note that s ∈ C(S ′ ∪ {s}). The reason is that if s /∈ C(S ′ ∪ {s})
then C(S ′∪{s}) = C(S ′) 3 s′, by irrelevance of rejected students. Thus

s′ R s, in violation of t-WARP. Second, note that s′′ /∈ C(S ′ ∪ {s}), as

s′′ /∈ C(S ′) and C satisfies gross substitutes. �

The relation R is transitive. Thus it has an extension to a linear

order � over S. For any S, and any s, s′ ∈ S with τ(s) = τ(s′) we have

that s � s′ when s ∈ C(S) while s′ /∈ C(S).

Lemma 5. If C satisfies GS then ξ(S) ≥ x ≥ y implies f(x)∧y ≤ f(y).
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Proof. Suppose that C satisfies GS. Let ξ(S) ≥ x ≥ y and S ′ ⊆ S
be such that ξ(S ′) = x. Construct S with ξ(S) = y as follows. If

yt ≥ ξ(C(S ′))t, then St ⊇ C(S ′)t. However, if yt < ξ(C(S ′))t, then

St ⊆ C(S ′)t. In the former case, C(S)t ⊇ C(S ′)t by gross substitutes.

In the later case, C(S)t = St by gross substitutes. In both cases,

ξ(C(S))t ≥ min{ξ(S)t, ξ(C(S ′))t}, which implies f(y) ≥ f(x) ∧ y. �

By Lemma 5, that C satisfies gross substitutes implies that f satisfies

gross substitutes. In addition, f is also monotone increasing and within

budget, as was shown above. Therefore, f is generated by an ideal point

rule with z∗ by Lemma 1. Then C is generated by the ideal point z∗

and priority order �.

Conversely, let C be generated by an ideal point z∗ and �. It is

immediate that C satisfies t-WARP. Define f as above. Here, f is well

defined because for any S and S ′ such that ξ(S) = ξ(S ′) = x, ξ(C(S)) is

the closest vector to z∗ among those in B(x) and ξ(C(S ′)) is the closest

vector to z∗ among those in B(x). Therefore, ξ(C(S)) = ξ(C(S ′)) and

so f is well defined.

To show that C satisfies distribution-monotonicity, let y = ξ(S)

and x = ξ(S ′) such that y ≤ x. By Lemma 2, f(x) = x ∧ z∗ and

f(y) = y ∧ z∗. Then, f(x) = x ∧ z∗ ≤ y ∧ z∗ = f(y), and, therefore,

ξ(C(S)) ≤ ξ(C(S ′)). Hence, C satisfies distribution-monotonicity.

To show that C satisfies irrelevance of rejected students, let C(S ′) ⊆
S ⊆ S ′, ξ(S ′) = x and ξ(S) = y. By construction, ξ(C(S ′)) = x ∧ z∗

and ξ(C(S)) = y ∧ z∗. Therefore,

ξ(C(S ′)) ≥ ξ(C(S)).

On the other hand, by assumption ξ(C(S ′)) ≤ ξ(S) = y and also

ξ(C(S ′)) = x ∧ z∗ ≤ z∗. The last two inequalities imply that

ξ(C(S ′)) ≤ y ∧ z∗ = ξ(C(S)).

Hence, ξ(C(S ′)) = ξ(C(S)), which means that the same number of

type t students are chosen from S and S ′ for each t. Since students
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are chosen according to their priorities in � and C(S ′) ⊆ S ⊆ S ′, we

conclude that C(S ′) = C(S).

To see that C satisfies gross substitutes, let s ∈ S ⊆ S ′, τ(s) = t,

ξ(S) = y and ξ(S ′) = x. As we have shown above, f(x) = x ∧ z∗ and

f(y) = y ∧ z∗. If f(y)t ≥ f(x)t, then more type t students are chosen

in S compared to S ′. Since s ∈ C(S ′), and C is generated by an ideal

point, we derive that s ∈ C(S). On the other hand, if f(y)t < f(x)t,

then f(y)t < z∗t since f(x)t = (x ∧ z∗)t ≤ z∗t . Since f(y)t = (y ∧ z∗)t,
we derive that f(y)t = yt. That means all type t students are chosen

from S, so s ∈ C(S). Hence, C satisfies gross substitutes.

10.2. Proof of Theorem 2. Let C satisfy the axioms. By the distribution-

dependence axiom we can define f as in the proof of Theorem 1. We

can also define a strict preference � to act as priority order, by the

same argument as in the proof of Theorem 1.

Now, by Lemma 5, f satisfies the axiom of gross substitutes for

functions. The axiom of efficiency for C implies that f satisfies the

boundary condition, efficiency for functions. By Lemma 3, f is Schur-

generated. This implies that C is Schur-generated.

Conversely, suppose that C is Schur-generated. It is easy to see that

C satisfies t-WARP and distribution-dependence. We show that C also

satisfies GS, IRS and efficiency. For any x ≤ ξ(S), let S be such that

ξ(S) = x and define f(x) ≡ ξ(C(S)). Since C is Schur-generated, f is

well defined and also Schur-generated. By Lemma 3, f is efficient and

satisfies gross substitutes. That f is efficient implies C is efficient.

To see that C satisfies gross substitutes, let s ∈ S ⊆ S ′, τ(s) = t,

ξ(S) = y and ξ(S ′) = x. Since f satisfies GS, we have

min{f(x)t, yt} ≤ f(y)t.

If yt ≤ f(x)t, then GS implies yt ≤ f(y)t, which is equivalent to yt =

f(y)t. Hence, s ∈ C(S). On the other hand, if yt ≥ f(x)t, then

f(x)t ≤ f(y)t, so more type t students are chosen from S compared to

S ′. Since s ∈ C(S ′) and C satisfies t-WARP, this implies s ∈ C(S).
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To show that C satisfies irrelevance of rejected students, let C(S ′) ⊆
S ⊆ S ′, ξ(S ′) = x and ξ(S) = y. Since C satisfies GS, C(S ′) ⊆ C(S).

Suppose that there exists s ∈ C(S) \C(S ′). Then ξ(C(S)) > ξ(C(S ′))

but this is a contradiction since ξ(C(S)) maximizes
∑d

t=1 g(xt − z∗t )

in B(ξ(S)) and ξ(C(S ′)) maximizes
∑d

t=1 g(xt − z∗t ) in B(ξ(S ′)) with

B(ξ(S ′)) ⊇ B(ξ(S)). Therefore, C(S) \ C(S ′) = ∅, which implies

C(S) = C(S ′).

11. Proofs from Section 5

11.1. Proof of Theorem 3. Suppose that C satisfies the axioms. We

start by showing that C is generated by majority quotas.

Let rt ≡ |C(St)| and S ⊆ S. First we prove that |C(S)t| ≤ rt. If

rt = q, then |C(S)t| ≤ rt holds trivially. Suppose that rt < q. Since

|St| > q, there exists s ∈ St \C(St). By rejection maximality, for every

S, rt = |C(St)| ≥ |C(S)t|. Therefore, |C(S)t| ≤ rt.

Let �∗ be defined as follows: s �∗ s′ if there exists S ⊇ {s, s′} such

that s ∈ C(S), s′ /∈ C(S) and either τ(s) = τ(s′) or S is ineffective for

τ(s′). By the effective strong axiom of revealed preference, �∗ has a

linear extension � to S.

We now show that if s ∈ C(S), s′ ∈ S\C(S) and s′ � s, then it must

be the case that τ(s) 6= τ(s′) and
∣∣C(S)τ(s

′)
∣∣ = rτ(s′). If τ(s) = τ(s′),

then s �∗ s′ and s � s′, which is a contradiction with the fact that

� is an extension of �∗. So τ(s) 6= τ(s′). To prove that
∣∣C(S)τ(s

′)
∣∣ =

rτ(s′) suppose, towards a contradiction, that
∣∣C(S)τ(s

′)
∣∣ 6= rτ(s′), so∣∣C(S)τ(s

′)
∣∣ < rτ(s′).

We shall prove that S is ineffective for τ(s′), which will yield the

desired contradiction, as � is an extension of �∗. Let S ′ ≡ Sτ(s
′).

We consider three cases. First, |C(S ′)| = q then |C(S)| < |C(S ′)|
(as there is s ∈ C(S) with τ(s) 6= τ(s′)), so S is ineffective for τ(s′).

Second, consider the case when |C(S ′)| < q and |C(S ′)| < |S ′|. Then,

by rejection maximality,

|C(S ′)| = rτ(s′) >
∣∣∣C(S)τ(s

′)
∣∣∣ .
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Hence S is ineffective for τ(s′). Third, consider the case when |C(S ′)| <
q, and |C(S ′)| = |S ′|. Then |C(S ′)| >

∣∣C(S)τ(s
′)
∣∣, as s′ ∈ Sτ(s

′) \
C(S)τ(s

′). Thus S is ineffective for τ(s′). In all three cases we conclude

that s �∗ s′. Since � is a linear extension of �∗, we get s � s′, a

contradiction.

Finally, we need to show that if s ∈ S \C(S), then either |C(S)| = q

or
∣∣C(S)τ(s)

∣∣ = rτ(s). By rejection maximality, s ∈ S \ C(S) and

|C(S)| < q implies that
∣∣C(S)τ(s

′)
∣∣ ≥ ∣∣C(S ′)τ(s

′)
∣∣ for any S ′. We already

proved that rt is the supremum of {
∣∣∣C(Ŝ)t

∣∣∣ : Ŝ ⊆ S}. So we get that∣∣C(S)τ(s
′)
∣∣ = rτ(s′). Hence, s ∈ S \ C(S) implies either |C(S)| = q or∣∣C(S)τ(s
′)
∣∣ = rτ(s′).

To finish the proof, suppose that C is generated by majority quotas.

Then it is easy to see that C satisfies the effective strong axiom of

revealed preference and rejection maximality. We show that it also

satisfies gross substitutes. Suppose that s ∈ S ⊆ S ′ and s ∈ C(S ′).

For each type t, let S(t; rt) ⊆ St be the rt highest ranked type t students

in S (if |St| ≤ rt then S(t; rt) = St). Define S ′(t; rt) analogously. Since

s ∈ C(S ′), we have s ∈ S ′(τ(s), rτ(s)) and the ranking of s in ∪tS ′(t; rt)
is no more than q. Since S ⊆ S ′, the preceding statements also hold

for S instead of S ′, which implies that s ∈ C(S).

11.2. Proof of Theorem 4. For any x ≤ ξ(S), let F (x) ≡ {ξ(C(S)) :

ξ(S) = x} and

f̂(x) = ∧
f(x)∈F (x)

f(x).

The proof requires the following lemma.

Lemma 6. Let C satisfy GS. If y ∈ Zd
+ is such that f̂(y)t < yt then

f̂(y + et′)t < yt + 1t=t′

Proof. Let y and t be as in the statement of the lemma. Let S be such

that ξ(S) = y and ξ(C(S))t < ξ(S)t = yt. Such a set S exists because

f̂(y)t < yt. Let s′ /∈ S be an arbitrary student with τ(s′) = t′. Note

that

∅ 6= St \ C(S)t ⊆ (S ∪ {s′})t \ C(S ∪ {s′})t,
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as C satisfies GS. Then we cannot have ξ(C(S ∪ {s′}))t = yt + 1t=t′

because that would imply (S ∪ {s′})t \ C(S ∪ {s′})t = ∅. Then

yt + 1t=t′ > ξ(C(S ∪ {s′}))t ≥ f̂(y + et′)t.

�

Suppose that C satisfies the axioms. Using Lemma 6, we can con-

struct the vector r of minimum quotas as follows. Let x̄ = ξ(S).

The lemma implies that if f̂(yt, x̄−t)t < yt then f̂(y′t, x̄−t)t < y′t for

all y′t > yt. Then there is rt ∈ N such that yt > rt if and only if

f̂(yt, x̄−t) < yt. This uses the assumption we made on the cardinality

of St, which ensures that f̂(y)t < yt if yt is large enough. Note that we

may have rt = 0.

First we prove that S ⊆ S with |St| ≤ rt then St = C(S)t. Observe

that, for any x and t, f̂(rt, x−t) = rt. To see this note that if there

is x and t such that f̂(rt, x−t) < rt then Lemma 6 would imply that

f̂(rt, x̄−t) < rt, in contradiction with the definition of r. In fact, we

can say more: For any x, t, and yt, if yt ≤ rt then f̂(rt, x−t) = rt and

Lemma 6 imply that f̂(yt, x−t) = yt. Therefore, letting S ⊆ S with

|St| ≤ rt we have that ∣∣C(S)t
∣∣ ≥ f̂(y)t = yt,

where y = ξ(S). Since yt = |St| ≥ |C(S)t| we have that St = C(S)t.

Second we prove that, if |St| > rt, then |C(S)t| ≥ rt. Let S̃ = C(S).

Assume, towards a contradiction, that
∣∣∣S̃t∣∣∣ < rt. Let S ′ = S̃ ∪ S ′′,

where S ′′ ⊆ St \ S̃t is such that |S ′t| = rt. By irrelevance of rejected

students, C(S ′) = C(S). Thus,

f̂(ξ(S ′))t ≤
∣∣C(S ′)t

∣∣ =
∣∣C(S)t

∣∣ < rt.

Since ξ(S ′)t = |S ′t| = rt, we obtain a contradiction with the definition

of rt above.

Consider the following binary relation. Let s �∗ s′ if there is S, at

which {s} = {s, s′} ∩ C(S) and {s, s′} ⊆ S, and either τ(s) = τ(s′)
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or τ(s) is saturated at S. By the adapted strong axiom of revealed

preference, �∗ has a linear extension � to S.

Third we prove that C is consistent with �, as stated in the defini-

tion. Let s ∈ C(S) and s′ ∈ S \ C(S). If τ(s) = τ(s′) then s �∗ s′ by

definition of �∗; hence s � s′. If τ(s) 6= τ(s′) then we need to consider

the case when |St| > rt where t = τ(s). The construction of rt implies

that rt = f̂(|St| , x̄−t) < |St|. Therefore, there exists S ′ ⊆ S such that

if

S ′ = St ∪
(
∪t̃6=tS t̃

)
then S ′t \ C(S ′)t 6= ∅. Thus t is saturated at S. Since s ∈ C(S) and

s′ ∈ S \ C(S), we get s � s′, as � extends �∗.
It remains to show that if C is generated by minority reserves, then

it satisfies the axioms. It is immediate that it satisfies Eff, IRS and

A-SARP.

To see that it satisfies gross substitutes, let S ⊆ S ′ and s ∈ S \C(S).

Then
∣∣Sτ(s)∣∣ > rτ(s), so

∣∣S ′τ(s)∣∣ > rτ(s). Moreover, s ∈ S \ C(S) implies

that there are rτ(s) students in Sτ(s) ranked above s. So s could only

be admitted at the second step in the construction of C. Let C(1)(S)

be the set of students that are accepted in the first step, S∗ be the

set of students that are considered in the second step and q∗ be the

number of remaining seats to be allocated in the second step. Again,

s ∈ S \ C(S) implies that there are q∗ students ranked above s in S∗.

Consider the following procedure for S ′. In the first step for each t

we accept ξ(C(1)(S))t highest ranked students of type t. And in the

second step we consider all remaining students. It is clear that s cannot

be admitted in the first step since S ′τ(s) ⊇ Sτ(s) and that there are at

least rτ(s) students ranked above s in Sτ(s). Moreover, in the second

step of the new procedure, there are more higher ranked students of

each type compared to S∗, so s can also not be admitted in the second

step since there are only q∗ seats left. If s cannot be admitted with

this procedure, then it cannot be in C(S ′) because for each t 6= τ(s),

ξ(C(1)(S))t ≤ rt. Therefore, s ∈ S ′ \ C(S ′).
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12. Proofs from Section 6

12.1. Proof of Theorem 6. We start with the following lemma.

Lemma 7. If C satisfies GS and (c, S) blocks a matching µ, then for

every s ∈ S \ µ(c) (c, {s}) blocks µ.

Proof. Since (c, S) blocks µ, we have S ⊆ Cc(µ(c)∪S). Let s ∈ S\µ(c),

by substitutability s ∈ C(µ(c)∪S) implies s ∈ C(µ(c)∪{s}). Therefore,

(c, {s}) blocks µ. �

We proceed with the proof of Theorem 6.

Since we use two different choice rule profiles and stability depends on

the choice rules, we prefix the choice rule profile to stability, individual

rationality and no blocking to avoid confusion. For example, we use

C-stability, C-individual rationality and C-no blocking.

By Theorem 5, DA produces the student-optimal stable matching.

Denote the student-optimal stable matching with C and C ′ by µ and

µ′, respectively. Since Cc(µ(c)) = µ(c) by C-individual rationality

of µ by every school c, C ′c(µ(c)) ⊇ Cc(µ(c)) by the assumption, and

C ′c(µ(c)) ⊆ µ(c) by definition of the choice rule we get C ′(µ(c)) = µ(c).

Therefore, µ is also C ′-individually rational for schools. Since student

preference profile is fixed, µ is also C ′-individually rational for students.

If µ is a C ′-stable matching, then µ′ Pareto dominates µ since µ′ is the

student-optimal C ′-stable matching. Otherwise, if µ is not a C ′-stable

matching, then there exists a C ′-blocking pair. Whenever there exists

such a blocking pair, there also exists a blocking pair consisting a school

and a student by Lemma 7. In such a situation, we apply the following

improvement algorithm. Let µ0 ≡ µ.

Step k: Consider blocking pairs involving school ck and students

who would like to switch to ck, say Skck ≡ {s : ck �s µk−1(s)}.
School ck accepts C ′ck(µk−1(ck)∪Skck) and rejects the rest of the

students. Let µk(ck) ≡ C ′ck(µk−1(ck)∪Skck) and µk(c) ≡ µk−1(c)

for c 6= ck. If there are no more blocking pairs, then stop and

return µk, otherwise go to Step k + 1.
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We first prove by induction that no previously admitted student

is ever rejected in the improvement algorithm. For the base case

when k = 1 note that C ′c1(µ(c1) ∪ S1
c1

) ⊇ Cc1(µ(c1) ∪ S1
c1

) by as-

sumption and Cc1(µ(c1) ∪ S1
c1

) = µ(c1) since µ is C-stable. Therefore,

C ′(µ(c1) ∪ S1
c1

) ⊇ µ(c1), which implies that no students are rejected at

the first stage of the algorithm. Assume, by mathematical induction

hypothesis, that no students are rejected during Steps 1 through k− 1

of the improvement algorithm. We prove that no student is rejected at

Step k of the algorithm. There are two cases to consider.

First, consider the case when cn 6= ck for all n ≤ k− 1. Since µ is C-

stable, we have Cck(µ(ck)∪Skck) = µ(ck) (as students in Skck prefer ck to

their schools in µ). By assumption, C ′ck(µ(ck)∪Skck) ⊇ Cck(µ(ck)∪Skck)

which implies C ′ck(µ(ck) ∪ Skck) ⊇ µ(ck). Since µ(ck) ⊇ µk−1(ck) we

have C ′ck(µk−1(ck)∪Skck) ⊇ µk−1(ck) by substitutability. In this case no

student is rejected at Step k.

Second, consider the case when ck = cn for some n ≤ k − 1. Let n∗

be the last step smaller than k in which school ck was considered. Since

each student’s match is either the same or improved at Steps 1 through

k − 1, we have µn
∗−1(ck) ∪ Sn

∗
ck
⊇ µk−1(ck) ∪ Skck . By construction,

µn
∗
(ck) = C ′ck(µn

∗−1(ck)∪Sn
∗

ck
) which implies µk−1(ck) ⊆ C ′ck(µk−1(ck)∪

Skck) by substitutability and the fact that µn
∗
(ck) ⊇ µk−1(ck) (since n∗

is the last step before k in which school ck is considered). Therefore,

no student is rejected at Step k.

Since no student is ever rejected by the improvement algorithm, it

ends in a finite number of steps. Moreover, the resulting matching

does not have any C ′-blocking pair. By construction, it is also C ′-

individually rational. This shows that there exists a C ′-stable matching

that Pareto dominates µ. Since µ′ is the student-optimal C ′-stable

matching, we have that µ′ Pareto dominates µ for students.

12.2. Proof of Theorem 7. For each school c, let f be defined as in

the proof of Theorem 1 for choice rule profile Cc: such f is well defined

because Cc satisfies distribution-dependence. Similarly, let f i be the

corresponding function in the ideal point model, given ideal point z∗c ;
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and let f s be the f corresponding function in the Schur model, given

parameter z∗c .

Let S be a set of students and y ≡ ξ(S) ≤ ξ(S) be the type distri-

bution of S. Then, by gross substitutes of Cc and Lemma 2 we have

that

f i(y) = y ∧ z∗ ≤ f(y).

Moreover,

f(y) ≤ f s(y)

is implied by the fact that f s(y) ∈ ∂MB(y) because (a) if yt ≤ z∗t then

f(y)t = f s(y)t, and (b) if yt > z∗t then can choose f s(y) ∈ ∂MB(y) that

max. ν and satisfies f(y)t = f s(y)t.

Since f i(y) ≤ f(y) ≤ f s(y), the conclusion follows from Theorem 6.

References
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Abdulkadiroğlu, A., P. A. Pathak, and A. E. Roth (2005):

“The New York City High School Match,” American Economic Re-

view, 95(2), pp. 364–367.
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