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Abstract. We revisit the connection between bargaining and equilibrium in exchange econo-
mies and study its algorithmic implications. We consider bargaining outcomes to be alloca-
tions that cannot be blocked (i.e., profitably retraded) by coalitions of small size, and show
that these allocations must be approximate Walrasian equilibria. Our results imply that
deciding whether an allocation is approximately Walrasian can be done in polynomial time,
even in economies forwhich finding an equilibrium is known to be computationally hard.
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1. Introduction
We present a quantitative core convergence theorem with economic and algorithmic implications. The core is a cen-
tral notion in economics and game theory. Specifically, the core of an economy is the set of allocations (redistribu-
tion of goods among agents) that cannot be improved upon by trading, or renegotiation, among any subset of
agents. That is, the core comprises the outcomes that are not “blocked” by any coalition of agents. It corresponds
to a standard game-theoretic solution concept that captures bargaining outcomes, in the sense that a core out-
come cannot be upset by exploiting additional gains from trade. The Edgeworth conjecture, or core convergence,
asserts that in an asymptotically large economy, any outcome in the core will necessarily correspond to a Walra-
sian equilibrium. Developing a nonasymptotic version of core convergence, the current work shows that alloca-
tions that are not blocked by coalitions of small size are, in fact, approximate Walrasian equilibria.

1.1. Significance of the Edgeworth Conjecture
Economists have, since Francis Edgeworth in 1881, been interested in the convergence of bargaining outcomes in
large finite economies to market equilibrium. When agents bargain, however, the final outcomes are typically
indeterminate. Think of a buyer and a seller who may benefit from trading: it is optimal for them to transact, but
the precise price will typically not be pinned down. The celebrated Edgeworth conjecture states that bargaining
indeterminacy and monopoly power disappear in large economies. Instead agents become price takers, and mar-
ket outcomes approximate the behavior of perfectly competitive markets. Edgeworth focused on the contract
curve, what we think of now as the core. The core, however, requires agents to join coalitions of arbitrary size. In
our quantitative core convergence theorem, we show that coalitions of a fixed size suffice. The fixed size depends
polynomially on the approximation error, the number of goods in the economy, and consumers’ heterogeneity.

The economic analysis of markets is based on the notion of Walrasian (competitive) market equilibrium and
price-taking behavior. Walrasian equilibrium requires that goods are assigned prices, each agent maximizes her
utility subject to what she can afford, and the market clears. Walrasian equilibria provide a conceptually crisp
framework for economic analysis: with prices as guides, agents direct themselves, in a decentralized manner, to
a Pareto-optimal allocation. That agents are price takers means that they treat prices as fixed; they will not rene-
gotiate the terms of trade with other agents.

The Edgeworth conjecture, or core convergence, is the economist’s basic justification for the price-taking assump-
tion. Specifically, it postulates that, in a large economy, bargaining collapses to Walrasian equilibrium; that is, in a
large economy, no group of agentswould choose to upset an equilibrium by renegotiating among themselves.
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In a small economy, agents bargain over the terms of trade. They may not trade at fixed prices. Each individual
agent in a small economy is to some degree unique, and can therefore command a certain degree of monopoly
power. Imagine the market for professional soccer players, or high-profile academics, in which each individual
agent is special. Then terms of trade are determined by haggling and bargaining, not as fixed prices in competi-
tive markets. By contrast, in a large economy with limited heterogeneity, no agent is special. Imagine the market
for a commodity, like corn or steel, or for a standard piece of technology, like a personal desktop. In such econo-
mies, bargaining outcomes (formally, outcomes in the core) should collapse to the competitive outcomes that cor-
respond to a Walrasian equilibrium. This claim is the Edgeworth conjecture.

Bargaining is a complex process, and difficult to model in detail. Consequently, economists use the notion of
the core to impose discipline on bargaining outcomes.1 As mentioned previously, the core of an economy is the
set of allocations (redistribution of goods among agents) that no subset, or coalition, of agents can improve upon
via retrading among themselves. In other words, the core comprises the outcomes that are not blocked by any
coalition of agents. Any allocation that is not in the core would be renegotiated, or recontracted, by some set of
agents. Note that the definition of the core involves all possible coalitions of agents, of all possible sizes.

The core convergence theorem states that in a large (in an asymptotic sense) economy, any outcome in the
core, arrived at through seemingly indeterminate reallocations and bargaining, will, in fact, be a Walrasian equi-
librium. In other words, the core convergence theorem captures the meaning of the Edgeworth conjecture, and
supports the use of Walrasian equilibria and price-taking behavior in large economies.

1.2. Alternative Approaches to Core Convergence
Edgeworth’s conjecture was first formalized by Debreu and Scarf [11] as well as Aumann [6].2 In our paper, we
shall follow Debreu and Scarf [11]. Aumann’s [6] model assumes a limit economy with a continuum of agents;
hence, there is no scope in his model to address the questions we are interested in.3 Debreu and Scarf [11] con-
sider a large economy with limited heterogeneity. Their idea, which goes back to Edgeworth himself, is to postulate a
finite number of agent types, say, h, and then imagine a sequence of replica economies. The nth replica of the
economy has n identical copies of each type of agent t ∈ [h]. Under standard assumptions, they show that, in the
limit as n→∞, the core of the nth replica economy approaches the set of Walrasian equilibrium allocations. We
borrow some crucial ideas from Debreu and Scarf’s [11] proof (notably, the need to separate the convexified
union of “translated” upper contour sets from the negative orthant), but depart from their approach in using a
recent quantitative and approximate version of Carathéodory’s theorem.

Observe that the standard core convergence theorems not only require n to be asymptotically large, but, to
address the core, one has to account for coalitions that are arbitrarily large, both in size and in number.

In contrast to the core, we focus on the κ-core: the set of allocations that cannot be blocked by any coalition of
size at most κ. In a large economy, it is unlikely that coalitions of arbitrary size can function effectively. Even if a
large coalition can effectively communicate among its members, they would face significant hurdles in aggregat-
ing their preferences to achieve an outcome that is collectively better for the members of the coalition. Think of
Arrow’s theorem (see, e.g., Mas-Colell et al. [23]): preference aggregation is known to be very problematic, and
the size and number of all coalitions in a large economy make the problem even worse. The κ-core demands
much less of the blocking coalitions, and seems to us a more plausible solution concept than the core. In addition,
the number of coalitions to check for is much smaller in the κ-core than in the core ( n

κ

( )
with fixed κ, rather than 2n).

Our main result is that under benign assumptions on agents’ preferences, an allocation that is in the κ-core
must be an approximate equilibrium (an ε-Walrasian equilibrium). The term κ depends polynomially on the
approximation guarantee and on the agent heterogeneity in the economy. Our result is nonasymptotic; it holds
for finite economies, as long as the number of agents, n, exceeds κ. We adopt the model and the assumptions of
Debreu and Scarf [11]. In fact, to make our paper self-contained, their result is restated in Section 3.

1.3. Other Quantitative Versions of Edgeworth’s Conjecture
We are not the first to prove a quantitative version of Edgeworth’s conjecture. The closest paper to ours is by
Mas-Colell [22], who also exhibits a bound on the size of blocking coalitions needed for core convergence.4 The
main difference between Mas-Colell’s [22] result and ours is that he considers an average error as his approxima-
tion guarantee. He ensures that the average budget gap, where the average is taken over all agents in the econ-
omy, is small. If we translate his results into our stronger objective of a per-agent approximation guarantee, his
result requires κ to be a function of n.5 Our result will instead say that κ is O(1=ε2) (as long as n ≥ κ). We should
emphasize that Mas-Colell’s [22] theorem requires substantially weaker assumptions than ours and does not rely
on the Edgeworth–Debreu–Scarf replica setting.
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Our main theorem has important algorithmic consequences for the problem of deciding whether an allocation
can be supported as an approximate Walrasian equilibrium. Imagine a policy maker who would like to install a
given allocation using decentralized markets. The standard advice to such a policy maker comes from the second
welfare theorem, which says that any Pareto-optimal allocation can be obtained (given certain assumptions on
the economy) as a Walrasian equilibrium, using a system of taxes and subsidies to adjust all agents’ incomes. We
study the same question as in the second welfare theorem, but when the policy maker is unable to freely use
taxes or subsidies.

Specifically, given an allocation in an exchange economy, we consider the problem of deciding whether there
exists prices that make the allocation an approximate Walrasian equilibrium. Our main algorithmic result is to
provide a polynomial-time algorithm that resolves the question. Our finding stands in stark contrast to the exist-
ing hardness results for Walrasian equilibria; see, for example, Chen et al. [9], Codenotti et al. [10], Garg et al.
[16], and Vazirani and Yannakakis [27]. There are settings for which it is known that finding an equilibrium is
hard, and for which our algorithm efficiently decides whether a given allocation can be supported as an approxi-
mate Walrasian equilibrium.

We are, to the best of our knowledge, the first to study the question of “testing” a putative equilibrium alloca-
tion, that is, without use of taxes and subsidies, and thus outside the scope of the second welfare theorem. Our
paper resolves this question with a satisfactory algorithm.

1.4. Informal Statement of Our Results
Our paper makes an economic and an algorithmic contribution. The economic contribution is in the form of a
nonasymptotic core convergence theorem, for a relaxed notion of the core: one that requires only robustness to
blocks by small coalitions. The algorithmic contribution is to the problem of testing whether an allocation is a
(approximate) Walrasian equilibrium allocation. The main lemma in our core convergence result allows us to
develop an efficient algorithm that decides whether an allocation can be supported as an approximate Walrasian
equilibrium (and find the supporting/equilibrium prices, if they exist).

The κ-core is the set of allocations that are not blocked by coalitions of size at most κ. We show that core con-
vergence is obtained as long as κ is polynomially large (in the approximation parameter and agent heterogene-
ity) and the size of the economy is at least κ. Thus, core convergence is obtained in finite economies.

Specifically, we prove that in any replica economy with well-behaved utilities, allocations in the κ-core are, in

fact, ε-Walrasian, as long as κ is O h2ℓ
ε2

( )
; here, h denotes the heterogeneity of the economy (the number of different

types of agents), ℓ denotes the number of goods, and ε > 0 is the approximation parameter; see Theorem 3.2.6

Note that our result does not require the number of agents n, or the size of blocking coalitions, to be arbitrarily
large. The result is applicable whenever n isΩ(κ).
1.5. Our Techniques
The current work develops new techniques for addressing core convergence. Instead of relying on limiting, or
measure-theoretic, arguments as in the classical literature (see Hildenbrand [19]), our proof builds upon geomet-
ric insights and dimension-free results. In that sense, we show how research in algorithmic game theory can be
used to address a foundational issue in economics, such as the price-taking assumption. Specifically, we employ
the approximate version of Carathéodory’s theorem (see Barman [7] and references therein). The classical theo-
rem of Debreu and Scarf [11] requires a “rounding to rational numbers” argument—the size of the economy
needs to be arbitrarily large so that such a rounding is possible. Our proof avoids such a rounding by invoking
the approximate Carathéodory theorem. The use of this dimension-independent result also distinguishes our
techniques from the ones utilized in the (abovementioned) works of Mas-Colell [22] and Anderson [1], which, in
particular, invoke the well-known Shapley–Folkman–Starr theorem.

Employing the approximate Carathéodory theorem, we ascertain that the largest coalitions needed to ensure
an approximate Walrasian equilibrium are only polynomially large and independent of the size of the economy.
Our key technical insight is provided through an efficiently implementable characterization of approximate Wal-
rasian equilibrium allocations (Lemma 3.3 in Section 3.1). Our characterization yields not only the quantitative
version of core convergence, but also an efficient algorithm that tests whether a given allocation can be supported
as an approximate equilibrium.

Our algorithm takes as input an allocation and determines whether there are prices that make the allocation
into an approximate Walrasian equilibrium. This result is potentially useful to understand the policy objectives
that can be obtained in a decentralized fashion, as a Walrasian equilibrium. It also contributes to the algorithmic
literature on equilibrium computation, as it identifies a notable dichotomy between testing and computing Wal-
rasian equilibria.

Barman and Echenique: A Quantitative Core Convergence Theorem
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The problem of computing Walrasian equilibria has been studied extensively in algorithmic game theory.
Most results in this direction are negative; finding a Walrasian equilibrium is computationally hard for general
settings (see, e.g., Chen et al. [9], Codenotti et al. [10], Garg et al. [16], Vazirani and Yannakakis [27]). By contrast,
we show that the testing counterpart is computationally tractable. In particular, we develop a polynomial-time
algorithm that, for a given allocation, finds prices (if they exist) that make the allocation an approximate Walra-
sian equilibrium (Theorem 4.2). Note that, in particular settings, it might be possible to efficiently test whether a
given allocation is Pareto optimal and, hence (using the characterization provided by the welfare theorems),
determine whether the allocation can be supported as an exact equilibrium. However, in and of itself, this obser-
vation does not extend to approximate equilibria. Furthermore, it does not directly lead to an efficient method
for finding the supporting equilibrium prices.

The abovementioned results require the utilities in the economy to be strongly concave. Hence, as is, they do
not address piecewise-linear concave (PLC) utilities, which, although concave, are not strongly concave. The
PLC case is particularly important in light of the hardness results in Deng and Du [12], Chen et al. [9], and Garg
et al. [16]. However, we show that the developed ideas can be adapted to obtain an efficient testing algorithm
even for PLC economies (Theorem 4.6).

2. Notation and Preliminaries
2.1. Notational Conventions
For vectors x,y ∈ R

ℓ, write x ≤ y iff xj ≤ yj for all j ∈ [ℓ]. We will use Δ to refer to the standard simplex in
R

ℓ, Δ :� {x ∈ R
ℓ |∑ℓ

j�1 xj � 1 and xj ≥ 0 for all j}. The convex hull of a set of vectors A ⊂ R
ℓ will be denoted by

cvh(A). In addition, the all-one and all-zero vector will be denoted by 1 and 0, respectively.

2.2. Exchange Economies
An exchange economy E comprises of a set of consumers, [h] :� {1, 2, : : : ,h}, and a set of goods, [ℓ] :� {1, 2, : : : ,ℓ}.
Each consumer is endowed with different quantities of the goods as an endowment; specifically, for every con-
sumer i ∈ [h], the vector ωi ∈ R

ℓ
+ denotes (componentwise) the amount of each good endowed to i. The preference

of consumer i ∈ [h], over bundles of goods, is specified by a utility function, ui : Rℓ
+ 	→ R. In particular, every con-

sumer is described by a pair (ui, ωi). An exchange economy E is a tuple ((ui,ωi))hi�1.
We shall adopt some standard assumptions on consumers’ utilities: ui’s are continuous and monotone increas-

ing. We further assume that the utilities are continuously differentiable7 and α-strongly concave, with α > 0.
Strong concavity (convexity) is a well-studied property in convex optimization (see, e.g., Boyd and Vanden-
berghe [8]). It provides a parametric strengthening of concavity. Formally, a differentiable function, u : Rℓ 	→ R,
is said to be α-strongly concave within a setR ⊂ R

ℓ iff the following inequality holds for all x,y ∈R:

u(y) ≤ u(x) + ∇u(x)T(y− x) − α

2
||y− x||2:

Here, ∇u(x) is the gradient of the function u at point x, and || · || denotes the Euclidean norm. Note that if α � 0,
then u is simply a concave function. Furthermore, the case of α > 0 corresponds to strict concavity.

The setR specifies the subdomain over which strong concavity holds. We assume thatR is appropriately large
and, in particular, that it contains the Euclidean ball of radius r ∈ R+ and center ωi (the endowment vector), for
each i. We assume that the radius r satisfies αr2 ≥ 2ελℓ

h + 2, with ε > 0 being the approximation parameter, and λ
denoting the Lipschitz constant of the utilities. At a high level, the condition asserts that agent i’s utility function
has sufficient curvature close to i’s endowment ωi. The strong concavity assumption is satisfied by standard
examples of utility functions used in economics; in particular, utilities of the form u(y) :� (∑ℓ

j�1 y
ρ
j ), with 0 < ρ < 1

(i.e., utilities within the constant elasticity of substitution family of utilities) are strongly concave (see Appendix
C for an illustrative example). Throughout, for ease of presentation, we will simply say that the utilities are
α-strongly concave, with the setR being implicit.

2.3. Core
For an exchange economy with h consumers and ℓ goods, E � ((ui, ωi))hi�1, we define the following central notions:

• An allocation in E is a vector, x � (xi)hi�1 ∈ R
hℓ
+ , such that

∑h
i�1 xi �∑h

i�1ωi. In other words, an allocation corre-
sponds to a redistribution of the endowments among the consumers.

• A nonempty subset S ⊆ [h] is a coalition. Let S be a coalition; then a vector (yi)i∈S is an S-allocation if∑
i∈Syi �∑

i∈Sωi.

Barman and Echenique: A Quantitative Core Convergence Theorem
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• A coalition S blocks the allocation x � (xi)hi�1 in E if there exists an S-allocation (yi)i∈S such that ui(yi) > u(xi) for
all i ∈ S. That is, a blocking coalition is a group of consumers that are better off trading among themselves than they
would have been under x.

• The core of E is the set of all allocations that are not blocked by any coalition.
• The κ-core of E, for κ ∈ Z+, is the set of allocations that are not blocked by any coalition of cardinality at most κ.

Hence, in an economywith n consumers, the core is the n-core, and the set of individually rational allocations is the
1-core.

2.4. Equilibrium and Approximate Equilibrium
In an exchange economy E � ((ui, ωi))i∈[h], aWalrasian equilibrium is a pair (p,x) ∈ R

ℓ
+ × R

hℓ
+ in which

1. p ∈ R
ℓ
+ is a price vector for the ℓ goods in the economy;

2. x � (xi)i∈[h] ∈ R
hℓ
+ is an allocation, that is, under x, supply equals the demand,

∑h
i�1 xi �∑h

i�1ωi;
3. every consumer i ∈ [h]maximizes its utility ui while consuming its endowment ωi; that is, pTxi � pTωi, and, for

all bundles y ∈ R
ℓ
+ with the property that ui(y) > ui(xi), we have pTy > pTωi.

Next, we describe what we mean by an approximate Walrasian equilibrium. We use a notion of approximation
in which consumers are optimizing exactly, subject to budget constraints that are satisfied approximately.

Formally, in an exchange economy E � ((ui, ωi))i∈[h], an ε-Walrasian equilibrium is a pair (p,x) ∈ R
ℓ
+ × R

hℓ
+ in

which the (normalized) price vector p ∈ Δ and the allocation x ∈ R
hℓ
+ satisfy the following two conditions, for all

consumers i ∈ [h]:
i. |pTxi − pTωi| ≤ ε and
ii. for any bundle y ∈ R

ℓ
+, with the property that ui(y) > ui(xi), we have pTy > pTωi − ε=h.

Our notion of approximation is different from the standard use in algorithmic game theory, where agents are
approximately optimizing, but it conforms to the most used definitions in economic theory (see Anderson [1, 2],
Anderson et al. [4], Arrow and Hahn [5], Hildenbrand [19], Hildenbrand et al. [20], Mas-Colell [21, 22], Starr
[26]). Economists do not view utilities as objective, observable, entities. Hence, it is natural in economics to meas-
ure the approximation error in monetary terms, using consumers’ expenditure, instead of measuring approxima-
tion in terms of utility loss. That said, it is straightforward to move between different notions of approximate
equilibrium, and our result continues to apply. One can, instead, require that the approximation guarantee be in
terms of the utilities, or that budget exhaustion holds exactly (so the value of agents’ consumption equals the
value of their endowment), but the overall supply is only approximately equal to the demand. In Appendix D,
we show that one can obtain these kinds of approximations as well from the results in the current paper.

Also, note that part ii of the definition is stronger than the symmetric (to part i) version that requires pTy >
pTωi − ε for every bundle y ∈ R

ℓ
+, with the property that ui(y) > ui(xi).

2.5. Walrasian Allocation
The term (approximate) Walrasian allocation refers to an allocation x ∈ R

hℓ
+ in E for which there exists a price vector

p ∈ Δ such that (p,x) is a (approximate) Walrasian equilibrium.

2.6. Utility Normalization
Our work addresses additive approximations, hence, we will follow the standard assumption (used in the con-
text of absolute-error bounds) that the utilities are normalized so that ui(xi) ∈ [0, 1) for all consumers i ∈ [h] and
all allocations (xi)i ∈ R

hℓ
+ . In fact, we will normalize such that ui(xi) ∈ [0, 1− η), where η ∈ (0, 1) for all consumers

i ∈ [h] and all allocations (xi)i ∈ R
hℓ
+ . These normalizations are possible as the set of all allocations is compact and,

hence, each utility function will achieve a maximum over the space of allocations.
Note that the utilities are normalized only for feasible allocations in the underlying exchange economy. A bun-

dle, which is, say, componentwise greater than the total endowment in the exchange economy—or, allocations in
a replica economy (defined below)—can have utility arbitrarily greater than one.

Also, we will use λ to denote the Lipschitz constant of the utility functions, ui.

2.7. Replica Economies
Let E � ((ui, ωi))i∈[h] be an exchange economy over the commodity space R

ℓ
+. The nth replica of E, for n ≥ 1, is the

exchange economy En � ((ui,t, ωi,t))i∈[n],t∈[h], with nh consumers. In En, the consumers are indexed by (i, t), with
index i ∈ [n] and type t ∈ [h], and they satisfy

ui,t � ut and ωi,t � ωt:

Barman and Echenique: A Quantitative Core Convergence Theorem
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Replica economies constitute the basic model of a large economy with limited heterogeneity. See Mas-Colell
et al. [23, chapter 18] for a textbook treatment.8

As mentioned previously, the utility normalization is considered only with respect to feasible allocations in
the underlying economy E.9 Indeed, the consumers’ utilities scale up for feasible bundles in En, because the
amount of each good in the economy increases as a function of n.

An allocation x � (xi,t) of En is said to have the equal treatment property iff all the consumers with the same type
are allocated identical bundles, that is, iff xi,t � xi′,t for every t ∈ [h] and i, i′ ∈ [n].

The following lemma is established in the work of Debreu and Scarf [11] and it asserts that allocations con-
tained in the h-core necessarily satisfy the equal treatment property. Debreu and Scarf [11] state the result as a
consequence of the core, or, in the terminology of our paper, the (n × h)-core. In actuality, the stronger statement
below holds true. We include a proof in Appendix B for completeness, but the proof is really the same as that of
Debreu and Scarf [11].

Lemma 2.1 (Equal Treatment Property). Let the utilities of each consumer be strictly monotonic, continuous, and strictly
concave in an exchange economy E � ((ui, ωi))i∈[h] and, hence, in the corresponding replica economy En. Then, every h-core
allocation of En satisfies the equal treatment property.

By Lemma 2.1, we can express the h-core allocations of En as vectors in R
hℓ
+ , with the convention that consum-

ers that have the same type receive the same bundle. This succinct representation also applies to our main result,
which considers κ-cores, with κ ≥ h. Hence, for brevity, we represent κ-core allocations10 of the replica economy
En as vectors in R

hℓ
+ .

The definition of a Walrasian equilibrium (both exact and approximate) naturally extends to replica economies
En, wherein the price vector p ∈ R

ℓ
+ and the allocation x ∈ R

nhℓ
+ .

Furthermore, note that if (p,x) is a (approximate) Walrasian equilibrium in E, then p and an n-times replicated
version of x constitute a (approximate) Walrasian equilibrium in En. Analogously, if x is a Walrasian allocation
in E, then it11 is a Walrasian allocation in En as well, for all n ≥ 1.

Throughout, we will address allocations that satisfy the equal treatment property. Hence, we will simply state
that (p,x) ∈ R

ℓ
+ × R

hℓ
+ is a (approximate) Walrasian equilibrium—or that x ∈ R

hℓ
+ is a (approximate) Walrasian allo-

cation—without distinguishing between E and En in this context.

3. A Quantitative Core Convergence Theorem
[T]he reason why the complex play of competition tends to a simple uniform result—what is arbitrary and indetermi-
nate in contract between individuals becoming extinct in the jostle of competition—is to be sought in a principle which
pervades all mathematics, the principle of limit, or law of great numbers as it might perhaps be called. (Edgeworth
[15])

The following classic result of Debreu and Scarf [11] establishes that, as n tends to infinity, each allocation in
the core of En is a Walrasian allocation.

Theorem 3.1 (Debreu and Scarf [11] Core Convergence Theorem). Assume that in an exchange economy E—with h
consumers and ℓ number of goods—the consumers’ utilities are strictly monotonic, continuous, and strictly quasiconcave.
Furthermore, suppose that an allocation x ∈ R

hℓ
+ belongs to the core of En for all n ≥ 1. Then, x is a Walrasian allocation;

that is, there exists a nonzero price vector p ∈ R
ℓ
+ such that (p,x) is a Walrasian equilibrium.

By contrast, our result is nonasymptotic—it shows that as long as n is quadratic in h, ℓ, and 1=ε, a core alloca-

tion is an ε-Walrasian allocation. In fact, our result holds for κ-cores, where κ is O h2ℓ
ε2

( )
.

Theorem 3.2 (Main Result). Assume that in an exchange economy E � ((ui, ωi))i∈[h]—with h consumers and ℓ number of
goods—the utilities, ui, are strictly monotonic, continuously differentiable, and α-strongly concave. Furthermore, suppose
that an allocation x ∈ R

hℓ
+ belongs to the κ-core of En, for any

n ≥ κ ≥ 16
α

λℓh
ε

+ h2

ε2

( )
:

Then, x is an ε-Walrasian allocation (i.e., there exists a price vector p ∈ Δ such that (p,x) is an ε-Walrasian equilibrium).
Here, ε > 0 is the approximation parameter, and λ is the Lipschitz constant of the utilities.
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We will establish this theorem by showing that if an allocation x is in the κ-core, then there exists a price vector
p ∈ Δ such that (p,x) is a ε-Walrasian equilibrium. It is relevant to note that instead of relying on limiting argu-
ments, we use nonasymptotic results (with relevant approximation guarantees), such as the approximate version
of Carathéodory’s theorem (see Barman [7] and references therein). Developing such a proof ensures that the
underlying parameters (e.g., the core size κ) are only polynomially large (and not arbitrarily large). This
approach not only provides us with a quantitative version of the core convergence theorem, but also an effi-
ciently implementable characterization (Section 3.1). In Section 4, we will use the developed characterization to
design an efficient algorithm that tests whether a given allocation is approximately Walrasian or not.

We will begin by establishing (in Section 3.1) a useful geometric property that is satisfied by all allocations
(Walrasian or otherwise). At a high level, this property shows that one can focus on a bounded subset of a spe-
cific convex hull, which in itself is unbounded. This bounding exercise essentially enables us to bypass asymp-
totic arguments and prove the quantitative version of the core convergence theorem in Section 3.3.

The fact that we can work with a bounded set (and not an unbounded one) is also essential from an algorith-
mic standpoint. Specifically, it lets us apply the ellipsoid method and develop (in Section 4) an efficient testing
algorithm for Walrasian allocations.

3.1. Bounded Hull
The result developed in this section applies to arbitrary allocations, allocations that might or might not be in the
core. Consider an exchange economy E � ((ui, ωi))i∈[h]—with h consumers and ℓ goods—in which the utilities, ui,
are strictly monotonic, continuously differentiable, and α-strongly concave. As before, λ denotes the Lipschitz
constant of the utility functions. Let δ :� ε=h.

Let y � (yi)i∈[h] be an allocation in E. With parameter η ∈ (0, 1), for each consumer i ∈ [h], we define Vη
i :� {y ∈

R
ℓ
+ | ui(y) ≥ ui(yi) + η} to denote the upper contour set with respect to the allocated bundle yi and margin η. Also,

write Qη
i to denote the set of trades from the endowment ωi that render consumer i better off than the allocated

bundle, Qη
i :� {z ∈ R

ℓ |ui(z+ωi) ≥ ui(yi) + η}. By definition, z ∈Qη
i iff (z+ωi) ∈ Vη

i .

For each consumer i, we also consider Q̂
η

i , a bounded subset of Qη
i ; specifically,

Q̂
η

i :�Qη
i ∩ z ∈ R

ℓ : ||z|| ≤
��������������
2(λℓδ+ 1)

α

√{ }
:

The set Q̂
η

i is obtained by intersecting Qη
i with the Euclidean ball of radius

���������
2(λℓδ+1)

α

√
and center 0.

Because the utility ui is continuous and concave, the set Qη
i is closed and convex. Therefore, the subset Q̂

η

i is
compact (closed and bounded) as well as convex. The following lemma shows that by bounding the sets in this
manner, we do not loose out on an important containment property.

Lemma 3.3. Let y be an allocation in an economy E with strictly monotonic, continuously differentiable, and strongly con-
cave utilities. Suppose that the sets Qη

i and Q̂
η

i , for i ∈ [h], are as defined above, with parameters δ > 0 and η ∈ [0,η). Then,

(−δ)1 ∈ cvh ⋃ h
i�1Q

η
i

( )
iff (−δ)1 ∈ cvh ⋃ h

i�1 Q̂
η

i

( )
:

Proof. The reverse direction of the claim is direct, because Q̂
η

i ⊂Qη
i for all i ∈ [h].

For the forward direction, we have vectors zi ∈Qη
i and a convex combination λi ≥ 0, for i ∈ [h], such that∑h

i�1λi � 1 and ∑h
i�1

λizi � (−δ)1 (1)

Let R :�maxi{||zi|| : i ∈ [h]}. By definition, the zi’s are contained in the (closed) Euclidean ball B(R) of radius R and
center 0. Note that for each i ∈ [h], the intersection Qη

i ∩ B(R) is a compact set.
Let Z denote the collection of all tuples

(z′1, z′2, : : : , z′h) ∈
(
Qη

1 ∩ B(R)
)
×
(
Qη

2 ∩ B(R)
)
× : : : ×

(
Qη

h ∩ B(R)
)

for which there exist convex coefficients λ′
i such that

∑
iλ

′
i z

′
i ≤ (−δ)1; that is, there exists a convex combination of

z′i ’s that is componentwise upper bounded by (−δ)1.12
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From (1), we know that Z is nonempty. Given that the sets (Qη
i ∩ B(R)) are compact, one can show that Z is

compact as well. Hence, the problem of minimizing max{||z′i − (−δ)1|| |(z′i )i ∈ Z} admits an optimal solution, say,
(z∗t)t. Note that, by definition of Z, there exist convex coefficients (λ∗

t)t∈H∗ that satisfy
∑

t∈H∗λ∗
tz

∗
t ≤ (−δ)1; here, sub-

set H∗ ⊆ [h] is selected to ensure that λ∗
t > 0 for all t ∈H∗.

Next, we will prove that ||z∗t || ≤
���������
2(λℓδ+1)

α

√
, for all t ∈H∗. Subsequently, we will show that, using z∗t ’s, we can

obtain vectors z̃t ∈Qη
t that satisfy the same norm bound ||̃zt|| ≤

���������
2(λℓδ+1)

α

√( )
and whose convex combination is equal

to (−δ)1. This norm bound implies that z̃t ∈ Q̂
η

t and, hence, leads to the desired containment: (−δ)1 ∈ cvh(⋃ h
i�1Q̂

η

i ).
Assume, by way of contradiction, that ||z∗i || >

���������
2(λℓδ+1)

α

√
, for some i ∈H∗. For such an i, consider bundle

x∗i :� z∗i +ωi. By definition, z∗i ∈Qη
i and, hence, x

∗
i ∈ Vη

i (i.e., x
∗
i belongs to the upper contour set). Next, we establish

a useful bound that holds in both the following (exhaustive) cases: (i) x∗i is in the range set R of strong concavity
(see Section 2), and (ii) x∗i lies outside the range set R. Note that ui is α-strongly concave throughout R; hence, in
case (i) we have

ui(ωi) ≤ ui(x∗i ) + ∇ui(x∗i )T(ωi − x∗i ) −
α

2
||ωi − x∗i ||2: (2)

Because ||ωi − x∗i || � ||z∗i || >
���������
2(λℓδ+1)

α

√
, inequality (2) reduces to

∇ui(x∗i )Tx∗i < ∇ui(x∗i )Tωi + (ui(x∗i ) − ui(ωi)) − α

2
2(λℓδ+ 1)

α
: (3)

This bound holds in case (ii) as well, that is, holds even if x∗i lies outside R. Here, we can consider a convex com-
bination of ωi and x∗i , say, vector x̃i, that is at a distance r (as specified in Section 2) away from ωi. The assumption
on R ensures that x̃i ∈R and αr2

2 ≥ λδℓ+ 1. Applying strong concavity with x̃i, we get ui(ωi) ≤ ui (̃xi) + ∇ui (̃xi)T
(ωi − x̃i) − α

2 ||ωi − x̃i||2 ≤ ui(̃xi) +∇ui(̃xi)T(ωi − x̃i) − (λℓδ+ 1). Because ui(x∗i ) +∇ui(x∗i )T(ωi − x∗i ) ≥ ui(̃xi) + ∇ui(̃xi)T(ωi − x̃i),
inequality (3) follows; that is, this bound holds in general.

Next, observe that x∗i must satisfy ui(x∗i ) � ui(yi) + η < 1;13 if this is not the case (i.e., if we have
ui(x∗i ) > ui(yi) + η), then by reducing a positive component14 of z∗i � x∗i −ωi, we can ensure that z∗i moves closer to
(−δ)1 and at the same time z∗i continues to be in Qη

i (i.e., the inequality ui(x∗i ) ≥ ui(yi) + η continues to hold). Also,
note that such a reduction maintains the containment of z∗i ’s in Z; specifically, the inequality

∑
tλ

∗
tz

∗
t ≤ (−δ)1 con-

tinues to hold. A repeated application of this argument gives us x∗i � z∗i +ωi with the property that ui(x∗i ) �
ui(yi) + η < 1.

The utility function ui is λ-Lipschitz; hence, its gradient at any point x∗i ∈ R
ℓ satisfies ||∇ui(x∗i )||∞ ≤ λ; that is,

||∇ui(x∗i )||1 ≤ λℓ. Therefore, Equation (3) gives us

∇ui(x∗i )Tx∗i < ∇ui(x∗i )T(ωi + (−δ)1): (4)

Now, we can apply Proposition A.1 (stated and proved in Appendix A) with x � x∗i , w � (ωi + (−δ)1), and
inequality (4), to establish that there exists a positive μ ∈ (0, 1] with the property that ui(x∗i ) ≤ ui((1−μ)x∗i+μ(ωi + (−δ)1)).

Rewriting, we get ui((1−μ)(x∗i −ωi) +μ(−δ)1+ωi) ≥ ui(x∗i ). Therefore,
ẑi :� (1−μ)(x∗i −ωi) +μ(−δ)1 � (1−μ)z∗i +μ(−δ)1 ∈Qη

i ,

as x∗i ∈ Vη
i and z∗i ∈Qη

i .
The vector ẑi is itself a convex combination of z∗i and (−δ)1. This ensures that there exists a convex combination,

(λ̂t)t∈H∗ , such that

λ̂ îzi +
∑

t∈H∗\{i}
λ̂tz∗t ≤ (−δ)1:

Note that ||̂zi − (−δ)1|| � (1−μ)||z∗i − (−δ)1|| < ||z∗i − (−δ)1||. This argument can be repeated for all other j’s with
||z∗j − (−δ)1|| �max{||z∗t − (−δ)1|| | t ∈H∗}, contradicting the definition (optimality) of z∗t ’s.

Therefore, the desired upper bound on the norm holds: ||z∗t || ≤
���������
2(λℓδ+1)

α

√
, for all t ∈H∗.

To complete the proof, we will show that z∗t ’s can be transformed into vectors z̃t ∈Qη
t that satisfy the same

norm bound and whose convex combination is equal to (−δ)1. Write φ :�∑
tλ

∗
tz

∗
t and note that φ ≤ (−δ)1. If com-

ponent a ∈ [ℓ] of φ is strictly less than −δ, then there exists a z∗i such that its ath component is less than −δ as well:
z∗i,a < −δ. We can increase z∗i,a till either it becomes equal to zero or the ath component of φ reaches −δ.15 Note that
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in this transformation, although the ath component of z∗i increases in value, it decreases in magnitude. Hence, the
utility ui(z∗i +ωi) increases, and the norm of z∗i decreases. Repeatedly applying this procedure gives us vectors

z̃t ∈Qη
t such that ||̃zt|| ≤

���������
2(λℓδ+1)

α

√
and

∑
tλ

∗
t z̃t � (−δ)1.

Overall, this implies that (−δ)1 ∈ cvh(⋃ h
i�1Q̂i) and the stated claim follows. Q.E.D.

3.2. Lemma for κ-Core Allocations
Recall the notation from Theorem 3.2 and write δ :� ε

h along with γ :�
���������
2(λℓδ+1)

α

√
. Note that, in Theorem 3.2, the

lower bound on κ is equal to 8γ2

δ2
.

In this section, we apply Lemma 3.3 to establish an important separation property satisfied by allocations in
the κ-core of an economy. In contrast to the result developed in the previous section, the next lemma (Lemma
3.4) specifically addresses κ-core allocations.

In particular, given a κ-core allocation x � (xi)i∈[h] ∈ R
hℓ
+ , let η > 0 be such that ui(xi) ∈ [0, 1− η] for all

i ∈ [h]—the normalization of the utilities (to lie in [0, 1)) ensures that such a η exists. Also, consider an arbitrarily
small, but positive, parameter η ∈ (0,η).

For each consumer i ∈ [h], writeUη
i :� {x ∈ R

ℓ
+|ui(x) ≥ ui(xi) + η} to denote the upper contour set with respect to the

allocated bundle xi and margin η. Also, write Pη
i to denote the set of trades from the endowment ωi that render con-

sumer i better off than the allocated bundle, Pη
i :� {z ∈ R

ℓ|ui(z+ωi) ≥ ui(xi) + η}. By definition, z ∈ Pη
i iff (z+ωi) ∈Uη

i .
The next lemma provides an important characterization in terms of the convex hull of the Pη

i ’s. This lemma
shows that under a κ-core allocation, beneficial trades (i.e., vectors in Pη

i ’s) cannot be combined (as a convex com-
bination) across consumers to obtain (−δ)1; recall that δ :� ε=h. At a high level, this corresponds to the fact that,
under a κ-core allocation, mutually beneficial redistributions are not possible across consumers.

Lemma 3.4. For any allocation x � (xi)i∈[h] that belongs to the κ-core of an economy En, we have

(−δ)1 ∉ cvh ⋃ h
i�1 P

η
i

( )
:

Proof. Write ν :� (−δ)1. Suppose, toward a contradiction, that ν ∈ cvh(⋃ h
i�1P

η
i ). Then, applying Lemma 3.3, we get

that there exist vectors z∗t ∈ Pη
t such that their norm is bounded, ||z∗t || ≤

���������
2(λℓδ+1)

α

√
� γ, and their convex hull contains

ν:
ν ∈ cvh (z∗t)t∈H∗ :

Here, H∗ is a subset of [h] with the property that all t in H∗ have strictly positive weight in the convex combina-
tion that yields ν.

Therefore, via the approximate version of Carathéodory’s theorem (see, e.g., Barman [7, theorem 2]), we get

that, for any integer k ≥ 8γ2

δ2
, there exists a vector ν′ ∈ cvh (z∗t)t∈H∗ that is δ close to ν (i.e., ||ν′ − ν|| < δ) and satisfies

ν′ � ∑
t∈H∗

βt
k
z∗t ,

with integers βt ∈ Z+ summing up to k:
∑

t∈H∗βt � k.
Choose an integer k ≥ 8γ2

δ2
with k ≤ κ. Then, ν′ is δ-close to ν and it is a k-uniform convex combination of the z∗t ’s.

Given that the Euclidean distance between ν′ and ν � (−δ)1 is strictly smaller than δ, the vector ν′ is component-
wise strictly negative: ν′ � 0.

Now, consider a coalition S in En defined by including βt ∈ Z+ copies of consumers of type t ∈H∗. Note that
|S| � k ≤ κ.

For each member of S of type t, let consumption bundle y∗i,t :� z∗t +ωt. Because z∗t ∈ Pη
t , we have

ut(y∗i,t) ≥ ut(xt) + η for all (i, t) ∈ S:

Also, the fact that ν′ is a k-uniform convex combination of the z∗t ’s gives us

1
k

∑
(i, t)∈S

y∗i,t −
∑

(i, t)∈S
ωt

( )
� ν′ � 0:

Therefore,
∑

(i,t)∈Sy∗i,t �∑
(i,t)∈Sωt �∑

(i,t)∈Sωi,t. As a consequence, the coalition S, which has cardinality k ≤ κ, blocks
the given allocation x � (xi)i∈[h], in the replica economy En. This contradicts that x belongs to the κ-core of
En. Q.E.D.
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3.3. Proof of Theorem 3.2
For the given κ-core allocation x � (xi)i∈[h] ∈ R

hℓ
+ of the economy En, we have Uη

i :� {x ∈ R
ℓ
+|ui(x) ≥ ui(xi) + η} and

Pη
i :� {z ∈ R

ℓ|ui(z+ωi) ≥ ui(xi)}, for each i ∈ [h].
Lemma 3.4 guarantees that (−δ)1 ∉ cvh(⋃ h

i�1P
η
i ). Hence, there exists a hyperplane between (−δ)1 and the con-

vex hull, an implication of the hyperplane separation theorem.
In particular, let p ∈ R

ℓ specify such a separating hyperplane: p · ((−δ)1) ≤ p · cvh(⋃ h
i�1P

η
i ). The upward closure

of Pη
i ’s (a consequence of strict monotonicity of the consumers’ utility functions), and p≠ 0, ensures that p > 0.

Hence, by scaling, we can assume that p ∈ Δ.
We will show that p—as a price vector—certifies that x is an ε-Walrasian allocation, that is, (p,x) is an ε-Walrasian

equilibrium.
Recall that, in an exchange economy E � ((ui, ωi))i∈[h], a pair (q,y) ∈ Δ × R

hℓ
+ (with price vector q and allocation

y) is deemed to be an ε-Walrasian equilibrium iff the following two conditions hold for every consumer i: (i)
|qTyi − qTωi| ≤ ε and (ii) for any bundle x, with ui(x) > ui(yi), we have qTx > qTωi − ε=h. To complete the proof, we
will show that (p,x) satisfies these conditions.

Note that, for each i ∈ [h] and any z � (x−ωi) ∈ Pη
i , the separation by p ∈ Δ implies

pT(x−ωi) � pTz ≥ pT((−δ)1) � −δ:

Hence, for any bundle x ∈Uη
i (i.e., for any bundle x that satisfies ui(x) ≥ ui(xi) + η), the expenditure is at least the

income (minus δ): pTx ≥ pTωi − δ (recall that δ � ε=h).
Here, the analysis holds for any η > 0, however small. That is, for a bundle x ∈ R

ℓ
+, with the property that,

ui(x) > ui(xi), we have

pTx ≥ pTωi − δ: (5)

Therefore, (p,x) satisfies the second condition in the definition of an ε-Walrasian equilibrium.
Finally, we will show that even under the allocated bundle xi, the expenditure is close to the income. Using the

continuity of the utilities and a small enough η, we can apply inequality (5) to obtain pTxj ≥ pTωj − δ for all con-
sumers j ∈ [h].

Allocation x � (xj)j∈[h] satisfies the equal treatment property (Lemma 2.1); hence,
∑

j∈[h]xj �∑
j∈[h]ωj. Therefore,

for each consumer i, we have (xi −ωi) �∑
j∈[h]\{i}(ωj − xj). Taking inner product with p ∈ Δ, we get that (p,x) satis-

fies the first condition in the definition of an ε-Walrasian equilibrium as well:

pT(xi −ωi) �
∑

j∈[h]\{i}
pT(ωj − xj) ≤ (h− 1)δ < ε:

Overall, we get that (p,x) is an ε-Walrasian equilibrium and this completes the proof.

4. Testing Algorithm for Walrasian Allocations
This section develops a polynomial-time algorithm that efficiently determines whether a given allocation is an
ε-Walrasian allocation or not. Specifically, given an exchange economy16 E � ((ui, ωi))i∈[h]—with h consumers and
ℓ goods—along with an allocation y � (yi)i∈[h] ∈ R

hℓ, the developed algorithm efficiently finds a price vector p ∈ Δ
(if one exists) such that (p,y) is an ε-Walrasian equilibrium in E. If no such price vector exists (i.e., y is not an
ε-Walrasian allocation), then the algorithm correctly reports as such.

The developed algorithm runs in time that is polynomial in the number of consumers h. The algorithm applies,
in particular, to completely heterogeneous economies, in which all the consumers can be of different type. In
other words, our algorithmic results are not confined to the replica-economy framework.

The testing algorithm builds upon Lemma 3.3. As before, for any given allocation y � (yi)i∈[h] (which might or
might not be approximately Walrasian) and each consumer i ∈ [h], we define the set Qi :� {z ∈ R

ℓ|ui(z+ωi) ≥ ui(yi)}.17
We will prove (in Lemma 4.1 below) that the (non)containment of (−δ)1 in the convex hull of the Qi’s characterizes
Walrasian equilibria; recall that δ :� ε=h.

This geometric characterization is interesting in its own right. However, given that the sets Qi are unbounded,
this characterization (in terms of Qi’s), does not, in and of itself, translate into an efficient testing algorithm. Spe-
cifically, in order to apply the ellipsoid method and test whether a vector is contained in a specific convex set,
one requires the set to be bounded. The quantitative treatment developed in this paper—in particular, Lemma
3.3—enables us to bypass this issue. Specifically, we will show that it suffices to work with the a bounded subset
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of Qi. Toward that end, we define

Q̂i :� Qi ∩ z ∈ R
ℓ : ||z|| ≤

��������������
2(λℓδ + 1)

α

√{ }
: (6)

Here, α is the strong-concavity parameter of the utilities, and λ is their Lipschitz constant.
As observed before, the set Qi is closed and convex. Furthermore, the subset Q̂i is compact (closed and

bounded) and convex.18 Also, note that any vector z in Qi of norm less than
���������
2(λℓδ+1)

α

√
belongs to Q̂i as well.

Lemma 4.1. An allocation y is an ε-Walrasian allocation in an economy E iff

(−δ)1 ∉ cvh ⋃ h
i�1 Q̂i

( )
:

Here, for each consumer i ∈ [h], the set Q̂i is as defined in Equation (6).

Proof. First, we will consider the case wherein (−δ)1 ∈ cvh(⋃ h
i�1Q̂i) and show that this containment implies that y

is not an ε-Walrasian allocation. Then, we will address the complementary case and prove that if
(−δ)1 ∉ cvh(⋃ h

i�1Q̂i), then y is indeed an ε-Walrasian allocation.
The containment (−δ)1 ∈ cvh(⋃ h

i�1Q̂i) implies that there exists vectors zi ∈ Q̂i ⊂Qi, with i ∈ [h], along with con-
vex coefficients λi such that

∑
iλizi � (−δ)1. Here, λi ≥ 0, for all i, and

∑
iλi � 1.

For each i, write xi � zi +ωi. Hence, we have∑
i
λi(xi −ωi) � (−δ)1: (7)

Furthermore, given that zi ∈Qi, the definition of Qi implies ui(xi) ≥ ui(yi), for each i. Say, toward a contradiction,
that y is an ε-Walrasian allocation; that is, there exits a price vector p ∈ Δ such that (p,y) is a ε-Walrasian equili-
brium. Taking inner product with p on both sides of the Equation (7), we obtain

∑
iλi pT(xi −ωi) � −δ. Because

λi’s are convex coefficients, there exists an index j such that pTxj ≤ pTωj − δ. With δ slightly greater than ε=h, we
can in fact obtain a strict inequality pTxj < pTωj − ε=h. Also, note that uj(xj) ≥ uj(yj). Hence, increasing xj (compo-
nentwise) by a small amount leads to a bundle uj(̂xj) > uj(yj) and pTx̂j ≤ pTωj − ε=h. The existence of x̂j contradicts
the fact that (p,y) is an ε-Walrasian equilibrium.

To complete the proof, we now consider the complementary case: (−δ)1 ∉ cvh(⋃ h
i�1Q̂i). Using Lemma 3.3 (in

contrapositive form, with η � 0), we get (−δ)1 ∉ cvh(⋃ h
i�1Qi).

Consider a hyperplane between (−δ)1 and this convex hull: p · ((−δ)1) ≤ p · cvh(⋃ h
i�1Qi). The hyperplane separa-

tion theorem guarantees the existence of such a p ∈ R
ℓ. Because Qi is upward closed, p is componentwise nonneg-

ative. Also, note that p≠ 0. Therefore, by scaling, we can assume that p ∈ Δ. Next, we will show that (p,y) is an
ε-Walrasian equilibrium.

For each consumer j ∈ [h] and any z ∈Qj, consider the vector y � z+ωj. The definition of Qj implies uj(y) ≥ uj(yj).
The separating property of hyperplane p gives us pT(y−ωj) � pTz ≥ pT(−δ)1 � −δ. Therefore, for each j ∈ [h], the
second condition in the definition of an approximate Walrasian equilibrium is satisfied: for any y with the property
that uj(y) > uj(yj), we have

pTy ≥ pTωj − δ: (8)

Inequality (8) holds, in particular, for yj’s: p
Tyj ≥ pTωj − δ. In addition, given that y is an allocation in the econ-

omy E, we have that, under y, the supply is equal to the demand:
∑h

j�1 yj �∑h
j�1ωj.

Hence, for any fixed i, yi −ωi �∑
j∈[h]\{i}(ωj − yj). Multiplying both sides of this equality with pT, we establish

the first condition that defines an ε-Walrasian equilibrium;

pT(yi −ωi) �
∑

j∈[h]\{i}
pT(ωj − yj)

≤ ∑
j∈[h]\{i}

δ (using (8) with y � yj)

� (h− 1)δ < ε

that is, |pTyi − pTωi| ≤ ε. Hence, (p,y) is an ε-Walrasian equilibrium, and the stated claim follows. Q.E.D.
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Algorithm 1 (Testing Algorithm)
Input: Exchange economy E � ((ui, ωi))i∈[h] (with oracle access to the utilities ui and their gradients ∇ui s), alloca-
tion y � (y1, : : : ,yh) ∈ R

h×ℓ, and approximation parameter ε > 0
Output: YES, if y is an ε-Walrasian allocation in E; otherwise (if y is not an ε-Walrasian allocation), NO

1: Set δ :� ε=h and execute the ellipsoid method, with the separation oracle SEP (Algorithm 2), to determine
whether vector (−δ)1 is contained in cvh(⋃ h

i�1Q̂i) or not {Q̂i’s are defined in Equation (6)}
2: if (−δ)1 ∉ cvh(⋃ h

i�1Q̂i) then
3: return YES

{See Remark 4.3 for an efficient procedure to compute supporting prices}
4: else if (−δ)1 ∈ cvh(⋃ h

i�1Q̂i) then
5: returnNO

6: end if

Algorithm 2 (SEP: Separation Oracle for Convex Set cvh(⋃ h
i�1Q̂i))

Input:Query vector t ∈ R
ℓ, along with oracle access to the underlying utilities ui and their gradients ∇ui

Output: A hyperplane h ∈ R
ℓ (iff one exists) separating t from cvh(⋃ h

i�1Q̂i)
1: Find separating hyperplane h ∈ R

ℓ (iff one exists) using the optimization–separation equivalence (Grötschel
et al. [18]) and the following optimization procedure (for any given c ∈ R

ℓ):
• For each i ∈ {1, 2, : : : ,h}, let

z∗i :� argmax
zi∈̂Qi

cTzi

{These optimization steps are themselves based on the ellipsoid method, and require ui and ∇ui for
hyperplane separation from Q̂i}

• Among the computed vectors, z∗1, : : : , z∗h, return the one that maximizes the inner product with c
2: Return hyperplane h (if it exists); otherwise, report that given vector t ∈ cvh(⋃ h

i�1Q̂i)
In light of Lemma 4.1, testing whether an allocation y is approximately Walrasian or not reduces to determin-

ing whether the vector (−δ)1 is contained in the convex hull of the Q̂i’s. Below, in Theorem 4.2, we develop an
efficient separation oracle for the convex hull of the Q̂i’s—the testing algorithm (see Algorithm 1 below) is
obtained by simply applying this separation oracle onto (−δ)1.

For designing the efficient oracle, we use the equivalence of optimization and separation (Grötschel et al. [18]).
We show that (linear) optimization problems can be solved in polynomial time over the convex hull of the Q̂i’s.
Therefore, we obtain the desired separation oracle. Note that this is a somewhat atypical application of the
optimization–separation equivalence—we start with an optimization algorithm to obtain a separating one.

The running time of our algorithm (Algorithm 1) is polynomial in the input size; in particular, the running
time is polynomial in the bit complexity of the underlying parameters (including ε). Furthermore, the algorithm
only requires oracle access to the utilities and their gradients.

Theorem 4.2 (Testing Algorithm). Let E be an exchange economy with monotonic, continuously differentiable, and
strongly concave utilities. Then, there exists a polynomial-time algorithm that, given an allocation y in E, determines
whether y is an ε-Walrasian allocation.

Proof. As a direct consequence of Lemma 4.1 we have that testing for approximately Walrasian allocation corre-
sponds to determining whether the vector (−δ)1 is contained in the convex hull of the Q̂i’s; see Equation (6) for
the definition of these sets.

Write Q̂ :� cvh(⋃ h
i�1Q̂i). We will develop an efficient algorithm, ALG, for solving linear optimization problems

over Q̂, that is, for solving problems of the form

max cTz subject to z ∈ Q̂: (9)

Here, c ∈ R
ℓ is an input vector.

The equivalence of optimization and separation (see, e.g., Grötschel et al. [18]) implies that ALG can be used to
design a polynomial-time algorithm SEP that provides a separation oracle for Q̂. That is, using SEP, we can per-
form the desired test of determining whether (−δ)1 ∈ Q̂ or not.

In order to apply the optimization–separation equivalence, we need to ensure that Q̂ is compact and convex
and has a nonempty interior. These properties are satisfied by Q̂i’s individually; hence, they hold for Q̂ as well.
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Therefore, we can evoke the equivalence (via an application of the ellipsoid method over the polar of Q̂) and
obtain the algorithm SEP.

To develop the algorithm, ALG, that efficiently solves linear optimization problems of the form (9), we note
that the feasible set Q̂ is a convex hull of the Q̂i’s. Hence, for any c ∈ R

ℓ, an optimal solution of (9) can be obtained
by solving

max
i∈[h]

(
max cTzi subject to zi ∈ Q̂i

)
: (10)

Here, for each i, the decision variable zi ∈ R
ℓ lies in the set Q̂i. Below we will provide, for each i, a polynomial-

time algorithm, ALGi, that solves the linear optimization problem over Q̂i; that is, ALGi efficiently solves
max cTzi subject to zi ∈ Q̂i. Hence, ALG can be obtained by directly taking a maximum over the (optimal) solu-
tions obtained by the ALGis.

We will now complete the chain of arguments mentioned above by designing the optimization algorithm ALGi.
This algorithm is itself based on the ellipsoid method. As detailed below, the gradients of the utility function ui
(at different points) can be used to separate Q̂i from vectors that are not contained in it. Hence, with this separa-
tion technique in hand, we can apply the ellipsoid method over Q̂i to obtain ALGi.

19

Given a query vector q ∈ R
ℓ, it is easy to test whether q ∈ Q̂i :�Qi ∩ z ∈ R

ℓ : ||z|| ≤
���������
2(λℓδ+1)

α

√{ }
. We directly verify

(i) ui(q+ωi) ≥ ui(yi) (to ensure that q ∈Qi) and (ii) ||q|| ≤
���������
2(λℓδ+1)

α

√
.

Consider the case in which q ∉ Q̂i. To run the ellipsoid method (that underlies ALGi), we need a separating
hyperplane for such a q ∈ R

ℓ. There are two complementary (though, nonexclusive) cases: (i) q ∉Qi (i.e.,

ui(q+ωi) < ui(yi)) and (ii) ||q|| >
���������
2(λℓδ+1)

α

√
.

In case (i), the gradient at q+ωi (i.e., ∇ui(q+ωi) ∈ R
ℓ
+) provides the separating hyperplane: utility ui is concave;

hence, ui(z+ωi) ≤ ui(q+ωi) +∇ui(q+ωi)T(z+ωi − q−ωi) for any z ∈ R
ℓ. Specifically, if z ∈Qi, then ui(z+ωi) ≥

ui(yi) > ui(q+ωi). Using the previous two inequalities, we get the desired separation, via π :� ∇ui(q+ωi):
πTq < πTz for all z ∈ Q̂i ⊂Qi:

In case (ii), the vector π :� − q
γ||q|| suffices; here γ �

���������
2(λℓδ+1)

α

√
. Note that

πTq � − ||q||
γ

< −1: (11)

For any z ∈ Q̂i, we have ||z|| ≤ γ. Now, the Cauchy–Schwartz inequality gives us |πTz| ≤ ||π|| ||z|| � 1
γ ||z|| ≤ 1. This

inequality along with (11) shows that π is indeed a separating hyperplane: πTq < πTz for all z ∈ Q̂i.
Overall, we observe that separation with respect to the Q̂i’s can be performed efficiently. Hence, via the ellip-

soid method, we obtain, for each i, the algorithm ALGi that optimizes over Q̂i.
Combining ALGis, we get the optimization algorithm (over Q̂) ALG, which, in turn, leads to SEP (the desired

algorithm that separates with respect to Q̂). Q.E.D.

Remark 4.3. The proof of Theorem 4.2 shows that if allocation y is an ε-Walrasian allocation, then the hyperplane
separating the vector ν :� (−δ)1 from Q :� cvh(⋃ iQi) provides the equilibrium prices p ∈ Δ; that is, if vector p ∈ Δ
satisfies p · ν ≤ p ·Q, then (p,y) is an ε-Walrasian equilibrium. Note that such a price vector can be obtained by
considering PQ(ν) ∈Q, the projection (under Euclidean distance) of ν onto Q. In particular, via the variational
characterization of convex projections, we have (z−PQ(ν))T(ν−PQ(ν)) ≤ 0 for all z ∈Q; that is, (PQ(ν) − ν)Tz ≥
(PQ(ν) − ν)TPQ(ν) ≥ (PQ(ν) − ν)Tν for all z ∈Q. Hence, with p � PQ(ν)−ν

||PQ(ν)−ν||1, we get the desired separation.

The norm of PQ(ν) is polynomially bounded: note that ||PQ(ν) − ν|| ≤ mini||yi − ν||, because yi ∈Q. Another rele-
vant observation is that Lemma 3.3 is not confined to (−δ)1—we can establish such a containment result for any
vector q ∈ R

ℓ as long as we take obtain Q̂i’s by intersections Qi with a large enough ball. The radius of the ball just
has to be polynomially large in ||q||. Hence, with large enough Q̂i’s, we can ensure that PQ(ν) ∈ Q̂ :� cvh(⋃ iQ̂i).

Additionally, the set containment Q̂ ⊂Q implies the projection of ν onto Q̂, say, P
Q̂
(ν) ∈ R

ℓ, is the same as the
desired vector PQ(ν).

In the proof of Theorem 4.2, we developed a polynomial-time separation oracle for Q̂. Therefore, via the ellip-
soid method, the projection P

Q̂
(ν) can be computed efficiently and, hence, we can find the equilibrium prices

p �
P

Q̂

(ν)−ν
||P

Q̂

(ν)−ν||1.
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4.1. Testing Algorithm for Economies with Piecewise-Linear Concave Utilities
In this section, we consider economies, E � ((ui, ωi))i∈[h], in which consumers’ utilities are piecewise-linear con-
cave. In this PLC setting, for every agent, the utility of each consumption bundle is obtained by taking a mini-
mum over a set of linear functions. Specifically, PLC utilities have the form ui(x) :�mink{∑jUk

i,jxj + Tk
i }, where xj

is the amount of good j in the consumption bundle x ∈ R
ℓ
+ and the nonnegative parameters Uk

i,j ∈ R+ and Tk
i ∈ R+

define the kth linear function for agent i. These parameters are given as input to specify each agent’s utility.
Although PLC utilities are concave, they are not strongly concave. Hence, under PLC utilities, one cannot

directly apply Theorem 4.2. However, we show that the ideas developed in the previous section can be adapted
to obtain a polynomial-time algorithm for testing whether a given allocation is approximately Walrasian in a
PLC economy. Finding equilibria (exact and approximate) is known to be computationally hard under PLC util-
ities (Chen et al. [9], Deng and Du [12], Garg et al. [16]). Hence, the result in this section identifies an interesting
dichotomy between testing and finding a Walrasian equilibrium.

First, we will establish a containment result analogous to Lemma 3.3. Using this containment result (and argu-
ments similar to the ones developed in Theorem 4.2), we develop an efficient testing algorithm for PLC econo-
mies in Theorem 4.6.

In the PLC context, a key observation (established below in Lemma 4.4) is that the containment property can
be obtained by considering vectors of norm at most

Λ :� max
i∈[h], x∈Rℓ

+
||x − ωi|| : ui(x) ≤ ui

∑h
t�1

ωt

( ){ }
: (12)

Under PLC utilities, the bit complexity of Λ is polynomially bounded: specifically, for any consumption bundle

x ∈ R
ℓ
+, with the property ui(x) ≤ ui(∑tωt), we have, for each component a ∈ [ℓ], xa ≤ ui

(∑
tωt

)
minkUk

i,a
≤ ui

(∑
tωt

)
mink,jUk

i,j
.20 The bit

complexity of this upper bound is polynomially large, and, hence, Λ is also polynomially upper bounded, in
terms of bit complexity.

Note that this bound does not require the utilities to be normalized. In fact, the results developed in this sec-
tion hold for any exchange economy wherein the utilities are concave and Λ (as defined in (12)) is appropriately
bounded.

For any given allocation y � (yi)i∈[h], consider the bundle yi ∈ R
ℓ allocated to consumer i and, as before, write

Qi :� {z ∈ R
ℓ|z+ωi ∈ R

ℓ
+ and ui(z+ωi) ≥ ui(yi)}. In addition, we define a bounded subset of Qi:

Q̃i :�Qi ∩ {z ∈ R
ℓ | ||z|| ≤Λ}: (13)

For each consumer i, the subset Q̃i is compact and convex and has a nonempty interior.

Lemma 4.4. Let y be an allocation in an exchange economy E with PLC utilities. Suppose that the sets Qi and Q̃i, for
i ∈ [h], are as defined above. Then, with parameter δ > 0, we have

(−δ)1 ∈ cvh ⋃ h
i�1Qi

( )
iff (−δ)1 ∈ cvh ⋃ h

i�1 Q̃i

( )
:

Proof. The proof of this claim is almost identical to that of Lemma 3.3—the difference being that here we use the
bound provided by Λ, instead of relying on strong concavity.

To begin with, note that the reverse direction of the claim is direct, because Q̃i ⊂Qi for all i ∈ [h].
For the forward direction, we have vectors zi ∈Qi and a convex combination λi ≥ 0, for i ∈ [h], such that∑h
i�1λi � 1 and

∑h
i�1

λizi � (−δ)1: (14)

Let R :�maxi{||zi|| : i ∈ [h]}. By definition, the zi’s are contained in the (closed) Euclidean ball B(R) of radius R and
center 0. Note that for each i ∈ [h], the intersection Qi ∩ B(R) is a compact set.

Let Z denote the collection of all tuples

(z′1, z′2, : : : , z′h) ∈ (Q1 ∩ B(R)) × (Q2 ∩ B(R)) × : : : × (Qh ∩ B(R))
for which there exist convex coefficients λ′

i such that
∑

iλ
′
i z

′
i ≤ (−δ)1; that is, there exists a convex combination of

z′i ’s that is componentwise upper bounded by (−δ)1.21
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From (14), we know that Z is nonempty. Given that the sets (Qi ∩ B(R)) are compact, one can show that Z is
compact as well. Hence, the problem of minimizing max{||z′i − (−δ)1|| |(z′i )i ∈ Z} admits an optimal solution, say,
(z∗t)t. Note that, by definition of Z, there exist convex coefficients (λ∗

t)t∈H∗ that satisfy
∑

t∈H∗λ∗
tz

∗
t ≤ (−δ)1; here, sub-

set H∗ ⊆ [h] is selected to ensure that λ∗
t > 0 for all t ∈H∗.

Next, we will prove that ||z∗t || ≤ Λ, for all t ∈H∗. Subsequently, we will show that, using z∗t ’s, we can obtain vec-
tors z̃t ∈Qt that satisfy the same norm bound (||̃zt|| ≤Λ) and whose convex combination is equal to (−δ)1. This
norm bound implies that z̃t ∈ Q̃t and, hence, leads to the desired containment: (−δ)1 ∈ cvh(⋃ h

i�1Q̃i).
The bundle x∗i :� z∗i +ωi must satisfy ui(x∗i ) � ui(yi) ≤ ui

∑
tωt( ); if this is not the case (i.e., we have a strict inequal-

ity ui(x∗i ) > ui(yi)), then by reducing a positive component22 of z∗i � x∗i −ωi, we can ensure that z∗i moves closer to
(−δ)1 and at the same time z∗i continues to be in Qi (i.e., the inequality ui(x∗i ) ≥ ui(yi) continues to hold). Also, note
that such a reduction maintains the containment of z∗i ’s in Z; specifically, the inequality

∑
tλ

∗
tz

∗
t ≤ (−δ)1 continues to

hold. A repeated application of this argument gives us x∗i � z∗i +ωi with the property that ui(x∗i ) � ui(yi) ≤ ui(∑tωt),
for all i. Therefore, using the definition of Λ (see (12)), we obtain the stated bound ||z∗i || ≤ Λ.

To complete the proof, we will show that z∗t ’s can be transformed into vectors z̃t ∈Qt that satisfy the same
norm bound and whose convex combination is equal to (−δ)1. Write φ :�∑

tλ
∗
tz

∗
t and note that φ ≤ (−δ)1. If com-

ponent a ∈ [ℓ] of φ is strictly less than −δ, then there exists a z∗i such that its ath component is also less than −δ:
z∗i,a < −δ. We can increase z∗i,a till either it becomes equal to zero or the ath component of φ reaches −δ.23 Note that
in this transformation, while the ath component of z∗i increases in value, it decreases in magnitude. Hence, the
utility ui(z∗i +ωi) increases, and the norm of z∗i decreases. Repeatedly applying this procedure gives us vectors
z̃t ∈Qt such that ||̃zt|| ≤ Λ and

∑
tλ

∗
t z̃t � (−δ)1.

Overall, this implies that (−δ)1 ∈ cvh(⋃ h
i�1Q̃i) and the stated claim follows. Q.E.D.

Lemma 4.4 leads to the following characterization for approximate equilibria in PLC economies.

Lemma 4.5. An allocation y is an ε-Walrasian allocation in a PLC economy E iff

(−δ)1 ∉ cvh ⋃ h
i�1 Q̃i

( )
:

Here, for each consumer i ∈ [h], the set Q̃i is as defined above.

The proof of this result is identical to that of Lemma 4.1 and is omitted; one has to simply use Lemma 4.4
instead of Lemma 3.3.

We now establish the main result of this section.

Theorem 4.6. There exists a polynomial-time algorithm that—given an allocation y � (yi)i∈[n] in an exchange economy
E � ((ui, ωi))i∈[n] with PLC utilities—determines whether y is an ε-Walrasian allocation or not.

Proof. The design of the testing algorithm for PLC utilities is quite similar to the method developed in the proof
of Theorem 4.2. We present the details for the PLC setting for completeness.

As a direct consequence of Lemma 4.5 we have that testing for approximately Walrasian allocation corre-
sponds to determining whether the vector (−δ)1 is contained in the convex hull of the Q̃i’s; see (13) for the defini-
tion of these sets.

Write Q̃ :� cvh(⋃ h
i�1Q̃i). We will develop an efficient algorithm, ALG, for solving linear optimization problems

over Q̃, that is, for solving problems of the form
max cTz subject to z ∈ Q̃: (15)

Here, c ∈ R
ℓ is an input vector. The equivalence of optimization and separation (see, e.g., Grötschel et al. [18])

implies that ALG can be used to design a polynomial-time algorithm SEP that provides a separation oracle for Q̃.
That is, using SEP, we can perform the desired test of determining whether (−δ)1 ∈ Q̃ or not.

In order to apply the optimization–separation equivalence, we need to ensure that Q̃ is compact and convex
and has a nonempty interior. These properties are satisfied by Q̃i’s individually; hence, they hold for Q̃ as well.
Therefore, we can evoke the equivalence (via an application of the ellipsoid method over the polar of Q̃) and
obtain the algorithm SEP.

To develop the algorithm, ALG, that efficiently solves linear optimization problems of the form (15), we note
that the feasible set Q̃ is a convex hull of the Q̃i’s. Hence, for any c ∈ R

ℓ, an optimal solution of (15) can be
obtained by solving

max
i∈[h]

(
max cTzi subject to zi ∈ Q̃i

)
: (16)
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Here, for each i, the decision variable zi ∈ R
ℓ lies in the set Q̃i. Below we will provide, for each i, a polynomial-

time algorithm, ALGi, that solves the linear optimization problem over Q̃i; that is, ALGi efficiently solves
max cTzi subject to zi ∈ Q̃i. Hence, ALG can be obtained by directly taking a maximum over the (optimal) solu-
tions obtained by the ALGis.

We will now complete the chain of arguments mentioned above by designing the optimization algorithm ALGi.
This algorithm is itself based on the ellipsoid method. As detailed below, the gradients of the utility function ui
(at different points) can be used to separate Q̃i from vectors that are not contained in it. Hence, with this separa-
tion technique in hand, we can apply the ellipsoid method over Q̃i to obtain ALGi.

24

Given a query vector q ∈ R
ℓ, it is easy to test whether q ∈ Q̃i :�Qi ∩ {z ∈ R

ℓ : ||z|| ≤Λ}. We directly verify (a)
ui(q+ωi) ≥ ui(yi) (to ensure that q ∈Qi) and (b) ||q|| ≤Λ.25

Consider the case in which q ∉ Q̃i. To run the ellipsoid method (that underlies ALGi), we need a separating
hyperplane for such a q ∈ R

ℓ. There are two complementary (though, nonexclusive) cases: (i) q ∉Qi (i.e.,
ui(q+ωi) < ui(yi)) and (ii) ||q|| > Λ.

In case (i), the subgradient at χ :� q+ωi provides the separating hyperplane: in particular, for the PLC utility
ui, let k ∈ argmink{

∑
jUk

i,jχj + Tk
i }, that is, ui(q+ωi) �∑

jUi,jkχj +Tik . The (subgradient) vector π :� (Uk
i,j)j∈[ℓ] pro-

vides the desired separation. This follows from the fact that for any z ∈ R
ℓ, we have

ui(z+ωi) ≤ πT(z+ωi) +Tk
i

� πT(q+ωi) +Tk
i +πT(z− q)

� ui(q+ωi) +πT(z− q): (17)

Specifically, if z ∈Qi, then ui(z+ωi) ≥ ui(yi) > ui(q+ωi). Hence, using (17), we get the desired separation

πTq < πTz for all z ∈ Q̃i ⊂Qi:

In case (ii), the vector π :� − q
Λ||q|| suffices. Note that

πTq � − ||q||
Λ

< −1: (18)

For any z ∈ Q̃i, we have ||z|| ≤ Λ. Now, the Cauchy–Schwartz inequality gives us |πTz| ≤ ||π||||z|| � 1
Λ ||z|| ≤ 1. This

inequality, along with (18), shows that π is indeed a separating hyperplane: πTq < πTz for all z ∈ Q̃i.
Overall, we observe that separation with respect to the Q̃i’s can be performed efficiently. Hence, via the ellip-

soid method, we obtain, for each i, the algorithm ALGi that optimizes over Q̃i.
Combining ALGis, we get the optimization algorithm (over Q̃) ALG, which, in turn, leads to SEP (the desired

algorithm that separates with respect to Q̃). Q.E.D.

Appendix A. Supplementary Results for Section 3
Here, we state and establish the proposition used in the proof of Lemma 3.3

Proposition A.1. For a continuously differentiable and concave function u : Rℓ 	→ R, let vector x,w ∈ R
ℓ satisfy the inequality

∇u(x)Tx < ∇u(x)Tw. Then, there exists a positive μ ∈ (0, 1] such that u(x) ≤ u((1−μ)x+μw).
Proof. Let ζ :� ∇u(x)T(w− x) > 0. Also, for parameter μ ∈ (0, 1], denote by xμ the convex combination (1−μ)x+μw. As μ
tends to zero, xμ tends to x.

Given that u is concave,

u(x) ≤ u(xμ) + ∇u(xμ)T(x − xμ)
� u(xμ) − μ∇u(xμ)T(w − x): (A.1)

The Cauchy–Schwarz inequality gives us |〈∇u(xμ) − ∇u(x), (w− x)〉| ≤ ||∇u(xμ) − ∇u(x)|| · ||w− x||. Because u is continuously
differentiable, there exists a small enough, but positive, μ such that the right-hand side of the previous inequality is
strictly less than ζ. For such a μ > 0, we have ∇u(xμ)T(w− x) > 0. Therefore, using inequality (A.1), we get that there exists
a μ ∈ (0, 1] for which u(x) ≤ u((1−μ)x+μw). Q.E.D.

Appendix B. Proof of Lemma 2.1
This section shows that if the utilities of the consumers are strictly monotonic, continuous, and strictly concave, then allo-
cations in the h-core of a replica economy satisfy the equal treatment property.
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Let x � (x1,1, : : : ,x1,h, : : : ,xn,1, : : : ,xn,h) be an h-core allocation of the economy En. We will show that if x does not satisfy
the equal treatment property, then a coalition of size h—consisting of the worse-off consumers of each type—will block
the allocation x, contradicting the fact that it is in the h-core.

Say, toward a contradiction, that x does not satisfy the equal treatment property. Because each consumer of type t ∈ [h]
has the same utility function, we can select the worse-off consumer among the n ones that have type t. In particular, for
each t ∈ [h], let index j∗(t) ∈ [n] be such that ut(xj∗(t),t) ≤ ut(xi,t) for all i ∈ [n].

Consider the size-h coalition S :� {( j∗(t), t)}t∈[h] and the S-allocation (̂xt)(t∈[h]) defined as x̂t :� 1
n
∑n

i�1 xi,t.
Note that (̂xt)t∈[h] is indeed an S-allocation: Because x is an allocation in En, it satisfies

∑n
i�1

∑h
t�1 xi,t �∑n

i�1
∑h

t�1ωt

�∑h
t�1 nωt. Dividing by n gives us

∑h
t�1 x̂t �∑h

t�1ωt. Therefore, the consumers in the coalition S can trade among them-
selves and, individually, obtain bundles x̂t.

Furthermore, the strict concavity of ut’s ensures that ut (̂xt) ≥ ut(xj∗(t),t) for all ( j∗(t), t) ∈ S—with one of the inequalities
being strict. Hence, coalition S blocks the allocation x and, by way of contradiction, the stated claim follows.

Appendix C. Illustrative Example of Strongly Concave Utilities
This section provides a simple example to illustrate the interplay of strong concavity and other parameters related to the
utility functions. Consider an economy E � ((ui ,ωi))i∈[h] (with h consumers and ℓ goods) wherein the utility of each con-
sumer is

u(x) :� 1
N

∑ℓ
j�1

��������
xj +θ

√
:

Here, xj is the amount of good j (present in the consumption bundle x ∈ R
ℓ
+), θ > 0 is a fixed constant, and N > 0 is a nor-

malization term. Here, dividing by a large enough, but fixed, parameter N ensures that for each feasible bundle x ∈ R
ℓ
+ in

E, we have u(x) ∈ (0, 1). In particular, let ωj denote the total amount of good j ∈ [ℓ] present in the economy (ωj :�∑
iωi,j).

Then, N �∑ℓ
j�1

���������
ω j +θ

√
.

Also, note that the additive shift of θ ensures that the gradient of u is bounded for all x ∈ R
ℓ
+ and the Lipschitz constant

of the utilities λ � 1
2
��
θ

√ .

One can show that a function u : Rℓ 	→ R is α-strongly concave in a set R ⊂ R
ℓ iff f (x) :� u(x) + α

2 ||x||2 is concave within
R. That is, for any α > 0, if the Hessian of f(x) is negative semidefinite for all x ∈R, then u is α strongly concave in R.

The utility function u is separable across the ℓ goods; hence, its Hessian (at point x ∈ R
ℓ
+) is a diagonal matrix with the

(diagonal) entries being −1
4N(xj+θ)3=2 for each j ∈ [ℓ]. That is, for an α > 0 and x ∈ R

ℓ
+, the Hessian of f is again a diagonal

matrix with entries −1
4N(xj+θ)3=2 + α, with j ∈ [ℓ].

Therefore, within the Euclidean ball of radius r (and center 0), the function u is 1
4N(r+θ)3=2
( )

-strongly concave; this value
of α ensures that f is negative semidefinite throughout the ball.

As stated in Section 2, we require strongly concavity to hold within an appropriately large set around the endow-
ments.26 Specially, we need αr2 ≥ 2ελℓ

h + 2 (see Section 2). Using the abovementioned expression for the modulus of strong
concavity, α, the required inequality translates to ��

r
√

4N(1+θ=r)3=2 ≥
2ελℓ
h

+ 2:

The left-hand side of the previous inequality is an increasing function of r. Hence, this inequality holds for an appropri-
ately large r (which depends only on the parameters of E and not on the replication factor n). With this r and the corre-
sponding value of α in hand, one can apply the results developed in this work.

Appendix D. Other Notions of Approximate Equilibria
In this section, we will show that the notion of approximate Walrasian equilibrium considered in this work relates to
other notions studied in computer science and economics.

A common alternate (to the one considered in this work) definition of approximation seeks to relax how exactly the
consumers optimize; see, for example, Deng et al. [13] and Garg et al. [16]. This notion requires that the consumers are
approximately maximizing their utilities, though it assumes that the demand is approximately equal to the supply. Spe-
cifically, under this complementary notion, a pair (p,x) ∈ Δ × R

hℓ
+ , with price vector p ∈ Δ and allocation x, is said to be an

ε̂-equilibrium (in an economy E � ((ui, ωi))i with h consumers and ℓ goods) iff the following conditions hold for all con-
sumers i ∈ [h]:27

1. for any bundle y ∈ R
ℓ
+, with the property that pTy ≤ pTωi, we have ui(y) ≤ ui(xi) + ε̂;

2. |pTxi − pTωi| ≤ ε̂.
Note that, Condition 1 corresponds to the following requirement: ui(xi) ≥ (maxy∈Rℓ

+
{ui(y)|pTy ≤ pTωi}) − ε̂.

We will show that an ε-approximate Walrasian equilibrium (as defined in Section 2) satisfies Conditions 1 and 2 with
ε̂ � ελ

�
ℓ

√
h ; here, λ is the Lipschitz constant of the utilities ui.

By definition (see Section 2), an ε-approximate Walrasian equilibrium, say (p,x), satisfies Condition 2.28
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To establish the claim, next we will prove the contrapositive form of Condition 1 holds for (p,x). Consider a bundle
y ∈ R

ℓ
+ with high utility ui(y) > ui(xi) + ε̂ � ui(xi) + ελ

�
ℓ

√
h .

Observe that the Euclidean ball B y, ε
�
ℓ

√
h

( )
, with center y and radius ε

�
ℓ

√
h , is entirely contained in the upper contour set

{x ∈ R
ℓ
+|ui(x) ≥ ui(xi)}. Say, toward a contradiction, that this is not the case. Then, there exists a bundle y′ ∈ R

ℓ
+ on the

boundary of the upper contour set that is at most a distance ε
�
ℓ

√
h away from y, that is, a boundary point y′ that satisfies

||y− y′|| ≤ ε
�
ℓ

√
h . Because y′ is at the boundary of the upper contour set, ui(y′) � ui(xi). This fact contradicts the high utility

of y: |ui(y) − ui(y′)| ≤ λ||y− y′|| ≤ ελ
�
ℓ

√
h .

Therefore, in particular, the vector y− ε
�
ℓ

√
h

p
||p||

( )
∈ B y, ε

�
ℓ

√
h

( )
belongs to the upper contour set; that is, ui y− ε

�
ℓ

√
h

p
||p||

( )
≥ ui(xi).

Hence, our definition of ε-Walrasian equilibria ensures that

pT y − ε
��
ℓ

√
h

p
||p||

( )
≥ pTωi − ε=h: (D.1)

Because the price vector p ∈ Δ, we have ||p|| ≥ 1�
ℓ

√ . Rearranging inequality (D.1) shows that y satisfies (the contrapositive
form of) Condition 1: pTy ≥ pTωi.

Supply vs. Demand and Average Budge Gap
In contrast to some of the other formulations, the definition of approximate equilibria considered in this work strictly
enforces that the supply is equal to the demand. Also, we consider a bound on the budget gap, |pTxi − pTωi|, for every
consumer i. Hence, our approximate equilibrium satisfies the average budget gap requirement considered in Mas-Colell
[22].

Endnotes
1 The bargaining literature in economics and game theory is rich and varied, with many different modeling approaches. The core is the basic
solution concept in cooperative game theory, and certainly the most common solution concept in the literature on general equilibrium theory;
but there are alternative approaches. See Osborne and Rubinstein [24] for an exposition.
2 See Hildenbrand [19] and Anderson [3] for reviews of the literature on core convergence.
3 A “fractional” version in atomless economies is still possible; see Schmeidler [25], Grodal [17], and Vind [28].
4 Mas-Colell’s [22] result builds on techniques due to Anderson [1]. Anderson’s [1] theorem, however, does not bound the size of the blocking
coalitions, and hence does not speak to the κ-core. His result connects the size (and other parameters) of the economy with the approximation
guarantee.
5 Per-agent approximation guarantees are the focus of modern results in algorithmic game theory. In the terminology of Anderson’s [3] sur-
vey, such a guarantee reflects uniform convergence (what he terms “U3”), and it is rare in the older literature on core convergence, even for
results that rely on the power of all coalitions.
6 Establishing a complementary, lower bound on κ—in terms of h, ℓ, and ε—remains an interesting direction of future work.
7 This additional smoothness assumption is primarily for ease of exposition. One can extend the arguments developed in this work to contin-
uous functions by replacing gradients with subgradients.
8 The idea of replicas was suggested by Edgeworth himself in his discussion of the competitive hypothesis in large economies. He used X
and Y to refer to two different agents, and wrote: “Let us now introduce a second X and a second Y; so that the field of competition consists
of two Xs and two Ys. And for the sake of illustration (not of argument) let us suppose that the new X has the same requirements, the same
nature as the old X; and similarly that the new Y is equal-natured with the old” (Edgeworth [14]).
9 This, in particular, ensures that this normalization is compatible with the strict monotonicity of the utilities.
10 Note that in En, an arbitrary allocation (say, one that does not satisfy equal treatment) is, in fact, a vector in R

nhℓ
+ .

11 Specifically, a replicated version of the Walrasian allocation x is the desired allocation in the replica economy.
12 The definition of Qη

i provides a componentwise lower bound as well: zi ≥ −ωi, for each vector zi ∈Qη
i .

13 Recall that the utility of any feasible allocation (and, hence, for yi) is normalized to be at most 1− η. Also, we have η < η.
14 If all the components of z∗i are negative, then x∗i ≤ ωi, and we get the desired bound ui(x∗i ) ≤ ui(ωi) ≤ 1− η. Here, the last inequality follows
from the fact that the utility of any feasible allocation (and, hence, for ωi) is normalized to be at most 1− η.
15 Here, the convex coefficients, λ∗

t , remain unchanged.
16 Our algorithm requires only oracle access to the underlying utilities ui and their gradients. In particular, our algorithmic result will hold
even in the absence of an explicit (say, a closed form) description of the utility functions.
17 That is, in terms of the notation developed in Section 3.1, we are considering Qη

i with η � 0.
18 We can enlarge Q̂i to ensure that it always has a nonempty interior. For instance, we can set the radius of the intersecting Euclidean ball to

be, say, max
���������
2(λℓδ+1)

α

√
, 2||yi||

{ }
. Note that yi ∈Qi, and, hence, with this redefinition, we have yi ∈ Q̂i.

19 Recall that Q̂i’s are compact, convex, and have a nonempty interior. Hence, the ellipsoid method is applicable over these sets.
20 We can address the case in which one of the nonnegative coefficients Uk

i,j is equal to zero. In particular, adapting the arguments in Lemma

4.4, one can obtain xa ≤ ui
(∑

tωt
)

min{k,j:Uk
i,j≠0} U

k
i,j
.
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21 The definition of Qi provides a componentwise lower bound as well: zi ≥ −ωi, for each vector zi ∈Qi.
22 If all the components of z∗i are negative, then x∗i ≤ ωi, and we get the desired bound ui(x∗i ) ≤ ui(ωi) ≤ ui

∑
tωt( ).

23 Here, the convex coefficients, λ∗
t , remain unchanged.

24 Recall that Q̃i are compact, convex, and have a nonempty interior. Hence, the ellipsoid method is applicable over these sets.
25 We do not have to compute Λ exactly. Here, for the algorithm, an upper bound (with polynomial bit complexity) of Λ suffices.
26 For ease of presentation, here we assume that the endowments are 0. Shifting all the vectors by −ωi directly provides the arguments for
general endowment vectors.
27 Note that Conditions 1 and 2 are a strengthening of the alternate formulation mentioned above, because here we insist that the demand is
exactly equal to the supply.
28 Here, assume that ε̂ ≥ ε; otherwise, we can consider ε̂ �max ελ

�
ℓ

√
h ,ε

{ }
.
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