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Abstract. We establish that a type of statistical discrimination—

that based on informativeness of signals about workers’ skills and

the ability to appropriately match workers to tasks—is possible if

and only if it is impossible to uniquely identify the signal structure

observed by an employer from a realized empirical distribution of

skills. The impossibility of statistical discrimination is shown to be

equivalent to the existence of a fair, skill-dependent, remuneration

for workers. Finally, we connect the statistical discrimination lit-

erature to Bayesian persuasion, establishing that if discrimination

is absent, then the optimal signaling problem results in a linear

payoff function (as well as a kind of converse).
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1. Introduction

In seminal contributions, Arrow (1971; 1973) and Phelps (1972) pos-

tulated that discrimination along racial lines, or gender identities, can

have a statistical explanation. In this note we study a version of statis-

tical discrimination motivated by the ideas in Phelps (1972) and Aigner

and Cain (1977). The main thrust is that two populations of workers,

who are in essence identical, may have different economic remunera-

tions for purely informational reasons.1

Phelps’ theory connects workers’ remuneration with the information

available about their skills. His theory assumes a firm who observes a

signal about the underlying skills of a worker. The worker is paid her

expected contribution to the firm, conditional on the firm’s observed

signal about the worker. A competitive market ensures that workers

are paid their contributions.

Phelps imagines two populations of workers: group X and group Y,

who differ in the information available about their skills. Say that

the signal about the skill of a member of group X is more informative

than the signals for group Y. Aigner and Cain remark that, in this

setting, the average payment to workers in X may be higher than that

of workers in Y, even when their distribution of skills is identical. We

term this phenomenon “Phelpsian” statistical discrimination.2

In Phelps’ model, the signal may be the result of a test that has

been designed with a population from group X in mind. The signal

implemented by the test will then be more informative about the skills

of an X worker than a Y worker. In support, Aigner and Cain (1977)

cite evidence from the education literature to the effect that the SAT is

less informative about the abilities of African-American students than

it is for white students.

1Arrow’s theory of statistical discrimination relies on a coordination failure, and
is quite different from Phelps’. Statistical discrimination stands in contrast with
taste-based discrimination, as in Becker (1957).
2Phelps actually compares the payment to a worker from X or Y conditional on get-
ting a high or a low signal. Aigner and Cain (1977) point out that this does not lead
to what is normally called discrimination in economics, and offer an “alternative
model,” which we follow here. See Section 4.4 below for a discussion.
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We formulate the theory of statistical discrimination using the lan-

guage of the recent literature on information design. A risk-neutral firm

is characterized by a technology. We use the terms “firm” and “tech-

nology” interchangeably. The firm observes a signal about a worker’s

skills, and bases the payment to the worker on the revenue it expects

to gain from how valuable her skills are for the firm’s technology.

A population of workers comes with a distribution over signals: an

information structure. The information structure of population X may

be different from that of population Y. We say that statistical discrimi-

nation is present if the two populations of workers have the same overall

distribution of skills, but receive different payments in expectation as

a result of their different information structures.

We show that the focus on informativeness in Phelps and Aigner-

Cain is misleading. There may be statistical discrimination even when

the information structure of one population is not more informative

than the other. We show that the relevant property is lack of identi-

fication (in the econometric sense) of signals from skills. Aigner and

Cain trace statistical discrimination to pure informativeness. We argue

that the situation is more general.

Our main result connects statistical discrimination with two seem-

ingly distinct properties of the economic environment: one is identifica-

tion of signals from skills, and the other is the linearity of firm revenue

in “fair” skill-dependent payoffs. First, we prove that statistical dis-

crimination is not possible if and only if every given distribution of skills

results in a unique distribution of signals. By definition, when discrim-

ination is possible, this identification property must be violated. Our

contribution lies in establishing the converse: whenever identification

is impossible, discrimination can arise. Specifically, if identification is

impossible, there is a firm which will discriminate.

Second, we show that identification, and therefore the absence of dis-

crimination, is equivalent to the existence of a skill-based remuneration

for workers. Such remunerations amount to a payment for skill. Each

list of skills must be associated with a payoff, which is independent of

any signal, and every worker is paid the expectation according to the
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distribution of skills inherent in her realized signal. In other words,

remuneration depends only on expected skill; which is, in a sense, fair.

When wages are determined in this way, a population’s expected

wage is linear in its distribution of skills. Therefore no statistical dis-

crimination is possible. Again the contribution lies in establishing the

converse: the emergence of statistical discrimination is equivalent to

the absence of such fair remunerations.

As a corollary we provide a characterization of fair skill-based remu-

nerations as a sort of “equilibrium” payments. With no discrimination,

worker remunerations are the least that a worker can be paid, subject

to the satisfaction of certain outside options. In particular the expected

remuneration of a worker with a given signal equals the minimum ex-

pected skill-dependent payment the worker could receive, subject to

achieving at least what she would get if she had any other signal value.

Finally, we show that the optimal information structure in the sense

of Kamenica and Gentzkow (2011) achieves precisely the fair remuner-

ation in our results. This connects back to Phelps’ and Aigner-Cain’s

analysis of the informational content of workers’ signal structures. In

the absence of discrimination, workers are endowed with a maximally

informative signaling structure.

2. Preliminary definitions

2.1. Notation. If A is a closed subset of a Euclidean space, we denote

by ∆(A) the set of Borel probability measures on A.

2.2. Signals, information, and Blackwell informativeness. Let

Θ be a finite set. Think of the elements of Θ as the possible states

of the world: in the model below, the elements of Θ represent skills

possessed by a worker, which are generally unknown by a firm. These

states are relevant in that they will determine the payoffs of a given

task to which a worker may be assigned. The set ∆(Θ) of probability

measures on Θ can be interpreted as the set of beliefs one may have

about the elements of Θ.
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We can also think of ∆(Θ) as the set of possible values that a signal

distribution may take. For example, imagine that the state of the world

can only take two values, Θ = {θ0, θ1}, and that these two states are

equally likely. An agent receives information about the state of the

world in the form of a signal s, which can take either the value s = ♠
or s = ♣. Suppose that, if the state is θ0 she gets the ♠ signal with

probability 3/4, and ♣ with probability 1/4. Conversely, if the state is

θ1 she gets the signal ♠ with probability 1/4, and ♣ with probability

3/4. If our agent observes ♠, then she will hold a posterior belief of

3/4 for state θ0 and 1/4 for θ1. If, instead, she observes ♣, then she

will hold a posterior belief of 1/4 for state θ0 and 3/4 for θ1. So instead

of keeping track of the labels ♠ or ♣ on signals, we can identify them

with the posterior beliefs that they induce. In consequence, we think

of the set ∆(Θ) as the set of all possible values that a signal may take.

This is without loss of generality.3

The ♣/♠ signal example can be interpreted as a distribution over

∆(S): with probability 1/2 we have the signal realization ((3/4), (1/4))

and with probability 1/2 we have the signal ((3/4), (1/4)). Generally

speaking, an information structure is a probability distribution π ∈
∆(∆(Θ)).

Information structures were famously analyzed by Blackwell (1953),

who discussed the idea that some signal structures are more informative

than others. The definition of informativeness has to be independent

of any individual agent. For example, in our model below, one in-

formation structure may be better than another for one firm, but a

second firm may hold the opposite ranking. Blackwell’s definition says

that information structure π is more informative than π′ if every agent

derives more value from π than from π′. Blackwell proved that his

informativeness property is equivalent to π′ being a mean-preserving

spread of π.

In our model, we shall see that different firms may value information

structures differently; but when π is more informative than π′ in the

3In our framework, the signal itself has no inherent value for the firm.
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Blackwell sense, then all firms will prefer to base their decisions on

π over basing them on π′. In essence, this is the basic source of the

type of discrimination analyzed by Phelps, and by Aigner and Cain.

More information about Θ allows a firm to more appropriately match

a worker to a task.

2.3. Identification. In an economic model, something is identified if

its values can be “backed out” from available data (Haavelmo, 1944).

Mathematically, the property translates into an injective relation. Imag-

ine a model that has a parameter π and an observable magnitude pπ.

The parameter is identified if different values of π must always result in

different pπ. Put differently, from knowing pπ one is able to determine,

or back out, π. The map π 7→ pπ is one-to-one.

3. The model

We present a model of workers’ remuneration: A firm hires a worker

and expects the worker to generate revenue for the firm. We assume

(following Phelps) that the labor market is competitive, and hence

the firm pays the worker its expected revenue. Our theory of worker

remuneration is therefore a theory of firm revenue.

The firm faces uncertainty over the revenue it obtains from hiring a

worker: its revenue depends on the worker’s skills, and how those skills

match up with the firm’s technology; but the firm does not observe

skills. Instead, it gets a signal and forms a posterior belief distribution

over skills. Our model has three components: A set of possible skills,

the technology available to the firm, and a population of workers.

The first component is the set of possible skills; these are collected

in a finite set Θ. Depending on the realized skill θ ∈ Θ, the worker

could be good at computer programming, or driving long-haul trucks.

The second component is the firm’s technology, given as a nonempty

finite set A ⊆ RΘ. How do Θ and A match up? For each a ∈ A, and

each skill θ ∈ Θ, the worker generates revenue a(θ) ∈ R for the firm.4

4There is no loss of generality for any of our results in restricting a(θ) ≥ 0; in the
interest of simplicity we allow it to be more general.
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We could instead have written down a detailed model of the worker’s

role in the firm, for example an IT firm is going to value computer

programming more than truck-driving, but ultimately what matters

for the firm (and for our model) is the revenue generated. So we use

the numbers a(θ), for a ∈ A, as a simple reduced-form model of the

interaction between the worker with skill θ and the firm’s technology

A.

The third component of our model is the population π of workers,

which captures the information available to the firm. Consider the

ideas introduced in Section 2.2, and think of the possible skills Θ as

the possible states of the world. The worker’s skill θ is unobservable.

Instead, the firm observes a signal s ∈ ∆(Θ). Thus the expected value

to a risk-neutral firm with technology A of a worker with signal s is

vA(s) = max
a∈A

∫
Θ

a(θ)ds(θ)

The set Θ is finite, so we may identify s with its probability function

and write
∫

Θ
a(θ)ds(θ) as

∑
θ∈Θ a(θ)s(θ).

All possible signals are collected in a (Borel) set S ⊆ ∆(Θ). Ob-

serve that the revenue function vA is the “value function” of A, as in

Blackwell (1953), Machina (1984), or the profit function in the text-

book theory of the firm when s is now interpreted as a “price.” It is

well known that such functions are always convex.

Finally, the population of workers is reflected in π ∈ ∆(S); π is both

an information structure and a population.

To sum up, the model primitives consist of the triple

(Θ,A,S),

where Θ is the finite set of types, A is the collection of finite technolo-

gies A ⊆ RΘ, and S ⊆ ∆(Θ) is a set of possibles signals.5

5We take A to be the set of all possible firm technologies, but as we shall see it
will be sufficient to restrict attention to binary sets: technologies with one or two
elements.
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Finally, each worker belongs to a population that generates signals

according to an information structure π ∈ ∆(S). Here we are moti-

vated by Phelps (1972) and Aigner and Cain (1977). Think of different

populations as having different societal identities. They could for ex-

ample be races, ethnicities, or genders. One population could be the

set of all White workers, or all Hispanic workers. These differ in how

firms learn about their skill: in the information structure that they

are endowed with. A population with information structure π has an

implied distribution of skills equal to

pπ(E) =

∫
S
s(E)dπ(s).

Think of pπ(E) as the frequency of workers with skill θ ∈ E in the

population. Then pπ ∈ ∆(Θ) is the distribution of skills in a population

that has information structure π. Thus, for our purposes, π is the same

as a population.

A population’s information structure π plays two roles. It describes

both the overall skill distribution pπ in the population, and it also spec-

ifies the distribution of signals in the population. The latter describes

how firms learn about the skills possessed by a worker who belongs to

the population. In other words, it reflects something about the infor-

mativeness about the signal ascribed to the population.

Recall that we operate under the assumption of competitive labor

markets, and therefore equate revenue and remuneration. The expected

revenue can be computed by first calculating the expected revenue from

each possible signal that the firm can observe, and then computing the

expected revenue when signals obey the probability law in the relevant

information structure. Specifically, a population that generates signals

according to an information structure π ∈ ∆(S) will obtain a distribu-

tion of wages resulting from the interaction of π with vA. In particular,

the mean remuneration of this population is∫
S
vA(s)dπ(s)



STATISTICAL DISCRIMINATION 9

The idea of discrimination we study is that two populations π, π′ ∈
∆(S) may have the same distribution of skills (so that pπ = pπ′),

but receive different payoffs because they have two different informa-

tion structures. Formally, we say that the set of signals S is non-

discriminatory if, for any information structures π, π′ ∈ ∆(S), and any

finite set A ⊆ RΘ, if pπ = pπ′ , then∫
S
vA(s)dπ(s) =

∫
S
vA(s)dπ′(s).

In words, the property of being non-discriminatory means that two

populations that have no “genuine” difference in their distribution of

skills, and only differ in how firms get to learn about their members,

should not differ in mean remuneration. On the other hand, S is dis-

criminatory if there exists at least one firm for which two populations

with the same aggregate distribution of skills are remunerated differ-

ently. It does not require this to hold for every possible firm.6

3.1. Motivation and a Phelpsian example. We start with a simple

example of statistical discrimination. It is a minimal example; the

simplest we can think of that delivers the Phelpsian message. Let

Θ = {θ1, θ2, θ3} be the set of skills, and A = {(1, 0, 0), (0, 1/2, 3)} be

the firm technology. Observe that, with this specification, workers are

not “high” or “low” quality, but they simply have differing aptitudes for

the different components of the firm technology. They “fit” in different

parts of the firm’s revenue-generating process.

Suppose that

S = {(1, 0, 0), (1/2, 1/2, 0), (0, 1/2, 1/2), (0, 0, 1)}

6We want to talk about discrimination for fixed populations that differ in some
observable trait (such as race), but not in their underlying distribution of skills.
If we fix a particular firm, meaning a particular technology, then there may be no
discrimination because the relation between the observable trait in question and the
distribution of signals is unrelated to how this particular firm, with its particular
technology, uses information. We wouldn’t want to describe such a situation as
the absence of statistical discrimination. Instead, we want to say that there is
not statistical discrimination when no firm would use the informational differences
between two population to provide higher remuneration to one over the other.
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is the set of possible signals.

There are two populations of workers, say X and Y. The two popula-

tions differ in the information that the firm obtains about their skills.

The workers might take a test, as in Phelps (1972), and the informa-

tional content of the test might be different for the two populations. So

X members emit signals about their skills according to an information

structure π, while Y members’ information structure is π′.

The two information structures, π and π′, are described in the ta-

ble below, together with the revenue function vA resulting from our

assumed Θ and A. Observe that pπ = pπ′ = (1/3, 1/3, 1/3), reflecting

that the populations overall have the same skills. Importantly, the two

information structures are not ranked by Blackwell informativeness.7

s = (1, 0, 0) s = (1/2, 1/2, 0) s = (0, 1/2, 1/2) s = (0, 0, 1)

π(s) 1/3 0 2/3 0

π′(s) 0 2/3 0 1/3

vA(s) 1 1/2 7/4 3

A worker from group X reveals that she is either good for a1 =

(1, 0, 0) or a2 = (0, 1/3, 3). The Y worker reveals the same kind of

information, but less usefully for the firm: a signal s = (1/2, 1/2, 0)

tells the firm that a1 is the optimal choice given the information at

hand, but leaves it with some doubts as to whether a2 may have been

optimal. In consequence, we have∫
S
vA(t)dπ(t) = 1/3 + 7/6 > 1/3 + 1 =

∫
S
vA(t)dπ′(t).

If workers are paid according to the revenues that they contribute to

the firm, as would be the case in a competitive market, then X workers

are paid more than Y workers in the aggregate. The differences in

expected (or population) remuneration between the two is purely a

consequence of the informational content in their corresponding signal

structures.

7The firm itself is able to rank the two signal structures, but Blackwell informa-
tiveness implies a ranking that holds for all firms.
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The example shows that statistical discrimination extends beyond a

situation where information structures are ranked, or ordered, in terms

of informativeness. Information structures π and π′ are not ranked in

terms of informativeness; neither is a mean-preserving spread of the

other.

Moreover, in the example the two different information structures

have the same mean. This is a necessary requirement for the existence

of statistical discrimination. It is important to point out, however, that

in this model, the aggregate skill level pπ can always be inferred from

wages, even when there is discrimination. We present Proposition 1,

which is obvious, to make this point.

Proposition 1. Skill distributions are identified from revenue: if two

populations π, π′ ∈ ∆(S) differ in their skill distribution, so that pπ 6=
pπ′, then there exists some firm A ∈ A at which the expected wage of

the two populations differ.8

The proposition results by finding θ ∈ Θ for which pπ(θ) 6= pπ′(θ),

and setting A = {a}, where a = 1θ, the indicator function of θ.

4. Statistical discrimination and identification

The discussion in Section 3.1 suggested that discrimination is tied

to identification, but skills distributions are always identified from rev-

enue, even when there is discrimination (Proposition 1). The relevant

identification problem is not about skills, but about the ability to back

out the underlying information structure.

Formally, we say that S is identified if for any π, π′ ∈ ∆(S), pπ = pπ′

implies that π = π′.

Our main result is that the absence of discrimination is equivalent

to the ability to estimate a skills distribution from the information

structure. Importantly, we show that this can only happen when worker

remunerations are, in a sense, fair.

8This result is trivial. We prove a stronger statement, see Proposition 5 of Section 6.
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4.1. Fair remunerations. Remunerations are fair if individual work-

ers are paid according to their skills. Specifically, if there is a mapping

from skills to payoffs so that a worker gets paid according to their

signal about skills, not according to the information structure in the

population that they come from. In consequence, we say that S admits

fair valuations if for any A ∈ A there is αA ∈ RΘ for which

vA(s) =
∑
θ

αA(θ)s(θ)

for all s ∈ S.

In words, αA(θ) is the value to the firm with technology A of a worker

with skills θ. When the firm observes signal s ∈ S it pays the worker

the expected value of αA according to s.

Importantly, if π ∈ ∆(S) and S admits fair valuations, then∫
vA(s)dπ(s) = αA ·

∫
sdπ(s) = αA · pπ.

Hence, under fair valuations, the expected payment to a population of

workers with information structure π only depends on the distribution

of skills in that population.

In particular, it should be clear that fair valuations imply non-

discrimination. Our contribution will be to show that the converse

holds, and how the property of fair valuations is connected to identifi-

cation.

4.2. Main result.

Theorem 2. A collection of signals S is non-discriminatory if and only

if it is identified, which holds if and only if S admits fair valuations.

For example, if Θ = {θ1, θ2, θ3}, and

S = {(1/3, 1/3, 1/3), (0, 1/4, 3/4), (0, 3/4, 1/4)},

then all of the equivalent conditions of Theorem 2 are satisfied. To see

that identification is satisfied, observe that for π ∈ ∆(S), we can infer

π({1/3, 1/3, 1/3}) = 3pπ(θ1). Similarly,

π({0, 1/4, 3/4}) = (3/2)pπ(θ3)− (1/2)pπ(θ3)− pπ(θ1).
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Finally,

π({0, 3/4, 1/4}) = (3/2)pπ(θ2)− (1/2)pπ(θ3)− pπ(θ1).

An important consequence of Theorem 2 is the existence of fair val-

uations, which means that there exists a “fundamental” value αA, for

each firm A, so that workers are paid according to the expected value∑
θ αA(θ)s(θ). Fair valuations come about because non-discrimination

implies identification, which in turn means that the maximum expected

revenue that can be achieved by any information structure with a given

mean skill is an affine function of the mean skill.

It should be obvious that the existence of fair valuations implies non-

discrimination. A population π would under fair valuations receive an

expected remuneration that equals αA ·pπ: the value of the distribution

of skills in the population. Such remuneration would be equal for any

two populations that have the same skill distribution p. The thrust

of the theorem lies in proving that non-discriminatory S admit fair

valuations.

The equivalence of the three properties rests on a simple geometric

argument. Suppose that S is finite. Observe that S being identified

implies that, when each s ∈ S is viewed as a member of RΘ, S is a lin-

early independent set.9 Now consider what happens if S is not linearly

independent: we can find β ∈ RS \ {0} for which
∑

s∈S β(s)s(θ) = 0.

Since β 6= 0, we can find γ ∈ RS for which β · γ 6= 0. The vector β

can be scaled to become π − π′, and γ is vA: the only difficulty here is

that vA cannot have an arbitrary shape, and must arise from a value

function on RΘ, but this poses no special difficulty. So lack of identi-

fication is equivalent to the existence of possible discrimination. Fair

remuneration comes from the fact that on a linearly independent set,

9A violation of linear independence means that s =
∑
s′∈S\{s} β(s′)s′ for some

β 6= 0. By rearranging terms, then s+
∑
s′:β(s′)≤0(−β(s′))s′ =

∑
s′:β(s′)≥0 β(s′)s′.

Observe that the right hand side cannot be equal to 0, as all members of S
are elements of ∆(θ) and hence have nonnegative components. Observe that∑
θ

∑
s′∈S\{s} β(s′)s′(θ) = 1 as

∑
θ s(θ) = 1. Therefore, we can renormalize each

side of the equation to find π, π′ for which
∑
θ s(θ)π(θ) =

∑
θ s(θ)π

′(θ).
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to find the average remuneration, it is necessary and sufficient to find

the share of workers of each type.

The next claim is a simple duality result.

Proposition 3. If S admits fair valuations, then for each firm A ∈ A,∑
θ

αA(θ)s(θ) = inf{
∑
θ

y(θ)s(θ) : y ∈ RΘ and vA(s′) ≤
∑
θ

y(θ)s′(θ)∀s′ ∈ S}.

To understand Proposition 3, suppose that a worker with skill θ

can guarantee themselves a payment of y(θ) on the market. Then the

expected remuneration for a worker with signal s′, if she goes on the

market, is
∑

θ y(θ)s′(θ). A firm would not pay the worker with signal s′

more than her outside option, so that the remuneration to s′ at a firm

with technology A (which equals the worker’s contribution to the firm,

vA(s′)) cannot exceed
∑

θ y(θ)s′(θ). Finally the lowest payments must

by definition be minimal among all those payments that satisfy that,

for all s′,
∑

θ y(θ)s′(θ) ≥ vA(s′). Fair payoffs αA can thus be viewed

as the result of competitive forces. The workers earn the least possible

that is compatible with their outside options.

Proposition 3 is an illustration of a standard duality result, heav-

ily used in the information design literature. This duality result says

nothing more than that the concave envelope of vA (the “inf” in the

equation) is the same as the maximal average remuneration given to

an arbitrary population π. Under fair remuneration, that maximal av-

erage remuneration is given by the linear specification on the left hand

side of the equation. We now proceed to flesh out this connection to

information design.

4.3. Connection to Bayesian persuasion. The recent literature on

Bayesian persuasion (Kamenica and Gentzkow (2011)) deals with the

optimal design of information structures. In our model, populations of

workers are identified with an information structure, and we have in

particular traced Phelpsian statistical discrimination to the informa-

tive content of a population of workers. Statistical discrimination is

connected to Bayesian persuasion if we consider the populations that

are maximally informative.
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For each technology A, consider the optimal information structure

for firm A when facing a population of workers with skill distribution

p ∈ ∆(Θ). The firm is uncertain about the skill θ ∈ Θ of a particular

worker. She learns about θ from observing a signal s that is drawn

according to an information structure π. Since the skill distribution is

known to be p, we must have p = pπ. Thus the problem of optimal

information design (Kamenica and Gentzkow, 2011) for firm A is:

max

∫
T

vA(s̃)dπ(s̃)

s.t

π ∈ ∆(T )

p =
∫
T
s̃dπ(s̃),

with T being the closed convex hull of S and p ∈ T .

The solutions to this problem are the most profitable information

structures for firm A. Let WA : T → R be the value function of this

problem: the value to the firm of an optimal information structure.

Our next result connects optimal information design with statistical

discrimination. We need one piece of notation, let ∂T denote the ex-

treme points of T , so that T is the closed convex hull of ∂T . Note that

∂T is not necessarily equal to S, as the extreme points of the convex

hull of a set need not equal that set.

Corollary 4. For any S, ∂T is non-discriminatory if and only if, for

every A, WA is affine (linear).10

To interpret Corollary 4, recall that the “concavification” of a func-

tion is a crucial idea in Bayesian persuasion. The idea is, roughly

speaking, that optimal information structures will place probability

zero on signals that can be obtained as the mean of other signals giving

a higher expected payoff.11 In our environment, an optimal information

structure can be chosen to have support on the extreme points of the

10Because the domain of WA is a set of probability measures, WA is linear if it is
affine. In fact, in this case we have WA(s) =

∑
θ∈Θ αA(θ)s(θ), where αA is as in

Proposition 3.
11At this point, we can further formalize the discussion in Section 2.2. Following
Blackwell (1953), for π, π′ ∈ ∆(S), we say that π is more informative than π′ if,
for every A,

∫
vA(t)dπ(t) ≥

∫
vA(t)dπ′(t).
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convex hull of S due to the convexity of vA. Moreover, WA is always

weakly concave (the concavification in question).

Strict concavity of WA reflects a situation where the firm strictly

prefers the optimal value for a skill distribution rather than the ex-

pected optimal value for a probability over skill distributions with the

same expectation (Kamenica and Gentzkow, 2011). This is a firm who

prefers no uncertainty about the skill distribution (supposing they can

observe the skill distribution before choosing an information structure).

Hence, it reflects a kind of “risk aversion” of the firm in the overall skill

distribution. Affinity therefore reflects risk-neutrality of the firm in the

skill distribution.

Going back to Corollary 4, it says that discrimination is possible

exactly when WA exhibits strict concavities. In other words, discrimi-

nation is impossible exactly when the firm is always risk-neutral in the

skill distribution.

Finally, recall our motivating Phelpsian example. There, discrimi-

nation was present even though S consisted of the extreme points of

its convex hull T , and thus S was maximally informative. Phelps’

original point can thus be refined: discrimination obtains because an

employer has “different” information about two classes of individuals,

rather than better information.

Let us see how this manifests itself in the choice of optimal informa-

tion structure. In this case, for each s ∈ S, we have WA(s) = vA(s),

as each s is extreme in the convex hull of T . We therefore obtain:

(2/3)WA(1/2, 1/2, 0) + (1/3)WA(0, 0, 1) = 4
3
< 3

2
= (1/3)vA(1, 0, 0) +

(2/3)vA(0, 1/2, 1/2) ≤ WA(1/3, 1/3, 1/3). Hence, in our example, WA

is nonlinear. This is a general artifact of non-identification and dis-

crimination, as is evidenced by Corollary 4.

4.4. On Phelps, Agner and Cain. We read Phelps through the eyes

of Aigner and Cain (1977). What we term Phelpsian statistical discrim-

ination is really how Aigner and Cain interpret the term; in particular

in their “alternative model.” They adopt Phelps’ model of normally

distributed signals, and his notion of informativeness captured by the
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variance of a noise term in the signaling technology. Aigner and Cain

then consider a risk-averse firm, and, roughly, make the point that a

less informative signaling structure will expose the firm to more risk

than a more informative signaling structure. Hence a population that

is associated with a less informative signaling structure will be worth

less to a risk averse firm than one who is associated with a more in-

formative signals — even when the underlying skill distribution is the

same.

In our model, risk aversion is not the reason informativeness matters.

Rather, it matters because the firm uses information to match a worker

with its technology. So the channel is different from Aigner and Cain’s

model, but follows from similar mathematical ideas. Our model is also

quite general, and not restricted to the normal-linear model in Phelps.

Finally, the connection to identification and Bayesian persuasion is

completely new.

5. Conclusion

We have formulated Phelps’ theory of statistical discrimination us-

ing the modern language of information design. Our results shed new

light on the nature of discrimination, and on some of the empirical

approaches one might take to establish the existence of statistical dis-

crimination.

Statistical discrimination turns out to be equivalent to the absence

of econometric identification of signals from skills. While the identifi-

cation of skills from salaries is always possible, even in the presence of

discrimination, we show that the crucial identification property is that

of signals from skills.

In second place, we connect discrimination with the source of worker

remunerations. We show that identification is possible if and only if re-

munerations are linear in fair skill-dependent, signal-independent, pay-

offs. In this situation, fair payoffs admit an interpretation as the lowest

expected payments that respects certain workers outside options in the

market. The relevant outside options turn out to be the counterfactual

wages they would have earned with different signals.
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Our results have immediate consequences for empirical research on

discrimination. They imply that discrimination is absent if and only if

empirical approaches to linearly estimating fair skills-based payoffs are

viable.

Finally, our model is static. The dynamic implications of information

being revealed over time may have implications for our results and

should be the focus of future studies.

6. Proofs

Proposition 5 is a formal statement of Proposition 1 (in fact a sub-

stantially stronger statement).

For a technology A = {a1, . . . , an}, and k ∈ RΘ, let A + k = {a1 +

k, . . . , an + k} be the technology shifted by k.

Proposition 5. For any two populations any S and any finite tech-

nology A, if π, π′ ∈ ∆(S) are such that pπ 6= pπ′, then there is k for

which ∫
T

vA+k(s)dπ(s) 6=
∫
T

vA+k(s)dπ
′(s).

Proof. Observe that for anyA and any element l ∈ A, we have vA+l(s) =

vA(s) + l · s. Now, since pπ 6= pπ′ , there is l for which l · pπ 6= l · pπ′ .
Consequently, there is α for which:

αl · (pπ − pπ′) 6=
∫
S
vA(s)dπ′(s)−

∫
S
vA(s)dπ(s).

Let k = αl, and conclude that:∫
S
vA+k(s)dπ(s) = k·pπ+

∫
S
vA(s)dπ(s) 6= k·pπ′+

∫
S
vA(s)dπ′(s) =

∫
S
vA+k(s)dπ

′(s).

�

6.1. A general result. Our main result follows from Theorem 6 be-

low. We need two additional definitions involving technologies A that

are binary.12 Say that S

12A set is binary if it has one or two elements.
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• admits fair valuations for binary sets if for any binary subset

A ⊆ RΘ, there is αA ∈ RΘ for which for all s ∈ S, vA(s) =∑
θ αA(θ)s(θ), and

• is non-discriminatory for binary sets if for any π, π′ ∈ ∆(S)

and any binary A ⊆ RΘ, if pπ = pπ′ , then∫
S
vA(s)dπ(s) =

∫
S
vA(s)dπ′(s).

Theorem 6. The following are equivalent.

(1) S is non-discriminatory.

(2) S is non-discriminatory for binary sets.

(3) S is identified.

(4) S admits fair valuations.

(5) S admits fair valuations for binary sets.

The proof of Theorem 6 is in 6.3. First, we discuss some preparatory

results.

6.2. Additional notation. Let T be the closed convex hull of S. Re-

call that ∂T denotes the extreme points of T . The definition of vA

extends to T . Let YA : T → R be the concave envelope of vA, de-

fined as the pointwise infimum of the affine functions that dominate

vA. So if A(T ) denotes the space of all affine functions on T , then

YA(t) = inf{l(t) : l ∈ A(T ) and vA ≤ l}. Recall the definition of WA

from Section 4.3.

In the Bayesian persuasion literature, YA is the concavification of

vA, and our next result essentially establishes the Bayesian persuasion

result.

Lemma 7. YA = WA

Proof. Let l : T → R be an affine function and vA ≤ l. For any

π ∈ ∆(T ) with
∫
T
qdπ(q) = p,∫

T

vA(q)dπ(q) ≤
∫
T

l(q)dπ(q) = l

(∫
T

qdπ(q)

)
= l(p),

as l is affine. Thus WA ≤ l, as π was arbitrary. This implies that

WA ≤ YA, as l was arbitrary.
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Now suppose that WA(p) < YA(p). Recall that WA is concave. Then

the set D = {(q, y) ∈ T×R : y ≤ WA(q)} is closed and convex, so there

exists α with (q, y) · α ≤ (p,WA(p)) · α < (p, y′) · α for all (q, y) ∈ D
and all y′ ≥ YA(p). Write α = (α1, α2) ∈ RΘ ×R. Clearly we cannot

have α2 = 0 as (p,WA(p) ∈ D. Consider the affine function l : T → R

defined by

q 7→ (1/α2)((p,WA(p)) · α− α1 · q).

This means that l(p) = WA(p) < YA(p). Moreover, for any q ∈ T ,

α · (q,WA(q)) ≤ α · (p,WA(p)); hence,

l(q) = (1/α2)α1 · p+WA(p)− (1/α2)α1 · q ≥ WA(q) ≥ vA(q),

where the last inequality follows from the definition of WA. Then l ∈
A(T ), vA ≤ l, and l(p) < YA(p); a contradiction. �

6.3. Proof of Theorem 6. By the Choquet-Meyer Theorem (Theo-

rem II.3.7 in Alfsen (2012) or p. 56-57 in Phelps (2000)), T is a simplex

iff ∂T is identified.

Now, to prove the theorem: it is obvious that 3 =⇒ 1 =⇒ 2. We

shall prove that 2 =⇒ 3. To this end, let S be non-discriminatory for

binary menus. The proof that 2 =⇒ 3 has two parts. The first is to

show that S = ∂T . The second is that T must be a simplex.

First, it is obvious by definition of T that ∂T ⊆ S. So we prove that

S ⊆ ∂T . To this end, suppose by means of contradiction that there is

s∗ ∈ S for which there are t, t′ ∈ T , t 6= t′, and γ ∈ (0, 1) for which

s∗ = γt + (1 − γ)t′. Let f = (s∗ − t) + [t · s∗ − s∗ · s∗]1 and g = −f .

Observe that f · s∗ = 0, g · t = −t · (s∗ − t) − s∗ · (t − s∗) > 0 and

f · t′ = (s∗ − t) · (t′ − s∗) = γ(1− γ)(t′ − s∗) · (t′ − s∗) > 0.

Let A ≡ {f, g}. Then we obtain that vA(t) ≥ g · t > 0, vA(t′) ≥
f · t′ > 0, while vA(s∗) = 0 (as f · s∗ = g · s∗ = 0).

Now, for each of t, t′, there are finitely supported (by Caratheodory’s

theorem) πt and πt′ on ∂T (so in particular on S) for which t =∫
S sdπt(s) and t′ =

∫
S sdπt′(s). This means that

∫
S vA(s)dπt(s) ≥
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vA(t) > 0 and
∫
S vA(s)dπt′(s) ≥ vA(t′) > 0, as vA is convex. Then∫

S
vA(s)d(γπt + (1− γ)πt′)(s) > 0.

But this contradicts 2 as
∫
S sd(γπt+(1−γ)πt′)(s) = γt+(1−γ)t′ = s∗,

and vA(s∗) = 0.

So we have shown that S = ∂T , and we turn to the proof that T

is a simplex (and thus S identified). By Alfsen (2012) Theorem II.4.1,

since T is convex and compact, T is a simplex if and only if A(T ) forms

a lattice in the usual (pointwise) ordering on functions. So, suppose by

means of contradiction that A(T ) does not form a lattice. Then, there

are f, g ∈ A(T ) which possess no supremum in A(T ).

Lemma 8. Let f, g ∈ A(T ). For any z ∈ ∂T , if f(z) ≥ g(z), then

there is h ∈ A(T ) for which h ≥ f, g and h(z) = f(z).

Proof. Let M be the subgraph of the concave envelope of v{f,g}. Ob-

serve by definition that it is the comprehensive, convex hull of the

points {(z, v{f,g}) : z ∈ S}, so that it is polyhedral (Corollary 19.I.2

of Rockafellar (1970)). Therefore, by definition of polyhedral concave

function, there is h supporting it at (z, f(z)). �

From Lemma 8, and the fact that f and g possess no supremum

in A(T ), it follows that there is no affine function h for which for

all z ∈ ∂T , h(z) = max{f(z), g(z)}. Consequently, if A ≡ {f, g},
then YA is not affine, since for all z ∈ ∂T , it follows that YA(z) =

max{f(z), g(z)} = vA(z). Now, YA being concave and not affine means

that there is π̂ ∈ ∆(T ) with
∫
T
YA(q)dπ̂(q) < YA(pπ̂). Since S = ∂T ,

and YA is concave, we can in fact find (by Lemma 4.1 in Phelps (2000))

π ∈ ∆(S) with pπ̂ = pπ and∫
S
vA(q)dπ(q) =

∫
S
YA(q)dπ(q) ≤

∫
T

YA(q)dπ̂(q) < YA(pπ̂) = YA(pπ),

where the first equality follows from vA(q) = YA(q) for q ∈ S, and the

second inequality from the choice of π.

Now, by Lemma 7, YA(pπ) = sup{
∫
vA(q)dπ̃(q) : π̃ ∈ ∆(T ) and pπ̃ =

pπ}. Then there is π′ ∈ ∆(S) (as the sup is achieved for a measure with
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support in ∂T = S) with pπ = pπ′ and
∫
S vA(q)dπ(q) <

∫
S vA(q)dπ′(q),

contradicting the fact that S is non-discriminatory for binary menus.

Now, we have shown that 1,2, and 3 are equivalent, and that they

are all equivalent to S forming the vertices of a simplex. To see that

these are equivalent to 4 and 5, recall from above that T is a simplex

if and only if A(T ) forms a lattice. In particular, it is enough to check

that for any f, g ∈ A(T ), f ∨ g ∈ A(T ) exists.13

So, A(T ) forms a lattice iff for any f, g ∈ A(T ), the smallest concave

function dominating both f and g is affine.

We show that the property of A(T ) being a lattice and S = ∂T is

equivalent to the property that for all A binary (or for all A finite)∫
S vA(s)dπ(s) = αA · pπ for some αA. So suppose A(T ) is a lattice;

and let A be arbitrary. Observe that
∫
S vA(s)dπ(s) =

∫
SWA(s)dπ(s) =∫

S YA(s)dπ(s), where the first equality occurs as S = ∂T and the second

by Lemma 7. But by definition of YA and the fact thatA(T ) is a lattice,

we therefore have YA ∈ A(T ), which is enough to prove fair valuation

for binary acts. It also establishes fair valuations for arbitrary sets of

acts.

Conversely suppose fair valuations for binary sets of acts. First, we

claim that S = ∂T where T is the convex hull of S. If not, then

by Caratheodory, there is s∗ ∈ S and finitely supported π ∈ ∆(S)

for which s∗ =
∫
S\{s∗} sdπ(s). Let T ∗ be the support of π, and let

f be affine so that f(s∗) = 0, while f(s) 6= 0 for all s ∈ T ∗. Then

for A = {f,−f}, the fair valuations property is not satisfied, since

vA(s∗) = 0 whereas for all s ∈ T ∗, vA(s) > 0, so that
∫
S vA(s)dπ(s) > 0.

Next, we claim that A(T ) is a lattice. To see this, let f, g ∈ A(T ).

Observe that each of f, g can be induced by a member of RΘ, so without

loss, assume that f, g ∈ RΘ, and let A = {f, g}; let αA be the member

of RΘ guaranteed by definition of fair valuations for binary acts. Now,

the smallest concave function dominating f, g on T is, by definition,

YA(t), and by Lemma 7, we have YA(t) = WA(t). Further, t ∈ T is

induced by a probability distribution π ∈ ∆(S), so that t =
∫
S sdπ(s).

13Because then f ∧ g will also necessarily exist; as f ∧ g = −((−f) ∨ (−g)).
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Let us assume that π is chosen so that WA(t) =
∫
S vA(s)dπ(s). Now,

we know that for each s ∈ S, vA(s) = WA(s), because S = ∂T .

So, we have WA(t) =
∫
S vA(s)dπ(s) =

∫
S
∑

θ αA(θ)s(θ)dπ(s). And∫
S
∑

θ αA(θ)s(θ)dπ(s) =
∑

θ αA(θ)t(θ). So, we conclude YA(t) = WA(t) =∑
θ αA(θ)t(θ), which is what we wanted to show.

6.4. Proof of Proposition 3. The Lagrangian for the maximization

problem in the definition of WA is

L(π, λ) =

∫
T

vA(t)dπ(t) + λ ·
[
p−

∫
T

qdπ(q)

]
= λ · p+

∫
T

(vA(t)− λ · p)dπ(t)

and apply the maximin theorem (see for example Theorem 6.2.7 in

Aubin and Ekeland (2006), which applies here because ∆(T ) is com-

pact).

6.5. Proof of Corollary 4. By the Choquet-Meyers Theorem (The-

orem II.3.7 in Alfsen (2012)) T is a simplex iff the concave envelope

of every lower semicontinuous and convex function is affine. Clearly,

when S is identified, T is a simplex, and since vA is convex and lower

semicontinuous, we obtain that WA = YA, the concave envelope. So

WA is affine.

Conversely, suppose that WA is affine for each finite A. We will

show that T is a simplex (so that ∂T forms the vertices of a simplex,

and is identified). But this again follows from the fact that WA is the

smallest concave function on T dominating each a ∈ A. Since it is

affine, it follows that A(T ) is a lattice, and hence T is a simplex.
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