#### Preference identification

C. Chambers F. Echenique N. Lambert
Georgetown Caltech MIT

CMU/Pitt — November 11, 2021.

### Model

Alice (an experimenter)



Bob (a subject)



#### Model

► Alice presents Bob with choice problems:

"Hey Bob would you like x or y?"



x vs. y

- ▶ Bob chooses one alternative.
- ▶ Rinse and repeat  $\rightarrow$  dataset of k choices.

# Rationalization (roughly speaking)

A *rationalization* is a preference that would have generated the observed choices,

(Details later.)

#### Model

- ► An experimenter and a subject.
- ▶ Subject makes choices according to some  $\succeq^*$ , or utility  $u^*$ , on set X.
- ► Experimenter conducts a finite choice experiment of "size" k: k questions, each one a binary choice problem.
- ▶ Preference  $\succeq_k$  or utility  $u_k$  as rationalizations or estimates.

How are  $\succeq_k$ ,  $\succeq^*$ ,  $u_k$  and  $u^*$  related?

Subject chooses among alternatives:  $X = \mathbb{R}^n_+$ .

- ► Choices come from  $\succeq^*$ , a continuous preference.
- $\blacktriangleright \ \Sigma_i = \{x_i, y_i\}.$
- ▶ A finite experiment: choose an element from  $\Sigma_i$ , i = 1, ..., k.
- Assumption:  $\Sigma_{\infty} = \cup_{k=1}^{\infty} \Sigma_k$  is dense.

• V

► 
$$x \succ^* y$$

 $\bullet X$ 





▶  $\exists x' \in U$  and  $y' \in V$  s.t  $\forall k \exists$  rationalizing  $\succeq_k$ , with  $y' \succ_k x'$ 



▶ But  $x' \succ y'$ .  $\forall \succeq$  s.t.  $\succeq$  is cont. and  $\succeq |_{\Sigma_{\infty}} = \succeq^* |_{\Sigma_{\infty}}$ .

### Example 1: a "discontinuity."

- ▶ Infinite data ( $\succeq^*$  on X): observe  $\succeq^*$ ; so  $x' \succ^* y'$
- "Limiting" infinite data  $(\Sigma_{\infty} = \cup_{k=1}^{\infty} \Sigma_k)$ :  $x' \succ y' \ \forall \succeq \text{s.t.} \succeq |\Sigma_{\infty} = \succeq^* |\Sigma_{\infty}$ .
- ► Finite data:  $(\Sigma_1 \dots, \Sigma_k)$  can't rule out  $y' \succ_k x'$ , no matter how large k.

#### Lesson 1



No amount of finite data may correct a mistaken inference.

Even when the (limiting) infinite data set leaves no room for error.

Let 
$$X = \mathbb{R}^n_+$$
.

Fix a continuous preference  $\succeq^*$  on X.

#### Proposition (informal)

There exists locally non-satiated rationalizing  $\succeq_k$  for each k s.t

complete indifference 
$$=\lim_{k\to\infty} \succeq_k$$

Set of alternatives X = [0, 1].

- ▶ Left: the subject prefers x to y iff  $x \ge y$ .
- ▶ Right: the subject is completely indifferent.







n=1











n=10



n=16



n=32

#### Lesson 2



Discipline matters.

Empiricism is dangerous.

Inevitable role for theory (a Cartesian imperative).



#### Choice under uncertainty:

- ▶ State space  $S = \{s_1, s_2\}$ .
- ▶ Choice among monetary acts:  $x \in \mathbb{R}^{S}$ .
- ▶ Bob is risk-neutral subjective exp. utility maximizer.
- ▶ So  $x \succeq^* y$  iff  $p \cdot x \ge p \cdot y$ .
- ▶ Preferences described by a prior  $p \in \Delta(S)$ .

#### Bob's preferences:



Suppose y is chosen over x, and x' over y'.



Suppose y is chosen over x, and x' over y'.



Suppose y is chosen over x, and x' over y'.



Bob's prior p must be steeper than the blue line, and flatter than the green.

Suppose y is chosen over x, and x' over y'.



Bob's prior p must be steeper than the blue line, and flatter than the green.

Suppose y is chosen over x, and x' over y'.



Narrows down unobserved comparison:  $x'' \succ^* y''$ .

Suppose Alice instead uses the max-min model for Bob:

$$u(x) = \min\{p \cdot x : p \in \Pi\}$$

With two states,  $\Pi$  is described by four parameters. With more than two states, the model is non-parametric.

Then from  $y \succ x$  she learns something about the slope of the worst-case priors.

y is chosen over x, and x' over y'.



y is chosen over x, and x' over y'.



No inference for x'' and y''.

#### Lesson 3



A more flexible theory may lead to overfitting.

In fact max-min with  $|S| \ge 3$  is "hopeless."

Any finite dataset will lead to poor out-of-sample predictions.

# Example 4: Grodal's example



# Example 4: Grodal's example







#### Lesson 4



Model of preferences must be closed.

Can't allow for approximate behavior to "escape."

# Example 5

- ▶ Let X = [0,1],  $\succeq^* = \ge$  and  $u^*(x) = x$ .
- ▶ For each k, let  $\succeq_k = \ge$  and

$$u_k = \frac{x}{k}$$
.

- ▶ Then  $0 = \lim_k u_k$ .
- ▶ But  $\succeq_k = \succeq^*$  for all k!

# Example 5

- ▶ Let  $X = [0,1], \succeq^* = \ge$  and  $u^*(x) = x$ .
- ▶ For each k, let  $\succeq_k = \ge$  and

$$u_k = \frac{x}{k}$$
.

- ▶ Then  $0 = \lim_k u_k$ .
- ▶ But  $\succeq_k = \succeq^*$  for all k!

(For  $\varepsilon > 0$ , can choose  $u_n$  with  $||u_n||_{\infty} = 1$  or  $||u_n||_1 = 1$  and  $0 = \lim_n u_n(x)$  for all  $x \in [0, 1 - \varepsilon]$ .)

#### Lesson 5



Utility estimates are more delicate than preferences.

Must choose the right utility representation.

## Lessons for DT



Typical result in decision theory:

"Utility representation iff axioms. Moreover, utility is unique."

Axioms ⇒ testable implications. But ignores overfitting problem.

Uniqueness  $\Rightarrow$  identification. But more is needed to ensure utility recovery from finite data.

## Model

- $\blacktriangleright$  Alternatives: A topological space X.
- ▶ Preference: A complete and continuous binary relation  $\succeq$  over X
- $ightharpoonup \mathcal{P}$  a set of preferences.

A pair  $(X, \mathcal{P})$  is a preference environment.

# Example: Expected utility preferences

- ► There are *d* prizes.
- ▶ X is the set of lotteries over the prizes,  $\Delta^{d-1} \subset \mathbb{R}^d$ .
- ▶ An EU preference  $\succeq$  is defined by  $v \in \mathbb{R}^d$  such that  $p \succeq p'$  iff  $v \cdot p \geq v \cdot p'$ .
- $ightharpoonup \mathcal{P}$  is set of all the EU preferences.

# Experiment

Alice wants to recover Bob's preference from his choices.

- ▶ Binary choice problem :  $\{x,y\} \subset X$ .
- ▶ Bob is asked to choose x or y. Behavior encoded by a choice function  $c(\{x,y\}) \in \{x,y\}$ .
- ▶ If Bob's preference is  $\succeq$  then  $c(\{x,y\}) \succeq x$  and  $c(\{x,y\}) \succeq y$ .
- ▶ Partial observability: indifference is not observable.

# Experiment

Alice gets finite dataset.

- ▶ Experiment of size  $k : \Sigma^k = \{\Sigma_1, ..., \Sigma_k\}$  with  $\Sigma_i = \{x_i, y_i\}$ .
- ▶ Set of growing experiments:  $\{\Sigma^k\} = \{\Sigma^1, \Sigma^2, \dots\}$  with  $\Sigma^k \subset \Sigma^{k+1}$ .

## Literature

```
Afriat's theorem and revealed preference tests: Afriat (1967); Diewert (1973); Varian (1982); Matzkin (1991); Chavas and Cox (1993); Brown and Matzkin (1996); Forges and Minelli (2009); Carvajal, Deb, Fenske, and Quah (2013); Reny (2015); Nishimura, Ok, and Quah (2017)
```

Recoverability: Varian (1982); Cherchye, De Rock, and Vermeulen (2011); Chambers, Echenique and Lambert (2021).

Consistency: Mas-Colell (1978); Forges and Minelli (2009); Kübler and Polemarchakis (2017); Polemarchakis, Selden, and Song (2017)

Identification: Matzkin (2006); Gorno (2019)

Econometric methods: Matzkin (2003); Blundell, Browning, and Crawford (2008); Blundell, Kristensen, and Matzkin (2010); Halevy, Persitz, and Zrill (2018)

# OK, so far:

- ▶  $(X, \mathcal{P})$  preference env.
- ► c encodes choice
- ▶  $\Sigma^k$  seq. of experiments

## Rationalization

- ▶ A preference  $\succeq$  weakly rationalizes the observed choices on  $\Sigma^k$  if  $c(\{x,y\}) \succeq x$  and  $c(\{x,y\}) \succeq y$  for all  $\{x,y\} \in \Sigma^k$ .
- ▶ A preference  $\succeq$  strongly rationalizes the observed choices on  $\Sigma^k$  if  $c(\{x,y\}) \succ z$  for  $z \in \{x,y\}$ ,  $z \neq c(\{x,y\})$ , for all  $\{x,y\} \in \Sigma^k$ .

# Topology on preferences

#### Choice of topology: closed convergence topology.

- ► Standard topology on preferences (Kannai, 1970; Mertens (1970); Hildenbrand, 1970).
- $\triangleright$   $\succ_n \rightarrow \succ$  when:

```
For all (x, y) \in \succeq, there exists a seq. (x_n, y_n) \in \succeq_n that converges to (x, y).
If a subsequence (x_{n_k}, y_{n_k}) \in \succeq_{n_k} converges, the limit belongs to \succeq.
```

- ► If *X* is compact and metrizable, same as convergence under the Hausdorff metric.
- $\blacktriangleright$  X Euclidean and  $\mathcal B$  the strict parts of cont. weak orders. Then it's the smallest topology for which the set

$$\{(x,y,\succ):x\in X,y\in X,\succ\in\mathcal{B}\text{ and }x\succ y\}$$

is open.

# Topology on preferences

#### Lemma

Let X be a locally-compact Polish (separable and completely metrizable) space. Then the set of all continuous binary relations on X is a compact metrizable space.

# Topology of compact convergence

Let  $\{u_k\}$  be a sequence of functions,

$$u_k \colon X \to \mathbb{R}$$
.

The sequence *convergences compactly* to  $u: X \to R$  if for every compact  $K \subset X$ ,

$$u_k|_K \to u|_K$$

uniformly.

Turn out to be the right topology for utility functions when preferences are endowed with the closed convergence topology (the reason being that  $u_k \to u$  and  $x_k \to x$  then  $u_k(x_k) \to u(x)$ ).

### Results

#### Let X be

- $\rightarrow X = \mathbb{R}^n$ .
- ▶ or  $X = \Delta([a, b])^{\Omega}$  (set of "monetary" Anscombe-Aumann acts) with finite  $\Omega$ .

#### Obs.

- ► Objective monotonicity.
- ► Connection between order and topology on *X*.
- ► Some of our results are more general.

## Results

A sequence of experiments  $\{\Sigma^k\}$ , with  $\Sigma^k = \{\Sigma_1, \dots, \Sigma_k\}$ , is exhaustive when:

- 1.  $\bigcup_{i=1}^{\infty} \Sigma_i$  is dense in X.
- 2. For all  $x, y \in \bigcup_{i=1}^{\infty} \Sigma_i$  with  $x \neq y$ , there exists i s.t  $\Sigma_i = \{x, y\}$ .

### Results

#### Theorem

#### Let

- ► ≻\* be monotone and cont.;
- ▶  $\succeq_k$  strongly rationalize the *k*-sized choice data generated by  $\succeq^*$ .

#### Then,

- $\blacktriangleright \succeq_k \to \succeq^*$  (in the topology of closed convergence).
- ▶ For any utility  $u^*$  for  $\succeq^* \exists u_k$  for  $\succeq_k$  s.t  $u_k \to u^*$  (in the topology of compact convergence).

## Discussion.

- ► Monotonicity.
- ► Convergence of *any arbitrary* preference rationalization.
- ▶ Utility can't be arbitrary. Only get convergence of selected utility estimates. Require an identification theorem for each specific theory.

Why does monotonicity help?

# Recall Example 1



$$\triangleright x \succ^* y$$

▶  $\exists x' \in U$  and  $y' \in V$  s.t  $y' \succ_k x'$  for some rationalizing  $\succeq_k$ 



▶ But  $x' \succ y'$ .  $\forall \succeq$  s.t.  $\succeq$  is cont. and  $\succeq |_B = \succeq^* |_B$ .





$$ightharpoonup U \succ^* V$$







- $\triangleright x \succ^* y$
- $ightharpoonup U \succ^* V$
- ▶ Let  $(x', y') \in U \times V$ .





- $\triangleright x \succ^* y$
- $\triangleright$   $U \succ^* V$
- ▶ Let  $(x', y') \in U \times V$ .
- ightharpoonup  $\Longrightarrow \exists x'', y'' \in B$
- ►  $x'' \le x'$
- y' ≤ y"





$$\triangleright x \succ^* y$$

▶ Let 
$$(x', y') \in U \times V$$
.

$$ightharpoonup \Longrightarrow \exists x'', y'' \in B$$

▶ 
$$x'' \le x'$$

$$y' \le y'' \Longrightarrow x' \ge x'' \succ_k y'' \ge y'$$

## Weak rationalizations

A preference  $\succeq$  is *locally strict* if

$$x \succeq y \Longrightarrow$$
 in every nbd. of  $(x, y)$ , there exists  $(x', y')$  with  $x' \succ y'$ 

(Border and Segal, 1994).

## Weak rationalizations

Let  $X \subseteq \mathbb{R}^n$ . and  $\mathcal{P}$  be a closed set of locally strict preferences on X.

#### Theorem

Let  $\succeq_k \in \mathcal{P}$  weakly rationalize the k-sized choice data.

- ▶ Then there is a preference  $\succeq^* \in \mathcal{P}$  s.t  $\succeq_k \to \succeq^*$ .
- ▶ The limiting preference is unique: if, for every  $k, \succeq'_k \in P$  rationalizes the k-data, then the same limit  $\succeq'_k \to \succeq^*$  obtains.

Obs. that  $\succeq^*$  generating the choice is not a hypothesis. May view this result as a definition of preference.

(This result is in Chambers-Echenique-Lambert (2021))

# Utility functions

# Utility representations

We need a canonical utility representation.

Here we use the "equal coordinates" idea: a set M on which all preferences agree.

For  $X = \mathbb{R}^n M$ , is the ray of equal coordinates.

For  $X = \Delta([a, b])$ , M is [a, b].

For the talk, assume  $X = \mathbb{R}^n$ .

## Model

#### Let

- $\blacktriangleright$   $\mathcal{U}$  be the set of st. monotone and cont. utility functions on X.
- $\blacktriangleright$   $\mathcal{R}^{mon}$  be the set of preferences which are st. monotone and cont.

# Homeomorphism

Let  $\Phi: \mathcal{U} \to \mathcal{R}^{\mathsf{mon}}$  such that  $\Phi(u)$  is the preference represented by  $u \in \mathcal{U}$ .

Equivalence relation  $\simeq$  on  $\mathcal{U}$ ;

 $\hat{\Phi}: \mathcal{U}/ \simeq \rightarrow \mathcal{R}$  is defined in the natural way.

#### Theorem

 $\hat{\Phi}$  is a homeomorphism.

# Homeomorphism

Homeomorphism tells us how to go from recovered preferences to utilities, and from recovered utilities to preferences. . .

## Recall:

Let  $X \subseteq \mathbb{R}^n$ . and  $\mathcal{P}$  be a closed set of locally strict preferences on X.

#### **Theorem**

Let  $\succeq_k \in \mathcal{P}$  weakly rationalize the k-sized choice data.

- ▶ Then there is a preference  $\succeq^* \in \mathcal{P}$  s.t  $\succeq_k \to \succeq^*$ .
- ▶ The limiting preference is unique: if, for every  $k, \succeq'_k \in P$  rationalizes the k-data, then the same limit  $\succeq'_k \to \succeq^*$  obtains.

## Ideas behind the thm

#### Lemma

The set of all continuous binary relations on X is a compact metrizable space.

#### Lemma

If  $A \subseteq X \times X$ , then  $\{\succeq \in X \times X : A \subseteq \succeq\}$  is closed.

## Identification

#### Lemma

Consider an exhaustive set of experiments with binary choice problems  $\{x_k, y_k\}$ ,  $k \in \mathbb{N}$ . Let  $\succeq$  be any complete binary relation, and  $\succeq_A$  and  $\succeq_B$  be locally strict preferences. If, for all k,  $x_k \succeq_A y_k$  and  $x_k \succeq_B y_k$  whenever  $x_k \succeq y_k$ , then  $\succeq_A = \succeq_B$ .

## Statistical model

Given  $(X, \mathcal{P})$ . We change:

- ► How subjects make choices: they do not exactly follow a preference, but randomly deviate from it.
- ► How experiments are generated.

#### Statistical model

- 1. In a choice problem, alternatives drawn iid according to sampling distribution  $\lambda$ .
- 2. Subjects make "mistakes." Upon deciding on  $\{x,y\}$ , a subject with preference  $\succeq$  chooses x over y with probability  $q(\succeq;x,y)$  (error probability function).
- 3. Only assumption: if  $x \succ y$  then  $q(\succeq; x, y) > 1/2$ .
- 4. "Spatial" dependence of q on x and y is arbitrary.

#### Estimator

Kemeny-minimizing estimator: find a preference in  $\mathcal{P}$  that minimizes the number of observations inconsistent with the preference.

- ▶ "Model free:" to compute estimator don't need to assume a specific q or  $\lambda$ .
- ▶ May be computationally challenging (depending on  $\mathcal{P}$ ).

# To sum up:

Assumption 1: X is a locally compact, separable, and completely metrizable space.

Assumption  $2:\mathcal{P}$  is a closed set of locally strict preferences.

Assumption 3':  $\lambda$  has full support and for all  $\succeq \in \mathcal{P}$ ,  $\{(x,y): x \sim y\}$  has  $\lambda$ -probability 0.

#### Second main result

#### Theorem

Under Assumptions (1), (2), (3'), if the subject's preference is  $\succeq^* \in \mathcal{P}$  and  $\succeq_n$  is the Kemeny-minimizing estimator for  $\Sigma_n$ , then,  $\succeq_n \to \succeq^*$  in probability.

#### Finite data

- ► Our paper is about finite data.
- ► Finite data but large samples
- ► How large?



The VC dimension of  $\mathcal{P}$  is the largest cardinality of an experiment that can always be rationalized by  $\mathcal{P}$ .

A measure of how flexible  $\mathcal{P}$ ; how prone it is to overfitting.

# Convergence rates: Digression

- ► Think of a game between Alicia and Roberto
- ▶ Alicia defends  $\mathcal{P}$ ; Roberto questions it.
- ► Given is *k*
- ► Alicia proposes a choice experiment of size *k*
- ► Roberto fills in choices adversarily.
- ightharpoonup Alicia wins if she can rationalize the choices using  $\mathcal{P}$ .
- ▶ The VC dimension of P is the largest k for which Alicia always wins.

# Convergence rates

 $\blacktriangleright$  Let  $\rho$  be a metric on preferences.

### Theorem 2 (Part B)

Under the same conditions as in Part A,

$$N(\eta, \delta) \leq \frac{2}{r(\eta)^2} \left(\sqrt{2/\delta} + C\sqrt{\mathbf{VC}(\mathcal{P})}\right)^2$$

with C a universal constant.

# Convergence rates

- ightharpoonup Let ho be a metric on preferences.
- ▶  $N(\eta, \delta)$ : smallest value of N such that for all  $n \geq N$ , and all subject preferences  $\succeq^* \in \mathcal{P}$ ,

$$\Pr(\rho(\succeq_n,\succeq^*)<\eta)\geq 1-\delta.$$

#### Theorem 2 (Part B)

Under the same conditions as in Part A,

$$N(\eta, \delta) \leq \frac{2}{r(\eta)^2} \left(\sqrt{2/\delta} + C\sqrt{\mathsf{VC}(\mathcal{P})}\right)^2$$

with C a universal constant.

# Convergence rates

- ▶ Let  $\rho$  be a metric on preferences.
- ▶  $N(\eta, \delta)$ : smallest value of N such that for all  $n \geq N$ , and all subject preferences  $\succeq^* \in \mathcal{P}$ ,

$$\Pr(\rho(\succeq_n,\succeq^*)<\eta)\geq 1-\delta.$$

▶  $\mu(\succeq';\succeq)$ : probability that the choice of a subject with preference  $\succeq$  is consistent with preference  $\succeq'$ .

$$r(\eta) = \inf \big\{ \mu(\succeq;\succeq) - \mu(\succeq';\succeq) : \succeq,\succeq' \in \mathcal{P}, \rho(\succeq,\succeq') \ge \eta \big\}.$$

#### Theorem 2 (Part B)

Under the same conditions as in Part A,

$$N(\eta, \delta) \leq rac{2}{r(\eta)^2} \left( \sqrt{2/\delta} + C\sqrt{\mathbf{VC}(\mathcal{P})} 
ight)^2$$

with C a universal constant.

# Expected utility

- 1. *X* is the set of lotteries over *d* prizes.
- 2.  $\mathcal{P}$  is the set of nonconstant EU preferences: there are always lotteries p, p' such as p is strictly preferred to p'.

This preference environment satisfies Assumptions 1 and 2.

Suppose: there is C > 0 and k > 0 s.t

$$q(x, y; \succeq) \geq \frac{1}{2} + C(v \cdot x - v \cdot y)^k,$$

when  $x \succeq y$  and v represents  $\succeq$ .

# Expected utility

Under these assumptions, we can bound  $r(\eta)$  and  $VC(\mathcal{P})$ , which implies

$$N(\eta, \delta) = O\left(\frac{1}{\delta \eta^{4d-2}}\right).$$

Other examples: Cobb-Douglas, CES, and CARA subjective EU preferences, and intertemporal choice with discounted, Lipschitz-bounded utilities.

# Monotone preferences

- K be a compact set in  $X \equiv \mathbb{R}^d_{++}$ , and fix  $\theta > 0$ .
- $\blacktriangleright$   $\mathcal{P}$  has finite VC-dimension and is identified on K
- $\blacktriangleright$   $\lambda$  is the uniform probability measure on  $K^{\theta/2}$ ,
- ▶ q satisfies: probability of choosing y instead of x when  $x \succ y$  is a function of ||x y||,

#### **Proposition**

The Kemeny-minimizing estimator is consistent and, as  $\eta o 0$  and  $\delta o 0$ ,

$$\mathit{N}(\eta,\delta) = O\left(rac{1}{\eta^{2d+2}}\lnrac{1}{\delta}
ight).$$