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Abstract

We study the problem of risk sharing within a household or syndi-

cate. A household shares risky prospects using a social welfare func-

tional. We characterize the social welfare functionals such that the

household is collectively less risk averse than each member, and sat-

isfies the Pareto principle and an invariance axiom. We single out

the sum of certainty equivalents as the unique member of this family

which is quasiconcave over riskless allocations.

1 Introduction

This paper is devoted to the sum of individual certainty equivalents, a com-

mon method of aggregating individual preferences into collective welfare in
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an environment of idiosyncratic risk. Each agent in a household1 faces risk

over her individual monetary consumption. The sum of individual certainty

equivalents for a given allocation of risky prospects is the sure amount that

the household would need to be paid in order to give up the allocation (with-

out first reallocating).

We show that the sum of individual certainty equivalents possesses a

property singling it out from other methods of aggregating welfare. That is,

with this rule, a household of risk averse individuals will behave in the aggre-

gate in a fashion that is less risk averse than each member of the household.

The notion that a group is, or should be, less risk averse than its members

is a very familiar one in economics. Early arguments for the notion are in

Samuelson (1964), Vickrey (1964) and Arrow and Lind (1970).

The environment is simple. Each member of a household faces risky

consumption of a single good, say money. Members of the household have

differing attitudes toward risk. Given an aggregate risk, the household seeks

to allocate the risk to its members to maximize some notion of social welfare.

Our main result can be roughly stated as follows: Suppose that the house-

hold ranks allocations using a social welfare functional �0(R), which depends

on individual preferences R = (Ri)i∈N . The sum of individual certainty

equivalents represents the only social welfare functional (SWF) that

1. generates households less risk averse than its members (for all individ-

ual preference profiles);

2. ignores risk preferences whenever it compares riskless allocations;

3. is quasiconcave over riskless allocations.

This result is a simple consequence of a theorem stating that (1) and (2)

are equivalent to ranking allocations with a function which takes as input

1We use “household” throughout to refer generically to a group of agents engaged in a

risk sharing arrangement. Wilson (1968) uses the term “syndicate.”
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certainty equivalents, and when maximized over a simplex, has a solution at

every corner. In particular, in any such social welfare functional, a riskless

amount should always all be given to one member of the household–but

which member does not matter. This theorem, in turn, uses some classical

results on aggregation from demand theory (concretely Samuelson (1956) and

Chipman and Moore (1979)). Finally, (3) singles out the sum of individual

certainty equivalents among this class.

The sum of certainty equivalents has a simple economic interpretation:

it is the certain monetary sum that the household would demand for an

allocation of risky prospects. In other words, it is the collective willingness to

accept for an allocation. Myerson (2004), for example, recommends MBAs

and applied decision makers use the sum of certainty equivalents to share

risk. The recommendation is based on the idea of maximizing the collective

willingness to accept for an allocation. Our paper provides a completely

different justification for this recommendation. A normative justification

of the sum of certainty equivalents would is based on the desirability of

axioms (1)- (3). We expand on these axioms below.

Other rules are commonly used in welfare analysis; arguably on the

grounds that they are more tractable. We show that, in fact, the sum of

individual certainty equivalents yields very tractable results. In the special-

ized setting of convex homothetic preference profiles (such as CRRA pref-

erences), it yields the most risk averse convex household preference, among

those which are less risk averse than members’ preferences. This result lends

itself to a simple representation using basic convex duality.

We proceed to discuss our results in more detail.

We suppose a finite set of states of the world. A prior distribution over

these states is exogenously specified. Agents’ preferences are over state-

contingent monetary payoffs, which we call acts. We impose little structure

on the preferences of agents other than monotonicity and a weak notion of
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risk aversion; in particular, agents need not be expected utility maximizers.

A SWF recommends a preference over allocations for any given list of

individual preferences. We impose the Pareto principle: the SWF must be

increasing in the welfare of individuals.

We present two new axioms. The first axiom is an invariance axiom:

individuals’ risk preferences should not matter for comparing two riskless

allocations; an allocation is riskless when each agent is allocated a constant

act–an act whose payoff does not depend on the state. In comparing two

riskless allocation, one must trade off more money for some individuals and

less for others. Note that individual preferences do not differ over riskless

allocations, they are monotonic. The axiom states that the tradeoffs should

be resolved without regard for the agents’ risk preferences. This axiom re-

quires that we do not interpret the degree of risk aversion as being related

to a “marginal utility of income.” This is merely a philosophical hypothesis

on our part: several authors do suggest that the degree of risk aversion can

be interpreted as a marginal utility of income, and in fact there is neither a

way of proving nor disproving this in our model.2 In particular, one should

consult ? and ?.

Our second and main new axiom is reduction of risk aversion. It says

that the household is less risk averse than its members. The axiom requires

defining a comparative notion of risk aversion. Following Yaari (1969), we

say that a preference R1 is less risk averse than R2 if, for every constant act c

and every act x, when xR2 c then xR1 c. The idea is that if the risk involved

in choosing the risky act x over the certain act c is acceptable for R2, then

it must also be acceptable for R1.

2We believe the relevant data for understanding marginal utility of income are data on

changes in income. That is, comparisons across objects of the form (x, y) would need to

be considered, where (x, y) represents a change in income, from x to y. These types of

choices are outside of our model.
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The social welfare functional guides the household’s decisions on how to

share risky prospects. In a classic paper discussing the representative con-

sumer problem in demand theory, Samuelson (1956) (see also Graaff (1957),

p. 49) shows that a household which allocates aggregate bundles optimally

according to some SWF behaves as if it is an individual (that is, it has a

complete and transitive preference). Our social welfare functional gener-

ates such a preference for each list of individual preferences–this is what we

call the household preference. Our main axiom requires that this household

preference be less risk averse than the preferences of each member of the

household.3

The assumption that a government or a firm behaves in a risk neutral

fashion is often justified on the grounds that large groups of agents will tend

to behave in a risk neutral fashion. It is understood that the second order

effects of risk can be mitigated by properly sharing risk. However, it is equally

clear that not all methods of risk sharing will have this effect; for a simple

counterexample consider a dictatorship. Our requirement of reduction of

risk aversion is a simple fixed-population notion capturing the intuition that

societies should tend toward risk neutrality.

Normative arguments for reduction in risk aversion are familiar in eco-

nomics (Samuelson, 1964; Vickrey, 1964; Arrow and Lind, 1970). The idea

has been that less cautious groups may gain from larger expected payoffs,

and internally share the additional risk. There is also a strategic reason

for reduction in risk aversion: a less risk averse agent may fare better in

bargaining (Rubinstein, Safra, and Thomson, 1992).

Alternatively, we know that in environments of inter-household bargain-

3Household preferences result from individual preferences aggregated by means of the

social welfare functional. The household will optimally decentralize an aggregate prospect

in accordance with the SWF: as a result of this optimization one obtains a ranking over

aggregate bundle, this ranking is the household’s preference.
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ing, the less risk averse a household, the more rewards a household will obtain.

Reduction of risk aversion then states that it is better for the household to

act collectively than to be represented by any single individual. Hence, it is

reminiscent of an “incentive compatibility” condition on SWF’s.

We characterize the family of SWF’s satisfying these axioms. The sum of

individual certainty equivalents represents the unique one which is quasicon-

cave over riskless allocations. That is, for each individual’s state-contingent

consumption, the rule finds the certain amount that the individual would

need to be given in compensation, then adds these across individuals.

More generally, we refer to the only rules which satisfy our axioms as

anyone can take all (ACTA) rules. These rules are characterized by a kind

of social utility function. The social utility has the property that for any

allocation, social utility is a function only of the certainty equivalents of

that allocation. Further, the rule is called an ACTA rule as for any riskless

amount, it is deemed socially optimal to give the entire amount to any one

of the individuals in the household.

1.1 Related literature

There is a vast literature on risk-sharing in economics. Seminal papers dis-

cussing optimal risk sharing include Borch (1962) and Wilson (1968) (see

also Chateauneuf, Dana, and Tallon (2000)). Under the assumption that all

agents are subjective expected utility maximizers, they determine that, under

certain conditions (risk aversion or a continuum of states) all Pareto optimal

allocations can be obtained by maximizing a weighted sum of subjective ex-

pected utilities.4 A central result of Wilson (1968) is that the risk tolerance

4In particular, under these assumptions, Pareto optimal allocations satisfy what Gollier

(2001) terms the “mutuality” principle–consumption of each individual depends only on

the aggregate amount in each state. As the sum of certainty equivalents satisfies the

Pareto principle, any allocation it recommends is Pareto optimal and hence satisfies the
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of household preference is the sum of risk tolerances of each individual at the

optimal household consumption.5

We present our results in a framework with general “non-expected util-

ity” preferences. We do so because the results are more transparent this

way, but our theorem is general enough to apply to most decision theo-

retic models existing in the literature, including (but not limited to) Schmei-

dler (1989), Gilboa and Schmeidler (1989), Machina and Schmeidler (1992),

Klibanoff, Marinacci, and Mukerji (2005), Maccheroni, Marinacci, and Rusti-

chini (2006), Siniscalchi (2007), Ergin and Gul (2008), Cerreia-Vioglio, Mac-

cheroni, Marinacci, and Montrucchio (2008), and Seo (2008). In the pa-

per, we have used the expression “risk aversion,” although probabilities here

could obviously be taken to be subjective (and common). In this sense, we

operate in a general framework of Knightian uncertainty. The details are

spelled out in ?, the working paper version of the present paper.

Our work differs from previous studies concerning risk in that it is norma-

tive. Most previous studies seek to explain behavioral phenomena in markets,

for example see Dow and Werlang (1992), Epstein and Wang (1994), Epstein

(2001), Rigotti and Shannon (2005) and Rigotti, Shannon, and Strzalecki

(2008). In contrast, we try to understand the SWF that satisfy normatively

appealing axioms. In that sense, the exercise is closer to Wilson (1968).

Section 2 provides the model; Section 3 has the main results; Section 4

presents results for homothetic preferences, and examples of familiar spe-

cial cases. Section 5 provides discussion and related literature. Proofs are

mutuality principle.
5Gollier (2001) builds on this result, showing that if all individuals have identical pref-

erences, then a weighted utilitarian planner who optimizes social welfare given a constraint

on average consumption results in a less risk-averse household preference if and only if the

individual risk tolerance is convex. It should be noted that this is a fixed-profile result:

the weighted utilitarian rules applied to arbitrary subjective expected utility profiles do

not typically reduce risk aversion.
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collected in an appendix.

2 The model and definitions

Let Ω be a finite set of states of the world. The distribution of the states

is governed by an exogenous probability measure π which has full support.

Acts are state-contingent elements of R+; that is, the set of acts is X = RΩ
+.

Let N = {1, ..., n} be a finite set of agents. An allocation is an element of

XN . An allocation of x ∈ X is a vector x = (x1, ..., xn) ∈ XN for which∑
i∈N xi = x. A constant act c ∈ X is an act which takes only one value.

A constant allocation is an allocation of constant acts.

A risk averse preference relation R is a complete, transitive, con-

tinuous, and monotonic6 binary relation on X satisfying (π · x) R x for all

x ∈ X.7 The latter requirement is that R is risk averse.8 The set of prefer-

ences is denotedR. A preference profile is a vector R = (R1, ..., Rn) ∈ RN .

N -vectors are written in boldface throughout.

Remark: While our story involves risk with known probabilities π, our

notion of a risk averse preference relation can accommodate a host of

generalized expected utility theories. Suppose for example that there exists

a strictly increasing and concave u : R+ → R+ and increasing continuous

W : RΩ
+ → R for which for all x ∈ R+, W (y) ≥ W (x, . . . , x) implies

π · y ≥ x. Then, the preference R on x, y given by x R y if and only if

W (u(x(ω))) ≥ W (u(y(ω))) satisfies the condition required to be a risk

6That is, if x (ω) > y (ω) for all ω ∈ Ω, then x is strictly better than y for R (xRy and

not y R x).
7We here abuse notation in a standard way by identifying the constant act which takes

value c in every state with c itself.
8This is a relatively weak notion; one might also ask that the preference is averse to

mean-preserving spreads; but this adds nothing to our analysis.
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averse preference relation. This condition requires simply that π support

the upper contour set of W at any point having equal coordinates.

To see that this condition is sufficient, fix some x ∈ X and suppose

by means of contradiction that π · x R x is false. Then in particular,

we know that W (u(x(ω))) > W (u(π · x)). There is some ω for which

u(x(ω)) > 0 (otherwise we must have indifference), so by continuity and

monotonicity of W we can actually establish that π · (u ◦ x) > u(π · x)

(using the fact that π is full support and satisfies the condition described

above). This is a contradiction to concavity of u.

A typical example would involve a “multiple priors” decision maker,

where u is a concave function and W (x) = minp∈Π p·u◦x, where π ∈ Π is

required for the condition to be satisfied. To see this, suppose that π ∈ Π

and that W (x) ≥ W (y, . . . , y). Then we must have π ·x ≥ minp∈Π p ·x ≥
y.

Thus, our notion of a “prior” is extremely weak in a decision theoretic

sense, and in particular need not be reflected in any traditional notion

of “belief” of the decision maker. Ultimately, the issue is a technical

one. What we require is that, for any constant act and set of agents,

all constant allocations of that act are Pareto efficient (and that any

Pareto efficient allocation is weakly dominated by a constant allocation).

This requirement amounts to requiring that for any preference profile, all

agents share some common supporting hyperplane at all points on the ray

of equal coordinates. The easiest and most intuitive way of doing this

is fixing some prior ex-ante, and considering preferences which are risk

averse (in the sense formerly defined) with respect to this probability.

Our aim in this study is to understand methods of aggregating prefer-

ences which reduce risk aversion. We imagine a set of agents who reside in

a household and use some social welfare functional to optimally distribute

resources. Samuelson (1956) observed that such optimization leads to “ra-
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tional” behavior in the aggregate. We ask when such household behavior is

less risk averse than the behavior of each individual in the household.

To this end, we discuss a comparative notion of risk aversion. For c ∈ R+,

we abuse notation and identify c with the constant act whose outcome in

every state is c. Let R′ and R be two risk averse preference relations. As in

Yaari (1969), we say that R is more risk averse than R′ if for all c ≥ 0,

{x : x R c} ⊆ {x : x R′ c}. Every uncertain prospect which is preferred to c

by R is also preferred to c by R′.9

For a preference R ∈ R, the certainty equivalent ceR : X → R is

defined by

ceR (x) = inf {c : c R x} .

It is the value of the unique constant act which is indifferent to x; that is, by

monotonicity and continuity, ceR (x) I x.10 Critically for us, for a given R,

ceR : X → R is a continuous utility representation of R.

For an allocation x ∈ XN and preference profile R ∈ RN , ceR (x) =

(ceR1 (x1) , ..., ceRn (x)).

Remark: For two preferences R,R′ ∈ R, R is more risk averse than R′

if and only if for all x ∈ X, ceR (x) ≤ ceR′ (x).

A domain D is a nonempty subset of RN . A social welfare functional

is a mapping which carries D into binary relations over XN , the space of

allocations. Formally, we denote the set of binary relations over XN by

RN . Then a social welfare functional is a function �0: D → RN . We

9Epstein (1999) and Ghirardato and Marinacci (2002) provide modern adaptations of

this comparative notion to general settings of Knightian uncertainty. Their definitions

differ as to the benchmark of “uncertainty neutral” acts, but coincide with Yaari’s when

uncertainty neutral acts are taken to be the constant acts.
10We write x I y for x R y and y R x.
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write �0(R) for the binary relation over allocations obtained when individual

preferences are R = (Ri)i∈N .

Our paper is about risk sharing, so we need to formally define what we

mean by this. It is the standard notion of risk sharing, in an environment of

possibly non-expected-utility maximizers. Agents in a household share risk

when they allocate a risk amongst themselves (see e.g. Epstein (2001) and

Rigotti and Shannon (2005)).

The individuals in N are all members of a household. Household mem-

bers entertain different attitudes toward risk. We imagine that the house-

hold uses a SWF to allocate an aggregate bundle x among its members.

That is, given individual preferences R, they maximize �0 (R) across{
x ∈ XN :

∑
i∈N xi ≤ x

}
. Under our continuity assumptions, this risk-

sharing maximization problem is well-defined. Risk sharing generates a well-

defined household preference over acts: a “household preference.” This ag-

gregation results from a well-known aggregation result in classical demand

theory (see Samuelson (1956) and Chipman and Moore (1979)).

The aggregate household preferences are derived from �0(R): Household

preferences over acts are given by x�h(R)y if and only if for all y ∈ XN such

that
∑

i∈N yi ≤ y, there exists x ∈ XN such that
∑

i∈N xi ≤ x and x�0(R)y.

This binary relation is the household preference. In particular, x�h(R)y

whenever the maximal allocation of x according to �0 (R) is better than

every allocation of y.

In this paper, we will be concerned with the following Pareto property

for a SWF. It is a natural and standard definition.

Pareto: For all R ∈ D and all x,y ∈ XN , if xiRi yi for all i ∈ N , then

x�0(R) y (with strict preference if all individual preferences are strict).

The following simple proposition illustrates that the household preference

is risk averse. The intuition for the result is similar to results appearing in
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Billot, Chateauneuf, Gilboa, and Tallon (2000), Dana (2002) and Rigotti,

Shannon, and Strzalecki (2008) in that it relies on all agents having a common

supporting hyperplane at rays of equal coordinates.

Proposition 1: Suppose that �0 satisfies Pareto. Then for all x ∈ X,

(π · x)�h(R) x.

Example 2: A classical domain of preferences is the domain of risk averse

expected utility profiles. We denote this domain by EU . Formally, R ∈ EU if

for all i ∈ N , there exists ui : R+ → R which is strictly increasing, concave,

and continuous for which for all x, y ∈ X, x Ri y if and only if∑
ω∈Ω

π (ω)ui (x (ω)) ≥
∑
ω∈Ω

π (ω)ui (y (ω)) .

A standard example of a social welfare functional �0: EU → RN used

in the theory of risk sharing (for example, Borch (1962) and Wilson (1968))

is the utilitarian rule. For any R ∈ EU , there exists for all i ∈ N a

unique uRi : R+ → R which represents Ri and which is normalized so that

uRi (0) = 0 and uRi (1) = 1. We then require x �0 (R) y if and only if∑
i∈N

∑
ω∈Ω

π (ω)uRi (xi (ω)) ≥
∑
i∈N

∑
ω∈Ω

π (ω)uRi (yi (ω)) .

For c ∈ R+, the c-simplex ∆c =
{
d ∈ RN

+ :
∑

i∈N di = c
}

is the set of

nonnegative vectors summing to c. The notation (ci, 0−i) refers to the element

of XN whose ith coordinate is c, and all remaining coordinates are 0.

Formally, define an anyone can take all (ACTA) rule as a SWF for

which there exists some strictly monotonic, continuous W : RN
+ → R for

which for all c ∈ R+, for all i ∈ N ,

(ci, 0−i) ∈ arg max
d∈∆c

W (d)
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such that for all x,y ∈ XN and all R ∈ RN , x �0 (R) y if and only if

W (ceR (x)) ≥ W (ceR (y)). The terminology ACTA refers to the fact that,

for any riskless amount c, an ACTA rule finds it optimal to distribute all of

c to some individual in the household–but the rule is completely indifferent

as to which individual is to receive c.

Examples of W functions generating ACTA rules are the max function

and the sum (utilitarian) function as discussed in Examples 2 and 5. Other

examples include the functions W (d) =
(∑

i∈N d
p
i

)1/p
for p ≥ 1.

Remark: Because the ACTA rules recommend that giving everything to

one individual is optimal in situations with no risk, one might confuse

them with dictatorial rules, and hence view our following characteriza-

tion as an impossibility. This is not correct for two reasons. For one,

the fact that giving everything to one individual is optimal does not pre-

clude the optimality of equal division, or any other division of resources.

Secondly, nearly any social welfare existing in the literature which is not

of the maxmin form will recommend giving everything to one agent in

some situations. Simply because the situations in which ACTA rules

make such recommendations are situations involving no risk does not

mean we have an impossibility result.

Note that, while we have restricted elements of R significantly, elements

of RN obey no restrictions whatsoever (we will later make assumptions on

these elements in the form of axioms). This is because elements of R are

understood to be descriptive, whereas elements of RN are normative recom-

mendations for a society.
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3 Results

We proceed to describe the four axioms. The axioms will be equivalent to

a certain class of SWF’s. Coupled with quasiconcavity over riskless alloca-

tions, we characterize the SWF which is represented as the sum of certainty

equivalents.

Our first axiom states that household preferences over allocations should

be minimally “rational.”

Rationality: For all R ∈ D, �0(R) is continuous, complete, and tran-

sitive.

Our second axiom is natural and requires that the SWF comply with the

(weak) Pareto property discussed previously.

Our next axiom is the first that deals specifically with the interpretation

of risk. It requires that in ranking profiles of certain (risk-free) prospects, the

social welfare functional should ignore risk attitudes. Constant acts can be

identified with monetary payoffs, and individual preferences are monotonic,

so all individual preferences coincide over constant acts: more is better. The

invariance axiom says that, when comparing constant allocations, �0 should

not depend on individual risk preferences. These preferences do not differ in

the comparison of constant acts anyhow.

Invariance to risk attitudes for constant acts: For all R,R′ ∈ D
and all constant c,d ∈ XN , c�0(R) d⇐⇒ c�0(R′) d.

We often refer to the axiom simply as invariance. Mathematically, to-

gether with the Pareto property, the axiom allows us to work with a rank-

ing over vectors of certainty equivalents (defined below). This ranking over

vectors of certainty equivalents is independent of the preference profile in

question.
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Remark: It is often the case for expected utility preferences that the von

Neumann-Morgenstern utility index is somehow understood as a “cardi-

nal” measure of preference. It is true that the concavity of this index

relates to risk aversion and comparative risk aversion. But this cardinal

structure need not have any meaning when making ethical comparisons

across agents. For example, there are no choice-based grounds for in-

terpreting the curvature of the utility index as being related to marginal

utility of income, when marginal utility of income is understood as we

define it above.11 We argue here that it is reasonable to ignore risk atti-

tudes altogether when ranking constant prospects: when one decides on

a “fair” way to split a certain dollar, it is rare that a discussion of atti-

tudes toward risk would come into play. Nevertheless, as an anonymous

referee has noted, it is certainly plausible to identify risk attitudes with

marginal utility of income, and such an identification cannot be tested

in our model. With such an interpretation, our invariance axiom can be

seen as quite strong–it disallows us from considering marginal utility of

income.

Proposition 3: A social welfare functional on D satisfies rationality,

Pareto, and invariance if and only if there exists a strictly monotonic

and continuous function W : RN
+ → R for which for all R ∈ D and all

x,y ∈ XN ,

x�0(R) y⇐⇒ W (ceR (x)) ≥ W (ceR (y)) .12

We are now ready to state our next axiom.

11Marginal utilities would have to be elicited by a utility differences model.
12We say a function W : RN

+ → R is strictly monotonic if x,y ∈ RN
+ and x ≥ y implies

W (x) ≥W (y), and x� y (xi > yi for all i ∈ N) implies W (x) > W (y).
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Reduction of risk aversion: For all R ∈ D, �h(R) is less risk averse

than Ri for all i ∈ N .

Reduction of risk aversion is a way of capturing, in a fixed population

framework, the notion that households of individuals should tend to be risk

neutral. It also makes sense as a strategic property: in inter-household bar-

gaining, the incentive will usually exist to be as risk neutral as possible. For

example, the Nash bargaining solution tends to give more to less risk averse

households: see Kihlstrom, Roth, and Schmeidler (1981); Rubinstein, Safra,

and Thomson (1992).

Remark: Reduction of risk aversion is much stronger than the require-

ment that the household preference be locally less risk averse than each

individual agent at optimal consumption. Indeed, the requirement of less

local risk aversion would be satisfied for essentially any social welfare

functional satisfying the Pareto property.

Example 4: Suppose D = EU and consider the utilitarian rule defined in

Example 2. In general, for any R ∈ EU , the household preference �h(R) is

expected utility with von Neumann Morgenstern utility index given by

u (x) = sup∑
i∈N xi=x

∑
i∈N

uRi (xi) .

The function u is referred to as the “sup-convolution” of the functions uRi .

It is easily verified that the resulting �h need not have any relation to the

individual preferences in terms of attitudes toward risk. For example, if

we consider two identical agents with piecewise linear (in two pieces) utility

indices with a kink at point x, then the sup-convolution will be piecewise

linear with a kink at point 2x. These functions cannot possibly be concave

transformations of each other. Therefore, this social welfare functional does

not satisfy reduction of risk aversion.
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Figure 1: Comparisons in risk aversion.

Figure 1 presents the problem geometrically. One preference R1 is less

risk averse than R2 if, when we compare their upper contour sets through

any riskless act, the upper contour set of R1 contains that of R2. Figure 1(a)

illustrates how the preferences having the Ū1− Ū1 indifference curve are less

risk averse than those having the Ū2−Ū2 curve. The tangent line in the figure

indicates the prior π. In Figure 1(a), any household preference satisfying the

reduction of risk aversion axiom will need to have indifference curves “below”

Ū1 − Ū1.

Figure 1(b) presents a case where the preferences do not have comparable

risk aversion. In the figure, the most risk averse household preference which

is less risk averse than each individual agent is given by the lower envelope of

the two indifference curves (i.e. by the curve which goes from Ū1 to the inter-

section of the two indifference curves, then coincides with Ū2 − Ū2 until the

second intersection, then coincides with Ū1 − Ū1). Note that this household

preference is not convex, and any household preference satisfying reduction

of risk aversion must have indifference curves below this lower envelope of

Ū1 − Ū1 and Ū2 − Ū2.
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Our aim from this point on is to characterize those functions W which

reduce risk aversion.

Example 5: One of the simplest examples of a W which reduces risk aver-

sion is given by

W (d1, ..., dn) = max
i∈N
{di} .

This function illustrates some of the properties of the reduction of risk

aversion. The household rule generated by this function reduces risk aversion,

but the function W constitutes a very unfair rule. Moreover, the induced

household preferences are typically not convex, even when the individual

preferences are convex. If we denote by Ui (c) the upper contour set of Ri

at c, then it is easily verified that U∗ (c) =
⋃
i∈N

Ui (c) (this also verifies that

this household preference is the most risk averse preference which is less risk

averse than each individual preference in the household).

The following result is our main characterization theorem. It tells us that

under our axioms, a social welfare functional reduces risk aversion if and only

if it is associated with a function W which is maximized on any c-simplex

at the vertices–that is, it is an ACTA rule. The class of W corresponding to

ACTA rules are illustrated in Figure 2.

The theorem holds on very general domains; however, in the statement of

our theorem, we require that the domain include all expected utility profiles.

A close inspection of the proof establishes that we only need to assume that

our domain includes, for every individual, a profile for which that individual

is risk neutral, and all remaining individuals have expected utility preferences

whose utility index satisfies the Inada conditions.

Theorem 6: Suppose that EU ⊆ D. A social welfare functional satisfies

rationality, Pareto, invariance, and reduction of risk aversion on D if

and only if it is an ACTA rule.
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ce1

ce2

∆c

{
(t1, t2) : W (t1, t2) = W̄

}

Figure 2: Level curves of W in the hypotheses of Theorem 6.

u1

u2

xc

UPS1

UPS2

Figure 3: Some intuition for Theorem 6.

A simple incomplete intuition for the proof of Theorem 6 exists. Any

aggregate bundle generates a utility possibility set, where utilities are given

by certainty equivalents. The definition of our household preference suggests

that for any profile of individual preferences, to rank aggregate bundles, we

rank utility possibility sets by their best element according to some function

W–see Proposition 3. The Pareto and invariance conditions are used to

guarantee that this same social welfare function W is used for all profiles of

individual preferences.
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Now consider a constant aggregate bundle c. For the certainty equivalent

representation, the utility possibility set of c is a simplex. We represent the

situation in Figure 3; the utility possibility set of c is represented as UPS1

in blue. Suppose there is now another bundle x which some individual i (in

the figure individual 1) prefers to the constant bundle. This means that the

utility possibility set for bundle x, UPS2, extends beyond the simplex on i’s

axis. By the reduction in risk aversion axiom, since 1 prefers x over c, so must

the household. In fact, even if we choose the remaining individuals’ utility

functions so that they get very little utility from x, the household should

still prefer x to c. This means that there is some list of individual utilities

corresponding to some allocation of x which lies outside of the simplex, and

which is ranked higher than every element of the simplex by W . Because the

only list of individual utilities lying outside of the simplex are ones in which

individual i gets “almost all” of the utility, it seems reasonable to conclude

that W corresponds to an ACTA rule.

Our formal proof does not follow this construction, and instead uses a

“dual” representation, based on demand functions.

Figure 2 shows the level curves of a W corresponding to an ACTA rule.

It should be clear that requiring W to be quasiconcave pins down the sum

of certainty equivalents. The following axiom contains the quasiconcavity

restriction. It has the interpretation that in an “divide the dollar” environ-

ment, without risk, social preferences should be “fair.”

Quasiconcavity: Let c and d be constant allocations. Let R ∈ RN .

Suppose c �0 (R) d. Then for all α ∈ [0, 1], αc + (1− α) d �0 (R) d.

Corollary 7: Suppose that EU ⊆ D. A social welfare functional �0

satisfies rationality, Pareto, invariance, reduction of risk aversion, and
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quasiconcavity if and only if for all R ∈ D and all x,y ∈ XN ,

x �0 (R) y⇐⇒
∑
i∈N

ceRi (xi) ≥
∑
i∈N

ceRi (yi) .

Corollary 7 tells us that the only “fair” SWF to reduce risk aversion is

the one which ranks allocations according to the sum of its certainty equiv-

alents. When allocating a constant act by the sum of certainty equivalents,

all constant allocations are socially optimal.

Remark: We could replace the hypothesis of quasiconcavity by Schur-

concavity, delivering the same result.

4 Application: homothetic preferences

Theorem 6 gives a family of functions that reduce risk aversion. We singled

out the sum of certainty equivalents based on quasiconcavity. Here we provide

another justification, one that holds for profiles of homothetic preferences.

The model of ? is especially suitable for the results of this section.

The maximum function in Example 5 is the most risk averse preference

which is less risk averse than all individual preferences. As we remarked, this

rule may in general induce non-convex household preferences even when all

individual preferences are convex: see Figure 1(b).

Here we study the most risk averse convex preference which is less risk

averse than all individual preferences for convex individual preferences. We

show that, for profiles of convex and homothetic preferences, the sum of

certainty equivalents gives the most risk averse convex preference that is less

risk averse than members’ preferences.

In Figure 1(b), the most risk averse convex household preference relation

is given by the convex hull of the two upper contour sets. If we denote the
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upper contour set of agent i’s preference at c as Ui (c), the upper contour set

of the household preference at c is

co
⋃
i∈N

Ui (c),

the closed convex hull of the union of the individual upper contour sets. We

shall prove this below.

Say a preference R ∈ R is homothetic if for all x, y ∈ X and all α > 0,

xR y =⇒ (αx)R (αy). Denote the set of homothetic and convex preferences

by H.

Theorem 8: Suppose that R ∈ HN ∩ RN . Consider the SWF repre-

sented by the sum of certainty equivalents. Then the household prefer-

ence �h (R) is homothetic, and is the most risk averse convex preference

which is less risk averse than Ri for all i ∈ N .

The theorem demonstrates that at any constant act, the upper contour

set of the household preference is the closed convex hull of the union of the

individual upper contour sets. This means that the household preference gen-

erated by the sum of certainty equivalents is both tractable and geometrically

simple.13

The proof of Theorem 8 exploits the fact that every profile of com-

mon prior homothetic preferences has, for each agent, a representation as:

ceRi (x) = infy∈Ci x · y, where the common prior π minimizes
∑

ω∈Ω y (ω) in

Ci. In particular, this set Ci can be explicitly calculated as

Ci = {y : x Ri 1 =⇒ x · y ≥i 1} .

13There is a similar result in the theory of international trade, on the maximization of

profits under constant returns to scale and more than one industry. Lerner (1934) and

Chipman (1966) present a “diagrammatic” argument.
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Using this representation, it is easy to explicitly calculate household pref-

erence: it is given by U�h(R) (x) = inf
y∈
⋂
i∈N

Ci
x · y, verifying the tractability

of the sum of individual certainty equivalents as an instrument of applied

analysis.

Example 9: “Multiple priors”: Suppose that for all i ∈ N , there exists some

Πi for which π ∈ Πi; and that for all i ∈ N , ceRi (x) = minπ∗∈Πi⊆∆(Ω) π
∗ · x.

Then x�h(R) y ⇐⇒ min
π∗∈
⋂

Πi+RΩ
+

π∗ · x ≥ min
π∗∈
⋂

Πi+RΩ
+

π∗ · y.14

Example 10: CRRA expected utility maximizers: Suppose that for all i ∈
N , ceRi (x) =

(∫
Ω

[x (ω)]ρi dπ (ω)
) 1
ρi for ρi ∈ [0, 1]. Then

x�h(R) y

⇐⇒
(∫

Ω
[x (ω)]maxi∈N ρi dπ (ω)

)1/maxi∈N ρi ≥
(∫

Ω
[y (ω)]maxi∈N ρi dπ (ω)

)1/maxi∈N ρi .

5 Conclusion

We study household preferences in the context of sharing risk and uncer-

tainty. We are especially interested in the sum of certainty equivalents as

a criterion for choosing and allocating risky bundles. We identify a crucial

property behind this criterion: that aggregate preferences are less risk averse

than the members’ individual preferences.

Arguments for reduction in risk aversion are familiar in economics, and

appear as early as in Samuelson (1964), Vickrey (1964) and Arrow and Lind

(1970). These arguments are normative: a collective should behave in a less

risk averse way. The arguments roughly say that less cautious collectives

may reap the benefits of larger expected gains, and mitigate the risks by

14For two sets A and B, A + B = {x + y : x ∈ A, y ∈ B}.
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risk sharing. The idea that a household should be less risk averse is also

strategically motivated. For example, often in strategic interactions, all else

equal, an agent who is less risk averse will fare better according to all prefer-

ences. This is the case in Nash bargaining (Rubinstein, Safra, and Thomson

(1992)), as well as in many other game theoretic models of bargaining. So, by

appropriately sharing risk, a household seeks to become more “competitive.”

Our result says much more than that ACTA rules yield a local reduction in

risk aversion. The local statement would be that the household is locally less

risk averse than each individual at each individual’s optimal consumption.

Indeed, this would be true for any rule satisfying the Pareto property. Our

result is much stronger: ACTA rules generate a household which is less risk

averse than each of its members at every level of consumption.

We introduce two additional axioms: the Pareto criterion and that certain

(sure) acts should be compared without regard for risk preferences. From

the normative perspective, the Pareto criterion is obviously desirable, and

the invariance axiom should be appealing. invariance may not be appealing

in a descriptive setting, in which any one agent can force a “breakdown” of

negotiations; then risk attitudes play a role even when the “optimal” choices

feature no risk (Rubinstein, Safra, and Thomson (1992) explain how attitudes

toward risk are important in a Nash bargaining context).

We characterize the household SWF’s which respect the Pareto criterion,

compare certain acts without regard for risk preferences, and which reduce

risk aversion. The results single out the sum of certainty equivalents as the

unique member of this class which is quasiconcave over certain allocations.
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Quasiconcavity, in turn, is a basic fairness requirement.15

Our results hold when we restrict the domain to expected utility pref-

erences. this should be clear from the statements and proofs in Section 3.

The results are also novel as results about EU ; but no additional insights or

simplifications are gained from presenting them as results about EU . We em-

phasize; however, that our proof require that any domain include all expected

utility preferences.16

Our paper thus provides a justification for using the sum of certainty

equivalents as a guide in allocating risky prospects. The existing justifica-

tion (Myerson, 2004) says that any allocation which does not maximize the

sum of certainty equivalents could be improved upon by an allocation that

each individual agent would be willing to accept more for. This is a simple

consequence of interpreting certainty equivalents as willingness to accept.

Our justification is entirely different, and depends on the desirability of the

collective being less risk averse than household members.

6 Appendix: Proofs of results

Proof (Proof of Proposition 1): Let x ∈ X and let x ∈ XN such

that
∑

i∈N xi = x. Then, for all i ∈ N , (π · xi) Ri xi. Clearly,
∑

i∈N π · xi =

π ·
∑

i∈N xi = π · x. By Pareto, (π · x1, ..., π · xn) �0 (R) x. Consequently, by

definition of �h (R), π · x �h (R)x. �

15Gorman (1959) argues that actual collectives may use a convex W : he believes that

utility profiles that are not very unequal may be inherently stable. Any small advantage

obtained by a group of agents will result in a political advantage, which will then reinforce

the initially small advantage. The resulting collective will behave as if it used a convex

social choice function.
16Actually, a close reading of our proof indicates that we only require that the domain

include all risk neutral preferences, and at least one expected utility preference satisfying

the Inada conditions.
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Proof (Proof of Proposition 3): Let R′ ∈ D. Define W : RN
+ → R so

that W (d) ≥ W (c) if and only if

d�0(R′) c.

Such a W exists as �0 (R′) is continuous and satisfies rationality, by (Debreu,

1964). W is strictly monotonic by the Pareto property. Now, let R ∈ D
be arbitrary. Let x,y ∈ XN . Note that by Pareto, ceR (x) ∼0(R) x and

ceR (y) ∼0(R) y. Consequently, by rationality, x �0(R) y if and only if

ceR (x) �0(R) ceR (y). By invariance ceR (x) �0(R) ceR (y) if and only if

ceR (x) �0(R′) ceR (y). By definition of W , ceR (x) �0(R′) ceR (y) if and

only if W (ceR (x)) ≥ W (ceR (y)). �

Proof (Proof of Theorem 6): Throughout, we use some abuse of no-

tation between constant acts c ∈ X and the value that constant act takes.

First, suppose that a social welfare functional �0 is an ACTA rule, asso-

ciated with some function W satisfying the appropriate hypotheses. We shall

prove that it satisfies the reduction of risk aversion axiom. That it satisfies

the remaining axioms is immediate. Let R ∈ D. Let c be a constant act. We

wish to show that for all i ∈ N , {x : x Ri c} ⊆
{
x : x�h(R) c

}
.

As a first step, we show that for all i ∈ N , (ci, 0−i) ∈
arg maxx∈AcW (ceR (x)), where Ac is the set of allocations of the constant

act c. That is, Ac =
{
y ∈ XN :

∑
i∈N yi = c

}
.

Let y ∈ Ac. For all i ∈ N , (π · yi) Ri yi, and (π · y1, ..., π · yn) ∈ ∆c. So,

for any y ∈ Ac there is d ∈ ∆c such that W (d) ≥ W (ceR(x)). Continuity

of W and compactness of ∆c implies there exists an optimal allocation for

W in ∆c. Hence we may conclude that this optimal allocation is constant,

and call it d∗; since d∗ is constant, with a slight abuse of notation, we write

d∗ ∈ ∆c.

By the hypothesis on W , W (ci, 0−i) ≥ W (d∗); we therefore establish that
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(c, 0−i) ∈ arg maxAcW .

Now, let x ∈ X and suppose that x Ri c. So ceRi(x) ≥ c. Then for all

y ∈ XN for which
∑

i∈N yi = c,

W (ceRi (x) , 0−i) ≥ W (ci, 0−i) ≥ W (y1, . . . , yn) .

Therefore, for every allocation y of c, (xi, 0−i) �0(R) y. By definition of

�h(R), x�h(R) c.

Conversely, suppose that �0 satisfies the axioms. W exists from Propo-

sition 3; we will show that the vertices of every simplex maximize W on the

simplex.

Define ∆++ (Ω) =
{
q ∈ RΩ

++ :
∑

ω q (ω) = 1
}

(the set of full support prob-

ability measures). We shall consider a profile R ∈ EU . Fix an arbitrary

j ∈ N . Let Rj be defined by

ceRj (x) = π · x

and for all i 6= j, choose some strictly increasing, concave, and differentiable

ui : R+ → R for which limx→0+ u′i (x) = +∞ and limx→+∞ u
′
i (x) = 0 (the

Inada conditions) and define Ri by

xRiy ⇐⇒
∑
ω

π (ω)ui (x (ω)) ≥
∑
ω

π (ω)ui (y (ω)) .

Note that R ∈ EU . Importantly for what follows, each Ri is a convex pref-

erence relation.

By Proposition 1, �h(R) is risk averse. We shall prove that, by reduction

of risk aversion, �h(R) = Rj. To see this, let c ∈ X be a constant act. Then

as �h(R) is risk averse, if x�h(R) c, then π · x ≥ c; consequently x Rj c by

the definition of Rj. Hence,
{
x : x�h(R) c

}
⊆ {x : x Rj c}. By reduction

of risk aversion, we obtain that {x : xRjc} =
{
x : x�h(R) c

}
. This implies

that ceRj = ce�h(R); thus Rj = �h(R).
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For each i ∈ N , define the indirect utility function vRi : ∆++ (Ω)×R+

by

vRi (q,m) = max
q·x≤m

ceRi (x) .

Define U�h(R) : X → R by

U�h(R) (x) = sup∑
xi=x

W (ceR (x)) .

Similarly, define the household indirect utility function by

V�h(R) (q,m) = max
q·x≤m

U�h(R) (x) .

By Chipman and Moore (1979), Theorem 3.9,

V�h(R) (q,m) = max
d∈∆(N)

W
(
(vRi (q, dim))i∈N

)
.

By the Maximum Theorem, the correspondence δ : ∆ (Ω) × R+ ⇒ ∆(N)

defined by

δ (q,m) = arg max
d∈∆(N)

W
(
(vRi (q, dim))i∈N

)
is well-defined and upper semi-continuous. Define the demand corre-

spondence xR (q,m) as those allocations which are R-maximal in the set

{x : q · x ≤ m}.
By Chipman and Moore (1979), Corollary 3.5,

x�h(R) (q,m) =
⋃

d∈δ(q,m)

∑
i∈N

xRi (q, dim) .

Now, let q ∈ ∆++ (Ω), q 6= π, q � 0. Since �h(R) coincides with Rj, if

x ∈ x�h(R) (q,m), then if q(ω)
π(ω)

> q(ω′)
π(ω′)

, x (ω) = 0. Therefore, there exists

ω for which x (ω) = 0. Moreover, for all i 6= j, if m > 0, xRi (q,m) � 0.

Consequently, we conclude that for all d ∈ δ (q,m), di = 0 for i 6= j. By

upper semicontinuity of δ, conclude that (1j, 0−j) ∈ δ (π,m).
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Note that for all i ∈ N and all d ∈ ∆(N), vRi (π, dim) = dim (as vRi was

defined using the certainty equivalent utility representation of Ri). Conse-

quently (vRi (π, dim))i∈N ∈ ∆m; and for any u ∈ ∆m, there exists d ∈ ∆(N)

for which (vRi (π, dim))i∈N = u. As (1j, 0−j) ∈ δ (q,m), we therefore conclude

by definition of δ that W (mj, 0−j) ≥ W (u), for all u ∈ ∆m.

As j and m were arbitrary, the proof is complete. �

Proof (Proof of Theorem 8): The following two lemmas are well-

known, but we reproduce them here for completeness.

Lemma 11: If R ∈ H, then the function ceR : X → R is a utility

representation for R which is homogeneous of degree one.

Proof: Recall

ceR (x) = inf {c : c R x} .

To see that the certainty equivalent is homogeneous, let x ∈ X and α > 0.

Then

ceR (αx) = inf {αc : αc R αx}

= α inf {c : αc R αx}

= α inf {c : c R x}

= αceR (x) ,

where the second to last equality holds by homotheticity. �

Lemma 12: If u is monotone, homogeneous of degree one, and quasi-

concave, then it is concave.

Proof: Let x, y ∈ X and α ∈ [0, 1]. Suppose without loss of generality that

u (y) ≥ u (x). If u (x) = 0, then by monotonicity,

u (αx+ (1− α) y) ≥ u ((1− α) y)

= (1− α)u (y) = αu (x) + (1− α)u (y) ,
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verifying concavity. Otherwise, suppose u (x) > 0. Thenby homogeneity, we

know that u
(
u(x)
u(y)

y
)

= u(x). Let β = αu(x)
αu(x)+(1−α)u(y)

. By quasiconcavity,

u
(
βx+ (1− β)u(x)

u(y)
y
)
≥ u(x). But

βx+ (1−β)
u(x)

u(y)
y =

(
αu(x)

αu(x) + (1− α)u(y)

)
x+

(
(1− α)u(x)

αu(x) + (1− α)u(y)

)
y.

Therefore, by homogeneity, u
(
βx+ (1− β)u(x)

u(y)
y
)

= u(x)
αu(x)+(1−α)u(y)

u(αx +

(1− α)y). So, we have

u(x)

αu(x) + (1− α)u(y)
u(αx+ (1− α)y) ≥ u(x),

which works out to u(αx + (1− α)y) ≥ αu(x) + (1− α)u(y) after canceling

terms, verifying concavity. �

Let R ∈ HN∩R. By Lemmas 11 and 12, the certainty equivalent function

ceRi : X → R is homogeneous and concave. Moreover, for all constant acts

c, ceRi (c) = c. Extend ceRi to all of RΩ by defining

ce′Ri (x) =

{
ceRi (x) if x ≥ 0

−∞ otherwise
.

The function ce′Ri is concave, monotonic, and upper semicontinuous. Its

conjugate,
(
ce′Ri

)∗
: RN → R is defined by(

ce′Ri
)∗

(x) = inf
y∈RΩ

x · y − ce′Ri (y) .

It is well-known that this function is itself concave and that there is a

nonempty, closed, convex, upper comprehensive17 set Ci ⊆ RN
+ for which

(
ce′Ri

)∗
(x) =

{
0 if x ∈ Ci
−∞ otherwise.

}
.

17That is, if x ∈ C and y ≥ x, then y ∈ C.
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Moreover,

ce′Ri (x) = inf
y∈Ci

x · y.

(See, Rockafellar (1970) Theorem 12.2, Theorem 13.2 and Corollary 13.2.1).

We claim that π ∈
⋂
i∈N

Ci and moreover that π lies on the boundary (has

minimal sum) of each Ci. To see this, note that for each i and each constant

act c, ce′Ri (c) = c, so 1 = ce′Ri(1) = infy∈Ci 1 · y = infy∈Ci
∑

ω y(ω). Now,

suppose that π /∈ Ci for some Ci. In particular, by a standard separation

argument, there exists x ∈ RN
+\ {0} for which π · x < infy∈Ci y · x. Let c be

a real number for which π · x < c < infy∈Ci y · x = ceRi(x). But then x Ri c,

while π · x < c, contradicting the fact that Ri is risk averse.

Now consider the function defined on X for which

U�h(R) (x) = max∑
xi=x

∑
ceRi (xi) .

Clearly, this function can also be defined on all of RΩ, so that

U ′�h(R) (x) = max∑
xi=x

∑
ce′Ri (xi) .

Moreover, it is easy to see, that since U ′�h(R)
takes infinite values outside of

X, for x ∈ X,

U�h(R) (x) = U ′�h(R) (x) .

Finally, as U ′�h(R)
is the sup-convolution of the functions

(
ce′Ri

)
i∈N , we con-

clude that the conjugate(
U ′�h(R)

)∗
(x) = inf

y∈RN
x · y − U ′�h(R) (y)
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is given by (
U ′�h(R)

)∗
(x) =

∑
i∈N

(
ce′Ri (x)

)∗
=

 0 if x ∈
⋂
i∈N

Ci

−∞ otherwise.

 .

See Rockafellar (1970), Theorem 16.4 and Corollary 16.4.1. Consequently,

U ′�h(R) (x) = inf
y∈
⋂
i∈N

Ci

x · y.

Importantly for these arguments,
⋂
i∈N

Ci 6= ∅, as each Ci is upper comprehen-

sive and contains π. Hence, we conclude that household preference �h(R) is

represented by

x�h(R) z ⇐⇒ inf
y∈
⋂
i∈N

Ci

x · y ≥ inf
y∈
⋂
N

Ci

z · y,

where for all i ∈ N ,

x Ri z ⇐⇒ inf
y∈Ci

x · y ≥ inf
y∈Ci

z · y.

Clearly, then, �h(R) is homothetic. To see that it is the most risk averse

convex preference which is less risk averse than each individual preference,

let c be a constant act. Note that π ∈
⋂
i∈N

Ci and also lies on the boundary

of
⋂
i∈N

Ci (it minimizes
∑
y (ω) across y ∈

⋂
i∈N

Ci). Consequently for any
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constant act c,

c = c
∑
ω∈Ω

π(ω)

= c inf
y∈
⋂
i∈N

Ci

∑
ω∈Ω

y(ω)

= inf
y∈
⋂
i∈N

Ci

c · y

We will show that for any c,{
x : x�h(R) c

}
= co

⋃
i∈N

{x : x Ri c},

which will verify the result. So first, we show that for all i ∈ N , {x : x Ri c} ⊆{
x : x �h (R) c

}
. Note that xRi c implies that for all y ∈ Ci, x · y ≥ c which

implies that for all y ∈
⋂
i∈N

Ci, x · y ≥ c, which implies that x �h (R) c. We

therefore know that

co
⋃
i∈N

{x : x Ri c} ⊆
{
x : x�h(R) c

}
as �h(R) is upper semicontinuous and convex. Suppose now that there

exists w ∈ X such that w �h (R) c, and for which w /∈ co
⋃
i∈N

{x : x Ri c}. In

particular, by a standard separation argument, there exists y for which, when

normalized, y ·w < c ≤ y ·x for all i and all xRic. We claim that for all i ∈ N ,

y ∈ Ci; otherwise, there would exist a separating vector (again nonnegative

and normalized) z for which y · z < c < infy′∈Ci y
′ · z. But then z Ri c and

y · z < c, contradicting y · x ≥ c for all x Ri c. Consequently, y ∈
⋂
i∈N

Ci.

Therefore, inf
y∈
⋂
i∈N

Ci
y · w < c, so that c �h (R)w, a contradiction. �
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