Constrained Pseudo-market Equilibrium

Federico Echenique Antonio Miralles Jun Zhang
Caltech Universita degli Studi di Messina.  Nanjing Audit U.
UAB-BGSE

CECT, Sept. 2020



Jobs to workers

Courses to students
Chores to family members.
Organs to patients

Schools to children
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Offices to professors.



» Efficiency: Pareto

» Fairness (no envy): randomization

» Property rights

» First part of the talk: Pareto and fairness.



» Provide agents with a fixed budget in “Monopoly money.”

» Allow purchase of (fractions of) objects at given prices.




Assign workers to jobs.

An economy is a tuple ' = (I, L, (u;)ier), where
» | is a finite set of agents;
» | is the number of objects.
» Suppose L = ||
> ui:A_={xeRL:Y,x <1} — Ris i's utility function.



An assignment in I is x = (x;)ie; with x; € A_ and

S <1=(1,...,1).



_ Hylland and Zeckhause ) (100

An HZ-equilibrium is a pair (x, p), with x € AV and
p= (PI)Ie[L] > 0s.t.

LYN x=@1,...,1)=1

2. x;j solves

Max {ui(z) : zi € A_ and p- z; < 1}

Condition (1): supply = demand.
Condition (2): x; is i's demand at prices p and income = 1.



Suppose that each u; is linear (expected utility).

There is an efficient HZ equilibrium. All HZ equilibrium
assignments are fair.




» The textbook model has endowments w;
» Income at prices p is p - w;

» w/endowments, eqm. may not exist.



» Study efficient and fair allocations via pseudomarkets.
» With general constraints.
» With and without endowments.



Price the constraints

For example: in HZ the price of good / is the price of the supply
constraint.

More generally, constraints — pecuniary externalities. Can be
internalized via prices.



Example: Rural hospitals

Agents: doctors

Objects: positions in hospitals

>
>
» Constraints: each doctor gets at most one position.
» Constraints: UB on available positions.

>

Constraints: LB on number of doctors/region.

Problem: Some hospitals are undesirable.
Challenge is to meet the LB on certain regions.
Solution: “price” UB so that most desirable hospitals are too

expensive. Demand “overflows” to meet the LB on undesirable
hospitals.

Echenique-Miralles-Zhang Pseudomkts with constraints



Example: Course bidding in B-schools

> Agents: MBA students.
» Objects: Courses.
» Constraints: UB on course enrollment.

» Constraints: LB on mandatory courses.

Problem: Want efficiency; reflect student pref Solution: “price”

UB so that most desirable courses are expensive. Demand
“overflows” to meet the LB on less desirable.

vspace.bcm

Properties: efficiency and fairness.
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» Agents: students
» Objects: students
» Constraints: At most one roommate (= “unit demand”).

» Constraints: symmetry (i's purchase of j = j's purchase of 7).

Problem: Non-existence of stable matchings.

Equilibrium (a form of stability) + efficiency.



Exa

» Agents: faculty.
» Objects: office.
» Constraints: Exactly one office for each faculty.

» Status quo: offices are currently assigned.

New challenge: existing tenants must buy into the re-assignment
—> individual rationality constraints.



» Agents: children.
» Objects: slots in schools.
» Constraints: unit demand and school capacities.

» Endowment: neighborhood school (or sibling priority; etc.)

New challenge:
Respect option to attend neighborhood school = individual
rationality constraints.



» Max SWF (e.g utilitarian) subject to constraints.

» Outcome can be decentralized (think 2nd Welfare Thm -
Miralles and Pycia, 2017).

» Dual variables — prices.



Related Literature

» Mkts. & fairness: Varian (1974), Hylland-Zeckhauser (1979),
Budish (2011).

» Allocations with constraints: Ehlers, Hafalir, Yenmez and
Yildrim (2014), Kamada and Kojima (2015, 2017).

» Markets and constraints: Kojima, Sun and Yu (2019), Gul,
Pesendorfer and Zhang (2019).

» Endowments: Mas-Colell (1992), He (2017) , and McLennan
(2018).

(Many) more references in the paper. ..
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» A pair (a,b) € R" x R defines a linear inequality a-x < b.
» A linear inequality (a, b) has non-negative coefficients if a > 0.

» A linear inequality (a, b) defines a (closed) half-space:

{x €R":a-x < b}.



» A polyhedron in R" is a set that is the intersection of a finite
number of closed half-spaces.

» A polytope in R" is a bounded polyhedron.

» Two special polytopes are the simplex in R":

n
A"={xeR]:) x=1},

I=1

and the subsimplex

n
AZ:{XERﬂ_:legl}.

=1

» When n is understood, we use the notation A and A_.












A function u: A_ — R is

» concave if Vx,z € A_, and V) € (0,1),
Au(z) + (1= Nu(x) < u(Az+ (1 — A)x);

» quasi-concave if, Vx € A_,
{ze A_:u(z) > u(x)}

is a convex set.

» semi-strictly quasi-concave if Vx,z € A_,
u(z) < u(x) and A € (0,1) = u(z) < u(Az+ (1 — A)x)

» expected utility if it is linear.



An economy is a tuple ' = (I, O,(Z;, uj)ic1, (q1)ico), where

» [ is a finite set of agents;

» O is a finite set of objects, with L = |O
» 7, C R’q_ is I's consumption space;
| 2
>

uj . Zi — Riis i's utility function;,
q; € Ry is the amount of / € O.



An assignment in I is a vector

X = (Xi,l)iEI,IEO with x; € Z;.

A denotes the set of all assignments in I

x € Ais deterministic if (Vi,j)(xi) € Z4).



Constraints are often imposed on deterministic assignments.

For example:
» unit-demand constraints require ) ;.o x;y < 1Viel
» supply constraints require Y., x;; < q; VI € O.



Constraints in the literature

Floor constraints may be used to capture distributional objectives.
For example:

» A minimum number of doctors to be assigned to hospitals in
rural areas,

» Lower bound on the number minority students that are
assigned to a particular school.

> All students take at least two math courses.
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Constraints in the literature

A deterministic assignment is feasible if it satisfies all exogenous
constraints.

An (random) assignment is feasible if it belongs to the convex hull
of feasible deterministic assignments.

The convex hull is a polytope since the number of feasible
deterministic assignments is usually bounded, and therefore finite.
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We don’t start from an explicit model of constraints.

We introduce constraints implicitly through a primitive nonempty
set C C A.

The elements of C are the feasible assignments.



A constrained allocation problem is a pair (I',C) in which

» [ is an economy and
» C C A, a polytope, is the set of feasible assignments in T.



» x € C is weakly C-constrained Pareto efficient if there is no
y € C s.t. ui(yi) > ui(x;) for all i.

» x € C is C-constrained Pareto efficient if there is no y € C s.t.
ui(yi) > ui(x;) for all i with at least one strict inequality for
one agent.



» No envy among “equals” (agents that the constraints treat
the same).

» Fairness rules out envy among agents who are treated
symmetrically by the primitive constraints.

Formal defn. soon. ..



» Recall that a pair
(a,b) € RM x R

defines a linear constraint a- x < b.

» It has non-negative coefficients when a > 0.



Pre-processing of constraints

The lower contour set of C is
les(C) = {x € RYt: 3x’ € C such that x < x'}.

Lemma

There exists a finite set S0 of linear inequalities with non-negative
coefficients such that

les(C) = ﬂ {x e RN 1 2. x < b}.
(a,b)eQ

Used by Ivan Balbuzanov (2019)
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as







as

les(C)




For any ¢ = (a, b) € Q, define
supp(c) = {(i,/) € I x O : a;; > 0}.

Two types of inequalities (a, b) € Q:
» those with b =0 and
» those with b > 0.

If b= 0, then for any x € C we must have x;; = 0 for all
(i,1) € supp(c). Wlog assume there's a unique such ineq.

Say that / is a forbidden object for agent i when 3?7, > 0.



Say that (a, b) € Q\ {(a°% 0)} is an individual constraint for i if for
all j#iand € O, aj;=0.

In words, (a, b) only restricts i's consumption.

Let Q' denote the set of all individual constraints for i.



Let Q* = Q\({(2% 0)} U Uie/Q') collect remaining inequalities.

The elements of Q* will be “priced.”

Constraints in Q* give rise to pecuniary externalities.



Individual consumption space:

All x; that satisfy forbidden object and individual constraints for i.

Xiz{x;GRJLr:a?-x,-SOand ai-x; < b forall (a,b) € Q'}.



» Unit demand constraints are individual and go into &;

» Supply constraints go into Q*. These will be “priced.”’



For each ¢ = (a, b) € Q*, we introduce a price pc.

Given p = (pc)ceq+ € R, the personalized price vector faced by
i€lis

Pi,l = Z di,1P(a,b)-
(a,b)eQr*

Note: analogous the shadow prices for constraints.



» i and j are of equal type if X; = X; and, for all (a, b) € QF,
aj = aj.

> x is envy-free if uj(x;) > ui(x;).

> x is equal-type envy-free uj(x;) > uj(x;) whenever i and j are
of equal type.



A pair (x*, p*) is a pseudo-market equilibrium for (I',C) if
1. x; € argmaxyex {ui(xi) : pf - xi < 1}
2. x*eC.
3. Forany ¢ =(a,b) € Q*, >_; ) ai,x7, < b implies that pZ = 0.



Main result

Suppose each u; is cont., quasi-concave, and st. increasing.
Theorem

» 3 a pseudo-market eqm. (x*, p*) in which x* is weakly
C-constrained Pareto efficient.

» If each u; is semi-strictly quasi-concave, 3 a pseudo-market
egm. (x*, p*) in which x* is C-constrained Pareto efficient.

» Every pseudo-market eqm. assignment is equal-type envy-free.
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Endowments



Each agent / is described by
» A utility u;

» An endowment vector w; € Rfr

Assume: > wj = q



A Walrasian equilibrium is a pair (x, p) with x € AN, p>0s.t

N N
1Y i1 Xxi= > ;4 wi; and
2. x; solves

Max {ui(z)) :zi€ A_ and p- z; < p- w;}



Proposition (Hylland and Zeckhauser (1979))

There are economies in which all agents’ utility functions are
expected utility, that posses no Walrasian equilibria.
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simplex



no Walras' Law

non-responsive demand




3 agents; exp. utility

| up un us
sp |10 10 1
sg| 1 1 10

Endowments: w; = (1/3,2/3).



3 agents; exp. utility

| up un us
sp |10 10 1
sg| 1 1 10

Endowments: w; = (1/3,2/3).

Obvious allocation:

xt=x%=(1/2,1/2)
x3=(0,1)



simplex




Obvious allocation

1/2

1/3




1/2

1/3




1/2

1/3




1/2

1/3




1/2

1/3




Moreover, ...
» the first welfare theorem fails.
» There are Pareto ranked Walrasian equilibria.




An economy is a tuple ' = (I, (Z;, uj,w;)ier), where
» | is a finite set of agents;
» 7, C R’_;_ is i's consumption space;
» u;: Z; — Ris i's utility function;,

» w; € Z;is i's endowment.



The aggregate endowment is denoted by @ = ), w;. For every
I € O, @, is the amount of / in the economy.

A constrained allocation problem with endowments is a pair (I',C)
in which I is an economy and C is a set feasible assignments s.t.

1. C is a polytope;
2. w = (wj)ies €C; that is, w is feasible.



» A feasible assignment x € C is acceptable to agent i if
ui(xi) > uj(wi);
» x is individually rational (IR) if it is acceptable to all agents.

» For e > 0, x is e-individually rational (e-IR) if
ui(xi) > uj(wj) —e forall i € I.



Let X; and Q* be defined as before.

Two agents i and j are of equal type if w;j = wj, X; = A&j, and for
all (a,b) € Q*, a; = a;.



For any a € [0, 1], we say (x*, p*) is an a-slack equilibrium if
1. x € argmaxgex,{ui(xi) : pf - xi <a+(1—a)pf-wi};
2. x* e,
3. Forany ¢ =(a,b) € Q*, >_; ) ai,x/, < b implies that pZ = 0.



Main result

Assume that for each ¢ € Q*, Z(,y,)gupp(c) wi > 0.

Theorem
Suppose u; is cont., quasi-concave, and st. inc. For any o € (0, 1]:

» 3 an a-slack egm. (x*, p*), and x* is weakly C-constrained
Pareto efficient.

» [f agents’ utility functions are semi-strictly quasi-concave, 3
an a-slack eqm. assignment x* that is C-constrained Pareto
efficient.

» FEvery a-slack eqm. assignment is equal-type envy-free.
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Individual rationality

Theorem

Suppose u; are cont., semi-strictly quasi-concave and st. inc. For
any e >0, 3a € (0,1] and an a-slack equilibrium (x*, p*) such
that x* is C-constrained Pareto efficient and

max{uj(y) : y € &j and pj -y < pi - wi} — ui(x;) <e.

In particular, x* is e-IR.

Echenique-Miralles-Zhang Pseudomkts with constraints



Related Literature

» Mkts. & fairness: Varian (1974), Hylland-Zeckhauser (1979),
Budish (2011).

» Allocations with constraints: Ehlers, Hafalir, Yenmez and
Yildrim (2014), Kamada and Kojima (2015, 2017).

» Endowments: Mas-Colell (1992), He (2017) , and McLennan
(2018).

» Markets and constraints: Kojima, Sun and Yu (2019), Gul,
Pesendorfer and Zhang (2019).

More references in the paper. ..
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Classical result relies on Walras Law: p - z(p) = 0 for all p. Walras
Law does not hold in our model because. . .




Demand is not responsive to price once boundary is reached.




Budget constraint:

p-x <a+(l-a)p-of



Budget constraint:
p-(x' —w) <a(l-p-w).

This allows prices to matter: large prices imply that the value of
excess demand is < 0.



Consider ¢ : [0, p]" — [0, p]* defined by

wi(p) = {min{max{0, ¢ + p;}, B} : ¢ € 2(p)}-

where p is a large price.

@ is upper hemi-continuous, convex- and compact- valued.

(In paper deal with a different ¢, which ensures PO.)



By Kakutani, 3 p* and ¢ € z(p*) s.t

pi- = min{max{0,¢; + pj }, p}.

p*-¢>0.

This is sort of a “weak Walras law.”

Pf. ¢ <0=>pf =0



p; < p forall | € [L]

Pf: Suppose pf = p. pislarge=— 1—p- w' < 0; so
p-(x'—w)<0.
By adding up we get that

in contradiction to prev. lemma.



Now think about:

pi = min{max{0,¢; + pi'}, B}

when p; < p.

we have
pi = max{0, ¢, + pj'}.



pi = max{0,{ + pi'}-
Forall /, {; =0, or (; <0 and pj = 0.

Latter case is not possible.



