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Based on two papers:

I Recovering preferences from finite data (published).

I Recovering utility (available soon!)
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Model

Alice (an experimenter)

Bob (a subject)
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Model

I Alice presents Bob with choice problems:

“Hey Bob would you like x or y?”

x vs. y

I Bob chooses one alternative.

I Rinse and repeat → dataset of k choices.
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Model

I An experimenter and a subject.

I Subject makes choices according to some �∗, or utility u∗, on set X .

I Experimenter conducts a finite choice experiment of “size” k: k
questions, each one a binary choice problem.

I Preference �k or utility uk as rationalizations or estimates.

How are �k , �∗, uk and u∗ related?
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Example 1

Subject chooses among alternatives: X = Rn
+.

I Choices come from �∗, a continuous preference.

I Σi = {xi , yi}.
I A finite experiment: choose an element from Σi , i = 1, . . . , k .

I Assumption: Σ∞ = ∪∞k=1Σk is dense.
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Example 1

x

y

I x �∗ y

Chambers-Echenique-Lambert Recovery



Example 1

x

y

U

V

x ′

y ′

I x �∗ y
I U �∗ V
I ∃x ′ ∈ U and y ′ ∈ V s.t ∀k ∃

rationalizing �k , with y ′ �k x ′

I But x ′ � y ′. ∀ � s.t. � is cont. and
�|Σ∞ = �∗|Σ∞ .
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Example 1: a “discontinuity.”

I Infinite data (�∗ on X ): observe �∗; so x ′ �∗ y ′

I “Limiting” infinite data (Σ∞ = ∪∞k=1Σk):
x ′ � y ′ ∀ � s.t. � |Σ∞ =�∗ |Σ∞ .

I Finite data: (Σ1 . . . ,Σk)
can’t rule out y ′ �k x ′, no matter how large k .
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Lesson 1

No amount of finite data may correct
a mistaken inference.

Even when the (limiting) infinite data
set leaves no room for error.
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Example 2

Let X = Rn
+.

Fix a continuous preference �∗ on X .

Proposition (informal)

There exists rationalizing �k for each k s.t

complete indifference = lim
k→∞

�k
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Example 2

Set of alternatives X = [0, 1].

I Left: the subject prefers x to y iff x ≥ y .

I Right: the subject is completely indifferent.
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Example 2

n=1
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Example 2

n=2
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Example 2

n=4
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Example 2

n=6
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Example 2

n=8
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Example 2

n=10
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Example 2

n=16
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Example 2

n=32
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Lesson 2

Discipline matters.

Empiricism is dangerous.

Inevitable role for theory (a Cartesian
imperative).
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Example 3

Choice under uncertainty:

I State space S = {s1, s2}.
I Choice among monetary acts: x ∈ RS .

I Bob is risk-neutral subjective exp. utility maximizer.

I So x �∗ y iff p · x ≥ p · y .

I Preferences described by a prior p ∈ ∆(S).
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Example 3

Bob’s preferences:

p

•x
•y

•
y ′
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Example 3

Suppose y is chosen over x , and x ′ over y ′.

•x

•y

•x
′

•
y ′
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Example 3

Suppose y is chosen over x , and x ′ over y ′.

•x

•y

•x
′

•
y ′
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Example 3

Suppose y is chosen over x , and x ′ over y ′.

•x

•y

•x
′

•
y ′

Bob’s prior p must be steeper than the blue line, and flatter than the
green.
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Example 3

Suppose y is chosen over x , and x ′ over y ′.

•x

•y

Bob’s prior p must be steeper than the blue line, and flatter than the
green.
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Example 3

Suppose y is chosen over x , and x ′ over y ′.

•x
•x ′′

•y ′′

Narrows down unobserved comparison: x ′′ �∗ y ′′.
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Example 3

Suppose Alice instead uses the max-min model for Bob:

u(x) = min{p · x : p ∈ Π}

With two states, Π is described by four parameters. With more than two
states, the model is non-parametric.
Then from y � x she learns something about the slope of the worst-case
priors.
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Example 3

y is chosen over x , and x ′ over y ′.

•x

•y

•x
′

•
y ′
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Example 3

y is chosen over x , and x ′ over y ′.

•x

•y

•x
′′

•
y ′′

No inference for x ′′ and y ′′.
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Lesson 3

A more flexible theory may lead to
overfitting.

In fact max-min with |S | ≥ 3 is
“hopeless.”

Any finite dataset will lead to poor
out-of-sample predictions.
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Example 4

1/2

1/2

1/2

1/2
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Example 4

1/2

1/2

1/2

1/2
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Example 4

1/2

1/2

1/2

1/2
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Example 4

1/2

1/2

1/2

1/2
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Lesson 4

Model of preferences must be closed .

Can’t allow for approximate behavior
to “escape.”
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Example 5

I Let X = [0, 1], �∗=≥ and u∗(x) = x .

I For each k , let �k=≥ and

uk =
x

k
.

I Then 0 = limk uk .

I But �k=�∗ for all k!

(For ε > 0, can choose un with ‖un‖∞ = 1 or ‖un‖1 = 1 and
0 = limn un(x) for all x ∈ [0, 1− ε].)
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Example 5
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Lesson 5

Utility estimates are more delicate
than preferences.

Must choose the right utility
representation.
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Lessons for DT

Typical result in decision theory:

“Utility representation iff axioms. Moreover, utility is unique.”

Axioms ⇒ testable implications. (But may require infinite data.)

Uniqueness ⇒ identification. But more is needed to ensure utility recovery
from finite data.
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Model

I Alternatives: A topological space X .

I Preference: A complete and continuous binary relation � over X

I P a set of preferences.

A pair (X ,P) is a preference environment.

Chambers-Echenique-Lambert Recovery



Example: Expected utility preferences

I There are d prizes.

I X is the set of lotteries over the prizes, ∆d−1 ⊂ Rd .

I An EU preference � is defined by v ∈ Rd such that p � p′ iff
v · p ≥ v · p′.

I P is set of all the EU preferences.
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Experiment

Alice wants to recover Bob’s preference from his choices.

I Binary choice problem : {x , y} ⊂ X .

I Bob is asked to choose x or y .
Behavior encoded in a choice function c({x , y}) ∈ {x , y}.

I If Bob’s preference is � then c({x , y}) � x and c({x , y}) � y .

I Partial observability: indifference is not observable.
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Experiment

Alice gets finite dataset.

I Experiment of size k : Σk = {Σ1, . . . ,Σk} with Σi = {xi , yi}.
I Set of growing experiments: {Σk} = {Σ1,Σ2, . . . } with Σk ⊂ Σk+1.

Chambers-Echenique-Lambert Recovery



Literature

Afriat’s theorem and revealed preference tests: Afriat (1967);
Diewert (1973); Varian (1982); Matzkin (1991); Chavas and Cox (1993);
Brown and Matzkin (1996); Forges and Minelli (2009); Carvajal, Deb,
Fenske, and Quah (2013); Reny (2015); Nishimura, Ok, and Quah (2017)

Recoverability: Varian (1982); Cherchye, De Rock, and Vermeulen (2011);
Chambers, Echenique and Lambert (2021).

Consistency: Mas-Colell (1978); Forges and Minelli (2009); Kübler and
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OK, so far:

I (X ,P) preference env.

I c encodes choice

I Σk seq. of experiments
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Rationalization

I A preference � weakly rationalizes the observed choices on Σk if
c({x , y}) � x and c({x , y}) � y for all {x , y} ∈ Σk .

I A preference � strongly rationalizes the observed choices on Σk if
c({x , y}) � z for z ∈ {x , y}, z 6= c({x , y}), for all {x , y} ∈ Σk .
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Topology on preferences

Choice of topology: closed convergence topology.

I Standard topology on preferences (Kannai, 1970; Mertens (1970);
Hildenbrand, 1970).

I �n→� when:

1. For all (x , y) ∈�, there exists a seq. (xn, yn) ∈�n that converges to
(x , y).

2. If a subsequence (xnk , ynk ) ∈�nk converges, the limit belongs to �.

I If X is compact and metrizable, same as convergence under the
Hausdorff metric.

I X Euclidean and B the strict parts of cont. weak orders. Then it’s the
smallest topology for which the set

{(x , y ,�) : x ∈ X , y ∈ X ,�∈ B and x � y}

is open.
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Topology on preferences

Lemma

Let X be a locally-compact Polish (separable and completely metrizable)
space. Then the set of all continuous binary relations on X is a compact
metrizable space.
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Topology of compact convergence

Let {uk} be a sequence of functions,

uk : X → R.

The sequence convergences compactly to u : X → R if for every compact
K ⊆ X ,

uk |K → u|K
uniformly.

Turn out to be the right topology for utility functions when preferences are
endowed with the closed convergence topology.
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Results

Let X be

I X = Rn.

I or X = ∆([a, b])Ω (set of “monetary” Anscombe-Aumann acts) with
finite Ω.

Obs.

I Objective monotonicity.

I Connection between order and topology on X .

I Some of our results are more general.
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Results

A sequence of experiments {Σk}, with Σk = {Σ1, . . . ,Σk}, is exhaustive
when:

1.
⋃∞

i=1 Σi is dense in X .

2. For all x , y ∈
⋃∞

i=1 Σi with x 6= y , there exists i s.t Σi = {x , y}.
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Results

Theorem

Let

I �∗ be monotone and cont.;

I �k strongly rationalize the k-sized choice data generated by �∗.
Then,

I �k→�∗ (in the topology of closed convergence).

I For any utility u∗ for �∗ ∃ uk for �k s.t uk → u∗ (in the topology of
compact convergence).
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Discussion.

I Monotonicity.

I Convergence of any arbitrary preference rationalization.

I Utility can’t be arbitrary . Only get convergence of selected utility
estimates. Require an identification theorem for each specific theory.
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Why does monotonicity help?
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Recall Example 1

x

y

U

V

x ′

y ′

I x �∗ y
I U �∗ V
I ∃x ′ ∈ U and y ′ ∈ V s.t y ′ �k x ′ for

some rationalizing �k

I But x ′ � y ′. ∀ � s.t. � is cont. and
� |B =�∗ |B .
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Monotone rationalizations.

x

y

U

V

I x �∗ y
I U �∗ V
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Monotone rationalizations.

x

y

U

V

x ′

y ′

I x �∗ y
I U �∗ V
I Let (x ′, y ′) ∈ U × V .
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Monotone rationalizations.

x

y

U

V

x ′

y ′

x ′′

y ′′

I x �∗ y
I U �∗ V
I Let (x ′, y ′) ∈ U × V .

I =⇒ ∃x ′′, y ′′ ∈ B

I x ′′ ≤ x ′

I y ′ ≤ y ′′
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Monotone rationalizations.

x

y

U

V

x ′

y ′

x ′′

y ′′

I x �∗ y
I U �∗ V
I Let (x ′, y ′) ∈ U × V .

I =⇒ ∃x ′′, y ′′ ∈ B

I x ′′ ≤ x ′

I y ′ ≤ y ′′

=⇒ x ′ ≥ x ′′ �k y ′′ ≥ y ′
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Weak rationalizations

Let X = Rn.

Let Pk(c) be the set of continuous and strictly monotone preferences that
weakly rationalize the k data.

For a set of binary relations S , define diam(S) = sup(�,�′)∈S2 δC (�,�′) to
be the diameter of S according to the metric δC which generates the
topology on preferences.

Theorem

One of the following holds:

1. There is k such that Pk(c) = ∅.

2. limk→∞ diam(Pk(c))→ 0.
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Weak rationalizations

A preference � is locally strict if

x � y =⇒ in every nbd. of (x , y), there exists (x ′, y ′) with x ′ � y ′

(Border and Segal, 1994).
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Weak rationalizations

Let X ⊆ Rn. and P be a closed set of locally strict preferences on X .

Theorem

Let �k∈ P weakly rationalize the k-sized choice data.

I Then there is a preference �∗ ∈ P s.t �k → �∗.
I The limiting preference is unique: if, for every k , �′k ∈ P rationalizes

the k-data, then the same limit �′k → �∗ obtains.

Obs. that �∗ generating the choice is not a hypothesis. May view this
result as a definition of preference.

Obs. doesn’t require monotonicity.

(This result is in CEL (2021))
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Utility functions
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Standard representation

Finite state space: S .

Monetary consequences: [a, b] ⊆ R

Anscombe-Aumann acts: f : S → ∆([a, b])

Preferences on ∆([a, b])S .
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Standard representation

Let U be the set of all continuous and monotone weakly increasing
functions u : [a, b]→ R with u(a) = 0 and u(b) = 1.

A pair (V , u) is a standard representation if V : ∆([a, b])S → R and u ∈ U
are continuous functions such that v(p, . . . , p) =

∫
[a,b] u dp, for all

constant acts (p, . . . , p).

(V , u) is aggregative if there is an aggregator H : [0, 1]S → R with
V (f ) = H((

∫
u df (s))s∈S) for f ∈ ∆([a, b])S .

An aggregative representation with aggregator H is denoted by (V , u,H).
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Standard representation

A preference � on ∆([a, b])S is standard if it is weakly monotone, and
there is a standard representation (V , u) in which V represents �.
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Example

Variational preferences (Maccheroni et al 2006) are standard and
aggregative. Let

V (f ) = inf{
∫

v(f (s))dπ(s) + c(π) : π ∈ ∆(S)}

where

1. v : ∆([a, b])→ R is continuous and affine.

2. c : ∆(S)→ [0,∞] is lower semicontinuous, convex and grounded
(meaning that inf{c(π) : π ∈ ∆(S)} = 0).

Let H : [0, 1]S → R be H(x) = inf{
∑

s∈S x(s)π(s) + c(π) : π ∈ ∆(S)}
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Standard representation

Theorem

Let � be a standard preference with standard representation (V , u), and
{�k} a sequence of standard preferences, each with a standard
representation (V k , uk).

1. If �k→�, then (V k , uk)→ (V , u).

2. If, in addition, these preferences are aggregative with representations
(V k , uk ,Hk) and (V , u,H), then Hk → H.
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Statistical model

Given (X ,P). We change:

I How subjects make choices: they do not exactly follow a preference,
but randomly deviate from it.

I How experiments are generated.

Chambers-Echenique-Lambert Recovery



Statistical model

1. In a choice problem, alternatives drawn iid according to sampling
distribution λ.

2. Subjects make “mistakes.”
Upon deciding on {x , y}, a subject with preference � chooses x over
y with probability q(�; x , y) (error probability function).

3. Only assumption: if x � y then q(�; x , y) > 1/2.

4. “Spatial” dependence of q on x and y is arbitrary.
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Estimator

Kemeny-minimizing estimator: find a preference in P that minimizes the
number of observations inconsistent with the preference.

I “Model free:” to compute estimator don’t need to assume a specific q
or λ.

I May be computationally challenging (depending on P).
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To sum up:

Assumption 1 : X is a locally compact, separable,
and completely metrizable space.

Assumption 2 : P is a closed set of locally strict preferences.

Assumption 3’ : λ has full support and for all � ∈ P,
{(x , y) : x ∼ y} has λ-probability 0.
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Consistency

Theorem

Under Assumptions (1), (2), (3’), if the subject’s preference is �∗ ∈ P and
�n is the Kemeny-minimizing estimator for Σn, then, �n → �∗ in
probability.
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Convergence rates: Digression

The VC dimension of P is the largest cardinality of an experiment that can
always be rationalized by P.

A measure of how flexible P; how prone it is to overfitting.
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Convergence rates: Digression

I Think of a game between Alicia and Roberto

I Alicia defends P; Roberto questions it.

I Given is k

I Alicia proposes a choice experiment of size k

I Roberto fills in choices adversarily.

I Alicia wins if she can rationalize the choices using P.

I The VC dimension of P is the largest k for which Alicia always wins.
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Convergence rates

I ρ a metric on preferences.

I N(η, δ) : smallest value of N such that for all n ≥ N, and all subject
preferences �∗ ∈ P,

Pr(ρ(�n,�∗) < η) ≥ 1− δ.

I µ(�′;�) : prob. choice of preference � is consistent with �′.

r(η) = inf
{
µ(�;�)− µ(�′;�) : �,�′ ∈ P, ρ(�,�′) ≥ η

}
.

I VC(P) the VC dimension of the class P.

Theorem

Under the same conditions as in Part A,

N(η, δ) ≤ 2

r(η)2

(√
2/δ + C

√
VC(P)

)2

with C a universal constant.
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Expected utility

1. X is the set of lotteries over d prizes.

2. P is the set of nonconstant EU preferences: there are always lotteries
p, p′ such as p is strictly preferred to p′.

This preference environment satisfies Assumptions 1 and 2.

Suppose: there is C > 0 and k > 0 s.t

q(x , y ;�) ≥ 1

2
+ C (v · x − v · y)k ,

when x � y and v represents �.
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Expected utility

Under these assumptions, we can bound r(η) and VC(P), which implies

N(η, δ) = O

(
1

δη4d−2

)
.

Other examples: Cobb-Douglas, CES, and CARA subjective EU
preferences, and intertemporal choice with discounted, Lipschitz-bounded
utilities.
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Monotone preferences

I K be a compact set in X ≡ Rd
++, and fix θ > 0.

I P has finite VC-dimension and is identified on K

I λ is the uniform probability measure on K θ/2,

I q satisfies: probability of choosing y instead of x when x � y is a
function of ‖x − y‖,

Proposition

The Kemeny-minimizing estimator is consistent and, as η → 0 and δ → 0,

N(η, δ) = O

(
1

η2d+2
ln

1

δ

)
.
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Applications: preferences from utilities

A set P is defined fom utilities when there is a class U of utility functions
such that for all �∈ P

x � y ⇔ U(x) ≥ U(y)

for some U ∈ U .

Proposition 1

Under Assumption 1, if U is compact and represents locally strict
preferences, then Assumption 2 is met.

Implied by the continuity theorem of Border and Segal (1994).
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Revisit the case of expected utility preferences:

1. X is the set of lotteries over d prizes.
2. P is the set of nonconstant EU preferences: there are always lotteries

p, p′ such as p is strictly preferred to p′.

This preference environment satisfies Assumptions 1 and 2. When the
probability of error of choosing y instead of x when x � y is a function of
‖x − y‖, we can bound r(η) and VC(P), which implies

N(η, δ) = O

(
1

δη4d−2

)
.

Other examples: Cobb-Douglas, CES, and CARA subjective EU
preferences, and intertemporal choice with discounted, Lipschitz-bounded
utilities.
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Applications: monotone preferences

I Call a dominance relation any binary relation on X that is not
reflexive.

I Say that � is strictly monotone wrt � if x � y implies x � y .

I Say that � is Grodal-transitive if x � y � z � w implies x � w .

Proposition 2

Take a set of alternatives X that meets Assumption 1, and suppose:

1. � is a dominance relation that is open,

2. for each x , there are y , z arbitrarily close to x such that y � x and
x � z .

Then the class of preferences that are Grodal-transitive and strictly
monotone wrt � meets Assumption 2.
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Example: back to preferences over commodity bundles.
I There are d commodities.
I X ≡ Rd

++, where for (x1, . . . , xd) ∈ X , xi is quantity of good i
consumed.

I x � y iff xi > yi for all i = 1, . . . , d .

The set of all preferences that are Grodal-transitive and strictly monotone
wrt � meets Assumption 2.

Other examples: choice over menus of lotteries, dated rewards,
intertemporal consumption, non-EU choice over lotteries.
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Conclusion

I Binary choice

I Finite data

I “Consistency” – Large sample theory

I Unified framework: RP and econometrics.

Applicable to:

Large-scale (online) experiments/surveys.

Voting (roll-call data).
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