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Three papers:

I A Revealed Preference Approach to Computational
Complexity in Economics, by Echenique, Golovin & Wierman.

I Finding a Walrasian equilibrium is easy for a fixed number of
agents, by Echenique & Wierman

I The Empirical Implications of Rank in Bimatrix Games, by
Barman, Bhaskar, Echenique, & Wierman.



CS and Economics

Recent interest from the theoretical CS literature in economic
models. Important new results on our basic models of agents,
markets and strategic interactions.

Many basic results are negative:

I Utility functions are hard to maximize;

I Nash equilibrium is hard to find;

I Walrasian equilibrium is hard to find.



CS and Economics

Recent interest from the theoretical CS literature in economic
models. Important new results on our basic models of agents,
markets and strategic interactions.

Many basic results are negative:

I Utility functions are hard to maximize;

I Nash equilibrium is hard to find;

I Walrasian equilibrium is hard to find.



CS critique of positive economics:

Economics is flawed because it assumes agents/society solve hard
problems.

“As rational as consumers can possibly be, it is unlikely
that they can solve in their minds problems that prove
intractable for computer scientists equipped with the
latest technology.”

– Gilboa, Schmeidler & Postlewaite

“If an equilibrium is not efficiently computable, much of
its credibility as a prediction of the behavior of rational
agents is lost”

– Christos Papadimitriou

“If your laptop cannot find it, neither can the market”

– Kamal Jain
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Theory of the consumer.

“As rational as consumers can possibly be, it is unlikely
that they can solve in their minds problems that prove
intractable for computer scientists equipped with the
latest technology.”

– Gilboa, Schmeidler & Postlewaite



Methodological positivism.

CS (Bded. rationality) critique misunderstands the role of models
in positive economics.

Model is a way of thinking about reality, i.e. about data.

Economic theory only states that reality behaves as if the theory is
true.



Question: What is the empirical content of the hypothesis that
consumers are boundedly rational (i.e. that they can’t solve hard
problems).

Answer: None.
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Our Theorem

Given a consumption data set, the data is either not rationalizable
at all, or it is rationalizable by a utility function that is easy to
maximize.

The result is true even if there are indivisible goods.



Digression: complexity for economists.



Complexity for dummies.

Economists’ reaction to complexity:

I May make sense for computers, not
for people/economies.

I Worst case analysis.



Complexity for dumm. . . economists!

A decision problem is a problem with a yes/no answer.
Let A be a class of dec. problems.

A dec. problem α is A-hard if there is an algorithm that easily
transforms any instance of a problem in A into an instance of α,
and preserves the answer.

So if you have an algorithm to solve α, you have an algorithm to
solve any problem in A. Or, α is as hard as anything in A.

Ex: NP-hard problems.



Primitives

n = number of goods
X ⊆ Rn

+ is consumption space
we assume X ⊆ Zn

+



Data sets

A consumption data set D is a collection (xk , pk), k = 1, . . .K ,
with xk ∈ X and pk ∈ Rn

++.

I xk is the consumption bundle

I purchased at prices pk .



Rationalization

A utility u : X → R rationalizes the data if,
for all k and y ∈ X ,

(pk · y ≤ pk · xk and y 6= xk)⇒ u(xk) > u(y).



Are all data sets rationalizable?
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Main result

u : X → R is tractable if

max {u(x) : x ∈ B(p, I )} .

can be solved in polynomial time.

Theorem

In the consumer choice problem with indivisible goods, a dataset is
rationalizable iff it is rationalizable via a tractable monotone utility
function.



Two approaches in revealed pref. theory

I Construct a utility

I Extend demand.



Constructing a utility does not work.

Theorem (Chambers & Echenique)

In the consumer choice problem with indivisible goods, the
following statements are equivalent:

I The dataset is rationalizable.

I The dataset is rationalizable by a supermodular utility
function.

I The dataset is rationalizable by a submodular utility function.

Max. of a super/sub-modular utility subject to a budget constraint
is hard.



Revealed preference

x is revealed preferred to y if
there is k s.t. x = xk and pky ≤ pkxk

Indicate revealed preference with →.



x1
x2

x3



x1 x2

x3



x1
x2

x3













Algorithm:

I Construct a (strict) preference � on data points s.t. �
extends the rev. pref.

I Given p and m choose a maximal point in B(p,m) by:

1. Choose best data point z in B(p,m) for �.
2. Project z into the budget line lexicographically.

The algorithm defines a demand function d(p,m).
We show that it is a rational demand: it satisfies SARP.



A violation of WARP
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Two possibilities:

I x1 and x2 projected from different (data) points;

I x1 and x2 projected from same point.
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Running time of algorithm depends on size of the data set. This
turns out to be unavoidable.

Proposition

Any algorithm that takes as input a data set with n data points, a
price vector p, and an income I and outputs d(p, I ) for a d which
rationalizes the data set requires, in the worst case, Ω(n) running
time on a RAM with word size Θ(log n), even when there are only
two goods.

Proposition

Any demand function d that rationalizes a data set with n data
points requires Ω(n log n) bits of space to represent, in the worst
case, even when there are only two goods.
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Now: general equilibrium theory.

“If your laptop cannot find it, neither can the market”

– Kamal Jain



CS and Economics

For the model of general equilibrium, main CS result is:

Walrasian equilibrium is hard to find.

Hard, even if:

I Utilities are separable over goods and piecewise linear
(concave).

I Utilities are Leontief



Our results

Consider exchange economies with std. assumptions on preferences
(smooth concave utilities); n agents and l goods.

When n is fixed, it’s easy to find a WE.

Exploits the Negishi approach to prove existence of WE.



Why study n fixed?

Macro & finance models → many goods, few agents.

I Models w/representative agent.

I Models with n agents and infinitely many goods.

Literally fixed n.



Why study n fixed?

The history of all hitherto existing society is the history
of class struggles.

– Karl Marx

Many agents but limited heterogeneity: economic “class.”

If preferences are homothetic, and all agents belong to one of a
fixed number of endowment classes (e.g. farmers, workers and
capitalists), then WE is easy.



Why study n fixed?

Popular model of a large economy: replica of a given economy.

Many classical results on large economies, such as core
convergence, hold for replica economies.

Our result implies that WE is easy for (large) replica economies.



Digression: complexity for economists.
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I May make sense for computers, not
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Complexity for dumm. . . economists!
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Let A be a class of dec. problems.
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Complexity for dumm. . . economists!

Decision problems are not appropriate for equilibria, because
existence is guaranteed.

Class of problems based on computing a (total) function: given an
input x , compute f (x).

A problem is PPAD-hard if it is as hard as END OF THE LINE.
Finding Walrasian eq. with Leontief utilities is PPAD-hard.











Exchange economy

An exchange economy is a tuple (ωi , ui )
n
i=1

where ωi ∈ Rl
+ and ui : Rl

+ → R.

l = number of goods
n = number of agents
Each agent described an endowments & utiliy fn.



Exchange economy

An allocation in (ωi , ui )
n
i=1 is

x ∈ Rnl
+ s.t.

∑n
i=1 xi =

∑n
i=1 ωi .

A Walrasian equilibrium in (ωi , ui )
n
i=1 is (p, x) s.t.

1. (p a price vector),

2. (supply equals demand)

3. (agents maximize utility when consuming xi )
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∑n
i=1 ωi .

A Walrasian equilibrium in (ωi , ui )
n
i=1 is (p, x) s.t.

1. (p a price vector), p ∈ Rl
++

2. (supply equals demand) x = (xi )
n
i=1 ∈ Rnl

+ is an allocation,

3. (agents maximize utility when consuming xi ) and for all i
p · ωi = p · xi and

ui (y) > ui (xi )⇒ p · y > p · xi



Approximate equilibrium

A Walrasian ε-equilibrium is (p, x) s.t.

1. p ∈ Rl
+,

2. x is an allocation,

3. and for all i

ui (y) > ui (xi )⇒ p · y > p · xi

and |p · ωi − p · xi | < ε.



E a family of exchange economies.

Each (ui , ωi )
n
i=1 ∈ E has n agents (different numb. goods);

assume:

1. (all goods exist)
∑n

i=1 ωi ∈ Rl
++;

2. (regular utilities) ui is C 1, concave, and strictly monotonic;

3. (boundary condition) If x ∈ Rl
+ \ Rl

++ and y ∈ Rl
++, then

u(x) < u(y);

4. (normalization) ∀x ∈ Rnl
+ s.t.

∑n
i=1 ωi =

∑n
i=1 xi ,

ui (xi ) ∈ [0, 1].



Theorem

Let ε > 0. There is an algorithm that, for any economy in E, finds
a Walrasian ε-equilibrium in time polynomial in l .



Let (ui , ωi )
n
i=1 ∈ E .

An allocation x in (ui , ωi )
n
i=1 is

Pareto optimal iff:

I @ allocation y with ∀i(ui (y) > ui (x))

I iff ∃λ ∈ ∆ s.t. x solves

max
∑

i λiui (x̃i )
s.t.x̃ is an allocation



A Walrasian equilibrium with transfers is a triple (p, x ,T ), where:

I p ∈ Rl
+ (a vector of prices);

I T ∈ Rn and
∑n

i=1 Ti = 0 (a vector of transfers);

I x is an allocation (supply equals demand);

I ∀i
ui (y) > ui (xi )⇒ p · y > p · ωi + Ti

and p · xi = p · ωi + Ti (agents are maximizing utility).

Note: a WE is a WET with zero transfers; an approximate WE is a
WET with small transfers.



Second Welfare Theorem

Theorem

Let (ui , ωi )
n
i=1 ∈ E and x be an interior Pareto optimal allocation.

Then ∃ p and T s.t. (x , p,T ) is Walrasian eq. with transfers.



Negishi’s approach

λ ∈ ∆ � // x(λ) ∈ argmax
∑

i λiui
� // (x(λ), p(λ),T (λ))

_

��
λ′ ∈ ∆

Existence follows by Kakutani’s FPT.
Note the fixed-point argument is in the n-dimensional simplex.



Negishi’s approach

We:

I Kakutani is non-constructive.
Instead we use Sperner’s lemma.

I Find a zero of T (λ).

I Approximation must be independent of l .

λ ∈ ∆ � // x(λ) ∈ argmax
∑

i λiui
� // (x(λ), p(λ),T (λ))



SWT for undergrads

max
∑n

i=1 λiui (xi )

s.t.

{∑n
i=1 xi ≤

∑n
i=1 ωi

xi ≥ 0.

p(λ) = λhDui (xh(λ)).

Ti (λ) = p(λ) · (xi (λ)− ωi ).



Two little lemmas

Lemma

For λ, λ′ ∈ ∆, ‖T (λ)− T (λ′)‖ ≤ (n − 1)‖λ− λ′‖.

Lemma

If λi = 0 then T (λ)i ≤ 0.

⇒ construct simplicial subdivision with mesh ε
(n−1)2 and color

vertexes appropriately.







Sperner’s lemma to get ‖T‖ < ε

I simplicial subdivision with mesh ε
(n−1)2

I for λ, λ′ in same subsimplex, T (λ) close to T (λ′) (Lipschitz
lemma)

I color subdivision: vertex λ has color i if Ti (λ) > 0 (choose
largest Ti (λ) if more than one).

I Boundary lemma ⇒ proper labeling of subsimplex

I polychromatic subsimplex gives T (λ) close to each other, for
each i one λ with Ti (λ) > 0.

I Since
∑

i Ti (λ) = 0 must have ‖T (λ)‖ < ε.
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Other notions of approximate equilibria.



Other notions of approximation

An ε-approximate equilibrium in an exchange economy (ui , ωi )
n
i=1

is a pair (p, x) where p ∈ Rl
+, x is an allocation, and for all i

p · y ≤ p · ωi ⇒ ui (y) ≤ ui (xi ) + ε,

and |p · ωi − p · xi | < ε.

A defn. like the one used in CS.



Other notions of approximation

An strong ε-approximate equilibrium in an exchange economy
(ui , ωi )

n
i=1 is a pair (p, x) where p ∈ Rl

+, x ∈ Rnl
+ with

‖∑i xi −
∑

i ωi‖ < ε, and for all i

p · y ≤ p · ωi ⇒ ui (y) ≤ ui (xi ),

and p · ωi = p · xi .

A defn. like the one used in GE theory.



Other notions of approximation

Suppose that there is Θ > 0 and π > 0 such that, for all
(ui , ωi )

n
i=1 in E ,

sup
p∈∆

p ·
n∑

i=1

ωi ≤ Θ,

and if x is an allocation in (ui , ωi )
n
i=1, then Dsui (xi ) > π.



Other notions of approximation

Theorem

Let ε > 0. There is an algorithm that, for any economy in E, finds
an ε-approximate equilibrium, and a strong ε-approximate
equilibrium, in time polynomial in l .



Now: game theory.

The Empirical Implications of Rank in Bimatrix Games, by
Barman, Bhaskar, Echenique, & Wierman.



Nash equilibrium

A two-player game in normal form is given by a pair of matrices
(A,B) of size n × n,
A Nash equilibrium is a pair (i , j) ∈ [n]× [n] s.t. ∀ i ′ ∈ [n] and
j ′ ∈ [n],

Aij ≥ Ai ′j and Bij ≥ Bij ′ .

If inequalities are strict, then (i , j) is a strict Nash equilibrium.



Rank

Our focus is on games with low rank.
The rank of a game (A,B) is the rank of the matrix C := A + B.
For a zero-sum game, C = 0.



Data

A subgame is denoted by (I , J) where I , J ⊆ [n]
A data set is a set of triples ((i , j), I , J), where (I , J) is a subgame,
and i ∈ I and j ∈ J.



Revealed Preference

A data set T is rationalizable if there exist a game (A,B) s.t. (i , j)
is a strict Nash eq. in the subgame (I , J), ∀((i , j), I , J) ∈ T .



Examples

×
×

((a)) Data set that is
rationalizable (via a rank one
game).

×
×

((b)) Data set that is not
rationalizable.

Figure: Examples of a rationalizable data set and a data set that is not
rationalizable.



Crossing number

Two subgames (I , J) and (I ′, J ′) cross if (I × J) ∩ (I ′ × J ′) 6= ∅,
but (I × J) 6⊆ (I ′ × J ′) and (I ′ × J ′) 6⊆ (I × J).

The crossing number of T is

min {|{i : (i , j) ∈ O}| , |{j : (i , j) ∈ O}|} .



Theorem

For all n, there exists a rationalizable data set T over an n × n
strategy space such that the rank of any bimatrix game that
rationalizes T is Ω(

√
n).



Theorem

Any rationalizable data set T that satisfies the uniqueness property
can be rationalized by a bimatrix game of rank at most the
crossing number of T .



Despite all the computations
You could just dance to that rock ’n’ roll station
And baby it was allright

– Lou Reed


