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What is a normal martian?

Each Martian has a weight w and a height h, so you imagine them on the plane
(h,w).

There is a normal height interval [h, h?], and a normal weight interval [w!, w?]

So that a Martian (h, w) is normal iff (h, w) € [h, h?] x [w?, w?].

You have no idea what A" and w' are.

You also have no idea what the population distribution y is of pairs (h, w).
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What is a normal martian?

You want to learn to predict when a martian is normal.

Given a data on martians, and someone to tell you which ones are normal (a Virgil
who accompanies you on your journey).

Learn which ones are normal.

So when presented with a new martian drawn from p you can with high prob
classify them accurately.
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What is a normal martian?

Now, you are presented with a finite sample of Martians (h;, w;), i =1,...,n and
you are told whether each one is normal.

There is a true rectangle R = [h', h?] x [wl, w?].

Given your sample, you construct a minimal rectangle R’ that exactly contains the
points you have been labeled to be normal.
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RI

You want to make sure that the probability according to p of the difference R\ R’
is smaller than e.



Consider the difference between R and R’ along the northern direction.

R/




What is a normal martian?

We want to make sure that this area has probability less than or equal to /4.

If we can ensure that this is true for the North, East, West and South direction,
this means that the difference R\ R’ has probability less than or equal to ¢ (the
overcounting of the overlapping area goes in our favor).

Consider the yellow rectangle that we obtain as we sweep R from its Northern
boundary going south until we have an area of p-probability at most £/4 (assume
L is non-atomic).
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What is a normal martian?

But for this to happen, we would have had to not observe any point in our sample
in the yellow area. The probability that all n sample points miss the yellow area is

(1—c/a)".

Consider the four slices (East, West, North and South).

The probability that we miss at least one of the yellow slices, each of u-weight
g/4, is at most (by union bound!) 4(1 — &/4)".

For n large enough we can ensure that this probability is as small as we want.

LP(AUB) < P(A) + P(B).
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How large must n be?

Recall that (1 —¢) < e™=.
Then 4(1 — ¢/4)" < de="e/4,
Set § = 4e /4,

Then we need that | ;
as L&)



_ What is a normal martiant

This is pretty good.
The sample size grows lineary with 1/¢ and logarithmically with 1/6.

For example, if § =& = 0.05, then we have n > 801In80 ~ 351.



PAC learning
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PAC learning

Given is:
» A measure space (X, X), termed the instance space.
» A probability distribution p on (X, X).
» A subset ¢* C X is the target concept.

For ex:

» X is a set of strings of text.

> c* the set of text with a particular political message.

For ex:

» X = R is the space of torax x-ray images (encoded as d-dimensional
vectors).

» c* the set of images with a tumor
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PAC lea

Want to learn ¢* from an iid sample S = {x1, ..., x,}, taken according to x on X.
Where we are told whether each x; € c*.

In other words, each x; is labeled.

A class H of subsets of X is called the hypothesis class.

We may or may not have c* € H.



Given h € H, the true error of the hypothesis h is

Eu(h) = p(c” A h).

Given a sample S drawn according to p, the training error is

1SN (c* A H)|

SS(h) = |5|



Let € > 0 and denote by H. C H the set of all hypotheses that have true error
greater than ¢.

If h € H., what is the probability that h will have training error = 0 given a
sample S7

In other words, what is the probability that £s(h) = 0 when &,(h) > £?

This is at most
(1—¢)sl



PAC learning

If H. is finite, then the probability that at least one h € H. has Es(h) = 0 is (by
union bound) at most |H.| (1 — ¢)!°l.

We want this number to be small.

So if § = the prob. that at least one hypothesis with true error > & has training
error = 0, and we assume that # is finite, then:

6 < |H|e =l
(using that 1 — e < e™°).

Set n = |S| to be the sample size.
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So In(6) < In(|H|) — en, or

In(1/8) + In(|H]) >



PAC learning

Theorem
Let A be a finite hypothesis class. Given € > 0 and § € (0, 1), if

> In(1/9) + In(|H])
€
then with probability at least 1 — ¢ all hypotheses with training error = 0 have
true error < €.
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PAC learning

But what if there is no hypothesis with zero training error?

Suppose instead that we would like £s(h) and &, (h) to be close for all h.

This is a kind of uniform convergence results, and follows along similar lines:

Theorem
Let H be a finite hypothesis class. Given € > 0 and ¢ € (0, 1), if

> In(2/5)2+2|n(|7-[|)

then, with probability at least 1 — 0, |€,(h) — Es(h)| < € for all h € H.
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Application: Occam'’s razor

We can use these ideas to formalize Occam’s razor: the notion that the simplest
explanations are more likely to be correct.

Suppose that H is described using some language that takes at most b bits. The
idea being that the smaller is b the simpler the explanation.

Then we have that |H| < 2°.

As long as we set n > 1[bIn(2) + In(1/5)], then with probability > 1 — 4, any
hypothesis that can be described with b bits and has a training error of zero must
have true error < €.
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PACkoming
What is H is not finite?
The previous ideas generalize.
The theory is more involved (but interesting!).
VC dimension plays the role of |H].

We shall see this in the context of our application.
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PAC learning is about classification.

Now to economics.

What is the connection?



Well, a preference is a hypotesis.

o' > fo

> is the set of (x,y) s.t. x is chosen over y.



Let X be a set of objects of choice.
For example, a set of consumption vectors (X = R?).
P a class of preferences on X.

Then each =€ P is a subset of X x X.



Statistical model

1. In a choice problem, alternatives drawn iid according to
sampling distribution .

2. Subjects make “mistakes.”
Upon deciding on {x,y}, a subject with preference = chooses x over y with
probability g(=;x, y) (error probability function).

3. Only assumption: if x > y then g(>;x,y) > 1/2.

4. “Spatial” dependence of g on x and y is arbitrary.
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Kemeny-minimizing estimator: find a preference in P that minimizes the number
of observations inconsistent with the preference.

» “Model free:" to compute estimator don’t need to assume a specific g or .

» May be computationally challenging (depending on P).



Aswmptions

Assumption 1: X is a locally compact Polish space.
Assumption 2: P is a closed set of locally strict preferences.

Assumption 3: A has full support and for all = € P,
{(x,y) : x ~ y} has A-probability 0.



Second main result

Theorem

Under Assumptions (1), (2), (3), if the subject’s preference is =* € P and =, is
the Kemeny-minimizing estimator for ¥, then, >, — =% in probability.
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Conve

The VC dimension of P is the largest cardinality of an experiment that can
always be rationalized by P.

A measure of how flexible P; how prone it is to overfitting.



Convergence rates: Digression

» Think of a game between Alicia and Roberto

» Alicia defends P; Roberto questions it.

> Given is k

» Alicia proposes a choice experiment of size k

» Roberto fills in choices adversarily.

» Alicia wins if she can rationalize the choices using P.

» The VC dimension of P is the largest k for which Alicia always wins.
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Convergence rates

> Let p be a metric on preferences.

Under the same assumptions as in prev. thm,

N(y,6) < (F+C«/VC )

with C a universal constant.
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Convergence rates

> Let p be a metric on preferences.

» N(n,0) : smallest value of N such that for all kK > N, and all subject
preferences =* € P,

Pr(p(=x,=") <n) >1-0.

Under the same assumptions as in prev. thm,

N(y,6) < (F+C«/VC )

with C a universal constant.
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Convergence rates

> Let p be a metric on preferences.

» N(n,0) : smallest value of N such that for all kK > N, and all subject
preferences =* € P,

Pr(p(=, =*) <m) 2 1-46.
» u(>'; %) : prob. that choice w/preference > is consistent w/>".

r(n) mf{,u =) (=)= = e Pp(s, E)ZU}.

Under the same assumptions as in prev. thm,
N(n,6) < (\/ 3+ C/NC(P )

with C a universal constant.
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Convergence rates

> Let p be a metric on preferences.

» N(n,0) : smallest value of N such that for all kK > N, and all subject
preferences =* € P,

Pr(p(=x, =") <m) > 1-4.
» u(='; =) : prob. that choice w/preference > is consistent w/>".
r(n) = inf {,u =) — (=) = e Pop(=,E) 277}'

» VC(P) the VC dimension of the class P.

Under the same assumptions as in prev. thm,
N(n,6) < (\/ 3+ C/NC(P )

with C a universal constant.
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Expected utility

1. X is the set of lotteries over d prizes.

2. P is the set of nonconstant EU preferences: there are always lotteries p, p’
such as p is strictly preferred to p’.

This preference environment satisfies Assumptions 1 and 2.

Suppose: there is L > 0and m > 0 s.t
1 m
q(x,y;i)2§+L(v-x—v~y) ,

when x = y and v represents =.
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Under these assumptions, we can bound r(n) and VC(P), which implies

N(1,8) = O (Wl"—?> .

Other examples: Cobb-Douglas, CES, and CARA subjective EU preferences, and
intertemporal choice with discounted, Lipschitz-bounded utilities.



Monotone preferences

» K be a compact set in X =R?_, and fix § > 0.

» P has finite VC-dimension and is identified on K

» ) is the uniform probability measure on K?/2,

> g satisfies: probability of choosing y instead of x when x = y is a function of
[Ix = yll,

Theorem

The Kemeny-minimizing estimator is consistent and, as 7 — 0 and § — 0,

1 1

Echenique Learning preferences



References

» Kearns and Vazirani “An introduction to computational learning theory” MIT
press (1994).

» Blum, Hopcroft and Kannan “Foundations of data science” Cambridge
University Press (2020).

» Chambers, Echenique and Lambert “Recovering preferences from finite data”
Econometrica v. 89 No. 4 (2021).

Echenique Learning preferences



