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Based on two papers:
» Recovering preferences from finite data (published).

» Recovering utility (available soon!)
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Alice (an experimenter)

Bob (a subject)
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» Alice presents Bob with choice problems:

“Hey Bob would you like x or y?"
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» Bob chooses one alternative.

» Rinse and repeat — dataset of k choices.
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v

An experimenter and a subject.

v

Subject makes choices according to some >*, or utility u*, on set X.

v

Experimenter conducts a finite choice experiment of ‘“size” k: k
questions, each one a binary choice problem.

v

Preference > or utility u, as rationalizations or estimates.

How are =4, =*, ux and u* related?
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Example 1

Subject chooses among alternatives: X = R

v

Choices come from =*, a continuous preference.

i ={x,yi}.
A finite experiment: choose an element from ¥;, i=1,... k.

v

v

v

Assumption: ¥, = Uz2 ;34 is dense.
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Example 1

oy

> x =%y

® X
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Example 1

°y
oy
> x>-*y
us=*v
» X' e Uand y' € V st Vk 3

rationalizing =, with y’ = x’

U » But x' = y/'. V> s.t. = is cont. and
=I5 = =50

v

o X
® X

Chambers-Echenique-Lambert Recovery



Example 1: a “discontinuity.”

» Infinite data (=* on X): observe =*; so x’ >=* y’
» “Limiting” infinite data (X = U2 X):
x>~ y’ V= s.t. = |zoo == |Zoo'

» Finite data: (X1...,X()
can't rule out y’ = x/, no matter how large k.
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No amount of finite data may correct
a mistaken inference.

Even when the (limiting) infinite data
set leaves no room for error.
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Example 2

Let X = R™.

Fix a continuous preference =* on X.

Proposition (informal)

There exists rationalizing > for each k s.t

complete indifference = klim >k
— 00
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Example 2

Set of alternatives X = [0, 1].
» Left: the subject prefers x to y iff x > y.
» Right: the subject is completely indifferent.

Preference Preference
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x x

Chambers-Echenique-Lambert Recovery



Example 2

Preference
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Example 2

Preference

0. 01 02 03 04 05 06 07 08 09 1.
X

n=2

Chambers-Echenique-Lambert Recovery




Example 2

Preference

n=4
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Example 2

Preference

n=6
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Example 2

Preference
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Example 2

Preference




Example 2

Preference
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Discipline matters.

Empiricism is dangerous.

Inevitable role for theory (a Cartesian
imperative).
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Example 3

Choice under uncertainty:
» State space S = {s1,}.
» Choice among monetary acts: x € R>.
» Bob is risk-neutral subjective exp. utility maximizer.

» Sox=*yiffp-x>p-y.

v

Preferences described by a prior p € A(S).
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Example 3

Bob's preferences:
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Example 3

Suppose y is chosen over x, and x’ over y’.

X

o X
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Example 3

Suppose y is chosen over x, and x” over y’.
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Example 3

Suppose y is chosen over x, and x’ over y’.

Bob's prior p must be steeper than the blue line, and flatter than the
green.
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Example 3

Suppose y is chosen over x, and x’ over y’.

Bob's prior p must be steeper than the blue line, and flatter than the
green.
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Example 3

Suppose y is chosen over x, and x” over y’.

Narrows down unobserved comparison: x” =* y”.
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Example 3

Suppose Alice instead uses the max-min model for Bob:

u(x) =min{p-x:pell}

With two states, I1 is described by four parameters. With more than two
states, the model is non-parametric.

Then from y > x she learns something about the slope of the worst-case
priors.
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Example 3

y is chosen over x, and x’ over y'.
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Example 3

y is chosen over x, and x’ over y'.

No inference for x” and y”.
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A more flexible theory may lead to
overfitting.

In fact max-min with |S| > 3 is
“hopeless.”

Any finite dataset will lead to poor
out-of-sample predictions.
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Example 4
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Example 4
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Example 4
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Example 4
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Model of preferences must be closed.

Can't allow for approximate behavior
to “escape.”
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Example 5

» Let X =[0,1], =*=> and u*(x) = x.
» For each k, let =,=> and
X
U = 5
» Then 0 = limy u.

v

But =,=>"* for all k!
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Example 5

v

Let X =[0,1], =*=> and uv*(x) = x.
For each k, let =,=> and

v

x| X

Uk

v

Then 0 = limy uy.
But =,=>"* for all k!

v

(For € > 0, can choose uj, with ||up|lec =1 or ||upljs =1 and
0 = lim,, up(x) for all x € [0,1 —¢].)
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Utility estimates are more delicate
than preferences.

Must choose the right utility
representation.
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Lessons for DT

WMV

Typical result in decision theory:
“Utility representation iff axioms. Moreover, utility is unique.”

Axioms = testable implications. (But may require infinite data.)

Uniqueness = identification. But more is needed to ensure utility recovery
from finite data.
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» Alternatives: A topological space X.
» Preference: A complete and continuous binary relation = over X

» P a set of preferences.

A pair (X, P) is a preference environment.
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Example: Expected utility preferences

v

There are d prizes.
X is the set of lotteries over the prizes, A9~1 C RY.

>

» An EU preference > is defined by v € RY such that p = p’ iff
vep>v-p.

» P is set of all the EU preferences.
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Alice wants to recover Bob's preference from his choices.

v

Binary choice problem : {x,y} C X.

v

Bob is asked to choose x or y.
Behavior encoded in a choice function c({x, y}) € {x,y}.

If Bob's preference is = then c({x,y}) = x and c({x,y}) = y.

Partial observability: indifference is not observable.

v

v
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Alice gets finite dataset.

» Experiment of size k : ¥k = {¥;,..., %, } with Z; = {x;, y;}.
» Set of growing experiments: {¥*} = {¥! ¥2 ...} with £k ¢ T«*+1
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Afriat’s theorem and revealed preference tests: Afriat (1967);

Diewert (1973); Varian (1982); Matzkin (1991); Chavas and Cox (1993);
Brown and Matzkin (1996); Forges and Minelli (2009); Carvajal, Deb,
Fenske, and Quah (2013); Reny (2015); Nishimura, Ok, and Quah (2017)

Recoverability: Varian (1982); Cherchye, De Rock, and Vermeulen (2011);
Chambers, Echenique and Lambert (2021).

Consistency: Mas-Colell (1978); Forges and Minelli (2009); Kiibler and
Polemarchakis (2017); Polemarchakis, Selden, and Song (2017)

Identification: Matzkin (2006); Gorno (2019)

Econometric methods: Matzkin (2003); Blundell, Browning, and Crawford
(2008); Blundell, Kristensen, and Matzkin (2010); Halevy, Persitz, and
Zrill (2018)
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» (X, P) preference env.
» c encodes choice

» Y seq. of experiments
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Rationalization

» A preference > weakly rationalizes the observed choices on XX if
c({x,y}) = x and c({x,y}) = y for all {x,y} € X*.
» A preference > strongly rationalizes the observed choices on X if

c({x,y}) = z for z € {x,y}, z # c({x,y}), for all {x,y} € XX
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Topology on preferences

Choice of topology: closed convergence topology.

» Standard topology on preferences (Kannai, 1970; Mertens (1970);
Hildenbrand, 1970).
» ~,—> when:
For all (x,y) €>, there exists a seq. (xp, y») €>, that converges to

(x,)-
If a subsequence (Xn,,¥n,) €= n, converges, the limit belongs to .

» If X is compact and metrizable, same as convergence under the
Hausdorff metric.

» X Euclidean and B the strict parts of cont. weak orders. Then it's the
smallest topology for which the set

{(x,y,=):xe X,y e X,=€Band x > y}

is open.
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Topology on preferences

Let X be a locally-compact Polish (separable and completely metrizable)
space. Then the set of all continuous binary relations on X is a compact
metrizable space.
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Topology of compact convergence

Let {ux} be a sequence of functions,
uy . X — R.

The sequence convergences compactly to u: X — R if for every compact
K C X,
uklk — ulk

uniformly.

Turn out to be the right topology for utility functions when preferences are
endowed with the closed convergence topology.
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Let X be
» X =R".

» or X = A([a, b])? (set of “monetary” Anscombe-Aumann acts) with
finite Q.

Obs.
» Objective monotonicity.
» Connection between order and topology on X.

» Some of our results are more general.
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A sequence of experiments {¥*}, with £k = {¥,... ¥}, is exhaustive
when:

1. U2 X is dense in X.
2. Forall x,y € [J72; ¥; with x # y, there exists i s.t ¥; = {x, y}.
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Results

Let

» >* be monotone and cont_;

» > strongly rationalize the k-sized choice data generated by >*.
Then,

» =x—>" (in the topology of closed convergence).

» For any utility v* for =* 3 uy for = s.t ux — u* (in the topology of
compact convergence).
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Discussion.

» Monotonicity.
» Convergence of any arbitrary preference rationalization.

» Utility can’t be arbitrary. Only get convergence of selected utility
estimates. Require an identification theorem for each specific theory.
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Why does monotonicity help?

Chambers-Echenique-Lambert Recovery



Recall Example 1

°y
oy

v

x ="y

u=*Vv

» X' e Uand y' € V sty = x for
some rationalizing =

U » But x' = y’. V> st. = is cont. and
= |B == |s-

v

o X
® X
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Monotone rationalizations.

oy

*

> Xy
» U=*V

o X
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Monotone rationalizations.

74
.yl
oy
> x =%y
» U-*V
» Let (x',y') e Ux V.
U
o X
.X/

Chambers-Echenique-Lambert Recovery



Monotone rationalizations.

> x>y

Uus=*Vv

Let (x',y') € U x V.
» — IxX",y" € B

u » X" <X

v

v

> yl Sy”
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Monotone rationalizations.

> x =%y

Uus=*Vv

Let (x,y') e Ux V.
» — X",y € B

v

v

7 /
» x' < X
U =

_y/Sy//
! ! ! /
X = X'>x" = y'" >y

v
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Weak rationalizations

Let X =R".
Let P*(c) be the set of continuous and strictly monotone preferences that

weakly rationalize the k data.

For a set of binary relations S, define diam(S) = sup(- »1)es2 dc(=, =) to
be the diameter of S according to the metric §¢ which generates the

topology on preferences.

One of the following holds:
1. There is k such that PX(c) = @.
2. limg_o0 diam(Pk(c)) — 0.
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Weak rationalizations

A preference > is locally strict if
x ¥y = in every nbd. of (x, y), there exists (x, y’) with x" > y’

(Border and Segal, 1994).
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Weak rationalizations

Let X C R". and P be a closed set of locally strict preferences on X.

Let >,€ P weakly rationalize the k-sized choice data.

» Then there is a preference =* € P s.t =, — =*.

» The limiting preference is unique: if, for every k, = € P rationalizes
the k-data, then the same limit >} — >* obtains.

Obs. that >=* generating the choice is not a hypothesis. May view this
result as a definition of preference.

Obs. doesn't require monotonicity.

(This result is in CEL (2021))
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Utility functions
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Standard representation

Finite state space: S.
Monetary consequences: [a,b] C R
Anscombe-Aumann acts: f : S — A(][a, b])

Preferences on A([a, b])°.
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Standard representation

Let U be the set of all continuous and monotone weakly increasing
functions v : [a, b] — R with u(a) =0 and u(b) = 1.

A pair (V, u) is a standard representation if V : A([a, b])° — R and u € U
are continuous functions such that v(p,...,p) = f[a b udp, for all

constant acts (p, ..., p).

(V, u) is aggregative if there is an aggregator H : [0,1]° — R with
V(f) = H((J udf(s))ses) for f € A([a, b])°.

An aggregative representation with aggregator H is denoted by (V/, u, H).
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Standard representation

A preference > on A([a, b])° is standard if it is weakly monotone, and
there is a standard representation (V/, u) in which V represents .
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Variational preferences (Maccheroni et al 2006) are standard and
aggregative. Let

mf{/ §))dn(s) + c(x) : 7 € A(S)}

where
1. v: A([a, b]) = R is continuous and affine.

2. ¢: A(S) — [0, 00] is lower semicontinuous, convex and grounded
(meaning that inf{c(7) : m € A(S)} = 0).

Let H:[0,1]° — R be H(x) = inf{}_.cs x(s)m(s) + c(n) : w € A(S)}
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Standard representation

Theorem

Let = be a standard preference with standard representation (V/, u), and
{>*} a sequence of standard preferences, each with a standard
representation (VX uk).
1. If =k—>, then (VK uk) — (V,u).
2. If, in addition, these preferences are aggregative with representations
(VK uk H¥) and (V,u, H), then H* — H.
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Statistical model

Given (X, P). We change:

» How subjects make choices: they do not exactly follow a preference,
but randomly deviate from it.

» How experiments are generated.
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Statistical model

1. In a choice problem, alternatives drawn iid according to sampling
distribution A.

2. Subjects make “mistakes.”
Upon deciding on {x,y}, a subject with preference = chooses x over
y with probability g(>; x, y) (error probability function).

3. Only assumption: if x > y then q(>=; x,y) > 1/2.

4. “Spatial” dependence of g on x and y is arbitrary.
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Kemeny-minimizing estimator: find a preference in P that minimizes the
number of observations inconsistent with the preference.

» “Model free:” to compute estimator don’t need to assume a specific g
or \.

» May be computationally challenging (depending on P).
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AssUMPTION 1 : X is a locally compact, separable,
and completely metrizable space.

ASSUMPTION 2 : P is a closed set of locally strict preferences.

ASSUMPTION 3’ : A has full support and for all = € P,
{(x,y) : x ~ y} has A-probability 0.
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Under Assumptions (1), (2), (3'), if the subject’s preference is =* € P and
>p is the Kemeny-minimizing estimator for ¥, then, =, — =" in
probability.
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Convergence rates: Digression

The VC dimension of P is the largest cardinality of an experiment that can
always be rationalized by P.

A measure of how flexible P; how prone it is to overfitting.
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Convergence rates: Digression

» Think of a game between Alicia and Roberto

» Alicia defends P; Roberto questions it.

» Given is k

» Alicia proposes a choice experiment of size k

» Roberto fills in choices adversarily.

» Alicia wins if she can rationalize the choices using P.

» The VC dimension of P is the largest k for which Alicia always wins.
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Convergence rates

» p a metric on preferences.

Theorem
Under the same conditions as in Part A,

N(1, 6) < (F+c\/\T)

with C a universal constant.

4
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Convergence rates

» p a metric on preferences.
» N(n,d) : smallest value of N such that for all n > N, and all subject
preferences =* € P,

Pr(p(=p,=") <n) =1-4.

Theorem

Under the same conditions as in Part A,
N(1, 6) < (\/ 5+ C/VC(P )

with C a universal constant.

4
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Convergence rates

» p a metric on preferences.

» N(n,d) : smallest value of N such that for all n > N, and all subject
preferences =* € P,

Pr(p(=n,=") <n)>1-0.

» u(>='; =) : prob. choice of preference = is consistent with ='.

r(n) = inf {u(=: =) = u(="s2) - =, = € Pop(=, =) =}

Theorem

Under the same conditions as in Part A,

N(1, 6) < (F+c\/\T)

with C a universal constant.

4
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Convergence rates

» p a metric on preferences.
» N(n,d) : smallest value of N such that for all n > N, and all subject
preferences =* € P,

Pr(p(zn,=%) <n) 2106
» u(>='; =) : prob. choice of preference = is consistent with ='.
r(n) = inf {u(=; =) — (=" =) - =, =" € P, p(=, =) >}
» VC(P) the VC dimension of the class P.

Theorem

Under the same conditions as in Part A,
N(1, 6) < (\/ 5+ C/VC(P )

with C a universal constant.

4
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Expected utility

1. X is the set of lotteries over d prizes.

2. P is the set of nonconstant EU preferences: there are always lotteries
p, p' such as p is strictly preferred to p’.

This preference environment satisfies Assumptions 1 and 2.

Suppose: thereis C > 0 and kK > 0 s.t
1 k
alx,yiz) 2 5+ Clv-x—v-y)",

when x > y and v represents >.
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Expected utility

Under these assumptions, we can bound r(n) and VC(P), which implies

N(1,5) = O (ﬁ) .

Other examples: Cobb-Douglas, CES, and CARA subjective EU
preferences, and intertemporal choice with discounted, Lipschitz-bounded
utilities.
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Monotone preferences

v

K be a compact set in X = Ri+, and fix 6 > 0.
P has finite VC-dimension and is identified on K

A is the uniform probability measure on K%/2,

v

\4

v

q satisfies: probability of choosing y instead of x when x > y is a
function of ||x — y||,

Proposition

The Kemeny-minimizing estimator is consistent and, as 7 — 0 and § — 0,

1 1
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Applications: preferences from utilities

A set P is defined fom utilities when there is a class U of utility functions
such that for all =& P

xry & U(x) > U(y)

for some U € U.

Proposition 1

Under Assumption 1, if U is compact and represents locally strict
preferences, then Assumption 2 is met.

Implied by the continuity theorem of Border and Segal (1994).



Revisit the case of expected utility preferences:
1. X is the set of lotteries over d prizes.
2. P is the set of nonconstant EU preferences: there are always lotteries
p, p' such as p is strictly preferred to p’.

This preference environment satisfies Assumptions 1 and 2. When the
probability of error of choosing y instead of x when x > y is a function of
lIx — y||, we can bound r(n) and VC(P), which implies

N(1,5) = O (577416,_2> .
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Afriat's theorem and revealed preference tests: Afriat (1967);

Diewert (1973); Varian (1982); Matzkin (1991); Chavas and Cox (1993);
Brown and Matzkin (1996); Forges and Minelli (2009); Carvajal, Deb,
Fenske, and Quah (2013); Reny (2015); Nishimura, Ok, and Quah (2017)

Recoverability: Varian (1982); Cherchye, De Rock, and Vermeulen (2011)

Approximation: Mas-Colell (1978); Forges and Minelli (2009); Kiibler and
Polemarchakis (2017); Polemarchakis, Selden, and Song (2017)

Identification: Matzkin (2006); Gorno (2019)
Econometric methods: Matzkin (2003); Blundell, Browning, and Crawford

(2008); Blundell, Kristensen, and Matzkin (2010); Halevy, Persitz, and
Zrill (2018)
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Applications: monotone preferences

» Call a dominance relation any binary relation on X that is not
reflexive.

» Say that > is strictly monotone wrt > if x > y implies x > y.

» Say that = is Grodal-transitive if x = y = z > w implies x = w.

Take a set of alternatives X that meets Assumption 1, and suppose:

1. > is a dominance relation that is open,
2. for each x, there are y, z arbitrarily close to x such that y &> x and
x>z

Then the class of preferences that are Grodal-transitive and strictly
monotone wrt > meets Assumption 2.
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Example: back to preferences over commodity bundles.
» There are d commodities.
» X = Ri+, where for (x1,...,xq) € X, x; is quantity of good i
consumed.
» x> yiff x; >y foralli=1,...,d.

The set of all preferences that are Grodal-transitive and strictly monotone
wrt > meets Assumption 2.
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Conclusion

» Binary choice

» Finite data

» “Consistency” — Large sample theory

» Unified framework: RP and econometrics.
Applicable to:

Large-scale (online) experiments/surveys.

Voting (roll-call data).
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