Constrained Pseudo-market Equilibrium

Federico Echenique Caltech Antonio Miralles Università degli Studi di Messina. UAB-BGSE Jun Zhang Nanjing Audit U.

CECT, Sept. 2020

Allocation problems

- Jobs to workers
- Courses to students
- Chores to family members.
- Organs to patients
- Schools to children
- Offices to professors.

- ► Efficiency: Pareto
- ► Fairness (no envy): randomization
- Property rights
- ► First part of the talk: Pareto and fairness.

- Provide agents with a fixed budget in "Monopoly money."
- ► Allow purchase of (fractions of) objects at given prices.

Assign workers to jobs.

An economy is a tuple $\Gamma = (I, L, (u_i)_{i \in I})$, where

- ► *I* is a finite set of *agents*;
- ► *L* is the number of *objects*.

• Suppose
$$L = |I|$$
.

► $u_i: \Delta_- = \{x \in \mathbf{R}^L_+ : \sum_l x_l \le 1\} \to \mathbf{R}$ is *i*'s utility function.

An assignment in Γ is $x = (x_i)_{i \in I}$ with $x_i \in \Delta_-$ and $\sum_i x_i \leq \mathbf{1} = (1, \dots, 1)$.

An *HZ*-equilibrium is a pair (x, p), with $x \in \Delta_{-}^{N}$ and $p = (p_{l})_{l \in [L]} \ge 0$ s.t. 1. $\sum_{i=1}^{N} x_{i} = (1, ..., 1) = \mathbf{1}$ 2. x_{i} solves

$$Max \{u_i(z_i) : z_i \in \Delta_- \text{ and } p \cdot z_i \leq 1\}$$

Condition (1): supply = demand. Condition (2): x_i is *i*'s demand at prices *p* and income = 1. Suppose that each u_i is linear (expected utility).

Theorem (Hylland and Zeckhauser (1979))

There is an efficient HZ equilibrium. All HZ equilibrium assignments are fair.

- The textbook model has endowments ω_i
- Income at prices p is $p \cdot \omega_i$
- ▶ w/endowments, eqm. may not exist.

- Study efficient and fair allocations via pseudomarkets.
- ► With general constraints.
- ► With and without *endowments*.

Price the constraints

For example: in HZ the price of good I is the price of the supply constraint.

More generally, constraints \rightarrow pecuniary externalities. Can be internalized via prices.

- ► Agents: doctors
- Objects: positions in hospitals
- Constraints: each doctor gets at most one position.
- ► Constraints: UB on available positions.
- Constraints: LB on number of doctors/region.

Problem: Some hospitals are undesirable.

Challenge is to meet the LB on certain regions.

Solution: "price" UB so that most desirable hospitals are too expensive. Demand "overflows" to meet the LB on undesirable hospitals.

Example: Course bidding in B-schools

- ► Agents: MBA students.
- ► Objects: Courses.
- ► Constraints: UB on course enrollment.
- ► Constraints: LB on mandatory courses.

Problem: Want efficiency; reflect student pref Solution: "price"

UB so that most desirable courses are expensive. Demand "overflows" to meet the LB on less desirable. vspace.5cm Properties: efficiency and fairness.

- ► Agents: students
- Objects: students
- ► Constraints: At most one roommate (= "unit demand").
- Constraints: symmetry (*i*'s purchase of j = j's purchase of *i*).

Problem: Non-existence of stable matchings.

Equilibrium (a form of stability) + efficiency.

- ► Agents: faculty.
- Objects: office.
- Constraints: Exactly one office for each faculty.
- ► Status quo: offices are currently assigned.

New challenge: existing tenants must buy into the re-assignment \implies individual rationality constraints.

- ► Agents: children.
- ► Objects: slots in schools.
- Constraints: unit demand and school capacities.
- ► Endowment: neighborhood school (or sibling priority; etc.)

New challenge:

Respect option to attend neighborhood school \Longrightarrow individual rationality constraints.

- Max SWF (e.g utilitarian) subject to constraints.
- Outcome can be decentralized (think 2nd Welfare Thm -Miralles and Pycia, 2017).
- Dual variables \rightarrow prices.

Related Literature

- Mkts. & fairness: Varian (1974), Hylland-Zeckhauser (1979), Budish (2011).
- Allocations with constraints: Ehlers, Hafalir, Yenmez and Yildrim (2014), Kamada and Kojima (2015, 2017).
- Markets and constraints: Kojima, Sun and Yu (2019), Gul, Pesendorfer and Zhang (2019).
- Endowments: Mas-Colell (1992), He (2017), and McLennan (2018).

(Many) more references in the paper...

- A pair $(a, b) \in \mathbb{R}^n \times \mathbb{R}$ defines a *linear inequality* $a \cdot x \leq b$.
- A linear inequality (a, b) has non-negative coefficients if $a \ge 0$.
- ► A linear inequality (*a*, *b*) defines a (closed) *half-space*:

 $\{x \in \mathbf{R}^n : a \cdot x \leq b\}.$

- \blacktriangleright A polyhedron in \mathbb{R}^n is a set that is the intersection of a finite number of closed half-spaces.
- A *polytope* in \mathbf{R}^n is a bounded polyhedron.
- Two special polytopes are the simplex in \mathbf{R}^n :

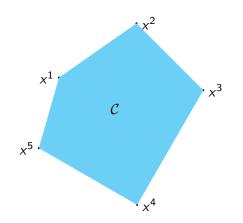
$$\Delta^n = \{ x \in \mathbf{R}^n_+ : \sum_{l=1}^n x_l = 1 \},\$$

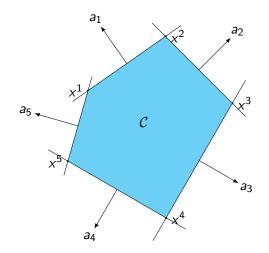
and the *subsimplex*

$$\Delta_{-}^{n} = \{ x \in \mathbf{R}_{+}^{n} : \sum_{l=1}^{n} x_{l} \leq 1 \}.$$

• When *n* is understood, we use the notation Δ and Δ_{-} .

 $\cdot x^2$ x^1 . $\cdot x^3$ x^5 . $\cdot x^4$





A function $u: \Delta_{-} \rightarrow \mathbf{R}$ is

• concave if $\forall x, z \in \Delta_-$, and $\forall \lambda \in (0, 1)$, $\lambda u(z) + (1 - \lambda)u(x) \le u(\lambda z + (1 - \lambda)x);$

• quasi-concave if, $\forall x \in \Delta_-$,

$$\{z \in \Delta_- : u(z) \ge u(x)\}$$

is a convex set.

• semi-strictly quasi-concave if $\forall x, z \in \Delta_-$,

$$u(z) < u(x) ext{ and } \lambda \in (0,1) \Longrightarrow u(z) < u(\lambda z + (1-\lambda)x)$$

expected utility if it is linear.

An economy is a tuple $\Gamma = (I, O, (Z_i, u_i)_{i \in I}, (q_i)_{i \in O})$, where

- ► *I* is a finite set of *agents*;
- *O* is a finite set of *objects*, with L = |O|;
- $Z_i \subseteq \mathbf{R}^L_+$ is *i*'s consumption space;
- $u_i : Z_i \to \mathbf{R}$ is *i*'s utility function;
- ▶ $q_I \in \mathbf{R}_{++}$ is the amount of $I \in O$.

An *assignment* in Γ is a vector

$$x = (x_{i,l})_{i \in I, l \in O}$$
 with $x_i \in Z_i$.

 ${\cal A}$ denotes the set of all assignments in $\Gamma.$

 $x \in \mathcal{A}$ is deterministic if $(\forall i, j)(x_{i,l} \in \mathbf{Z}_+)$.

Constraints are often imposed on deterministic assignments.

For example:

- unit-demand constraints require $\sum_{l \in O} x_{i,l} \leq 1 \ \forall i \in I$
- supply constraints require $\sum_{i \in I} x_{i,I} \leq q_I \ \forall I \in O$.

Floor constraints may be used to capture distributional objectives. For example:

- A minimum number of doctors to be assigned to hospitals in rural areas,
- Lower bound on the number minority students that are assigned to a particular school.
- ► All students take at least two math courses.

A deterministic assignment is *feasible* if it satisfies all exogenous constraints.

An (random) assignment is *feasible* if it belongs to the convex hull of feasible deterministic assignments.

The convex hull is a polytope since the number of feasible deterministic assignments is usually bounded, and therefore finite.

We don't start from an explicit model of constraints.

We introduce constraints *implicitly* through a *primitive* nonempty set $C \subseteq A$.

The elements of C are the *feasible assignments*.

A constrained allocation problem is a pair (Γ, \mathcal{C}) in which

- \blacktriangleright Γ is an economy and
- $C \subseteq A$, a polytope, is the set of *feasible assignments* in Γ .

- ★ x ∈ C is weakly C-constrained Pareto efficient if there is no y ∈ C s.t. u_i(y_i) > u_i(x_i) for all i.
- x ∈ C is C-constrained Pareto efficient if there is no y ∈ C s.t. u_i(y_i) ≥ u_i(x_i) for all i with at least one strict inequality for one agent.

- No envy among "equals" (agents that the constraints treat the same).
- Fairness rules out envy among agents who are treated symmetrically by the primitive constraints.

Formal defn. soon...

1

$$(a,b)\in \mathbf{R}^{NL} imes \mathbf{R}$$

defines a linear constraint $a \cdot x \leq b$.

• It has non-negative coefficients when $a \ge 0$.

The lower contour set of \mathcal{C} is

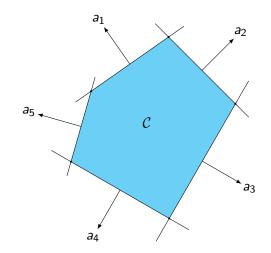
$$\mathsf{lcs}(\mathcal{C}) = \{ x \in \mathbf{R}^{\mathsf{NL}}_+ : \exists x' \in \mathcal{C} \text{ such that } x \leq x' \}.$$

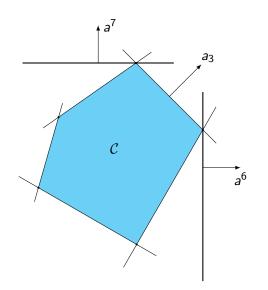
Lemma

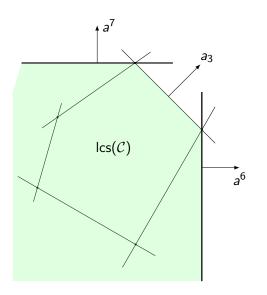
There exists a finite set Ω of linear inequalities with non-negative coefficients such that

$$\mathit{lcs}(\mathcal{C}) = \bigcap_{(a,b)\in\Omega} \{x \in \mathbf{R}^{\mathit{LN}}_+ : a \cdot x \leq b\}.$$

Used by Ivan Balbuzanov (2019)







For any $c = (a, b) \in \Omega$, define

$$\operatorname{supp}(c) = \{(i, l) \in I \times O : a_{i,l} > 0\}.$$

Two types of inequalities $(a, b) \in \Omega$:

- those with b = 0 and
- those with b > 0.

If b = 0, then for any $x \in C$ we must have $x_{i,l} = 0$ for all $(i, l) \in \text{supp}(c)$. Wlog assume there's a unique such ineq.

Say that I is a *forbidden object* for agent i when $a_{i,l}^0 > 0$.

Say that $(a, b) \in \Omega \setminus \{(a^0, 0)\}$ is an *individual constraint* for *i* if for all $j \neq i$ and $l \in O$, $a_{j,l} = 0$.

In words, (a, b) only restricts *i*'s consumption.

Let Ω^i denote the set of all individual constraints for *i*.

Let $\Omega^* = \Omega \setminus (\{(a^0, 0)\} \bigcup \cup_{i \in I} \Omega^i)$ collect remaining inequalities.

The elements of Ω^* will be "priced."

Constraints in Ω^* give rise to pecuniary externalities.

Individual consumption space:

All x_i that satisfy forbidden object and individual constraints for i.

$$\mathcal{X}_i = \{x_i \in \mathbf{R}^L_+ : a^0_i \cdot x_i \leq 0 ext{ and } a_i \cdot x_i \leq b ext{ for all } (a,b) \in \Omega^i \}.$$

- Unit demand constraints are individual and go into X_i
- Supply constraints go into Ω^* . These will be "priced."'

For each $c = (a, b) \in \Omega^*$, we introduce a price p_c .

Given $p = (p_c)_{c \in \Omega^*} \in \mathbf{R}^{\Omega^*}$, the *personalized price vector* faced by $i \in I$ is

$$p_{i,l} = \sum_{(a,b)\in\Omega^*} a_{i,l} p_{(a,b)}.$$

Note: analogous the shadow prices for constraints.

- *i* and *j* are of equal type if $\mathcal{X}_i = \mathcal{X}_j$ and, for all $(a, b) \in \Omega^*$, $a_i = a_j$.
- x is envy-free if $u_i(x_i) \ge u_i(x_j)$.
- ➤ x is equal-type envy-free u_i(x_i) ≥ u_i(x_j) whenever i and j are of equal type.

- A pair (x^*, p^*) is a *pseudo-market equilibrium* for (Γ, C) if 1. $x_i^* \in \arg \max_{x_i \in \mathcal{X}_i} \{u_i(x_i) : p_i^* \cdot x_i \leq 1\}.$ 2. $x^* \in C.$
 - 3. For any $c = (a, b) \in \Omega^*$, $\sum_{(i,l)} a_{i,l} x_{i,l}^* < b$ implies that $p_c^* = 0$.

Suppose each u_i is cont., quasi-concave, and st. increasing.

Theorem

- ▶ \exists a pseudo-market eqm. (x^*, p^*) in which x^* is weakly C-constrained Pareto efficient.
- If each u_i is semi-strictly quasi-concave, ∃ a pseudo-market eqm. (x*, p*) in which x* is C-constrained Pareto efficient.
- Every pseudo-market eqm. assignment is equal-type envy-free.

Endowments

Each agent i is described by

• A utility u_i

► An endowment vector $\omega_i \in \mathbf{R}_+^L$

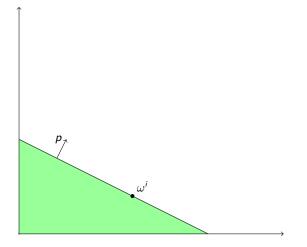
Assume: $\sum_{i} \omega_{i,l} = q_l$

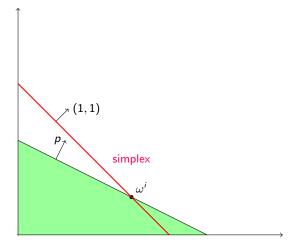
- A Walrasian equilibrium is a pair (x, p) with $x \in \Delta_{-}^{N}$, $p \ge 0$ s.t 1. $\sum_{i=1}^{N} x_i = \sum_{i=1}^{N} \omega_i$; and
 - 2. x_i solves

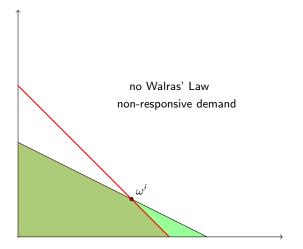
$$\mathsf{Max} \{ u_i(z_i) : z_i \in \Delta_- \text{ and } p \cdot z_i \leq p \cdot \omega_i \}$$

Proposition (Hylland and Zeckhauser (1979))

There are economies in which all agents' utility functions are expected utility, that posses no Walrasian equilibria.







3 agents; exp. utility

	<i>u</i> ₁	<i>u</i> ₂	из
SA	10	10	1
s _B	1	1	10

Endowments: $\omega_i = (1/3, 2/3)$.

3 agents; exp. utility

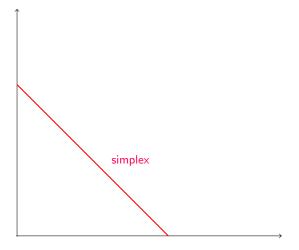
	u_1	<i>u</i> ₂	U3
SA	10	10	1
s _B	1	1	10

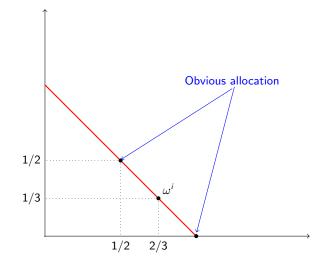
Endowments: $\omega_i = (1/3, 2/3)$.

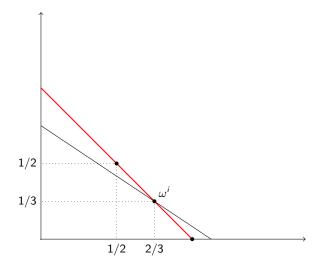
Obvious allocation:

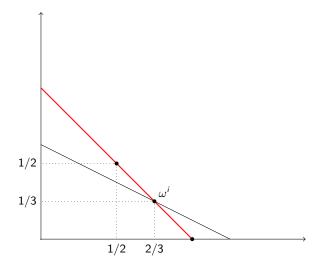
$$x^1 = x^2 = (1/2, 1/2)$$

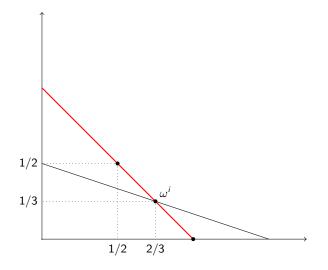
 $x^3 = (0, 1)$

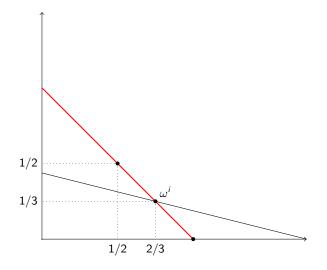












Moreover, ...

- ► the first welfare theorem fails.
- ► There are Pareto ranked Walrasian equilibria.

An economy is a tuple $\Gamma = (I, (Z_i, u_i, \omega_i)_{i \in I})$, where

- ► *I* is a finite set of *agents*;
- ► $Z_i \subseteq \mathbf{R}_+^L$ is *i*'s consumption space;
- $u_i : Z_i \to \mathbf{R}$ is *i*'s utility function;
- $\omega_i \in Z_i$ is i's endowment.

The aggregate endowment is denoted by $\bar{\omega} = \sum_{i \in I} \omega_i$. For every $I \in O$, $\bar{\omega}_I$ is the amount of I in the economy.

A constrained allocation problem with endowments is a pair (Γ, C) in which Γ is an economy and C is a set feasible assignments s.t.

- 1. C is a polytope;
- 2. $\omega = (\omega_i)_{i \in I} \in C$; that is, ω is feasible.

- A feasible assignment x ∈ C is acceptable to agent i if u_i(x_i) ≥ u_i(ω_i);
- ► x is *individually rational* (IR) if it is acceptable to all agents.
- For ε > 0, x is ε-individually rational (ε-IR) if u_i(x_i) ≥ u_i(ω_i) − ε for all i ∈ I.

Let \mathcal{X}_i and Ω^* be defined as before.

Two agents *i* and *j* are of equal type if $\omega_i = \omega_j$, $\mathcal{X}_i = \mathcal{X}_j$, and for all $(a, b) \in \Omega^*$, $a_i = a_j$.

For any $\alpha \in [0, 1]$, we say (x^*, p^*) is an α -slack equilibrium if 1. $x_i^* \in \arg \max_{x_i \in \mathcal{X}_i} \{u_i(x_i) : p_i^* \cdot x_i \leq \alpha + (1 - \alpha)p_i^* \cdot \omega_i\};$ 2. $x^* \in \mathcal{C};$

3. For any $c = (a, b) \in \Omega^*$, $\sum_{(i,l)} a_{i,l} x_{i,l}^* < b$ implies that $p_c^* = 0$.

Assume that for each $c \in \Omega^*$, $\sum_{(i,l) \in supp(c)} \omega_{i,l} > 0$.

Theorem

Suppose u_i is cont., quasi-concave, and st. inc. For any $\alpha \in (0, 1]$:

- ∃ an α-slack eqm. (x*, p*), and x* is weakly C-constrained Pareto efficient.
- If agents' utility functions are semi-strictly quasi-concave, ∃ an α-slack eqm. assignment x* that is C-constrained Pareto efficient.
- Every α -slack eqm. assignment is equal-type envy-free.

Theorem

Suppose u_i are cont., semi-strictly quasi-concave and st. inc. For any $\varepsilon > 0$, $\exists \alpha \in (0, 1]$ and an α -slack equilibrium (x^*, p^*) such that x^* is C-constrained Pareto efficient and

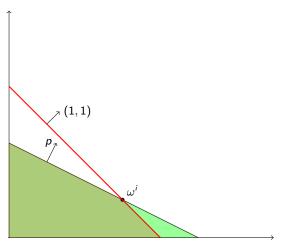
 $\max\{u_i(y): y \in \mathcal{X}_i \text{ and } p_i^* \cdot y \leq p_i^* \cdot \omega_i\} - u_i(x_i^*) < \varepsilon.$

In particular, x^* is ε -IR.

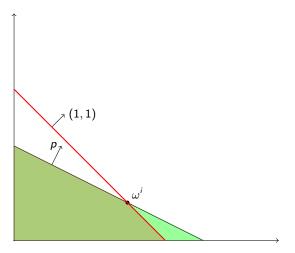
- Mkts. & fairness: Varian (1974), Hylland-Zeckhauser (1979), Budish (2011).
- Allocations with constraints: Ehlers, Hafalir, Yenmez and Yildrim (2014), Kamada and Kojima (2015, 2017).
- Endowments: Mas-Colell (1992), He (2017), and McLennan (2018).
- Markets and constraints: Kojima, Sun and Yu (2019), Gul, Pesendorfer and Zhang (2019).

More references in the paper...

Classical result relies on Walras Law: $p \cdot z(p) = 0$ for all p. Walras Law does not hold in our model because...



Demand is not responsive to price once boundary is reached.



Budget constraint:

$$p \cdot x^i \leq \alpha + (1 - \alpha)p \cdot \omega^i$$

Budget constraint:

$$p \cdot (x^i - \omega^i) \le \alpha (1 - p \cdot \omega^i).$$

This allows prices to matter: large prices imply that the value of excess demand is < 0.

Consider $\varphi : [0, \bar{p}]^L \to [0, \bar{p}]^L$ defined by

$$\varphi_I(p) = \{\min\{\max\{0,\zeta_I+p_I\}, \bar{p}\} : \zeta \in z(p)\}.$$

where \bar{p} is a large price.

Lemma

 φ is upper hemi-continuous, convex- and compact- valued.

(In paper deal with a different φ , which ensures PO.)

By Kakutani, $\exists \ p^*$ and $\zeta \in z(p^*)$ s.t

$$p_l^* = \min\{\max\{0, \zeta_l + p_l^*\}, \bar{p}\}.$$

Lemma

 $p^* \cdot \zeta \ge 0.$

This is sort of a "weak Walras law."

Pf:
$$\zeta_I < 0 \Longrightarrow p_I^* = 0$$

Lemma

 $p_l^* < \bar{p}$ for all $l \in [L]$

Pf: Suppose
$$p_l^* = \bar{p}$$
. \bar{p} is large $\implies 1 - p \cdot \omega^i < 0$; so $p \cdot (x^i - \omega^i) < 0$.
By adding up we get that

$$p \cdot \zeta \leq \alpha (N - p \cdot \overline{\omega}) < 0,$$

in contradiction to prev. lemma.

Now think about:

$$p_I^* = \min\{\max\{0, \zeta_I + p_I^*\}, \bar{p}\}.$$

when $p_l^* < \bar{p}$.

we have

$$p_l^* = \max\{0, \zeta_l + p_l^*\}.$$

$$p_l^* = \max\{0, \zeta_l + p_l^*\}.$$

For all l, $\zeta_l = 0$, or $\zeta_l < 0$ and $p_l^* = 0$.

Latter case is not possible.