Recovery of utilities and preferences from finite choice data

C. Chambers F. Echenique N. Lambert Georgetown UC Berkeley USC

Renmin University of China — May 10th, 2023

Based on two papers:

- ► Recovering preferences from finite data (published).
- Recovering utility (available soon!)

Model

Alice (an experimenter)

Bob (a subject)

► Alice presents Bob with choice problems:

"Hey Bob would you like x or y?"

x vs. y

- Bob chooses one alternative.
- Rinse and repeat \rightarrow dataset of k choices.

- An experimenter and a subject.
- Subject makes choices according to some \succeq^* , or utility u^* , on set X.
- ► Experimenter conducts a finite choice experiment of "size" k: k questions, each one a binary choice problem.
- Preference \succeq_k or utility u_k as rationalizations or estimates.

How are \succeq_k , \succeq^* , u_k and u^* related?

Subject chooses among alternatives: $X = \mathbf{R}_{+}^{n}$.

• Choices come from \succeq^* , a continuous preference.

•
$$\Sigma_i = \{x_i, y_i\}.$$

- A finite experiment: choose an element from Σ_i , i = 1, ..., k.
- Assumption: $\Sigma_{\infty} = \cup_{k=1}^{\infty} \Sigma_k$ is dense.

• *y*

V

• y' • Y

- $U \succ^* V$
- ► $\exists x' \in U$ and $y' \in V$ s.t $\forall k \exists$ rationalizing \succeq_k , with $y' \succ_k x'$

- ▶ Infinite data (\succeq^* on X): observe \succeq^* ; so $x' \succ^* y'$
- "Limiting" infinite data $(\Sigma_{\infty} = \bigcup_{k=1}^{\infty} \Sigma_k)$: $x' \succ y' \forall \succeq \text{ s.t. } \succeq |_{\Sigma_{\infty}} = \succeq^* |_{\Sigma_{\infty}}$.
- Finite data: (Σ₁..., Σ_k) can't rule out y' ≻_k x', no matter how large k.

Let $X = \mathbf{R}^n_+$.

Fix a continuous preference \succeq^* on X.

Proposition (informal)

There exists rationalizing \succeq_k for each k s.t

complete indifference $= \lim_{k \to \infty} \succeq_k$

Set of alternatives X = [0, 1].

- Left: the subject prefers x to y iff $x \ge y$.
- ► Right: the subject is completely indifferent.

Preference 1. 0.9 0.8 0.7 0.6 > 0.50.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0. 1 Х

n=32

Discipline matters.

Empiricism is dangerous.

Inevitable role for theory (a Cartesian imperative).

Choice under uncertainty:

- State space $S = \{s_1, s_2\}$.
- Choice among monetary acts: $x \in \mathbf{R}^{S}$.
- ► Bob is risk-neutral subjective exp. utility maximizer.
- So $x \succeq^* y$ iff $p \cdot x \ge p \cdot y$.
- Preferences described by a prior $p \in \Delta(S)$.

Bob's preferences:

Bob's prior p must be steeper than the blue line, and flatter than the green.

Bob's prior p must be steeper than the blue line, and flatter than the green.

Narrows down unobserved comparison: $x'' \succ^* y''$.

Suppose Alice instead uses the max-min model for Bob:

$$u(x) = \min\{p \cdot x : p \in \Pi\}$$

With two states, Π is described by four parameters. With more than two states, the model is non-parametric.

Then from $y \succ x$ she learns something about the slope of the worst-case priors.

y is chosen over x, and x' over y'.

No inference for x'' and y''.

A more flexible theory may lead to overfitting.

In fact max-min with $|S| \ge 3$ is "hopeless."

Any finite dataset will lead to poor out-of-sample predictions.

Example 5

- Let X = [0,1], $\succeq^* = \ge$ and $u^*(x) = x$.
- ▶ For each k, let $\succeq_k = \ge$ and

$$u_k = \frac{x}{k}.$$

- Then $0 = \lim_k u_k$.
- But $\succeq_k = \succeq^*$ for all k!

Example 5

- Let X = [0,1], $\succeq^* = \ge$ and $u^*(x) = x$.
- For each k, let $\succeq_k \ge$ and

$$u_k = \frac{x}{k}$$

- Then $0 = \lim_k u_k$.
- But $\succeq_k = \succeq^*$ for all k!

(For $\varepsilon > 0$, can choose u_n with $||u_n||_{\infty} = 1$ or $||u_n||_1 = 1$ and $0 = \lim_n u_n(x)$ for all $x \in [0, 1 - \varepsilon]$.)

Utility estimates are more delicate than preferences.

Must choose the right utility representation.

Typical result in decision theory:

"Utility representation iff axioms. Moreover, utility is unique."

Axioms \Rightarrow testable implications. (But may require infinite data.)

 ${\sf Uniqueness} \Rightarrow {\sf identification}.$ But more is needed to ensure utility recovery from finite data.

- ► Alternatives: A topological space X.
- Preference: A complete and continuous binary relation \succeq over X
- $\blacktriangleright \ \mathcal{P}$ a set of preferences.

A pair (X, \mathcal{P}) is a preference environment.

- ► There are *d* prizes.
- X is the set of lotteries over the prizes, $\Delta^{d-1} \subset \mathbf{R}^d$.
- An EU preference ≥ is defined by v ∈ R^d such that p ≥ p' iff v · p ≥ v · p'.
- \mathcal{P} is set of all the EU preferences.

Alice wants to recover Bob's preference from his choices.

- Binary choice problem : $\{x, y\} \subset X$.
- ▶ Bob is asked to choose x or y. Behavior encoded in a choice function c({x, y}) ∈ {x, y}.
- If Bob's preference is \succeq then $c(\{x, y\}) \succeq x$ and $c(\{x, y\}) \succeq y$.
- ► Partial observability: indifference is not observable.

Alice gets finite dataset.

- Experiment of size $k : \Sigma^k = \{\Sigma_1, \dots, \Sigma_k\}$ with $\Sigma_i = \{x_i, y_i\}$.
- Set of growing experiments: $\{\Sigma^k\} = \{\Sigma^1, \Sigma^2, \dots\}$ with $\Sigma^k \subset \Sigma^{k+1}$.

Afriat's theorem and revealed preference tests: Afriat (1967); Diewert (1973); Varian (1982); Matzkin (1991); Chavas and Cox (1993); Brown and Matzkin (1996); Forges and Minelli (2009); Carvajal, Deb, Fenske, and Quah (2013); Reny (2015); Nishimura, Ok, and Quah (2017)

Recoverability: Varian (1982); Cherchye, De Rock, and Vermeulen (2011); Chambers, Echenique and Lambert (2021).

Consistency: Mas-Colell (1978); Forges and Minelli (2009); Kübler and Polemarchakis (2017); Polemarchakis, Selden, and Song (2017)

Identification: Matzkin (2006); Gorno (2019)

<u>Econometric methods</u>: Matzkin (2003); Blundell, Browning, and Crawford (2008); Blundell, Kristensen, and Matzkin (2010); Halevy, Persitz, and Zrill (2018)

- (X, \mathcal{P}) preference env.
- ► *c* encodes choice
- Σ^k seq. of experiments

- A preference ≥ weakly rationalizes the observed choices on Σ^k if c({x, y}) ≥ x and c({x, y}) ≥ y for all {x, y} ∈ Σ^k.
- A preference ≥ strongly rationalizes the observed choices on Σ^k if c({x, y}) ≻ z for z ∈ {x, y}, z ≠ c({x, y}), for all {x, y} ∈ Σ^k.

Choice of topology: closed convergence topology.

- Standard topology on preferences (Kannai, 1970; Mertens (1970); Hildenbrand, 1970).
- $\succeq_n \rightarrow \succeq$ when:

For all $(x, y) \in \succeq$, there exists a seq. $(x_n, y_n) \in \succ_n$ that converges to (x, y).

If a subsequence $(x_{n_k}, y_{n_k}) \in \succeq_{n_k}$ converges, the limit belongs to \succeq .

- ► If X is compact and metrizable, same as convergence under the Hausdorff metric.
- ➤ X Euclidean and B the strict parts of cont. weak orders. Then it's the smallest topology for which the set

$$\{(x, y, \succ) : x \in X, y \in X, \succ \in \mathcal{B} \text{ and } x \succ y\}$$

is open.

Lemma

Let X be a locally-compact Polish (separable and completely metrizable) space. Then the set of all continuous binary relations on X is a compact metrizable space.

Let $\{u_k\}$ be a sequence of functions,

$$u_k \colon X \to \mathbf{R}.$$

The sequence *convergences compactly* to $u: X \to \mathbf{R}$ if for every compact $K \subseteq X$,

$$u_k|_K \rightarrow u|_K$$

uniformly.

Turn out to be the right topology for utility functions when preferences are endowed with the closed convergence topology.

Let X be

- ► $X = \mathbf{R}^n$.
- or X = Δ([a, b])^Ω (set of "monetary" Anscombe-Aumann acts) with finite Ω.

Obs.

- ► Objective monotonicity.
- Connection between order and topology on X.
- Some of our results are more general.

A sequence of experiments $\{\Sigma^k\}$, with $\Sigma^k = \{\Sigma_1, \dots, \Sigma_k\}$, is exhaustive when:

- 1. $\bigcup_{i=1}^{\infty} \Sigma_i$ is dense in X.
- 2. For all $x, y \in \bigcup_{i=1}^{\infty} \Sigma_i$ with $x \neq y$, there exists i s.t $\Sigma_i = \{x, y\}$.

Theorem

Let

- \succeq^* be monotone and cont.;
- \succeq_k strongly rationalize the k-sized choice data generated by \succeq^* .

Then,

- $\succeq_k \rightarrow \succeq^*$ (in the topology of closed convergence).
- For any utility u^{*} for <u>≻</u>* ∃ u_k for <u>≻</u>_k s.t u_k → u^{*} (in the topology of compact convergence).

- Monotonicity.
- ► Convergence of *any arbitrary* preference rationalization.
- Utility can't be arbitrary. Only get convergence of selected utility estimates. Require an identification theorem for each specific theory.

Why does monotonicity help?

Recall Example 1

- ► $x \succ^* y$
- ► $U \succ^* V$
- ► $\exists x' \in U$ and $y' \in V$ s.t $y' \succ_k x'$ for some rationalizing \succeq_k
- But $x' \succ y'$. $\forall \succeq \text{ s.t. } \succeq \text{ is cont. and}$ $\succeq |_B = \succeq^* |_B.$

Let $X = \mathbf{R}^n$.

Let $\mathcal{P}^k(c)$ be the set of continuous and strictly monotone preferences that weakly rationalize the k data.

For a set of binary relations S, define diam $(S) = \sup_{(\succeq,\succeq')\in S^2} \delta_C(\succeq,\succeq')$ to be the diameter of S according to the metric δ_C which generates the topology on preferences.

Theorem

One of the following holds:

- 1. There is k such that $\mathcal{P}^k(c) = \emptyset$.
- 2. $\lim_{k\to\infty} \operatorname{diam}(\mathcal{P}^k(c)) \to 0.$

A preference \succeq is *locally strict* if

 $x \succeq y \Longrightarrow$ in every nbd. of (x, y), there exists (x', y') with $x' \succ y'$

(Border and Segal, 1994).

Let $X \subseteq \mathbf{R}^n$. and \mathcal{P} be a closed set of locally strict preferences on X.

Theorem

Let $\succeq_k \in \mathcal{P}$ weakly rationalize the *k*-sized choice data.

- Then there is a preference $\succeq^* \in \mathcal{P}$ s.t $\succeq_k \rightarrow \succeq^*$.
- The limiting preference is unique: if, for every k, ∠'_k ∈ P rationalizes the k-data, then the same limit ∠'_k → ∠* obtains.

Obs. that \succeq^* generating the choice is not a hypothesis. May view this result as a definition of preference.

Obs. doesn't require monotonicity.

```
(This result is in CEL (2021))
```

Utility functions

Finite state space: S.

Monetary consequences: $[a, b] \subseteq \mathbf{R}$

Anscombe-Aumann acts: $f : S \rightarrow \Delta([a, b])$

Preferences on $\Delta([a, b])^S$.

Let U be the set of all continuous and monotone weakly increasing functions $u : [a, b] \rightarrow \mathbf{R}$ with u(a) = 0 and u(b) = 1.

A pair (V, u) is a standard representation if $V : \Delta([a, b])^S \to \mathbf{R}$ and $u \in U$ are continuous functions such that $v(p, \ldots, p) = \int_{[a,b]} u \, dp$, for all constant acts (p, \ldots, p) .

(V, u) is aggregative if there is an aggregator $H : [0, 1]^S \to \mathbb{R}$ with $V(f) = H((\int u \, df(s))_{s \in S})$ for $f \in \Delta([a, b])^S$.

An aggregative representation with aggregator H is denoted by (V, u, H).

A preference \succeq on $\Delta([a, b])^S$ is *standard* if it is weakly monotone, and there is a standard representation (V, u) in which V represents \succeq .

Variational preferences (Maccheroni et al 2006) are standard and aggregative. Let

$$V(f) = \inf\{\int v(f(s))d\pi(s) + c(\pi) : \pi \in \Delta(S)\}$$

where

- 1. $v : \Delta([a, b]) \rightarrow \mathbf{R}$ is continuous and affine.
- 2. $c : \Delta(S) \to [0, \infty]$ is lower semicontinuous, convex and grounded (meaning that $\inf\{c(\pi) : \pi \in \Delta(S)\} = 0$).

Let $H: [0,1]^S \to \mathbf{R}$ be $H(x) = \inf\{\sum_{s \in S} x(s)\pi(s) + c(\pi) : \pi \in \Delta(S)\}$

Theorem

Let \succeq be a standard preference with standard representation (V, u), and $\{\succeq^k\}$ a sequence of standard preferences, each with a standard representation (V^k, u^k).

- 1. If $\succeq^k \rightarrow \succeq$, then $(V^k, u^k) \rightarrow (V, u)$.
- 2. If, in addition, these preferences are aggregative with representations (V^k, u^k, H^k) and (V, u, H), then $H^k \to H$.

Given (X, \mathcal{P}) . We change:

- How subjects make choices: they do not exactly follow a preference, but randomly deviate from it.
- How experiments are generated.

- 1. In a choice problem, alternatives drawn iid according to sampling distribution λ .
- Subjects make "mistakes." Upon deciding on {x, y}, a subject with preference ≽ chooses x over y with probability q(≿; x, y) (error probability function).
- 3. Only assumption: if $x \succ y$ then $q(\succeq; x, y) > 1/2$.
- 4. "Spatial" dependence of q on x and y is arbitrary.

Kemeny-minimizing estimator: find a preference in \mathcal{P} that minimizes the number of observations inconsistent with the preference.

- "Model free:" to compute estimator don't need to assume a specific q or λ.
- May be computationally challenging (depending on \mathcal{P}).

ASSUMPTION 1 : X is a locally compact, separable, and completely metrizable space.

Assumption 2 : \mathcal{P} is a closed set of locally strict preferences.

ASSUMPTION 3': λ has full support and for all $\succeq \in \mathcal{P}$, $\{(x, y) : x \sim y\}$ has λ -probability 0.

Theorem

Under Assumptions (1), (2), (3'), if the subject's preference is $\succeq^* \in \mathcal{P}$ and \succeq_n is the Kemeny-minimizing estimator for Σ_n , then, $\succeq_n \to \succeq^*$ in probability.

- The VC dimension of \mathcal{P} is the largest cardinality of an experiment that can always be rationalized by \mathcal{P} .
- A measure of how flexible \mathcal{P} ; how prone it is to overfitting.

- Think of a game between Alicia and Roberto
- Alicia defends \mathcal{P} ; Roberto questions it.
- ► Given is k
- Alicia proposes a choice experiment of size k
- Roberto fills in choices adversarily.
- Alicia wins if she can rationalize the choices using \mathcal{P} .
- The VC dimension of \mathcal{P} is the largest k for which Alicia always wins.

• ρ a metric on preferences.

Theorem

Under the same conditions as in Part A,

$$N(\eta, \delta) \leq rac{2}{r(\eta)^2} \left(\sqrt{2/\delta} + C\sqrt{\operatorname{VC}(\mathcal{P})}
ight)^2$$

- ρ a metric on preferences.
- N(η, δ) : smallest value of N such that for all n ≥ N, and all subject preferences ≿* ∈ P,

 $\Pr(\rho(\succeq_n,\succeq^*) < \eta) \ge 1 - \delta.$

Theorem

Under the same conditions as in Part A,

$$N(\eta, \delta) \leq rac{2}{r(\eta)^2} \left(\sqrt{2/\delta} + C\sqrt{\operatorname{VC}(\mathcal{P})}
ight)^2$$

- ρ a metric on preferences.
- N(η, δ) : smallest value of N such that for all n ≥ N, and all subject preferences ≿* ∈ P,

$$\Pr(\rho(\succeq_n,\succeq^*) < \eta) \ge 1 - \delta.$$

• $\mu(\succeq'; \succeq)$: prob. choice of preference \succeq is consistent with \succeq' .

$$r(\eta) = \inf \left\{ \mu(\succeq; \succeq) - \mu(\succeq'; \succeq) : \succeq, \succeq' \in \mathcal{P}, \rho(\succeq, \succeq') \ge \eta \right\}.$$

Theorem

Under the same conditions as in Part A,

$$N(\eta, \delta) \leq rac{2}{r(\eta)^2} \left(\sqrt{2/\delta} + C\sqrt{\operatorname{VC}(\mathcal{P})}
ight)^2$$

- ρ a metric on preferences.
- N(η, δ) : smallest value of N such that for all n ≥ N, and all subject preferences ≥* ∈ P,

$$\Pr(\rho(\succeq_n,\succeq^*) < \eta) \ge 1 - \delta.$$

• $\mu(\succeq'; \succeq)$: prob. choice of preference \succeq is consistent with \succeq' .

$$r(\eta) = \inf \left\{ \mu(\succeq; \succeq) - \mu(\succeq'; \succeq) : \succeq, \succeq' \in \mathcal{P}, \rho(\succeq, \succeq') \ge \eta \right\}.$$

• $VC(\mathcal{P})$ the VC dimension of the class \mathcal{P} .

Theorem

Under the same conditions as in Part A,

$$N(\eta, \delta) \leq rac{2}{r(\eta)^2} \left(\sqrt{2/\delta} + C\sqrt{\operatorname{VC}(\mathcal{P})}
ight)^2$$

Expected utility

- 1. X is the set of lotteries over d prizes.
- 2. \mathcal{P} is the set of nonconstant EU preferences: there are always lotteries p, p' such as p is strictly preferred to p'.

This preference environment satisfies Assumptions 1 and 2.

Suppose: there is C > 0 and k > 0 s.t

$$q(x,y; \succeq) \geq \frac{1}{2} + C(v \cdot x - v \cdot y)^k,$$

when $x \succeq y$ and v represents \succeq .

Under these assumptions, we can bound $r(\eta)$ and VC(\mathcal{P}), which implies

$$N(\eta, \delta) = O\left(rac{1}{\delta \eta^{4d-2}}
ight)$$

Other examples: Cobb-Douglas, CES, and CARA subjective EU preferences, and intertemporal choice with discounted, Lipschitz-bounded utilities.

Monotone preferences

- *K* be a compact set in $X \equiv \mathbf{R}_{++}^d$, and fix $\theta > 0$.
- \mathcal{P} has finite VC-dimension and is identified on K
- λ is the uniform probability measure on $K^{\theta/2}$,
- *q* satisfies: probability of choosing *y* instead of *x* when *x* ≻ *y* is a function of ||*x* − *y*||,

Proposition

The Kemeny-minimizing estimator is consistent and, as $\eta \rightarrow 0$ and $\delta \rightarrow 0$,

$$N(\eta, \delta) = O\left(rac{1}{\eta^{2d+2}}\lnrac{1}{\delta}
ight).$$

Applications: preferences from utilities

A set \mathcal{P} is defined fom utilities when there is a class \mathcal{U} of utility functions such that for all $\succeq \in \mathcal{P}$

$$x \succeq y \qquad \Leftrightarrow \qquad U(x) \ge U(y)$$

for some $U \in \mathcal{U}$.

Proposition 1

Under Assumption 1, if \mathcal{U} is compact and represents locally strict preferences, then Assumption 2 is met.

Implied by the continuity theorem of Border and Segal (1994).

Revisit the case of expected utility preferences:

- 1. X is the set of lotteries over d prizes.
- 2. \mathcal{P} is the set of nonconstant EU preferences: there are always lotteries p, p' such as p is strictly preferred to p'.

This preference environment satisfies Assumptions 1 and 2. When the probability of error of choosing y instead of x when $x \succ y$ is a function of ||x - y||, we can bound $r(\eta)$ and $VC(\mathcal{P})$, which implies

$$N(\eta, \delta) = O\left(rac{1}{\delta \eta^{4d-2}}
ight).$$

Afriat's theorem and revealed preference tests: Afriat (1967); Diewert (1973); Varian (1982); Matzkin (1991); Chavas and Cox (1993); Brown and Matzkin (1996); Forges and Minelli (2009); Carvajal, Deb, Fenske, and Quah (2013); Reny (2015); Nishimura, Ok, and Quah (2017)

Recoverability: Varian (1982); Cherchye, De Rock, and Vermeulen (2011)

Approximation: Mas-Colell (1978); Forges and Minelli (2009); Kübler and Polemarchakis (2017); Polemarchakis, Selden, and Song (2017)

Identification: Matzkin (2006); Gorno (2019)

<u>Econometric methods</u>: Matzkin (2003); Blundell, Browning, and Crawford (2008); Blundell, Kristensen, and Matzkin (2010); Halevy, Persitz, and Zrill (2018)

Applications: monotone preferences

- ► Call a dominance relation any binary relation on X that is not reflexive.
- Say that \succeq is strictly monotone wrt \triangleright if $x \triangleright y$ implies $x \succ y$.
- Say that \succeq is Grodal-transitive if $x \succeq y \succ z \succeq w$ implies $x \succeq w$.

Proposition 2

Take a set of alternatives X that meets Assumption 1, and suppose:

- 1. \triangleright is a dominance relation that is open,
- 2. for each x, there are y, z arbitrarily close to x such that $y \triangleright x$ and $x \triangleright z$.

Then the class of preferences that are Grodal-transitive and strictly monotone wrt \triangleright meets Assumption 2.

Example: back to preferences over commodity bundles.

- ► There are *d* commodities.
- $X \equiv \mathbb{R}^{d}_{++}$, where for $(x_1, \ldots, x_d) \in X$, x_i is quantity of good *i* consumed.
- $x \gg y$ iff $x_i > y_i$ for all $i = 1, \ldots, d$.

The set of all preferences that are Grodal-transitive and strictly monotone wrt \gg meets Assumption 2.

- Binary choice
- Finite data
- ► "Consistency" Large sample theory
- ► Unified framework: RP and econometrics.

Applicable to:

Large-scale (online) experiments/surveys.

Voting (roll-call data).