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Abstract

We present revealed-preference characterizations of the most common models of

intertemporal choice: the model of exponentially discounted concave utility, and some

of its generalizations. Our characterizations take consumption data as primitives, and

provide nonparametric revealed-preference tests. We apply our tests to data from

two recent experiments and find that our axiomatization delivers new insights and

perspectives on datasets that had been analyzed by traditional parametric methods.
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1 Introduction

Exponentially discounted utility is the standard model of intertemporal choice in economics.

It is a ubiquitous model, used in all areas of economics. Our paper is a revealed prefer-

ence investigation of exponential discounting: We give a necessary and sufficient “revealed-

preference axiom” that a dataset must satisfy in order to be consistent with exponential

discounting. The revealed-preference axiom sheds light on the behavioral assumptions un-

derlying the standard model of discounting. It also yields a nonparametric test of the theory,

applicable in different empirical investigations of exponential discounting.

Consider an agent who chooses among intertemporal consumptions of a single good. One

general theory is that the agent has a utility function U(x0, . . . , xT ) for the consumption of

xt on each date t. The Generalized Axiom of Revealed Preference (GARP) tells us whether

the agent’s choices are consistent with the maximization of some general utility function

U . The empirical content of general utility maximization is well understood, but utility

maximization is too broad, and GARP is too weak, to capture exponential discounting. The

exponentially discounted utility (EDU) model assumes a specific form of U , namely

U(x0, . . . , xT ) =
T∑
t=0

δtu(xt).

In this paper, we focus on concave EDU, in which u is a concave function. A concavity

of u is widely used to capture a motive for consumption smoothing over time. The empirical

content of concave EDU maximization is different from that of general utility maximization,

and not well understood in the literature.

The first and most important question addressed in our paper is: What is the version of

GARP that allows us to decide whether data are consistent with concave EDU? The revealed-

preference axiom that characterizes concave EDU is obviously going to be stronger than

GARP. Despite the ubiquity of EDU in economics, the literature on revealed preference has

not provided an answer. Our main result is that a certain revealed-preference axiom, termed

the “Strong Axiom of Revealed Exponentially Discounted Utility” (SAR-EDU), describes

the choice data that are consistent with concave EDU preferences.

SAR-EDU is a version of the “downward-sloping demand” property. It says that, with

certain qualifications, prices and quantities must be inversely related. At face value, downward-

sloping demand says that consumption may be higher in one period than in another as long

as the price of consumption in that period is cheaper. In EDU, the utility from later con-
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sumption is discounted. So it is possible that consumption is high, even if it is expensive, as

long as it happens early in time: Early consumption is more valuable than later consump-

tion. So SAR-EDU qualifies downward-sloping demand. If consumption is higher in some

periods than in others, and these periods occur later in time, then consumption must be

cheaper in the later periods with high consumption.

In the paper, we study the empirical content of more general models of time discounting

as well, including the quasi-hyperbolic discounting model (QHD; Phelps and Pollak, 1968;

Laibson, 1997), U(x0, . . . , xT ) = u(x0) + β
∑T

t=1 δ
tu(xt), and time-separable utility (TSU),

U(x0, . . . , xT ) =
∑T

t=0 ut(xt), where u and ut are concave. In the following, we do not

explicitly use the concave modifier when there is no risk of confusion. For example, we say

EDU to mean concave EDU.

The contribution of our paper is to characterize the empirical content of EDU and its

generalizations. We provide revealed-preference axioms (axioms like GARP but stronger)

characterizing EDU, QHD, and TSU. Our axioms shed new insights into the behavioral

assumptions behind each of these models, and also constitute nonparametric tests. There are,

of course, other axiomatizations of these models but they start from different primitives. The

well-known axiomatization of EDU by Koopmans (1960), for example, starts from complete

preferences over infinite consumption streams.

As additional contributions, we provide a revealed-preference characterization for the

general time discounting (GTD) model: U(x0, . . . , xT ) =
∑T

t=0D(t)u(xt), where u is concave.

GTD is more general than EDU and QHD, while it remains a special case of TSU. We

also provide a characterization of the monotone time discounting (MTD) model, in which

the discounting function D(t) is decreasing because of impatience. We believe that these

characterizations are useful to understand the behavioral meaning of impatience. MTD

includes the models of diminishing impatience and its variations proposed by Halevy (2008)

and Chakraborty et al. (forthcoming).

To illustrate the usefulness of our results for empirical work, we carry out an application

to data from two recent experiments conducted by Andreoni and Sprenger (2012) (hereafter

AS) and Carvalho et al. (2016a) (hereafter CMW). AS propose the Convex Time Budget

(CTB) experimental design, in which subjects are asked to choose from an intertemporal

budget set. CMW adopt the CTB design, and study the effect of financial resources on

intertemporal decision-making.1

1Several recent experimental studies use the CTB design, both in the laboratory and in the field setting,
including Andreoni et al. (2015), Augenblick et al. (2015), Balakrishnan et al. (forthcoming), Barcellos and
Carvalho (2014), Brocas et al. (2018), Carvalho et al. (2016b), Giné et al. (2018), Janssens et al. (2017),
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The applications of our methods to AS’s and CMW’s data are, we believe, fruitful. We

uncover features of individual subjects’ behavior that are masked by traditional parametric

econometric techniques. Despite some clear differences between the AS and CMW designs,

our methods yield similar results. First, the numbers of EDU-rational agents are rather

small. Second, there is very little added scope for QHD. In the case of the AS experiment,

all subjects rationalized as QHD are also rationalized as EDU. In the case of CMW, a very

small number of subjects are QHD, but not EDU, rationalizable. Finally, the number of

TSU-rational subjects is about half; the rest of the subjects are not rationalized even by the

TSU model.

It should be said that our methods rest on nonparametric revealed-preference tests. As

such, the tests are independent of functional form assumptions. The tests are also simple,

and tightly connected to economic theory. The methodology used currently by experimen-

talists rests instead on parametrically estimating a given utility function. Our setup fits the

experimental design of AS and CMW, and other CTB experiments, very well, but our results

are also applicable more broadly, including to non-experimental field data.

Related literature There are different behavioral axiomatizations of EDU in the liter-

ature, starting with Koopmans (1960), and followed by Fishburn and Rubinstein (1982),

Fishburn and Edwards (1997), and Bleichrodt et al. (2008).

All of them take preferences or utility functions as primitive. The idea is that the relevant

behavior consists of all pairwise comparisons of consumption streams. From an empirical

perspective, this assumes an infinite dataset of pairwise comparisons. The difference with

our work is that we start from a finite dataset of choices from “economic” budgets instead

of pairwise comparisons. One advantage of infinite datasets is that one can talk about the

model being identified. There is very little hope to obtain identification with a finite dataset.

In the continuous-time setup, Weibull (1985) gives a general characterization of EDU,

also taking preferences as primitives. A more recent paper by Kopylov (2010) also provides

a simple axiomatization of EDU in a continuous-time setup.

The QHD model was first proposed by Phelps and Pollak (1968), who did not provide an

axiomatization. Several recent studies present a behavioral characterization of QHD, but all

take preferences and infinite time horizons as their primitives and therefore differ from our

results. See Hayashi (2003), Montiel Olea and Strzalecki (2014), and Galperti and Strulovici

Kuhn et al. (2017), Liu et al. (2014), Lührmann et al. (2018), Sawada and Kuroishi (2015), and Sun and
Potters (2016). Our methods are largely applicable to data from these experiments.
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(2017) for axiomatizations.

The recent work of Dziewulski (2018) gives a characterization of EDU and QHD for

finitely many pairwise comparisons of one-time consumptions in a setup similar to Fishburn

and Rubinstein’s (1982), but with finite data.

Time-separable utility is the most general model we axiomatize. In the application of

our test to AS’s and CMW’s data, however, we found that a significant number of subjects

are not TSU rational. This would suggest the importance of a non-time-separable model.

The result by Varian (1983) can be interpreted within our context as providing a test of

time-separable utility, although he does not deal with intertemporal choice. His character-

ization is in terms of the existence of a solution to a system of linear Afriat inequalities.

Our characterization is a combinatorial condition. Gilboa (1989) has provided an elegant

axiomatization of a non-time-separable utility model. In the paper, by using Anscombe

and Aumann’s (1963) framework and studying preferences over finite sequences of lotteries,

Gilboa (1989) axiomatizes a utility function that can capture a preference for (or an aver-

sion to) variation of utility levels across periods. The paper by Quah (2014) studies (general,

non-additive) separability from a revealed-preference perspective. His approach is notable

in that he does not need to assume the convexity of preferences.

A few papers focus on data from consumption surveys and Afriat inequalities. Browning

(1989) provides a revealed-preference axiom for EDU with δ = 1 and a single observation.

Crawford (2010) investigates intertemporal consumption and discusses a particular violation

of TSU, namely habit formation. Crawford (2010) presents Afriat inequalities for the model

of habit formation and uses Spanish consumption data to carry out the test (see also Crawford

and Polisson, 2014). Adams et al. (2014) work with the Spanish dataset and test EDU within

a model of collective decision making at the household level. Aguiar and Kashaev (2018)

provide a stochastic revealed-preference approach that is applicable to consumer survey data

with measurement error.

It is important to emphasize that the papers on survey data allow for the existence of

many goods in each period, but they do not allow for more than one (intertemporal) purchase

for each agent. This assumption makes sense because in consumption surveys one typically

has a single observation per household. We have instead assumed that there is only one good

(money) in each period, but we allow for more than one intertemporal purchase per agent.

Allowing for multiple purchases is crucial in order to apply our tests to experimental data.

In experiments, a subject is usually required to make many decisions (one choice is chosen

randomly to determine the payment to the subject).
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2 Intertemporal Choice and Discounted Utility

2.1 Notational Conventions

For vectors x, y ∈ Rn, x ≤ y means that xi ≤ yi for all i = 1, . . . , n, x < y means that x ≤ y

and x 6= y, and x � y means that xi < yi for all i = 1, . . . , n. The set of all x ∈ Rn with

0 ≤ x is denoted by Rn
+ and the set of all x ∈ Rn with 0� x is denoted by Rn

++.

Let T be a strictly positive integer; T will be the (finite) duration of time, or time horizon.

We abuse notation and use T to denote the set {0, 1, . . . , T}. A sequence (x0, . . . , xT ) =

(xt)t∈T ∈ RT
+ will be called a consumption stream. There is a single good in each period; the

good can be thought of as money. Note that the cardinality of the set T is T + 1, but this

never leads to confusion.

Remark. We can assume more generally that time takes the values 0, τ1, . . . , τT , where τi <

τi+1 for all i < T − 1. Our results hold without changes. The only requirement on the set

of time periods is that it contains 0. We use a general set of time periods in our application

to experimental data (see Section 4.1).

2.2 The Model

The objects of choice in our model are consumption streams. We assume that an agent

has a budget I > 0, faces prices p ∈ RT
++, and chooses an affordable consumption stream

(xt)t∈T ∈ RT
+. Prices can be thought of as interest rates.

A model is a class of utility functions U : RT
+ → R. Classical revealed preference theory

focuses on the class M of locally non-satiated utility functions. An M-rational agent behaves

as if she solves the problem:

max
x∈B(p,I)

U(x)

when faced with prices p ∈ RT
++ and budget I > 0. The set B(p, I) = {y ∈ RT

+ : p · y ≤ I}
is the budget set defined by p and I.

The focus in our paper is on more restrictive models. A first model of interest is the

class GTD of general time discounting utility functions. This is the class of utility functions

U : RT
+ → R for which there exist functions D : T → R+ and u : R+ → R such that u is

monotone increasing and concave, and

U((xt)t∈T ) =
∑
t∈T

D(t)u(xt).
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As mentioned in the introduction, we restrict attention to concave utility. Our results

will be silent about the non-concave case. In consequence, we focus on agents who seek to

smooth out their consumption over time.2

A second model of interest is exponentially discounted utility, the class of utility functions

EDU ⊂ GTD for which D(t) = δt for some δ ∈ (0, 1]. The EDU model is the standard

workhorse model of intertemporal choice and ubiquitous in economic theory.

A third model is quasi-hyperbolic discounted utility, obtained as QHD ⊂ GTD by setting

D(0) = 1 and D(t) = βδt for t ≥ 1, where β > 0 and δ ∈ (0, 1].

2.3 The Data

We have said that a model postulates as-if behavior by some agent. To explain what we

mean, we have to state what can be observed.

Definition 1. A dataset is a finite collection of pairs (x, p) ∈ RT
+ ×RT

++.

A dataset is our notion of observable behavior. The interpretation of a dataset (xk, pk)Kk=1

is that it describes K observations of a consumption stream xk = (xkt )t∈T at some given vector

of prices pk = (pkt )t∈T , and budget pk · xk =
∑

t∈T p
k
t x

k
t . We sometimes use K to denote the

set {1, . . . , K}.
Let us clarify the meaning of a dataset by considering two examples. If we have field

consumption data, collected through a consumption survey, then K = 1. There is one

dataset for each agent or household. This is the setup of Browning (1989), for example. On

the other hand, if, in an experiment, one subject is asked to make a choice from 45 different

budget sets, as in Andreoni and Sprenger (2012), then K is 45. It is important to note that

our framework allows, but does not require, that K > 1. Even if K = 1, our axioms may be

violated, and the models are testable.

Our next definition formalizes the concept of as-if choices. Given a model M ′ ⊆ M ,

an agent is consistent with M ′, or chooses as if M ′, if some element of M ′ can be used to

generate her choices.

Definition 2. Given a model M ′ ⊆M , a dataset (xk, pk)Kk=1 is M ′-rational if there is U ∈M ′

such that, for all k,

y ∈ B(pk, pk · xk) =⇒ U(y) ≤ U(xk).

2Strictly speaking, the quasiconcavity of the overall utility function (or the convexity of preferences over
consumption streams) captures the notion of consumption smoothing, but in our case, quasiconcavity is
equivalent to the concavity of u.
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2.4 Results

The characterization of M -rational data is well-known since Afriat (1967): a dataset is M -

rational if and only if it satisfies the Generalized Axiom of Revealed Preference (GARP).

The Weak Axiom of Revealed Preference (WARP) is necessary, but not sufficient, for M -

rationality. See Varian (1983), or Chambers and Echenique (2014), for definitions and an

exposition of the basic theory. The starting point for our analysis is a characterization of

GTD-rational dataset.

We need a few definitions first. Given a dataset (xk, pk)Kk=1, and an observation k, we

say that the pair (xkt , x
k
t′) has the downward-sloping demand property if xkt > xkt′ implies

that pkt ≤ pkt′ . This notion is intuitive enough: larger quantities are associated with lower

prices. For reasons that shall become clear in Section 3, we need to generalize the notion of

downward-sloping demand. In particular, we shall generalize the property to collections, or

sequences, of pairs that may not be drawn from the same observation k.

Definition 3. A sequence of pairs (xkiti , x
k′i
t′i

)ni=1 is balanced if each k appears as ki (on the

left of the pair) the same number of times it appears as k′i (on the right).3

The meaning of a balanced sequence of pairs is simply that the sequence is obtained

from rearranging n observations. We introduced the idea of downward-sloping demand for a

single observation, and we now extend it to a collection of n observations, arranged to form

a balanced sequence of pairs:

Definition 4. A sequence of pairs (xkiti , x
k′i
t′i

)ni=1 has the downward-sloping demand property

if

xkiti > x
k′i
t′i

for all i implies that
n∏
i=1

pkiti

p
k′i
t′i

≤ 1.

For now, let us just remark that the downward-sloping demand property of a balanced

sequence of pairs is a possible generalization of a single pair (xkt , x
k
t′) having this property.

In Section 3 we shall explain the ideas behind the definition.

We can now state the first result, due to Echenique and Saito (2015), which serves as

the starting point of our analysis. The result characterizes GTD-rational choices by means

of an axiom:

Strong Axiom of Revealed General Time Discounted Utility (SAR-GTD): For

any balanced sequence of pairs (xkiti , x
k′i
t′i

)ni=1, if each t appears as ti (on the left of the pair) the

3That is, #{i : ki = k} = #{i : k′i = k}.
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same number of times it appears as t′i (on the right), then the sequence has the downward-

sloping demand property.

Theorem 0. A dataset is GTD rational if and only if it satisfies SAR-GTD.

Theorem 0 was obtained by Echenique and Saito (2015) as a characterization of subjective

expected utility, in a model of choice under uncertainty. It is straightforward to interpret

their result in the context of intertemporal choice.4 Our main interest in the present paper

is in EDU and QHD; two models of intertemporal choice that are far more important in

economics than GTD.

Strong Axiom of Revealed Exponentially Discounted Utility (SAR-EDU): For

any balanced sequence of pairs (xkiti , x
k′i
t′i

)ni=1, if
∑n

i=1 ti ≥
∑n

i=1 t
′
i, then the sequence has the

downward-sloping demand property.

Theorem 1. A dataset is EDU rational if and only if it satisfies SAR-EDU.

Observe the relation between SAR-EDU and SAR-GTD. Both axioms require the downward-

sloping demand property to hold in different circumstances. SAR-GTD imposes the property

on sequences where each time period appears as t′i the same number of times it appears as ti.

For those sequences we will obviously have
∑n

i=1 ti =
∑n

i=1 t
′
i. SAR-EDU, a more restrictive

axiom, requires the downward-sloping property to hold when
∑n

i=1 ti ≥
∑n

i=1 t
′
i. Again, we

develop an intuition for these axioms in Section 3. The proof of Theorem 1 is in Appendix A.

It follows ideas introduced in Echenique and Saito (2015).

Next, we turn to QHD. QHD is often proposed as a relaxation of EDU to accommodate

situations where EDU is rejected empirically (Ericson and Laibson, 2019). It is therefore

important to understand its testable implications. We show that these are captured by the

following axiom.

Strong Axiom of Revealed Quasi-Hyperbolic Discounted Utility (SAR-QHD):

For any balanced sequence of pairs (xkiti , x
k′i
t′i

)ni=1, if

(i)
∑n

i=1 ti ≥
∑n

i=1 t
′
i and

(ii) #{i : ti > 0} = #{i : t′i > 0},

then the sequence has the downward-sloping demand property.

4States become time periods. Subjective beliefs turn into a discount function D.
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Theorem 2. A dataset is QHD rational if and only if it satisfies SAR-QHD.

The proof of Theorem 2 is presented in online appendix A.2.

The interpretation of a dataset is more complicated when we consider tests of QHD. In

the case of QHD, we assume that each xk is a consumption stream that the agent commits

to at t = 0. The reason is that a QHD agent may be dynamically inconsistent, and revise

their planned consumption.

The commitment assumption fits perfectly the application in Section 4 to data from

CTB experiments, but it will be violated by field data taken from consumption surveys. It

is important to emphasize that the assumption of commitment is not necessary to test the

EDU model, which is dynamically consistent.

2.5 Discussion

It is easy to propose examples of data that satisfy WARP or GARP, but fail SAR-EDU. In a

sense, WARP and GARP are about the levels of expenditure, while SAR-EDU is about the

slope of the budget sets. It is interesting that WARP and GARP can often be interpreted

as capturing an inverse relation between prices and quantities. SAR-EDU is stronger than

WARP or GARP, and it captures a more structured relation between prices and quantities.

It is not obvious from the syntax of SAR-EDU that one can verify whether a particular

dataset satisfies SAR-EDU in finitely many steps. We can show that not only is SAR-EDU

decidable in finitely many steps, but there is in fact an efficient algorithm that decides

whether a dataset satisfies SAR-EDU. Another way to test SAR-EDU is based on the lin-

earized Afriat inequalities (see Lemma 1 in Appendix A). In fact, this is how we proceed in

Section 4; see in particular the discussion at the end of Section 4.1.

Limitations We should emphasize that our test does not extend easily to non-concave

utilities, or to environments with many goods in each period. As will become clear in

Section 3, the source of our result is a calculation based on first-order conditions. These

are not sufficient for optimality in the absence of concavity, and our approach cannot get

off the ground. See Quah (2014) for tests that do not require concavity, and that should be

applicable in the intertemporal setting.

As for many goods, the procedure of linearizing Afriat inequalities does not work with

many goods, and our approach cannot be applied. For experimental datasets, the one-good

10



assumption is not a limitation, but the application of our methods to survey data requires

some aggregation.

3 Intuition Behind Theorem 1

The point of this section is to “derive” SAR-EDU from the assumption that a dataset is

EDU rational. We shall introduce the axiom by deriving the implications of EDU in specific

instances and hence develop the basic intuition behind our results. A secondary benefit of

this discussion is that the specific instances will be very relevant to our empirical results in

Section 4.3.

Here we assume, for ease of exposition, that u is differentiable, but our results do not

depend on differentiability.

The first-order condition for maximization of EDU is, for each k ∈ K and t ∈ T ,

δtu′(xkt ) = λkpkt . (1)

Here λk is the Lagrange multiplier for the problem in the kth observation.5

This means, letting mrs(x, x′) = u′(x)/u′(x′) denote the marginal rate of substitution

(MRS) between x and x′, that:

δt

δt′
mrs(xkt , x

k
t′) =

pkt
pkt′
. (2)

The first-order conditions in the form of (2) involve two unobservables: the discount

factor δ and marginal utilities u′(xkt ). Quantities xkt and prices pkt are observable. Our

approach proceeds by finding that certain implications of the model for the observables xk

and pk must hold, regardless of the values of the unobservables. The implications are that

quantities xk and prices pk be in some sense inversely related.

We derive the axiom by considering increasingly general cases. First, we consider the

case of no discounting and one observation (δ = 1 and K = 1). Then, we study the case of

no discounting (δ = 1 and K ≥ 1). Finally, in Section 3.3 we discuss the general case (δ is

unknown and K ≥ 1) and present the revealed-preference axiom for EDU.

5Our informal derivation of the axiom focuses on interior solutions. Our formal result does not depend
on interiority, and allows for observations with corner solutions.
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3.1 No Discounting and One Observation: δ = 1 and K = 1

Suppose that δ = 1 and K = 1. That is, we seek to impose EDU rationality in the special

case when δ is known, equals 1, and our dataset has a single observation. Under these

assumptions (omitting the k superindex, as K = 1) the first-order condition (1) becomes

u′(xt) = λpt for each t ∈ T . For each pair t, t′ ∈ T , (2) takes the form:

mrs(xt, xt′) =
pt
pt′
.

By concavity of u, for each pair t, t′ ∈ T , we know that mrs(xkt , x
k
t′) ≤ 1 when xt > xt′ .

Therefore,

xt > xt′ =⇒ pt
pt′
≤ 1. (3)

Thus we obtain a simple implication of EDU rationality: (3) means that demand must

slope down. For our agent to consume more in period t than in period t′, consumption in

period t must be cheaper than in t′. This “downward-sloping demand axiom” coincides with

the axiom obtained by Browning (1989) for the δ = K = 1 case, and it is the property we

referred to above before defining balanced collections of pairs.

Notice that property (3) is a special case of Definition 4 of downward-sloping demand

property. The definition is more complicated than (3), and redundant for now, but will prove

useful in the sequel. In fact, that every sequence of pairs has the downward-sloping demand

property is not only a necessary condition but also a sufficient condition for EDU rationality

in the case of δ = 1 and K = 1.

3.2 No Discounting: δ = 1

We now take one step towards our general result. Continue to assume that δ = 1, but now

allow that K ≥ 1. The agent does not discount future utilities, but the dataset may contain

multiple observations. The first-order condition (1) becomes u′(xkt ) = λkpkt for each t ∈ T
and each k ∈ K. As we discuss later in Section 4.3, the case of δ = 1 is relevant empirically.

If we try to proceed as in the previous section, we might consider two consumption

values for observation k: xkt , and xkt′ . For any two such values, we can consider the first-

order condition mrs(xkt , x
k
t′) = pkt /p

k
t′ and conclude that, if xkt > xkt′ , then pkt /p

k
t′ ≤ 1. This

downward-sloping demand implication is the same as (3), and holds within each observation

k, when we compare quantities across periods.

Downward-sloping demand within observations is one implication of the model, but it is
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not the only one. There are additional implications across observations. Consider consump-

tion values for two different observations k and k′: xkt1 , x
k′
t2
, xk

′
t3
, and xkt4 . We could consider

the two marginal rates of substitution, mrs(xkt1 , x
k
t4

) and mrs(xk
′
t3
, xk

′
t2

) and proceed as above to

obtain implications within each observation k and k′, but we can obtain further implications.

We can rearrange MRSs to obtain

pkt1
pk
′
t2

pk
′
t3

pkt4
=
pkt1
pkt4

pk
′
t3

pk
′
t2

= mrs(xkt1 , x
k
t4

) ·mrs(xk
′

t3
, xk

′

t2
) = mrs(xkt1 , x

k′

t2
) ·mrs(xk

′

t3
, xkt4).

Moreover, if xkt1 > xk
′
t2

and xk
′
t3
> xkt4 , then mrs(xkt1 , x

k′
t2

) ≤ 1 and mrs(xk
′
t3
, xkt4) ≤ 1. Thus,

we obtain an implication across observations:

xkt1 > xk
′

t2
and xk

′

t3
> xkt4 =⇒

pkt1
pk
′
t2

pk
′
t3

pkt4
≤ 1.

This also deserves to be called “downward-sloping demand.” The larger consumption

in periods t1 and t3, compared to t2 and t4, must be explained by cheaper prices in these

periods.

Note the role of balanced collections of pairs: if each k appears as ki (on the left of

the pair) the same number of times it appears as k′i (on the right), then we are able to

derive an implication of EDU rationality. In the example above, we had n = 2 and the two

observations were xk and xk
′
. We rearranged the marginal rates of substitutions from each

to obtain additional implications of the model.

When K = 1 the model only has “within-observation” implications, and is characterized

by all sequences having the downward-sloping demand property. Now, with K ≥ 1, there are

additional “across-observations” implications. Such implications derive from rearranging a

collection of n observations. The relevant condition, or axiom, is that any balanced sequence

has the downward-sloping demand property. As a corollary of the main theorem, we can

show the following result.

Proposition 1. A dataset is EDU rational with δ = 1 if and only if any balanced sequence

has the downward-sloping demand property.

We omit the proof of Proposition 1.
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3.3 General K and δ

We now turn to the main situation of interest, when K can be arbitrary and δ is unknown.

We first considered K = δ = 1, and saw that it was enough to consider all possible “within-

observation” marginal rates of substitutions: EDU rationality is characterized by downward-

sloping demand. When K ≥ 1 we saw that we needed to impose downward-sloping demand

for balanced sequences, so as to capture the “across-observations” implications of EDU.

When δ is unknown we need to further restrict the sequences that are required to satisfy

downward-sloping demand.

When δ is unknown, larger consumption in one period may not be justified by lower

prices. An agent can consume more in period t than in period t′, even when the price of

consumption is higher in period t, simply because t is sooner than t′. Consumption in t′

is less valuable than in t by the effect of discounting. The relevant notion of “downward-

sloping demand” is that if consumption is larger in later periods, then it must be explained

by cheaper prices. Thus
∑n

i=1 ti ≥
∑n

i=1 t
′
i as a condition in SAR-EDU.

In SAR-EDU,
∑n

i=1 ti ≥
∑n

i=1 t
′
i means that the consumption quantities xkiti occur later in

time than the quantities x
k′i
t′i

. If we assume that the xkiti quantities are always larger than the

x
k′i
t′i

quantities, then the explanation for such larger consumption quantities in later periods

must be cheaper prices.

As in Sections 3.1 and 3.2, a key idea behind Theorem 1 is to control the effects of

the unknowns u and δ, by focusing on particular configurations of the data. For example,

consider two observations xk1 and xk2 and choose four points in time, t1, t2, t3, and t4. By

rearranging marginal rates of substitution we obtain that:

mrs(xk1t1 , x
k1
t4 )·mrs(xk2t3 , x

k2
t2 ) =

u′(xk1t1 )

u′(xk2t2 )
·
u′(xk2t3 )

u′(xk1t4 )
=

(
δt2

δt1
pk1t1
pk2t2

)
·

(
δt4

δt3
pk2t3
pk1t4

)
= δ(t2+t4)−(t1+t3)

pk1t1
pk2t2

pk2t3
pk1t4

.

Notice that the pairs (xk1t1 , x
k2
t2 ) and (xk2t3 , x

k1
t4 ) constitute a balanced sequence of pairs

because they arise from a rearrangement of two marginal rates of substitutions, one taken

from observation k1 and another from k2. Now, if xk1t1 > xk2t2 and xk2t3 > xk1t4 then the concavity

of u implies that the product δ(t2+t4)−(t1+t3)(pk1t1 /p
k2
t2 )(pk2t3 /p

k1
t4 ) cannot exceed 1.

Suppose now that the four points in time were chosen so that t1 + t3 ≥ t2 + t4. Then the

discount factor unambiguously increases the value on the left hand side: δ(t2+t4)−(t1+t3) ≥
1 for any δ ∈ (0, 1]. Thus (pk1t1 /p

k2
t2 )(pk2t3 /p

k1
t4 ) cannot exceed 1. The punchline is that

(pk1t1 /p
k2
t2 )(pk2t3 /p

k1
t4 ) ≤ 1 follows from knowledge (or imposition) of the concavity of u and
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δ ∈ (0, 1]. In this fashion we again obtain an implication of EDU for prices, an observable

entity.

The argument just made extends to arbitrary balanced sequences, and essentially gives

the proof of the necessity of the SAR-EDU in Theorem 1. The argument simply amounts to

verifying a rather basic consequence of EDU: the consequence of EDU for those situations in

which unobservables either do not matter or have a known effect (the effect either resulting

from u′ being decreasing or from δ ∈ (0, 1]).

What is surprising is that such a basic consequence of the theory is sufficient as well as

necessary. The proof of Theorem 1 is in Appendix A. Necessity is, as we have remarked,

simple, and follows along the lines described above. The proof of sufficiency is more compli-

cated and follows ideas introduced in Echenique and Saito (2015). We start from first-order

conditions, as in the discussion leading up to SAR-EDU. These can be formulated as “Afriat

inequalities” (Afriat, 1967), as in many studies of revealed preference. The problem here

is that the Afriat inequalities are non-linear, and must be linearized. A key result is then

an approximation result, which is complicated because the unknown quantities in the Afriat

inequalities take values in a non-compact set.

3.4 Additional Models

The exposition so far has emphasized EDU, the canonical model of intertemporal choice.

We now turn to other important models that can be analyzed through our techniques. Some

of these models will turn out to be quite important in our empirical applications.

The first model is time-separable utility. It is the most general class of utility functions

we consider, and a natural benchmark to understand the empirical failures of EDU. We will

want to know when a dataset fails EDU simply because it is not TSU-rational, and when it

fails other aspects of EDU.

The time-separable utility (TSU) model is the class of utility functions U for which there

exists concave and strictly increasing functions ut : R+ → R, for t ∈ T such that U(x) =∑
t∈T ut(xt).

Strong Axiom of Revealed Time-Separable Utility (SAR-TSU): For any balanced

sequence of pairs (xkiti , x
k′i
t′i

)ni=1, if ti = t′i for all i, then the sequence has the downward-sloping

demand property.

SAR-TSU imposes the downward-sloping demand property on fewer sequences than those

constrained by SAR-EDU or SAR-QHD. Note that, in contrast with EDU and QHD, TSU
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imposes no within-observation constraints. All the constraints must be across observations

(and within periods). This means, for example, that all datasets with K = 1 are TSU

rational. The across-observations constraints are also present in SAR-EDU and SAR-QHD

to reflect that EDU and QHD are time-separable models. But SAR-EDU and SAR-QHD

have additional within-observation constraints.

It is easy to observe that TSU model can be seen as the state-dependent utility (SDU)

model of choice under uncertainty if we reinterpret the set of periods as the set of states.

Echenique and Saito (2015) characterize SDU model by Strong Axiom of Revealed State-

Dependent Utility. This axiom is equivalent to SAR-TSU under the reinterpretation of the

set of periods as the set of states.

Finally, we turn to two special cases of models that we have already considered. One

special case is monotone time discounting (MTD): the class of utility functions MTD ⊂ GTD

for which D(t) is a monotone decreasing sequence. MTD includes the models of diminishing

impatience and strong diminishing impatience (Chakraborty et al., forthcoming; Halevy,

2008).

Strong Axiom of Revealed Monotone Time Discounted Utility (SAR-MTD): For

any balanced sequence of pairs (xkiti , x
k′i
t′i

)ni=1, if there is a permutation π of {1, 2, . . . , n} such

that ti ≥ t′π(i), then the sequence has the downward-sloping demand property.

The other special case is present-biased QHD: the class of utility functions PQHD ⊂ QHD

in which β ≤ 1.

Strong Axiom of Revealed Quasi-Hyperbolic Present-Biased Utility (SAR-PQHD):

For any balanced sequence of pairs (xkiti , x
k′i
t′i

)ni=1, if

(i)
∑n

i=1 ti ≥
∑n

i=1 t
′
i and

(ii) #{i : ti > 0} ≥ #{i : t′i > 0},

then the sequence has the downward-sloping demand property.

Theorem 3. For M ′ ∈ {TSU,MTD,PQHD}, a dataset is M ′-rational if and only if it

satisfies SAR-M ′.

3.5 Discussion

The axiomatizations in Theorems 0 to 3 serve three different purposes. First, they describe

the behaviors that are consistent with EDU and its generalizations; as we have seen these
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behaviors involve versions of a “qualified” downward-sloping demand property. Second, the

precise form of the qualifications involved reflects how each theory imposes weaker or stronger

properties. Thus GTD requires the property to hold for a balanced sequence of pairs where

each t appears the same number of times on the left and of the right of each pair, while

EDU requires if for sequences that satisfy a weaker property. These restrictions make sense

given the functional for in each representation. For GTD all time periods have the same

“standing,” while in EDU the amount of time that has elapsed since the first time period

matters. Third, the axioms function as nonparametric tests. As we shall see, for practical

purposes it is often more convenient to analyze the underlying Afriat inequalities. But the

axioms still describe useful simple patterns of violations that help categorize how the data

violates EDU: see the results in Section 4.3.

4 Empirical Illustration

We use our theoretical framework to analyze data from two experiments: Andreoni and

Sprenger (2012, AS) and Carvalho et al. (2016a, CMW). Section 4.1 presents a quick sum-

mary of the data from these experiments.

The two experiments differ in the number of subjects and the number of choices made

by a subject. The number of subjects is 97 for AS, and over 1,000 for CMW. The number

of questions asked is also quite different, with AS asking subjects to choose in 45 different

situations, and CMW asking for 12 choices. Despite such differences, CMW follow AS’s basic

design, and our methods are directly applicable to data from either experiment.

4.1 Description of the Data

AS introduce an experimental method called the Convex Time Budget (CTB). The CTB

design fits our framework very well. In AS’s experiment, subjects were asked to allocate 100

experimental tokens between “sooner” (time τ) and “later” (time τ + d) accounts. Tokens

allocated to each account had a value of aτ and aτ+d, converting experimental currency unit

into real monetary value for final payments. The gross interest rate over d days is given

by aτ+d/aτ . There were three possible sooner dates τ ∈ {0, 7, 35}, three possible delays

d ∈ {35, 70, 98} (both in days), and five different pairs of conversion rates (aτ , aτ+d) for each

(τ, d) pair. Each subject completed 45 decisions. See Figure B.1 in the online appendix for

an illustration.
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Each subject’s decision in a trial is characterized by a tuple (τ, d, aτ , aτ+d, cτ ): the first

four elements (τ, d, aτ , aτ+d) characterize the budget set she faces in this trial, and cτ is the

number of tokens she decides to allocate to the sooner payment. In the experiment, subjects

make a two-period choice. They choose (xτ , xτ+d) subject to pτxτ + xτ+d = I. We need to

formulate the problem as choosing (x0, . . . , xT ) subject to
∑

t∈T ptxt = I. We set prices to

be pτ = aτ+d/aτ and pτ+d = 1 (a normalization), and we define consumptions (monetary

amounts) xτ = cτaτ and xτ+d = (100− cτ )aτ+d. We shall implicitly set the prices of periods

that are not offered to be very high so that agents choose zero consumption in those periods.

We present a more detailed explanation in online appendix B.

Two features of the CTB design make their experiment ideal for our exercise. First

and most importantly, the experimental setup is precisely the situation our model tries to

capture: subjects choose an intertemporal consumption from a budget set. Secondly, the

CTB design has subjects committing to a payoff stream. Recall that to test for QHD and

more general models (although not for EDU) we need to assume that agents commit to a

consumption stream. In the CTB design, the commitment assumption is satisfied.

CMW administered incentivized intertemporal choice tasks on an internet panel with

respondents aged 18 and over living in the United States. Subjects in CMW’s experiment

were asked to allocate $500 into two payments with pre-specified dates, the second of which

included interest. The sooner payment date (τ) was either now or in four weeks. The delay

length (d) was either four weeks or eight weeks. The four interest rates used in the survey

were 0%, 0.5%, 1%, and 3%. Each subject made 12 decisions in total.

Before reporting the results of our empirical analysis, we briefly describe our empirical

methods. From the experimental datasets, we set up a linear programming problem so that

finding a solution to the problem is equivalent to finding a rationalization of each model such

as EDU, QHD, and TSU. We describe the method in detail in online appendix B. Note that

typical CTB design does not allow us to test GARP because all budget sets are nested.

4.2 Results

We test whether each individual subject passes our axioms. The test is applied for all

subjects in both the AS and CMW experiments. We shall label a subject as “M ′-rational” if

her choices pass the revealed-preference test for model M ′ and “M ′ non-rational” otherwise.

The models can be ordered by the tightness of the associated axioms. Essentially, we have
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Table 1: Pass Rates

Data # subjects # choices EDU PQHD QHD MTD GTD TSU

AS 97 45 0.299 0.299 0.299 0.392 0.423 0.516
CMW 1,060 12 0.210 0.216 0.222 0.278 0.299 0.433

that
QHD
⊂ ⊂

EDU ⊂ PQHD GTD ⊂ TSU⊂ ⊂
MTD

.

For this reason, when we find that a subject is EDU rational, she is also M ′-rational for all

other models M ′ ∈ {PQHD,QHD,MTD,GTD,TSU}.6

We sometimes label a subject as “strictly M ′-rational” for the most restrictive model M ′

such that the agent is M ′-rational. For example, a subject is strictly QHD rational if her

dataset passes the QHD test but not the EDU test.

Table 1 reports the pass rates for each model. Pass rates are the percentage of subjects

in each experiment that pass the test, for each of the models: EDU, QHD, TSU, and so on.

Four aspects of Table 1 stand out. First, the numbers of EDU-rational agents are rather

small: 30% and 21% in AS and CMW, respectively. Second, there is very little added

scope for QHD. In the case of the AS experiment, all subjects rationalized as QHD are also

rationalized as EDU; and there are very few subjects in the CMW experiment that are QHD,

but not EDU, rational.78 The number of TSU-rational subjects is 52% in AS and 43% in

CMW. These numbers may be viewed as small as well.

The third aspect is that some violations of QHD are captured by MTD and GTD. As we

mentioned above, MTD includes the models of diminishing impatience and strong diminish-

ing impatience. Our methods can be applied to these models: see online appendix D.2.9

The fourth aspect is that the results for the AS and CMW experiments are quite similar,

6QHD is not a subset of MTD due to the presence of future-biased QHD (β > 1).
7Note the difference in pass rates for PQHD and QHD in CMW data. It means that there are six subjects

who are rationalized by future-biased QHD.
8It is possible to analyze the QHD model where more than one period is regarded as “the present,” as

in
∑τ̄
t=0 δ

τu(xt) + β
∑T
t=τ̄+1 δ

tu(xt). By varying τ̄ , we obtain slightly more QHD-rational subjects, but the
qualitative conclusions reported do not change. See online appendix D.1 for details. We thank an anonymous
referee for suggesting the exercise.

9Arguably, diminishing impatience captures the essence of the behaviors that PQHD seeks to explain. In
that sense, it is worth noting that the pass rates for MTD with diminishing impatience in the AS data are
37.1%, up from PQHD’s 29.9% (out of 97 subjects). The corresponding pass rates in CMW data are 26.6%
for MTD with diminishing impatience and 21.6% for PQHD (out of 1,060 subjects).
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despite some notable differences in implementation and population sampled. The sample

sizes are very different in these experiments: 97 for AS and over 1,000 for CMW. The

number of questions asked is also quite different, with AS asking subjects to choose from 45

different budgets, while CMW asking only for 12 choices.10 We found that the power of the

tests applied on each data are similar (and, is in fact, very high; see online appendix C), so

it makes sense to compare the pass rates in these two experiments.

4.3 Analysis of Violations of EDU, QHD, and TSU Rationalities

We use the theoretical results in the paper to study the violations of EDU, QHD, and TSU

reported in Table 1. Our theoretical results help uncover the particular patterns in the data

that underly subjects’ violations of the different models.

We have discussed the empirical content of EDU, and of the special case of EDU with

δ = 1, the case where there is no discounting. It is obvious that there are datasets that are

only rationalizable when we allow for δ < 1; so EDU is a strictly weaker, more permissive,

theory of intertemporal choice than EDU with δ = 1. There are, however, conditions under

which a dataset is EDU rational if and only if it is EDU rational with δ = 1.

When we introduced SAR-EDU, we mentioned how relatively larger consumption could

occur even if prices are relatively high, due to the role of discounting. Our notion of strict

impatience is meant to capture this phenomenon.

Definition 5. A dataset (xk, pk)Kk=1 is strictly impatient if for all balanced sequences (xkiti , x
k′i
t′i

)ni=1

such that xkiti > x
k′i
t′i

for all i and
∑n

i=1 ti >
∑n

i=1 t
′
i,

n∏
i=1

pkiti

p
k′i
t′i

< 1. (4)

To interpret strict impatience, consider a pair (xkt , x
k′

t′ ) exhibiting a violation of (4). Thus,

xkt > xk
′

t′ , t is later than t′, and pkt /p
k′

t′ ≥ 1. This means that the later consumption at date t is

weakly more expensive than the sooner consumption at date t′, but the agent still consumes

more at the later date than at the sooner date. Such an agent cannot be strictly impatient.

The notion of strict impatience is important because many experimental subjects are not

strictly impatient. To such subjects, the following result applies:

10One might, for example, conjecture that fatigue in an experiment with many choices could affect pass
rates, but the comparison between AS and CMW gives no indication that fatigue matters.
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Proposition 2. Suppose that the dataset (xk, pk)Kk=1 is not strictly impatient. Then the

following statements are equivalent:

(i) The dataset is EDU rational.

(ii) The dataset is EDU rational with δ = 1.

(iii) All balanced sequences in the dataset have the downward-sloping demand property.

We find that almost all EDU non-rational subjects display a particular kind of violation

of EDU. They carry out a two-pronged violation of EDU. First, their choices imply that

they are not strictly impatient. Second, their choices fail to satisfy the downward-sloping

demand property. Therefore, by Proposition 2, such subjects cannot be EDU rational. The

finding holds true for both the AS and CMW data, and it is present in almost all subjects

that violate EDU.

It is important to emphasize that each pattern in isolation does not imply a violation

of EDU. Many subjects exhibit a violation of downward-sloping demand that is consistent

with EDU. At the same time, they make choices that mean that they cannot be discounting.

The conjunction of both patterns implies a violation of EDU.

Violation of EDU rationality As mentioned, we find that many subjects are not discounting—

are not strictly impatient. In particular, we concentrate on the following patterns of choices:

(P1) A pair (xkt1 , x
k
t2

) with xkt1 > xkt2 , t1 > t2, and pkt1/p
k
t2
≥ 1.

(P2) Pairs ((xk1t1 , x
k2
t3 ), (xk2t4 , x

k1
t2 )) with xk1t1 > xk2t3 , xk2t4 > xk1t2 , t1 + t4 > t3 + t2, and (pk1t1 /p

k2
t3 ) ·

(pk2t4 /p
k1
t2 ) ≥ 1.

The behaviors in (P1) and (P2) are special cases of the condition in Proposition 2, and

they have a simple economic meaning. Behavior (P1) means that an agent consumes more in

the more expensive period, as xkt1 > xkt2 and pkt1/p
k
t2
≥ 1. The more expensive period is later,

as t1 > t2. Therefore, the agent cannot dislike later consumption, and must have δ = 1, if

she is to be EDU rational.

Behavior (P2) has a similar meaning, but is slightly more involved. Think of t1 as being

after t2, and t3 as being after t4. Then t1 − t2 > t3 − t4 means that the time elapsed from

the sooner to the later period is larger in observation k1 than in observation k2. Moreover,

pk1t1 /p
k1
t2 ≥ pk2t3 /p

k2
t4 , so the price of postponing consumption is higher in observation k1 than

in k2. But then, if an agent chooses to consume relatively more later in observation k1 than
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Table 2: Number of Subjects Who Display Patterns (P1)–(P4) by Rationality

Patterns of choices

Data Rationality Total # (P1) or (P2) [(P1) or (P2)] and [(P3) or (P4)]

AS EDU 29 5 (17%) 0 (0%)
Strict QHD 0 N/A N/A
Strict TSU 21 13 (62%) 13 (62%)
Non TSU 47 45 (96%) 45 (96%)

CMW EDU 223 74 (33%) 0 (0%)
Strict QHD 12 7 (58%) 7 (58%)
Strict TSU 224 152 (68%) 152 (68%)
Non TSU 601 570 (95%) 570 (95%)

Note: For each panel, the second column shows the category of strict rationality and the total number of subjects for each
category. The third column shows the number of subjects who display the behaviors (P1) or (P2), and hence are not strictly
impatient. The fourth column shows the number of subjects who display the behaviors “(P3) or (P4)”, as well as “(P1) or (P2)”.

in k2 (xk1t1 > xk2t3 and xk2t4 > xk1t2 ), she cannot dislike postponing consumption if she is EDU

rational. Again, she must have δ = 1 if she is to be EDU rational.

By Proposition 2, to test EDU rationality when a subject is not strictly impatient, all

we need to check is the downward-sloping demand property. Again we concentrate on very

simple violations of downward-sloping demand:

(P3) A pair (xkt1 , x
k
t2

) with xkt1 > xkt2 and pkt1/p
k
t2
> 1.

(P4) Pairs ((xk1t1 , x
k2
t3 ), (xk2t4 , x

k1
t2 )) with xk1t1 > xk2t3 , xk2t4 > xk1t2 and (pk1t1 /p

k2
t3 ) · (pk2t4 /p

k1
t2 ) > 1.

Table 2 reports the numbers of subjects that display the behaviors (P1), (P2), (P3),

or (P4), for the AS and CMW experiments, and classified by the most stringent theory

passed by each subject.

The results in Table 2 have interesting implications. Firstly, the fraction of subjects

displaying (P1) or (P2) is not small, even for EDU-rational agents (17% in AS and 33% in

CMW). By Proposition 2, such subjects are EDU rational with δ = 1.

Secondly, among EDU non-rational agents, the fraction of subjects who display the be-

havior (P1) or (P2) is very large. In AS’s data, it is 62% of strict TSU rational subjects,

and 96% of TSU non-rational subjects. In CMW’s data, it is 58% of strict QHD-rational

subjects, 68% of strict TSU-rational subjects, and 95% of TSU non-rational subjects. It is

interesting that the percentages are similar in AS and CMW. It is also interesting that the

percentage increases as the “level of rationality” is lower.
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Thirdly, and surprisingly, all of the EDU non-rational subjects who display (P1) or (P2)

also display the behaviors (P3) or (P4). The numbers in the two columns for strict TSU

and TSU non-rational subjects are the same because it is actually the same subjects that

display (P1) or (P2), and (P3) or (P4). This means that the majority of the violations of

EDU found in AS and CMW have a straightforward explanation in the data: they make

some choices that are incompatible with discounting, and then they violate simple downward-

sloping demand.

There is additional structure to the violations uncovered by Table 2. Many of the in-

stances of (P3) and (P4) are not a violation of SAR-EDU. That is, in (P3), t1 ≥ t2 does not

hold and in (P4), t1 + t4 ≥ t3 + t2 does not hold. This means that the subjects who display

the behavior [(P1) or (P2)] and [(P3) or (P4)] are not EDU rational because they make

choices that are not strictly impatient, which force δ = 1, and in the second place they make

choices that are incompatible with downward-sloping demand property. This suggests that,

for most subjects, the lack of compliance with EDU boils down to the downward-sloping

demand property.

Violation of QHD rationality and corner choices One consequence of Theorems 1

and 2 is that, under certain circumstances, EDU and PQHD are observationally equivalent.

These circumstances are very relevant for the discussion of experiments in this section. Our

next result, Proposition 3, shows that if an agent does not consume at the soonest date (i.e.,

xk0 = 0 for all k ∈ K), then EDU and PQHD are observationally equivalent.

Proposition 3. Suppose that a dataset (xk, pk)Kk=1 satisfies that xk0 = 0 for all k ∈ K. Then

(xk, pk)Kk=1 is PQHD rational if and only if it is EDU rational.

No subjects are strictly QHD-rational in the AS experiment. This is related to agents’

peculiar pattern of choices. Proposition 3 shows that if an agent does not consume at the

soonest date (i.e., xk0 = 0 for all k ∈ K), then EDU and PQHD are observationally equivalent.

In AS’s experiment, more than 82.8% of the subjects who satisfy SAR-EDU (i.e., 25% of the

total subjects) do not consume at the soonest date. So Proposition 3 means that QHD has

no scope beyond EDU for such subjects.

Moreover, the same subjects in AS satisfy the condition in Proposition 4 (discussed in

online appendix A.4.3); they did not consume a positive amount on the sooner date whenever

the price for the sooner consumption is higher than the price for the later consumption.

Therefore, Proposition 4 implies that those subjects are EDU rational.
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The conclusion should be qualified by the findings using CMW’s data. CMW’s subjects

chose corner allocations much less often than AS’s: fewer than 10% of subjects never chose

interior allocations, and more than 50% of them chose interior allocations in all 12 questions.

And the number of strictly QHD rational agents in CMW is also very small, so the lack

of scope for QHD in AS’s data may not be driven by agents’ tendency to choose corner

allocations.

Violation of TSU rationality We have seen that many violations of EDU correspond

to a simple pattern in the data (configurations (P1)-(P4) discussed above). There is also a

simple pattern behind the violations of TSU.

Consider a pair of observations k, k′ ∈ K and time periods s, t ∈ T such that xkt > xk
′
t ,

xk
′
s > xks , and pkt /p

k
s > pk

′
t /p

k′
s . This is a 2×2 violation of the TSU axiom, with the two pairs

((xkt , x
k′
t ), (xk

′
s , x

k
s)). All the 601 TSU non-rational subjects in CMW display such a simple

violation of the TSU axiom. In AS, 36 subjects (out of 47; 76.6%) exhibit the behavior.

5 Concluding Remarks

We present revealed-preference characterizations, or tests, of the most common models of

intertemporal choice: EDU, QHD, and TSU. We apply our tests to data from experiments by

Andreoni and Sprenger (2012) and Carvalho et al. (2016a), and find that our axiomatization

delivers new insights and perspectives on datasets that had been analyzed by parametric

methods. Two experiments are different in important ways (such as the number of choices,

the number of subjects, and the frequency of interior choices); still, the main findings for each

experiment are surprisingly similar. The pass rates for EDU, QHD, and TSU are relatively

low.

We believe that our results are useful for understanding what experimental subjects do,

and also to design future experiments. For example, Proposition 2 shows that EDU ratio-

nality is equivalent to a much simpler property, the downward-sloping demand property,

under natural conditions. This result is useful to understand the behaviors of experimental

subjects, as we have shown in Section 4.3. Proposition 3 is helpful in designing experiments

to distinguish EDU subjects from QHD subjects. The proposition tells us that we need to

set prices for the soonest consumption (i.e., consumption at period 0) cheap enough so that

a subject will choose positive consumption at the soonest date. Proposition 4 (online ap-

pendix A.4.3), which shows that corner choices lead to EDU rationality, is important for CTB
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experiments. To test EDU rationality in a meaningful way, one should have enough variety

of prices so that a subject may not choose corner allocations. In a similar way, Proposition 5

(online appendix A.4.4), which shows the equivalence between EDU and TSU rationality un-

der certain conditions, can also be important in designing experiments to distinguish EDU

from TSU subjects.

We consider a few additional issues in the online appendix. The important issue of the

power of the tests is discussed in online appendix C. The robustness of revealed-preference

tests to small perturbations in the data is considered in online appendix F.

A Proof of Theorem 1

We present the proof of the equivalence between EDU rationality and SAR-EDU.

The proof is based on using the first-order conditions for maximizing a utility with the

EDU over a budget set. Our first lemma ensures that we can without loss of generality

restrict attention to the first-order conditions. The proof of the lemma is the same as that of

Lemma 7 in Echenique and Saito (2015), with the change of {µs}s∈S to {δt}t∈T (in Echenique

and Saito (2015), µs is the subjective probability that state s realizes).

We use the following notation in the proofs: X = {xkt : k ∈ K, t ∈ T}.

Lemma 1. Let (xk, pk)Kk=1 be a dataset. The following statements are equivalent:

(a) (xk, pk)Kk=1 is EDU rational.

(b) There are strictly positive numbers vkt , λk, and δ ∈ (0, 1], for t = 1, . . . , T and k =

1, . . . , K, such that

δtvkt = λkpkt , xkt > xk
′

t′ =⇒ vkt ≤ vk
′

t′ .

A.1 Necessity

Lemma 2. If a dataset (xk, pk)Kk=1 is EDU rational, then it satisfies SAR-EDU.

Proof. Let (xk, pk)Kk=1 be EDU rational, and let δ ∈ (0, 1] and u : R+ → R be as in the

definition of EDU rationality. By Lemma 1, there exists a strictly positive solution vkt ,

λk, δ to the system in statement (b) of Lemma 1 with vkt ∈ ∂u(xkt ) when xkt > 0, and

vkt ≥ w ∈ ∂u(xkt ) when xkt = 0.

Let (xkiti , x
k′i
t′i

)ni=1 be a balanced sequence satisfying the conditions in SAR-EDU. Then∑n
i=1 ti ≥

∑n
i=1 t

′
i and xkiti > x

k′i
t′i

for all i. Suppose that x
k′i
t′i
> 0. Then, vkiti ∈ ∂u(xkiti ) and
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v
k′i
t′i
∈ ∂u(x

k′i
t′i

). By the concavity of u, it follows that λkiδt
′
ipkiti ≤ λk

′
iδtip

k′i
t′i

(see Theorem 24.8

of Rockafellar, 1997). Similarly, if x
k′i
t′i

= 0, then vkiti ∈ ∂u(xkiti ) and v
k′i
t′i
≥ w ∈ ∂u(x

k′i
t′i

). Hence

λkiδt
′
ipkiti ≤ λk

′
iδtip

k′i
t′i

. Therefore,

1 ≥
n∏
i=1

λkiδt
′
ipkiti

λk
′
iδtip

k′i
t′i

=
1

δ(
∑
ti−

∑
t′i)

n∏
i=1

pkiti

p
k′i
t′i

≥
n∏
i=1

pkiti

p
k′i
t′i

,

as the sequence is balanced and satisfies the condition in SAR-EDU, i.e.,
∑n

i=1 ti ≥
∑n

i=1 t
′
i

and the numbers λk appear the same number of times in the denominator as in the numerator

of this product.

A.2 Theorem of the Alternative

To prove sufficiency, we shall use the following lemma, which is a version of the Theorem of

the Alternative. This is Theorem 1.6.1 in Stoer and Witzgall (1970). We shall use it here in

the cases where F is either the real or the rational numbers.

Lemma 3. Let A be an m × n matrix, B be an l × n matrix, and E be an r × n matrix.

Suppose that the entries of the matrices A, B, and E belong to the commutative ordered field

F. Exactly one of the following alternatives is true.

1. There is u ∈ Fn such that A · u = 0, B · u ≥ 0, E · u� 0.

2. There is θ ∈ Fr, η ∈ Fl, and π ∈ Fm such that θ · A + η · B + π · E = 0; π > 0 and

η ≥ 0.

We also use the following lemma, which follows from Lemma 3 (see Border (2013) or

Chambers and Echenique (2014)):

Lemma 4. Let A be an m × n matrix, B be an l × n matrix, and E be an r × n matrix.

Suppose that the entries of the matrices A, B, and E are rational numbers. Exactly one of

the following alternatives is true.

1. There is u ∈ Rn such that A · u = 0, B · u ≥ 0, and E · u� 0.

2. There is θ ∈ Qr, η ∈ Ql, and π ∈ Qm such that θ · A + η · B + π · E = 0; π > 0 and

η ≥ 0.
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A.3 Sufficiency

We proceed to prove the sufficiency direction. An outline of the argument is as follows. We

know from Lemma 1 that it suffices to find a solution to the Afriat inequalities (actually

first-order conditions), written as statement (b) in the lemma. We set up the problem to

find a solution to a system of linear inequalities obtained from using logarithms to linearize

the Afriat inequalities in Lemma 1.

Lemma 5 establishes that SAR-EDU is sufficient for SEU rationality when the logarithms

of the prices are rational numbers. The role of rational logarithms comes from our use of a

version of the theorem of the alternative (Lemma 4).

The next step in the proof (Lemma 6) establishes that we can approximate any dataset

satisfying SAR-EDU with a dataset for which the logarithms of prices are rational, and for

which SAR-EDU is satisfied. This step is crucial, and somewhat delicate.11

Finally, Lemma 7 establishes the result by using another version of the theorem of the

alternative, stated as Lemma 3 above.

The statement of the lemmas follow. The rest of the paper is devoted to the proof of

these lemmas.

Lemma 5. Let data (xk, pk)kk=1 satisfy SAR-EDU. Suppose that log(pkt ) ∈ Q for all k and

t. Then there are numbers vkt , λk, δ, for t ∈ T and k = 1, . . . , K satisfying (b) in Lemma 1.

Lemma 6. Let data (xk, pk)kk=1 satisfy SAR-EDU. Then for all positive numbers ε, there

exists qkt ∈ [pkt−ε, pkt ] for all t ∈ T and k ∈ K such that log qkt ∈ Q and the dataset (xk, qk)kk=1

satisfy SAR-EDU.

Lemma 7. Let data (xk, pk)kk=1 satisfy SAR-EDU. Then there are numbers vkt , λk, δ, for

t ∈ T and k = 1, . . . , K satisfying (b) in Lemma 1.

The proofs of Lemma 6 and 7 are similar to the proofs of Lemmas 12 and 13 in Echenique

and Saito (2015). The proofs are in the online appendix.

11One might have tried to obtain a solution to the Afriat inequalities for “perturbed” systems (with prices
that are rational after taking logs), and then considered the limit. This does not work because the solutions
to our systems of inequalities are in a non-compact space. It is not clear how to establish that the limits
exist and are well-behaved. Lemma 6 avoids the problem.
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A.4 Proof of Lemma 5

We linearize the equation in statement (b) of Lemma 1. The result is:

log vkt + t log δ − log λk − log pkt = 0, (A1)

xkt > xk
′

t′ =⇒ vk
′

t′ ≥ vkt , (A2)

log δ ≤ 0. (A3)

In the system comprised by (A1), (A2), and (A3), the unknowns are the real numbers log vkt ,

log δ, k ∈ K, and t ∈ T .

First, we are going to write the system of inequalities (A1) and (A2) in a matrix form.

We shall define a matrix A such that there are positive numbers vkt , λk, δ, the logs of which

satisfy equation (A1) if and only if there is a solution w ∈ RK×(T+1)+1+K+1 to the system of

equations

A · w = 0,

and for which the last component of w is strictly positive.

Let A be a matrix with K × (T + 1) + 1 + K + 1 columns, defined as follows: We have

one row for every pair (k, t); one column for every pair (k, t); one column for each k; and two

additional columns. Organize the columns so that we first have the K× (T + 1) columns for

the pairs (k, t), then one of the single columns mentioned in last place, which we shall refer

to as the δ-column, then K columns (one for each k), and finally one last column. In the

row corresponding to (k, t) the matrix has zeroes everywhere with the following exceptions:

it has a 1 in the column for (k, t), t in the δ column, −1 in the column for k, and − log pkt in

the very last column.

Thus, matrix A looks as follows:


(1,0) ··· (k,t) ··· (K,T ) δ 1 ··· k ··· K p

...
...

...
...

...
...

...
...

...

(k,t) 0 · · · 1 · · · 0 t 0 · · · −1 · · · 0 − log pkt
...

...
...

...
...

...
...

...
...

.
Consider the system A · w = 0. If there are numbers solving equation (A1), then these

define a solution w ∈ RK×(T+1)+1+K+1 for which the last component is 1. If, on the other

hand, there is a solution w ∈ RK×(T+1)+1+K+1 to the system A · w = 0 in which the last
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component is strictly positive, then by dividing through by the last component of w we

obtain numbers that solve equation (A1).

In second place, we write the system of inequalities (A2) and (A3) in matrix forms. Let

B be a matrix with K× (T +1)+1+K+1 columns. Define B as follows: One row for every

pair (k, t) and (k′, t′) with xkt > xk
′

t′ ; in the row corresponding to (k, t) and (k′, t′) we have

zeroes everywhere with the exception of a −1 in the column for (k, t) and a 1 in the column

for (k′, t′). These rows captures the inequality (A2). Finally, in the last row, we have zeroes

everywhere with the exception of a −1 at K × (T + 1) + 1th column. We shall refer to this

last row as the δ-row, which capturing the inequality (A3).

In the third place, we have a matrix E that captures the requirement that the last

component of a solution be strictly positive. The matrix E has a single row and K × (T +

1) + 1 +K + 1 columns. It has zeroes everywhere except for 1 in the last column.

To sum up, there is a solution to the system (A1), (A2), and (A3) if and only if there is

a vector w ∈ RK×(T+1)+1+K+1 that solves the system of equations and linear inequalities:

(S1) : A · w = 0, B · w ≥ 0, E · w � 0.

The entries of A, B, and E are integer numbers, with the exception of the last column of

A. Under the hypothesis of the lemma we are proving, the last column consists of rational

numbers.

By Lemma 4, then, there is such a solution w to S1 if and only if there is no rational

vector (θ, η, π) that solves the system of equations and linear inequalities

(S2) : θ · A+ η ·B + π · E = 0, η ≥ 0, π > 0.

In the following, we shall prove that the non-existence of a solution w implies that the

data must violate SAR-EDU. Suppose then that there is no solution w and let (θ, η, π) be a

rational vector as above, solving system S2.

By multiplying (θ, η, π) by any positive integer we obtain new vectors that solve S2, so

we can take (θ, η, π) to be integer vectors.

Henceforth, we use the following notational convention: For a matrix D with K × (T +

1) + 1 + K + 1 columns, write D1 for the submatrix of D corresponding to the first K ×
(T + 1) columns, let D2 be the submatrix corresponding to the following one column (i.e.,

δ-column), D3 correspond to the next K columns, and D4 to the last column. Thus, D =

[D1 D2 D3 D4 ].
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Claim 1. (i) θ·A1+η ·B1 = 0; (ii) θ·A2+η ·B2 = 0; (iii) θ·A3 = 0; and (iv) θ·A4+π ·E4 = 0.

Proof. Since θ · A + η · B + π · E = 0, then θ · Ai + η · Bi + π · Ei = 0 for all i = 1, . . . , 4.

Moreover, since B3, B4, E1, E2, and E3 are zero matrices, we obtain the claim. �

For convenience, we transform the matrices A and B using θ and η. We transform

the matrices A and B as follows. Let us define a matrix A∗ from A by letting A∗ have

K × (T + 1) + 1 +K + 1 columns that consists of the rows as follows: for each row in r ∈ A
(i) have θr copies of the rth row when θr > 0; (ii) omit row r when θr = 0; and (iii) have θr

copies of the rth row multiplied by −1 when θr < 0.

We refer to rows that are copies of some r in A with θr > 0 as original rows. We refer to

rows that are copies of some r in A with θr < 0 as converted rows.

Similarly, we define the matrix B∗ from B by including the same columns as B and ηr

copies of each row (and thus omitting row r when ηr = 0; recall that ηr ≥ 0 for all r).

Claim 2. For any (k, t), all the entries in the column for (k, t) in A∗1 are of the same sign.

Proof. By definition of A, the column for (k, t) will have zero in all its entries with the

exception of the row for (k, t). In A∗, for each (k, t), there are three mutually exclusive

possibilities: the row for (k, t) in A can (i) not appear in A∗, (ii) it can appear as original,

or (iii) it can appear as converted. This shows the claim. �

Claim 3. There exists a sequence of pairs (xkiti , x
k′i
t′i

)n
∗
i=1 that satisfies a condition in SAR-EDU:

xkiti > x
k′i
t′i

for all i = 1, . . . , n∗.

Proof. We define such a sequence by induction. Let B1 = B∗. Given Bi, define Bi+1 as

follows.

Denote by >i the binary relation on X defined by z >i z′ if z > z′ and there is at least

one pair (k, t) and (k′, t′) for which (i) xkt > xk
′

t′ , (ii) z = xkt and z′ = xk
′

t′ , and (iii) the row

corresponding xkt > xk
′

t′ in B has strictly positive weight in η.

The binary relation >i cannot exhibit cycles because >i⊆>. There is therefore at least

one sequence zi1, . . . z
i
Li

in X such that zij >
i zij+1 for all j = 1, . . . , Li − 1 and with the

property that there is no z ∈ X with z >i zi1 or ziLi
>i z.

Observe that Bi has at least one row corresponding to zij >
i zij+1 for all j = 1, . . . , Li−1.

Let the matrix Bi+1 be defined as the matrix obtained from Bi by omitting one copy of the

row corresponding to zij > zij+1, for all j = 1, . . . Li − 1.
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The matrix Bi+1 has strictly fewer rows than Bi. There is therefore n∗ for which Bn∗+1

either has no more rows, or Bn∗+1
1 has only zeroes in all its entries (its rows are copies of the

δ-row which has only zeroes in its first K × (T + 1) columns).

Define a sequence of pairs (xkiti , x
k′i
t′i

)n
∗
i=1 by letting xkiti = zi1 and x

k′i
t′i

= ziLi
. Note that, as

a result, xkiti > x
k′i
t′i

for all i. Therefore the sequence of pairs (xkiti , x
k′i
t′i

)n
∗
i=1 satisfies one of the

conditions in SAR-EDU. �

We shall use the sequence of pairs (xkiti , x
k′i
t′i

)n
∗
i=1 as our candidate violation of SAR-EDU.

Consider a sequence of matrices Ai, i = 1, . . . , n∗ defined as follows. Let A1 = A∗,

B1 = B∗, and C1 =
[
A1

B1

]
. Observe that the rows of C1 add to the null vector by Claim 1.

We shall proceed by induction. Suppose that Ai has been defined, and that the rows of

Ci =
[
Ai

Bi

]
add to the null vector.

Recall the definition of the sequence

xkiti = zi1 > . . . > ziLi
= x

k′i
t′i
.

There is no z ∈ X with z >i zi1 or ziLi
>i z, so in order for the rows of Ci to add to zero

there must be a −1 in Ai1 in the column corresponding to (k′i, t
′
i) and a 1 in Ai1 in the column

corresponding to (ki, ti). Let ri be a row in Ai corresponding to (ki, ti), and r′i be a row

corresponding to (k′i, t
′
i). The existence of a −1 in Ai1 in the column corresponding to (k′i, t

′
i),

and a 1 in Ai1 in the column corresponding to (ki, ti), ensures that ri and r′i exist. Note that

the row r′i is a converted row while ri is original. Let Ai+1 be defined from Ai by deleting

the two rows, ri and r′i.

Claim 4. The sum of ri, r
′
i, and the rows of Bi which are deleted when forming Bi+1

(corresponding to the pairs zij > zij+1, j = 1, . . . , Li − 1) add to the null vector.

Proof. Recall that zij >
i zij+1 for all j = 1, . . . , Li − 1. Thus, when we add the rows

corresponding to zij >
i zij+1 and zij+1 >i zij+2, then the entries in the column for (k, t)

with xkt = zij+1 cancel out and the sum is zero in that entry. Thus, when we add the

rows of Bi that are not in Bi+1 we obtain a vector that is 0 everywhere except the columns

corresponding to zi1 and ziLi
. This vector cancels out with ri+r′i, by definition of ri and r′i. �

Claim 5. The matrix A∗ can be partitioned into pairs (ri, r
′
i), in which the rows r′i are

converted and the rows ri are original.
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Proof. For each i, Ai+1 differs from Ai in that the rows ri and r′i are removed from Ai to

form Ai+1. We shall prove that A∗ is composed of the 2n∗ rows ri, r
′
i.

First note that since the rows of Ci add up to the null vector, and Ai+1 and Bi+1 are

obtained from Ai and Bi by removing a collection of rows that add up to zero, then the rows

of Ci+1 must add up to zero as well.

By way of contradiction, suppose that there exist rows left after removing rn∗ and r′n∗ .

Then, by the argument above, the rows of the matrix Cn∗+1 must add to the null vector. If

there are rows left, then the matrix Cn∗+1 is well defined.

By definition of the sequence Bi, however, Bn∗+1 has all its entries equal to zero, or has

no rows. Therefore, the rows remaining in An
∗+1

1 must add up to zero. By Claim 2, the

entries of a column (k, t) of A∗ are always of the same sign. Moreover, each row of A∗ has a

non-zero element in the first K × (T + 1) columns. Therefore, no subset of the columns of

A∗1 can sum to the null vector. �

Claim 6. (i) For any k and t, if (ki, ti) = (k, t) for some i, then the row ri corresponding

to (k, t) appears as original in A∗. Similarly, if (k′i, t
′
i) = (k′, t′) for some i, then the row

corresponding to (k, t) appears converted in A∗. (ii) If the row corresponding to (k, t) appears

as original in A∗, then there is some i with (ki, ti) = (k, t). Similarly, if the row corresponding

to (k, t) appears converted in A∗, then there is i with (k′i, t
′
i) = (k, t).

Proof. (i) is true by definition of (xkiti , x
k′i
t′i

). (ii) is immediate from Claim 5 because if the

row corresponding to (k, t) appears as original in A∗ then it equals ri for some i, and then

xkt = xkiti . Similarly when the row appears converted. �

Claim 7. The sequence (xkiti , x
k′i
t′i

)n
∗
i=1 satisfies conditions in SAR-EDU: (a)

∑n∗

i=1 ti ≥
∑n∗

i=1 t
′
i

and (b) the number of times k appears as ki equals the number of times it appears as k′i.

Proof. We first establish condition (a). Note that A∗2 is a vector, and in row r the entry of

A∗2 is as follows. There must be a raw (k, t) in A of which the raw r is a copy. Therefore,

the component at the row r of A∗2 is t if r is original and −t if r is converted. Now, by the

construction of the sequence when r appears as original there is some i for which t = ti,

when r appears as converted there is some i for which t = t′i. Thus, for each r there is i such

that (A∗4)r is either ti or −t′i. By Claim 1 (ii), θ · A2 + η · B2 = 0. Recall that θ · A2 equals

the sum of the rows of A∗2. Moreover, B2 is a vector that has zeroes everywhere except a
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−1 in the δ row (i.e., K × (T + 1) + 1th row). Therefore, the sum of the rows of A∗2 equals

ηK×(T+1)+1, where ηK×(T+1)+1 is the K × (T + 1) + 1th element of η. Since η ≥ 0, therefore,∑n∗

i=1 ti ≥
∑n∗

i=1 t
′
i, and condition (a) is satisfied.

Now we turn to condition (b). By Claim 1 (iii), the rows of A∗3 add up to zero. Therefore,

the number of times that k appears in an original row equals the number of times that it

appears in a converted row. By Claim 6, then, the number of times k appears as ki equals

the number of times it appears as k′i. Therefore, condition (b) is satisfied. �

Finally, in the following, we show that
∏n∗

i=1 p
ki
ti /p

k′i
t′i
> 1, which finishes the proof of

Lemma 5 as the sequence (xkiti , x
k′i
t′i

)n
∗
i=1 would then exhibit a violation of SAR-EDU.

Claim 8.
∏n∗

i=1 p
ki
ti /p

k′i
t′i
> 1.

Proof. By Claim 1 (iv) and the fact that the submatrix E4 equals the scalar 1, we obtain

0 = θ · A4 + πE4 =

(
n∗∑
i=1

(ri + r′i)

)
4

+ π,

where (
∑n∗

i=1(ri+r′i))4 is the (scalar) sum of the entries of A∗4. Recall that − log pkiti is the last

entry of row ri and that log p
k′i
t′i

is the last entry of row r′i, as r′i is converted and ri original.

Therefore the sum of the rows of A∗4 are
∑n∗

i=1 log(p
k′i
t′i
/pkiti ). Then,

n∗∑
i=1

log(p
k′i
t′i
/pkiti ) = −π < 0.

Thus
∏n∗

i=1 p
ki
ti /p

k′i
t′i
> 1. �
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Brocas, I., J. D. Carrillo, and J. Tarrasó (2018): “How Long is a Minute?” Games and
Economic Behavior, 111, 305–322.

Browning, M. (1989): “A Nonparametric Test of the Life-Cycle Rational Expectations Hypoth-
esis,” International Economic Review, 30, 979–992.

Carvalho, L., S. Meier, and S. W. Wang (2016a): “Poverty and Economic Decision Making:
Evidence from Changes in Financial Resources at Payday,” American Economic Review, 106,
260–284.

Carvalho, L., S. Prina, and J. Sydnor (2016b): “The Effects of Savings on Risk Attitudes
and Intertemporal Choices,” Journal of Development Economics, 120, 41–52.

Chakraborty, A., Y. Halevy, and K. Saito (forthcoming): “The Relation between Behavior
under Risk and over Time,” American Economic Review: Insights.

Chambers, C. P. and F. Echenique (2014): “On the Consistency of Data with Bargaining
Theories,” Theoretical Economics, 9, 137–162.

Crawford, I. (2010): “Habits Revealed,” Review of Economic Studies, 77, 1382–1402.

Crawford, I. and M. Polisson (2014): “Testing for Intertemporal Nonseparability,” Journal
of Mathematical Economics, 52, 46–49.

Dziewulski, P. (2018): “Revealed Time-Preference,” Games and Economic Behavior, 118, 67–77.

34



Echenique, F. and K. Saito (2015): “Savage in the Market,” Econometrica, 83, 1467–1495.

Ericson, K. M. and D. Laibson (2019): “Intertemporal Choice,” in Handbook of Behavioral Eco-
nomics - Foundations and Applications, ed. by B. D. Bernheim, S. DellaVigna, and D. Laibson,
Amsterdam: Elsevier/North-Holland, vol. 2, 1–67.

Fishburn, P. and W. Edwards (1997): “Discount-Neutral Utility Models for Denumerable Time
Streams,” Theory and Decision, 43, 139–166.

Fishburn, P. C. and A. Rubinstein (1982): “Time Preference,” International Economic Review,
23, 677–694.

Galperti, S. and B. H. Strulovici (2017): “A Theory of Intergenerational Altruism,” Econo-
metrica, 85, 1175–1218.

Gilboa, I. (1989): “Expectation and Variation in Multi-Period Decisions,” Econometrica, 57,
1153–1169.
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