Recovery of utilities and preferences from finite choice data

C. Chambers F. Echenique N. Lambert
Georgetown UC Berkeley USC

Renmin University of China — May 10th, 2023
Based on two papers:

- Recovering preferences from finite data (published).
- Recovering utility (available soon!)
Model

Alice (an experimenter)

Bob (a subject)
Alice presents Bob with choice problems:

“Hey Bob would you like \(x \) or \(y \)?”

\[x \text{ vs. } y \]

Bob chooses one alternative.
Rinse and repeat \rightarrow dataset of \(k \) choices.
An experimenter and a subject.

Subject makes choices according to some \succeq^*, or utility u^*, on set X.

Experimenter conducts a finite choice experiment of “size” k: k questions, each one a binary choice problem.

Preference \succeq_k or utility u_k as rationalizations or estimates.

How are \succeq_k, \succeq^*, u_k and u^* related?
Subject chooses among alternatives: \(X = \mathbb{R}^n_+ \).

- Choices come from \(\succeq^* \), a continuous preference.
- \(\Sigma_i = \{x_i, y_i\} \).
- A finite experiment: choose an element from \(\Sigma_i, i = 1, \ldots, k \).
- Assumption: \(\Sigma_\infty = \bigcup_{k=1}^{\infty} \Sigma_k \) is dense.
Example 1

- y

- $x \succ^* y$

- x
Example 1

- $x \succ^* y$
- $U \succ^* V$
- $\exists x' \in U$ and $y' \in V$ s.t. $\forall k \exists$ rationalizing \succeq_k, with $y' \succ_k x'$
- But $x' \succ y'$. $\forall \succeq$ s.t. \succeq is cont. and $\succeq|\Sigma_\infty = \succeq^*|\Sigma_\infty$.

Chambers-Echenique-Lambert Recovery
Example 1: a “discontinuity.”

- Infinite data (\(\succeq^*\) on \(X\)): observe \(\succeq^*\); so \(x' \succ^* y'\)
- “Limiting” infinite data (\(\Sigma_\infty = \bigcup_{k=1}^{\infty} \Sigma_k\)):
 \[x' \succ y' \quad \forall \quad \text{s.t.} \quad \succeq \mid \Sigma_\infty = \succeq^* \mid \Sigma_\infty.\]
- Finite data: \((\Sigma_1 \ldots, \Sigma_k)\)
 can’t rule out \(y' \succ_k x'\), no matter how large \(k\).
Lesson 1

No amount of finite data may correct a mistaken inference.

Even when the (limiting) infinite data set leaves no room for error.
Example 2

Let $X = \mathbb{R}^n_+$.

Fix a continuous preference \succeq^* on X.

Proposition (informal)

There exists rationalizing \succeq_k for each k s.t.

$$\text{complete indifference} = \lim_{k \to \infty} \succeq_k$$
Example 2

Set of alternatives $X = [0, 1]$.

- Left: the subject prefers x to y iff $x \geq y$.
- Right: the subject is completely indifferent.
Example 2

Preference

\[n=1 \]
Example 2

n=2
Example 2

\[n=4 \]
Example 2

\[n=6 \]
Example 2

Chambers-Echenique-Lambert

Recovery

$n=8$
Example 2

Preference

\[n=10 \]
Example 2

$n=16$

Chambers-Echenique-Lambert Recovery
Example 2

\[n = 32 \]
Lesson 2

Discipline matters.

Empiricism is dangerous.

Inevitable role for theory (a Cartesian imperative).
Example 3

Choice under uncertainty:

- State space $S = \{s_1, s_2\}$.
- Choice among monetary acts: $x \in \mathbb{R}^S$.
- Bob is risk-neutral subjective exp. utility maximizer.
- So $x \succeq^* y$ iff $p \cdot x \geq p \cdot y$.
- Preferences described by a prior $p \in \Delta(S)$.
Bob's preferences:
Suppose y is chosen over x, and x' over y'.
Suppose \(y \) is chosen over \(x \), and \(x' \) over \(y' \).
Example 3

Suppose y is chosen over x, and x' over y'.

Bob’s prior p must be steeper than the blue line, and flatter than the green.
Suppose y is chosen over x, and x' over y'.

Bob’s prior p must be steeper than the blue line, and flatter than the green.
Example 3

Suppose y is chosen over x, and x' over y'.

Narrows down unobserved comparison: $x'' \succ^* y''$.
Example 3

Suppose Alice instead uses the max-min model for Bob:

$$u(x) = \min\{p \cdot x : p \in \Pi\}$$

With two states, Π is described by four parameters. With more than two states, the model is non-parametric. Then from $y \succ x$ she learns something about the slope of the worst-case priors.
Example 3

y is chosen over x, and x' over y'.
Example 3

y is chosen over x, and x' over y'.

No inference for x'' and y''.
A more flexible theory may lead to overfitting.

In fact max-min with $|S| \geq 3$ is “hopeless.”

Any finite dataset will lead to poor out-of-sample predictions.
Example 4
Example 4
Model of preferences must be \textit{closed}.

Can’t allow for approximate behavior to “escape.”
Example 5

- Let $X = [0, 1]$, $\succeq^* = \succeq$ and $u^*(x) = x$.
- For each k, let $\succeq_k = \succeq$ and
 \[
 u_k = \frac{x}{k}.
 \]
- Then $0 = \lim_k u_k$.
- But $\succeq_k = \succeq^*$ for all k!
Example 5

Let $X = [0, 1]$, $\geq^* \geq$ and $u^*(x) = x$.

For each k, let $\geq_k \geq$ and

$$u_k = \frac{x}{k}.$$

Then $0 = \lim_k u_k$.

But $\geq_k \geq^*$ for all k!

(For $\varepsilon > 0$, can choose u_n with $\|u_n\|_\infty = 1$ or $\|u_n\|_1 = 1$ and $0 = \lim_n u_n(x)$ for all $x \in [0, 1 - \varepsilon]$.)
Utility estimates are more delicate than preferences.

Must choose the right utility representation.
Lessons for DT

Typical result in decision theory:

“Utility representation iff axioms. Moreover, utility is unique.”

Axioms \Rightarrow testable implications. (But may require infinite data.)

Uniqueness \Rightarrow identification. But more is needed to ensure utility recovery from finite data.
Alternatives: A topological space X.

Preference: A complete and continuous binary relation \succeq over X

\mathcal{P} a set of preferences.

A pair (X, \mathcal{P}) is a preference environment.
Example: Expected utility preferences

- There are d prizes.
- X is the set of lotteries over the prizes, $\Delta^{d-1} \subset \mathbb{R}^d$.
- An EU preference \succeq is defined by $v \in \mathbb{R}^d$ such that $p \succeq p'$ iff $v \cdot p \geq v \cdot p'$.
- \mathcal{P} is set of all the EU preferences.
Alice wants to recover Bob’s preference from his choices.

- Binary choice problem: \(\{x, y\} \subset X \).
- Bob is asked to choose \(x \) or \(y \).
 - Behavior encoded in a choice function \(c(\{x, y\}) \in \{x, y\} \).
- If Bob’s preference is \(\succeq \) then \(c(\{x, y\}) \succeq x \) and \(c(\{x, y\}) \succeq y \).
- Partial observability: indifference is not observable.
Alice gets finite dataset.

- Experiment of size k: $\Sigma^k = \{\Sigma_1, \ldots, \Sigma_k\}$ with $\Sigma_i = \{x_i, y_i\}$.
- Set of growing experiments: $\{\Sigma^k\} = \{\Sigma^1, \Sigma^2, \ldots\}$ with $\Sigma^k \subset \Sigma^{k+1}$.
Afriat’s theorem and revealed preference tests: Afriat (1967); Diewert (1973); Varian (1982); Matzkin (1991); Chavas and Cox (1993); Brown and Matzkin (1996); Forges and Minelli (2009); Carvajal, Deb, Fenske, and Quah (2013); Reny (2015); Nishimura, Ok, and Quah (2017)

Consistency: Mas-Colell (1978); Forges and Minelli (2009); Kübler and Polemarchakis (2017); Polemarchakis, Selden, and Song (2017)

Identification: Matzkin (2006); Gorno (2019)

Econometric methods: Matzkin (2003); Blundell, Browning, and Crawford (2008); Blundell, Kristensen, and Matzkin (2010); Halevy, Persitz, and Zrill (2018)
OK, so far:

- (X, \mathcal{P}) preference env.
- c encodes choice
- Σ^k seq. of experiments
A preference \succeq weakly rationalizes the observed choices on Σ^k if $c(\{x, y\}) \succeq x$ and $c(\{x, y\}) \succeq y$ for all $\{x, y\} \in \Sigma^k$.

A preference \succeq strongly rationalizes the observed choices on Σ^k if $c(\{x, y\}) \succ z$ for $z \in \{x, y\}$, $z \neq c(\{x, y\})$, for all $\{x, y\} \in \Sigma^k$.
Topology on preferences

Choice of topology: closed convergence topology.

- Standard topology on preferences (Kannai, 1970; Mertens (1970); Hildenbrand, 1970).

- \(\succeq_n \to \succeq \) when:
 1. For all \((x, y) \in \succeq\), there exists a seq. \((x_n, y_n) \in \succ_n\) that converges to
 \((x, y)\).
 2. If a subsequence \((x_{n_k}, y_{n_k}) \in \succeq_{n_k}\) converges, the limit belongs to \(\succeq\).

- If \(X\) is compact and metrizable, same as convergence under the Hausdorff metric.

- \(X\) Euclidean and \(\mathcal{B}\) the strict parts of cont. weak orders. Then it’s the smallest topology for which the set

\[
\{(x, y, \succ) : x \in X, y \in X, \succ \in \mathcal{B} \text{ and } x \succ y\}
\]

is open.
Lemma

Let X be a locally-compact Polish (separable and completely metrizable) space. Then the set of all continuous binary relations on X is a compact metrizable space.
Topology of compact convergence

Let \(\{u_k\} \) be a sequence of functions,

\[u_k : X \rightarrow \mathbb{R}. \]

The sequence \emph{converges compactly} to \(u : X \rightarrow \mathbb{R} \) if for every compact \(K \subseteq X \),

\[u_k|_K \rightarrow u|_K \]

uniformly.

Turn out to be the right topology for utility functions when preferences are endowed with the closed convergence topology.
Results

Let X be

- $X = \mathbb{R}^n$.
- or $X = \Delta([a, b])^\Omega$ (set of “monetary” Anscombe-Aumann acts) with finite Ω.

Obs.

- Objective monotonicity.
- Connection between order and topology on X.
- Some of our results are more general.
A sequence of experiments \(\{ \Sigma^k \} \), with \(\Sigma^k = \{ \Sigma_1, \ldots, \Sigma_k \} \), is exhaustive when:

1. \(\bigcup_{i=1}^{\infty} \Sigma_i \) is dense in \(X \).
2. For all \(x, y \in \bigcup_{i=1}^{\infty} \Sigma_i \) with \(x \neq y \), there exists \(i \) s.t. \(\Sigma_i = \{ x, y \} \).
Theorem

Let

- \(\succeq^* \) be monotone and cont.;
- \(\succeq_k \) strongly rationalize the \(k \)-sized choice data generated by \(\succeq^* \).

Then,

- \(\succeq_k \to \succeq^* \) (in the topology of closed convergence).
- For any utility \(u^* \) for \(\succeq^* \) \(\exists u_k \) for \(\succeq_k \) s.t \(u_k \to u^* \) (in the topology of compact convergence).
Discussion.

- Monotonicity.
- Convergence of any arbitrary preference rationalization.
- Utility can’t be arbitrary. Only get convergence of selected utility estimates. Require an identification theorem for each specific theory.
Why does monotonicity help?
Recall Example 1

\[x \succ^* y \]

\[U \succ^* V \]

\[\exists x' \in U \text{ and } y' \in V \text{ s.t. } y' \succ_k x' \text{ for some rationalizing } \succeq_k \]

\[\text{But } x' \succ y'. \forall \succeq \text{ s.t. } \succeq \text{ is cont. and } \succeq |_B = \preceq^*_B. \]
Monotone rationalizations.

\[V \]
\[y \]

\[U \]
\[x \]

- \[x \succ^* y \]
- \[U \succ^* V \]
Monotone rationalizations.

- $x \succ^* y$
- $U \succ^* V$
- Let $(x', y') \in U \times V$.
Monotone rationalizations.

Let \((x', y') \in U \times V\).

\[\exists x'', y'' \in B \]

\[x'' \leq x' \]

\[y' \leq y'' \]
Monotone rationalizations.

- $x \succ^* y$
- $U \succ^* V$
- Let $(x', y') \in U \times V$.
- $\implies \exists x'', y'' \in B$
- $x'' \leq x'$
- $y' \leq y''$
 $\implies x' \geq x'' \succ_k y'' \geq y'$

Chambers-Echenique-Lambert Recovery
Weak rationalizations

Let $X = \mathbb{R}^n$.

Let $\mathcal{P}^k(c)$ be the set of continuous and strictly monotone preferences that weakly rationalize the k data.

For a set of binary relations S, define $\text{diam}(S) = \sup_{(\succeq, \succeq') \in S^2} \delta_C(\succeq, \succeq')$ to be the diameter of S according to the metric δ_C which generates the topology on preferences.

Theorem

One of the following holds:

1. There is k such that $\mathcal{P}^k(c) = \emptyset$.
2. $\lim_{k \to \infty} \text{diam}(\mathcal{P}^k(c)) \to 0$.

Chambers-Echenique-Lambert Recovery
Weak rationalizations

A preference \succeq is *locally strict* if

$$x \succeq y \implies \text{in every nbd. of } (x, y), \text{ there exists } (x', y') \text{ with } x' \succ y'$$

(Border and Segal, 1994).
Weak rationalizations

Let $X \subseteq \mathbb{R}^n$ and \mathcal{P} be a closed set of locally strict preferences on X.

Theorem

Let $\succeq_k \in \mathcal{P}$ weakly rationalize the k-sized choice data.

- Then there is a preference $\succeq^* \in \mathcal{P}$ s.t $\succeq_k \rightarrow \succeq^*$.
- The limiting preference is unique: if, for every k, $\succeq'_k \in P$ rationalizes the k-data, then the same limit $\succeq'_k \rightarrow \succeq^*$ obtains.

Obs. that \succeq^* generating the choice is not a hypothesis. May view this result as a definition of preference.

Obs. doesn’t require monotonicity.

(This result is in CEL (2021))
Utility functions
Finite state space: S.

Monetary consequences: $[a, b] \subseteq \mathbb{R}$

Anscombe-Aumann acts: $f : S \rightarrow \Delta([a, b])$

Preferences on $\Delta([a, b])^S$.

Chambers-Echenique-Lambert Recovery
Let U be the set of all continuous and monotone weakly increasing functions $u : [a, b] \to \mathbb{R}$ with $u(a) = 0$ and $u(b) = 1$.

A pair (V, u) is a standard representation if $V : \Delta([a, b])^S \to \mathbb{R}$ and $u \in U$ are continuous functions such that $v(p, \ldots, p) = \int_{[a,b]} u \, dp$, for all constant acts (p, \ldots, p).

(V, u) is aggregative if there is an aggregator $H : [0, 1]^S \to \mathbb{R}$ with $V(f) = H((\int u \, df(s))_{s \in S})$ for $f \in \Delta([a, b])^S$.

An aggregative representation with aggregator H is denoted by (V, u, H).

Chambers-Echenique-Lambert Recovery
A preference \succeq on $\Delta([a, b])^S$ is *standard* if it is weakly monotone, and there is a standard representation (V, u) in which V represents \succeq.
Example

Variational preferences (Maccheroni et al 2006) are standard and aggregative. Let

\[
V(f) = \inf \left\{ \int v(f(s))d\pi(s) + c(\pi) : \pi \in \Delta(S) \right\}
\]

where

1. \(v : \Delta([a, b]) \to \mathbb{R} \) is continuous and affine.
2. \(c : \Delta(S) \to [0, \infty] \) is lower semicontinuous, convex and grounded (meaning that \(\inf \{ c(\pi) : \pi \in \Delta(S) \} = 0 \)).

Let \(H : [0, 1]^S \to \mathbb{R} \) be \(H(x) = \inf \{ \sum_{s \in S} x(s)\pi(s) + c(\pi) : \pi \in \Delta(S) \} \)
Theorem

Let \succeq be a standard preference with standard representation (V, u), and \{\succeq^k\} a sequence of standard preferences, each with a standard representation (V^k, u^k).

1. If $\succeq^k \rightarrow \succeq$, then $(V^k, u^k) \rightarrow (V, u)$.
2. If, in addition, these preferences are aggregative with representations (V^k, u^k, H^k) and (V, u, H), then $H^k \rightarrow H$.
Statistical model

Given \((X, \mathcal{P})\). We change:

- How subjects make choices: they do not exactly follow a preference, but randomly deviate from it.
- How experiments are generated.
1. In a choice problem, alternatives drawn iid according to sampling distribution λ.

2. Subjects make “mistakes.”
 Upon deciding on $\{x, y\}$, a subject with preference \succeq chooses x over y with probability $q(\succeq; x, y)$ (error probability function).

3. Only assumption: if $x \succ y$ then $q(\succeq; x, y) > 1/2$.

4. “Spatial” dependence of q on x and y is arbitrary.
Kemeny-minimizing estimator: find a preference in \mathcal{P} that minimizes the number of observations inconsistent with the preference.

- “Model free:” to compute estimator don’t need to assume a specific q or λ.
- May be computationally challenging (depending on \mathcal{P}).
To sum up:

Assumption 1: X is a locally compact, separable, and completely metrizable space.

Assumption 2: \mathcal{P} is a closed set of locally strict preferences.

Assumption 3’: λ has full support and for all $\succeq \in \mathcal{P}$, $\{(x, y) : x \sim y\}$ has λ-probability 0.
Theorem

Under Assumptions (1), (2), (3'), if the subject’s preference is $\succeq^* \in \mathcal{P}$ and \succeq_n is the Kemeny-minimizing estimator for Σ_n, then, $\succeq_n \to \succeq^*$ in probability.
The VC dimension of \mathcal{P} is the largest cardinality of an experiment that can always be rationalized by \mathcal{P}.

A measure of how flexible \mathcal{P}; how prone it is to overfitting.
Think of a game between Alicia and Roberto
Alicia defends \mathcal{P}; Roberto questions it.
Given is k
Alicia proposes a choice experiment of size k
Roberto fills in choices adversarily.
Alicia wins if she can rationalize the choices using \mathcal{P}.
The VC dimension of \mathcal{P} is the largest k for which Alicia always wins.
Convergence rates

- ρ a metric on preferences.

Theorem

Under the same conditions as in Part A,

$$N(\eta, \delta) \leq \frac{2}{r(\eta)^2} \left(\sqrt{\frac{2}{\delta}} + C \sqrt{VC(P)} \right)^2$$

with C a universal constant.
Convergence rates

- ρ a metric on preferences.
- $N(\eta, \delta)$: smallest value of N such that for all $n \geq N$, and all subject preferences $\succeq^* \in \mathcal{P}$,

$$\Pr(\rho(\succeq_n, \succeq^*) < \eta) \geq 1 - \delta.$$

Theorem

Under the same conditions as in Part A,

$$N(\eta, \delta) \leq \frac{2}{r(\eta)^2} \left(\sqrt{\frac{2}{\delta}} + C \sqrt{\text{VC}(\mathcal{P})} \right)^2$$

with C a universal constant.
Convergence rates

- ρ a metric on preferences.
- $N(\eta, \delta)$: smallest value of N such that for all $n \geq N$, and all subject preferences $\succeq^* \in \mathcal{P}$,

$$\Pr(\rho(\succeq_n, \succeq^*) < \eta) \geq 1 - \delta.$$

- $\mu(\succeq'; \succeq)$: prob. choice of preference \succeq is consistent with \succeq'.

$$r(\eta) = \inf \left\{ \mu(\succeq; \succeq) - \mu(\succeq'; \succeq) : \succeq, \succeq' \in \mathcal{P}, \rho(\succeq, \succeq') \geq \eta \right\}.$$

Theorem

Under the same conditions as in Part A,

$$N(\eta, \delta) \leq \frac{2}{r(\eta)^2} \left(\sqrt{2/\delta} + C \sqrt{\text{VC}(\mathcal{P})} \right)^2$$

with C a universal constant.
Convergence rates

- \(\rho \) a metric on preferences.
- \(N(\eta, \delta) \) : smallest value of \(N \) such that for all \(n \geq N \), and all subject preferences \(\succeq^* \in \mathcal{P} \),

\[
\Pr(\rho(\succeq_n, \succeq^*) < \eta) \geq 1 - \delta.
\]

- \(\mu(\succeq'; \succeq) \) : prob. choice of preference \(\succeq \) is consistent with \(\succeq' \).

\[
r(\eta) = \inf \{ \mu(\succeq; \succeq) - \mu(\succeq'; \succeq) : \succeq, \succeq' \in \mathcal{P}, \rho(\succeq, \succeq') \geq \eta \}.
\]

- \(\text{VC}(\mathcal{P}) \) the VC dimension of the class \(\mathcal{P} \).

Theorem

Under the same conditions as in Part A,

\[
N(\eta, \delta) \leq \frac{2}{r(\eta)^2} \left(\sqrt{\frac{2}{\delta}} + C \sqrt{\text{VC}(\mathcal{P})} \right)^2
\]

with \(C \) a universal constant.
Expected utility

1. \(X \) is the set of lotteries over \(d \) prizes.
2. \(\mathcal{P} \) is the set of nonconstant EU preferences: there are always lotteries \(p, p' \) such as \(p \) is strictly preferred to \(p' \).

This preference environment satisfies Assumptions 1 and 2.

Suppose: there is \(C > 0 \) and \(k > 0 \) s.t

\[
q(x, y; \succeq) \geq \frac{1}{2} + C(v \cdot x - v \cdot y)^k,
\]

when \(x \succeq y \) and \(v \) represents \(\succeq \).
Under these assumptions, we can bound $r(\eta)$ and $VC(\mathcal{P})$, which implies

$$N(\eta, \delta) = O \left(\frac{1}{\delta \eta^{4d-2}} \right).$$

Other examples: Cobb-Douglas, CES, and CARA subjective EU preferences, and intertemporal choice with discounted, Lipschitz-bounded utilities.
Monotone preferences

- K be a compact set in $X \equiv \mathbb{R}^d_{++}$, and fix $\theta > 0$.
- \mathcal{P} has finite VC-dimension and is identified on K.
- λ is the uniform probability measure on $K^{\theta/2}$.
- q satisfies: probability of choosing y instead of x when $x \succ y$ is a function of $\|x - y\|$.

Proposition

The Kemeny-minimizing estimator is consistent and, as $\eta \to 0$ and $\delta \to 0$,

$$N(\eta, \delta) = O \left(\frac{1}{\eta^{2d+2} \ln \frac{1}{\delta}} \right).$$
Applications: preferences from utilities

A set \mathcal{P} is defined from utilities when there is a class \mathcal{U} of utility functions such that for all $\succeq \in \mathcal{P}$

$$x \succeq y \iff U(x) \geq U(y)$$

for some $U \in \mathcal{U}$.

Proposition 1

Under Assumption 1, if \mathcal{U} is compact and represents locally strict preferences, then Assumption 2 is met.

Implied by the continuity theorem of Border and Segal (1994).
Revisit the case of expected utility preferences:

1. \(\mathcal{X} \) is the set of lotteries over \(d \) prizes.
2. \(\mathcal{P} \) is the set of nonconstant EU preferences: there are always lotteries \(p, p' \) such as \(p \) is strictly preferred to \(p' \).

This preference environment satisfies Assumptions 1 and 2. When the probability of error of choosing \(y \) instead of \(x \) when \(x \succ y \) is a function of \(\|x - y\| \), we can bound \(r(\eta) \) and \(VC(\mathcal{P}) \), which implies

\[
N(\eta, \delta) = O \left(\frac{1}{\delta \eta^{4d-2}} \right).
\]
Literature

Afriat’s theorem and revealed preference tests: Afriat (1967); Diewert (1973); Varian (1982); Matzkin (1991); Chavas and Cox (1993); Brown and Matzkin (1996); Forges and Minelli (2009); Carvajal, Deb, Fenske, and Quah (2013); Reny (2015); Nishimura, Ok, and Quah (2017)

Recoverability: Varian (1982); Cherchye, De Rock, and Vermeulen (2011)

Approximation: Mas-Colell (1978); Forges and Minelli (2009); Kübler and Polemarchakis (2017); Polemarchakis, Selden, and Song (2017)

Identification: Matzkin (2006); Gorno (2019)

Econometric methods: Matzkin (2003); Blundell, Browning, and Crawford (2008); Blundell, Kristensen, and Matzkin (2010); Halevy, Persitz, and Zrill (2018)
Call a dominance relation any binary relation on \(X \) that is not reflexive.

Say that \(\succeq \) is strictly monotone wrt \(\succ \) if \(x \succ y \) implies \(x \succ y \).

Say that \(\succeq \) is Grodal-transitive if \(x \succeq y \succ z \succeq w \) implies \(x \succeq w \).

Proposition 2

Take a set of alternatives \(X \) that meets Assumption 1, and suppose:

1. \(\succ \) is a dominance relation that is open,
2. for each \(x \), there are \(y, z \) arbitrarily close to \(x \) such that \(y \succ x \) and \(x \succ z \).

Then the class of preferences that are Grodal-transitive and strictly monotone wrt \(\succ \) meets Assumption 2.
Example: back to preferences over commodity bundles.

- There are d commodities.
- $X \equiv \mathbb{R}^d_{++}$, where for $(x_1, \ldots, x_d) \in X$, x_i is quantity of good i consumed.
- $x \gg y$ iff $x_i > y_i$ for all $i = 1, \ldots, d$.

The set of all preferences that are Grodal-transitive and strictly monotone wrt \gg meets Assumption 2.
Conclusion

- Binary choice
- Finite data
- “Consistency” – Large sample theory
- Unified framework: RP and econometrics.

Applicable to:

- Large-scale (online) experiments/surveys.
- Voting (roll-call data).