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Allocation problems

I Jobs to workers

I Courses to students

I Chores to family members.

I Organs to patients

I Schools to children

I Offices to professors.
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Normative desiderata

I Efficiency: Pareto

I Fairness (no envy): randomization

I Property rights

I First part of the talk: Pareto and fairness.
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Pseudomarkets

I Provide agents with a fixed budget in “Monopoly money.”

I Allow purchase of (fractions of) objects at given prices.
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Hylland-Zeckhauser (1979)

Assign workers to jobs.

An economy is a tuple Γ = (I , L, (ui )i∈I ), where

I I is a finite set of agents;

I L is the number of objects.

I Suppose L = |I |.
I ui : ∆− = {x ∈ RL

+ :
∑

l xl ≤ 1} → R is i ’s utility function.
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Hylland-Zeckhauser (1979)

An assignment in Γ is x = (xi )i∈I with xi ∈ ∆− and∑
i xi ≤ 1 = (1, . . . , 1).
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Hylland and Zeckhauser (1979)

An HZ-equilibrium is a pair (x , p), with x ∈ ∆N
− and

p = (pl)l∈[L] ≥ 0 s.t.

1.
∑N

i=1 xi = (1, . . . , 1) = 1

2. xi solves

Max {ui (zi ) : zi ∈ ∆− and p · zi ≤ 1}

Condition (1): supply = demand.
Condition (2): xi is i ’s demand at prices p and income = 1.
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Fairness and efficiency

Suppose that each ui is linear (expected utility).

Theorem (Hylland and Zeckhauser (1979))

There is an efficient HZ equilibrium. All HZ equilibrium
assignments are fair.
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Hylland-Zeckhauser (1979)

I The textbook model has endowments ωi

I Income at prices p is p · ωi

I w/endowments, eqm. may not exist.
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This paper:

I Study efficient and fair allocations via pseudomarkets.

I With general constraints.

I With and without endowments.
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Key idea

Price the constraints

For example: in HZ the price of good l is the price of the supply
constraint.

More generally, constraints → pecuniary externalities. Can be
internalized via prices.
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Example: Rural hospitals

I Agents: doctors

I Objects: positions in hospitals

I Constraints: each doctor gets at most one position.

I Constraints: UB on available positions.

I Constraints: LB on number of doctors/region.

Problem: Some hospitals are undesirable.

Challenge is to meet the LB on certain regions.

Solution: “price” UB so that most desirable hospitals are too
expensive. Demand “overflows” to meet the LB on undesirable
hospitals.
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Example: Course bidding in B-schools

I Agents: MBA students.

I Objects: Courses.

I Constraints: UB on course enrollment.

I Constraints: LB on mandatory courses.

Problem: Want efficiency; reflect student pref Solution: “price”

UB so that most desirable courses are expensive. Demand
“overflows” to meet the LB on less desirable.
vspace.5cm
Properties: efficiency and fairness.
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Example: Roomates in college

I Agents: students

I Objects: students

I Constraints: At most one roommate (= “unit demand”).

I Constraints: symmetry (i ’s purchase of j = j ’s purchase of i).

Problem: Non-existence of stable matchings.

Equilibrium (a form of stability) + efficiency.
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Example: Endowments

I Agents: faculty.

I Objects: office.

I Constraints: Exactly one office for each faculty.

I Status quo: offices are currently assigned.

New challenge: existing tenants must buy into the re-assignment
=⇒ individual rationality constraints.
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Example: School choice

I Agents: children.

I Objects: slots in schools.

I Constraints: unit demand and school capacities.

I Endowment: neighborhood school (or sibling priority; etc.)

New challenge:
Respect option to attend neighborhood school =⇒ individual
rationality constraints.
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What we don’t do:

I Max SWF (e.g utilitarian) subject to constraints.

I Outcome can be decentralized (think 2nd Welfare Thm -
Miralles and Pycia, 2017).

I Dual variables → prices.
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Related Literature

I Mkts. & fairness: Varian (1974), Hylland-Zeckhauser (1979),
Budish (2011).

I Allocations with constraints: Ehlers, Hafalir, Yenmez and
Yildrim (2014), Kamada and Kojima (2015, 2017).

I Markets and constraints: Kojima, Sun and Yu (2019), Gul,
Pesendorfer and Zhang (2019).

I Endowments: Mas-Colell (1992), He (2017) , and McLennan
(2018).

(Many) more references in the paper. . .
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Definitions

I A pair (a, b) ∈ Rn × R defines a linear inequality a · x ≤ b.

I A linear inequality (a, b) has non-negative coefficients if a ≥ 0.

I A linear inequality (a, b) defines a (closed) half-space:

{x ∈ Rn : a · x ≤ b}.
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Definitions

I A polyhedron in Rn is a set that is the intersection of a finite
number of closed half-spaces.

I A polytope in Rn is a bounded polyhedron.

I Two special polytopes are the simplex in Rn:

∆n = {x ∈ Rn
+ :

n∑
l=1

xl = 1},

and the subsimplex

∆n
− = {x ∈ Rn

+ :
n∑

l=1

xl ≤ 1}.

I When n is understood, we use the notation ∆ and ∆−.
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Preliminary defns

A function u : ∆− → R is

I concave if ∀x , z ∈ ∆−, and ∀λ ∈ (0, 1),
λu(z) + (1− λ)u(x) ≤ u(λz + (1− λ)x);

I quasi-concave if, ∀x ∈ ∆−,

{z ∈ ∆− : u(z) ≥ u(x)}

is a convex set.

I semi-strictly quasi-concave if ∀x , z ∈ ∆−,

u(z) < u(x) and λ ∈ (0, 1) =⇒ u(z) < u(λz + (1− λ)x)

I expected utility if it is linear.
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The economy

An economy is a tuple Γ = (I ,O, (Zi , ui )i∈I , (ql)l∈O), where

I I is a finite set of agents;

I O is a finite set of objects, with L = |O|;
I Zi ⊆ RL

+ is i ’s consumption space;

I ui : Zi → R is i ’s utility function;

I ql ∈ R++ is the amount of l ∈ O.
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Assignments

An assignment in Γ is a vector

x = (xi ,l)i∈I ,l∈O with xi ∈ Zi .

A denotes the set of all assignments in Γ.

x ∈ A is deterministic if (∀i , j)(xi ,l ∈ Z+).

Echenique-Miralles-Zhang Pseudomkts with constraints



Constraints in the literature

Constraints are often imposed on deterministic assignments.

For example:

I unit-demand constraints require
∑

l∈O xi ,l ≤ 1 ∀i ∈ I

I supply constraints require
∑

i∈I xi ,l ≤ ql ∀l ∈ O.

Echenique-Miralles-Zhang Pseudomkts with constraints



Constraints in the literature

Floor constraints may be used to capture distributional objectives.
For example:

I A minimum number of doctors to be assigned to hospitals in
rural areas,

I Lower bound on the number minority students that are
assigned to a particular school.

I All students take at least two math courses.
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Constraints in the literature

A deterministic assignment is feasible if it satisfies all exogenous
constraints.

An (random) assignment is feasible if it belongs to the convex hull
of feasible deterministic assignments.

The convex hull is a polytope since the number of feasible
deterministic assignments is usually bounded, and therefore finite.
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Constraints in our paper

We don’t start from an explicit model of constraints.

We introduce constraints implicitly through a primitive nonempty
set C ⊆ A.

The elements of C are the feasible assignments.
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Constrained allocation problems

A constrained allocation problem is a pair (Γ, C) in which

I Γ is an economy and

I C ⊆ A, a polytope, is the set of feasible assignments in Γ.
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Normative properties

I x ∈ C is weakly C-constrained Pareto efficient if there is no
y ∈ C s.t. ui (yi ) > ui (xi ) for all i .

I x ∈ C is C-constrained Pareto efficient if there is no y ∈ C s.t.
ui (yi ) ≥ ui (xi ) for all i with at least one strict inequality for
one agent.

Echenique-Miralles-Zhang Pseudomkts with constraints



Fairness

I No envy among “equals” (agents that the constraints treat
the same).

I Fairness rules out envy among agents who are treated
symmetrically by the primitive constraints.

Formal defn. soon. . .
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Pre-processing of constraints

I Recall that a pair
(a, b) ∈ RNL × R

defines a linear constraint a · x ≤ b.

I It has non-negative coefficients when a ≥ 0.

Echenique-Miralles-Zhang Pseudomkts with constraints



Pre-processing of constraints

The lower contour set of C is

lcs(C) = {x ∈ RNL
+ : ∃x ′ ∈ C such that x ≤ x ′}.

Lemma

There exists a finite set Ω of linear inequalities with non-negative
coefficients such that

lcs(C) =
⋂

(a,b)∈Ω

{x ∈ RLN
+ : a · x ≤ b}.

Used by Ivan Balbuzanov (2019)
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Pre-processing of constraints

For any c = (a, b) ∈ Ω, define

supp(c) = {(i , l) ∈ I × O : ai ,l > 0}.

Two types of inequalities (a, b) ∈ Ω:

I those with b = 0 and

I those with b > 0.

If b = 0, then for any x ∈ C we must have xi ,l = 0 for all
(i , l) ∈ supp(c). Wlog assume there’s a unique such ineq.

Say that l is a forbidden object for agent i when a0
i ,l > 0.
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Pre-processing of constraints

Say that (a, b) ∈ Ω \ {(a0, 0)} is an individual constraint for i if for
all j 6= i and l ∈ O, aj ,l = 0.

In words, (a, b) only restricts i ’s consumption.

Let Ωi denote the set of all individual constraints for i .
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Pre-processing of constraints

Let Ω∗ = Ω\
(
{(a0, 0)}

⋃
∪i∈IΩi

)
collect remaining inequalities.

The elements of Ω∗ will be “priced.”

Constraints in Ω∗ give rise to pecuniary externalities.
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Pre-processing of constraints

Individual consumption space:

All xi that satisfy forbidden object and individual constraints for i .

Xi = {xi ∈ RL
+ : a0

i · xi ≤ 0 and ai · xi ≤ b for all (a, b) ∈ Ωi}.
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Example

I Unit demand constraints are individual and go into Xi

I Supply constraints go into Ω∗. These will be “priced.”’
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Equilibrium

For each c = (a, b) ∈ Ω∗, we introduce a price pc .

Given p = (pc)c∈Ω∗ ∈ RΩ∗
, the personalized price vector faced by

i ∈ I is
pi ,l =

∑
(a,b)∈Ω∗

ai ,lp(a,b).

Note: analogous the shadow prices for constraints.
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Fairness

I i and j are of equal type if Xi = Xj and, for all (a, b) ∈ Ω∗,
ai = aj .

I x is envy-free if ui (xi ) ≥ ui (xj).

I x is equal-type envy-free ui (xi ) ≥ ui (xj) whenever i and j are
of equal type.
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Equilibrium

A pair (x∗, p∗) is a pseudo-market equilibrium for (Γ, C) if

1. x∗i ∈ arg maxxi∈Xi
{ui (xi ) : p∗i · xi ≤ 1}.

2. x∗ ∈ C.

3. For any c = (a, b) ∈ Ω∗,
∑

(i ,l) ai ,lx
∗
i ,l < b implies that p∗c = 0.
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Main result

Suppose each ui is cont., quasi-concave, and st. increasing.

Theorem

I ∃ a pseudo-market eqm. (x∗, p∗) in which x∗ is weakly
C-constrained Pareto efficient.

I If each ui is semi-strictly quasi-concave, ∃ a pseudo-market
eqm. (x∗, p∗) in which x∗ is C-constrained Pareto efficient.

I Every pseudo-market eqm. assignment is equal-type envy-free.

Echenique-Miralles-Zhang Pseudomkts with constraints



Endowments
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Endowments

Each agent i is described by

I A utility ui
I An endowment vector ωi ∈ RL

+

Assume:
∑

i ωi ,l = ql
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Walrasian equilibrium

A Walrasian equilibrium is a pair (x , p) with x ∈ ∆N
−, p ≥ 0 s.t

1.
∑N

i=1 xi =
∑N

i=1 ωi ; and

2. xi solves

Max {ui (zi ) : zi ∈ ∆− and p · zi ≤ p · ωi}
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Proposition (Hylland and Zeckhauser (1979))

There are economies in which all agents’ utility functions are
expected utility, that posses no Walrasian equilibria.
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Budget set

ωi

p

no Walras’ Law

non-responsive demand
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Budget set

ωi

p

(1, 1)

simplex

no Walras’ Law

non-responsive demand
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HZ Example

3 agents; exp. utility

u1 u2 u3

sA 10 10 1
sB 1 1 10

Endowments: ωi = (1/3, 2/3).

Obvious allocation:

x1 = x2 = (1/2, 1/2)
x3 = (0, 1)
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HZ Example

simplex
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HZ Example

1/2
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Moreover, . . .

I the first welfare theorem fails.

I There are Pareto ranked Walrasian equilibria.
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Economy

An economy is a tuple Γ = (I , (Zi , ui , ωi )i∈I ), where

I I is a finite set of agents;

I Zi ⊆ RL
+ is i ’s consumption space;

I ui : Zi → R is i ’s utility function;

I ωi ∈ Zi is i ’s endowment.
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Economy

The aggregate endowment is denoted by ω̄ =
∑

i∈I ωi . For every
l ∈ O, ω̄l is the amount of l in the economy.

A constrained allocation problem with endowments is a pair (Γ, C)
in which Γ is an economy and C is a set feasible assignments s.t.

1. C is a polytope;

2. ω = (ωi )i∈I ∈ C; that is, ω is feasible.
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Individual rationality

I A feasible assignment x ∈ C is acceptable to agent i if
ui (xi ) ≥ ui (ωi );

I x is individually rational (IR) if it is acceptable to all agents.

I For ε > 0, x is ε-individually rational (ε-IR) if
ui (xi ) ≥ ui (ωi )− ε for all i ∈ I .
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Equal type

Let Xi and Ω∗ be defined as before.

Two agents i and j are of equal type if ωi = ωj , Xi = Xj , and for
all (a, b) ∈ Ω∗, ai = aj .
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Equilibrium

For any α ∈ [0, 1], we say (x∗, p∗) is an α-slack equilibrium if

1. x∗i ∈ arg maxxi∈Xi
{ui (xi ) : p∗i · xi ≤ α + (1− α)p∗i · ωi};

2. x∗ ∈ C;

3. For any c = (a, b) ∈ Ω∗,
∑

(i ,l) ai ,lx
∗
i ,l < b implies that p∗c = 0.
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Main result

Assume that for each c ∈ Ω∗,
∑

(i ,l)∈supp(c) ωi ,l > 0.

Theorem

Suppose ui is cont., quasi-concave, and st. inc. For any α ∈ (0, 1]:

I ∃ an α-slack eqm. (x∗, p∗), and x∗ is weakly C-constrained
Pareto efficient.

I If agents’ utility functions are semi-strictly quasi-concave, ∃
an α-slack eqm. assignment x∗ that is C-constrained Pareto
efficient.

I Every α-slack eqm. assignment is equal-type envy-free.
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Individual rationality

Theorem

Suppose ui are cont., semi-strictly quasi-concave and st. inc. For
any ε > 0, ∃α ∈ (0, 1] and an α-slack equilibrium (x∗, p∗) such
that x∗ is C-constrained Pareto efficient and

max{ui (y) : y ∈ Xi and p∗i · y ≤ p∗i · ωi} − ui (x
∗
i ) < ε.

In particular, x∗ is ε-IR.
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Related Literature

I Mkts. & fairness: Varian (1974), Hylland-Zeckhauser (1979),
Budish (2011).

I Allocations with constraints: Ehlers, Hafalir, Yenmez and
Yildrim (2014), Kamada and Kojima (2015, 2017).

I Endowments: Mas-Colell (1992), He (2017) , and McLennan
(2018).

I Markets and constraints: Kojima, Sun and Yu (2019), Gul,
Pesendorfer and Zhang (2019).

More references in the paper. . .
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Idea

Classical result relies on Walras Law: p · z(p) = 0 for all p. Walras
Law does not hold in our model because. . .

ωi

p

(1, 1)

Echenique-Miralles-Zhang Pseudomkts with constraints



Idea

Demand is not responsive to price once boundary is reached.

ωi

p

(1, 1)
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Idea

Budget constraint:

p · x i ≤ α + (1− α)p · ωi
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Idea

Budget constraint:

p · (x i − ωi ) ≤ α(1− p · ωi ).

This allows prices to matter: large prices imply that the value of
excess demand is < 0.
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Idea

Consider ϕ : [0, p̄]L → [0, p̄]L defined by

ϕl(p) = {min{max{0, ζl + pl}, p̄} : ζ ∈ z(p)}.

where p̄ is a large price.

Lemma

ϕ is upper hemi-continuous, convex- and compact- valued.

(In paper deal with a different ϕ, which ensures PO.)
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Idea

By Kakutani, ∃ p∗ and ζ ∈ z(p∗) s.t

p∗l = min{max{0, ζl + p∗l }, p̄}.

Lemma

p∗ · ζ ≥ 0.

This is sort of a “weak Walras law.”

Pf: ζl < 0 =⇒ p∗l = 0
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Idea

Lemma

p∗l < p̄ for all l ∈ [L]

Pf: Suppose p∗l = p̄. p̄ is large =⇒ 1− p · ωi < 0; so
p · (x i − ωi ) < 0.
By adding up we get that

p · ζ ≤ α(N − p · ω̄) < 0,

in contradiction to prev. lemma.
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Idea

Now think about:

p∗l = min{max{0, ζl + p∗l }, p̄}.

when p∗l < p̄.

we have
p∗l = max{0, ζl + p∗l }.
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Idea

p∗l = max{0, ζl + p∗l }.

For all l , ζl = 0, or ζl < 0 and p∗l = 0.

Latter case is not possible.
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