Learning preferences

Federico Echenique (Berkeley)

Ridge – Montevideo Nov 2024

What is a normal martian?

Each Martian has a weight w and a height h , so you imagine them on the plane (h, w) .

There is a normal height interval $[h^1,h^2]$, and a normal weight interval $[w^1,w^2]$

So that a Martian (h, w) is normal iff $(h, w) \in [h^1, h^2] \times [w^1, w^2].$

You have no idea what h^i and w^i are.

You also have no idea what the population distribution μ is of pairs (h, w) .

You want to learn to predict when a martian is normal.

Given a data on martians, and someone to tell you which ones are normal (a Virgil who accompanies you on your journey).

Learn which ones are normal.

So when presented with a new martian drawn from μ you can with high prob classify them accurately.

Now, you are presented with a finite sample of Martians (h_i, w_i) , $i = 1, \ldots, n$ and you are told whether each one is normal.

There is a true rectangle $R=[h^1,h^2]\times [w^1,w^2].$

Given your sample, you construct a minimal rectangle R' that exactly contains the points you have been labeled to be normal.

What is a normal martian?

You want to make sure that the probability according to μ of the difference $R \setminus R'$ is smaller than ε .

Consider the difference between R and R' along the northern direction.

We want to make sure that this area has probability less than or equal to $\varepsilon/4$.

If we can ensure that this is true for the North, East, West and South direction, this means that the difference $R \setminus R'$ has probability less than or equal to ε (the overcounting of the overlapping area goes in our favor).

Consider the yellow rectangle that we obtain as we sweep R from its Northern boundary going south until we have an area of μ -probability at most $\varepsilon/4$ (assume μ is non-atomic).

What is a normal martian?

What is a normal martian?

But for this to happen, we would have had to not observe any point in our sample in the yellow area. The probability that all n sample points miss the yellow area is $(1-\varepsilon/4)^n$.

Consider the four slices (East, West, North and South).

The probability that we miss at least one of the yellow slices, each of μ -weight $\varepsilon/4$, is at most (by union bound $^1)$ 4 $(1-\varepsilon/4)^n$.

For n large enough we can ensure that this probability is as small as we want.

 ${}^{1}P(A \cup B) \leq P(A) + P(B).$

How large must n be?

Recall that $(1 - \varepsilon) \le e^{-\varepsilon}$.

Then $4(1 - \varepsilon/4)^n \leq 4e^{-n\varepsilon/4}$.

Set $\delta = 4e^{-n\varepsilon/4}$.

Then we need that

$$
n\geq \frac{4\ln(4/\delta)}{\varepsilon}.
$$

This is pretty good.

The sample size grows lineary with $1/\varepsilon$ and logarithmically with $1/\delta$.

For example, if $\delta = \varepsilon = 0.05$, then we have $n \ge 80 \ln 80 \simeq 351$.

PAC learning

PAC learning

Given is:

- A measure space (X, Σ) , termed the instance space.
- A probability distribution μ on (X, Σ) .
- A subset $c^* \subseteq X$ is the target concept.

For ex:

- \triangleright X is a set of strings of text.
- \triangleright c^* the set of text with a particular political message.

For ex:

- \blacktriangleright $X = \mathsf{R}^d$ is the space of torax x-ray images (encoded as d -dimensional vectors).
- \triangleright c^* the set of images with a tumor

Want to learn c^* from an iid sample $S=\{\mathsf{x}_1,\ldots,\mathsf{x}_n\}$, taken according to μ on $X.$

Where we are told whether each $x_i \in c^*$.

In other words, each x_i is labeled.

A class H of subsets of X is called the hypothesis class.

We may or may not have $c^* \in \mathcal{H}$.

Given $h \in \mathcal{H}$, the true error of the hypothesis h is

$$
\mathcal{E}_{\mu}(h)=\mu(c^*\bigtriangleup h).
$$

Given a sample S drawn according to μ , the training error is

$$
\mathcal{E}_S(h)=\frac{|S\cap(c^*\bigtriangleup H)|}{|S|}.
$$

Let $\varepsilon > 0$ and denote by $\mathcal{H}_{\varepsilon} \subseteq \mathcal{H}$ the set of all hypotheses that have true error greater than ε .

If $h \in \mathcal{H}_{\varepsilon}$, what is the probability that h will have training error $= 0$ given a sample S?

In other words, what is the probability that $\mathcal{E}_S(h) = 0$ when $\mathcal{E}_{\mu}(h) \geq \varepsilon$?

This is at most

$$
(1-\varepsilon)^{|S|}.
$$

If $\mathcal{H}_{\varepsilon}$ is finite, then the probability that at least one $h \in \mathcal{H}_{\varepsilon}$ has $\mathcal{E}_{S}(h) = 0$ is (by union bound) at most $|\mathcal{H}_{\varepsilon}| \, (1-\varepsilon)^{|S|}.$

We want this number to be small.

So if δ = the prob. that at least one hypothesis with true error $\geq \varepsilon$ has training error = 0, and we assume that H is finite, then:

$$
\delta \leq |\mathcal{H}| \, e^{-\varepsilon |\mathcal{S}|}
$$

(using that $1 - \varepsilon \le e^{-\varepsilon}$).

Set $n = |S|$ to be the sample size.

So
$$
\ln(\delta) \leq \ln(|\mathcal{H}|) - \varepsilon n
$$
, or

$$
\frac{\ln(1/\delta)+\ln(|\mathcal{H}|)}{\varepsilon}\geq n.
$$

Theorem

Let H be a finite hypothesis class. Given $\varepsilon > 0$ and $\delta \in (0,1)$, if

$$
n \geq \frac{\ln(1/\delta) + \ln(|\mathcal{H}|)}{\varepsilon}
$$

then with probability at least $1 - \delta$ all hypotheses with training error = 0 have true error $\langle \varepsilon$.

But what if there is no hypothesis with zero training error?

Suppose instead that we would like $\mathcal{E}_S(h)$ and $\mathcal{E}_u(h)$ to be close for all h.

This is a kind of uniform convergence results, and follows along similar lines:

Theorem

Let H be a finite hypothesis class. Given $\varepsilon > 0$ and $\delta \in (0,1)$, if

$$
n \geq \frac{\ln(2/\delta) + \ln(|\mathcal{H}|)}{2\varepsilon^2}
$$

then, with probability at least $1 - \delta$, $|\mathcal{E}_{\mu}(h) - \mathcal{E}_{\mathcal{S}}(h)| < \varepsilon$ for all $h \in \mathcal{H}$.

We can use these ideas to formalize Occam's razor: the notion that the simplest explanations are more likely to be correct.

Suppose that H is described using some language that takes at most b bits. The idea being that the smaller is b the simpler the explanation.

Then we have that $|\mathcal{H}| \leq 2^b$.

As long as we set $n \geq \frac{1}{\varepsilon} [b \ln(2) + \ln(1/\delta)],$ then with probability $\geq 1 - \delta,$ any hypothesis that can be described with b bits and has a training error of zero must have true error $\langle \varepsilon$.

What is H is not finite?

The previous ideas generalize.

The theory is more involved (but interesting!).

VC dimension plays the role of $|\mathcal{H}|$.

We shall see this in the context of our application.

Learning preferences

PAC learning is about classification.

Now to economics.

What is the connection?

Learning preferences

Well, a preference is a hypotesis.

\succeq is the set of (x, y) s.t. x is chosen over y.

Let X be a set of objects of choice.

For example, a set of consumption vectors $(X = \mathsf{R}_+^d).$

 P a class of preferences on X .

Then each $\succ \in \mathcal{P}$ is a subset of $X \times X$.

- 1. In a choice problem, alternatives drawn iid according to sampling distribution λ .
- 2. Subjects make "mistakes." Upon deciding on $\{x, y\}$, a subject with preference \succeq chooses x over y with probability $q(\succ; x, y)$ (error probability function).
- 3. Only assumption: if $x \succ y$ then $q(\succeq; x, y) > 1/2$.
- 4. "Spatial" dependence of q on x and y is arbitrary.

Kemeny-minimizing estimator: find a preference in $\mathcal P$ that minimizes the number of observations inconsistent with the preference.

- \blacktriangleright "Model free:" to compute estimator don't need to assume a specific q or λ .
- \blacktriangleright May be computationally challenging (depending on P).

Assumption 1: X is a locally compact Polish space.

Assumption 2: P is a closed set of locally strict preferences.

Assumption 3: λ has full support and for all $\succeq \in \mathcal{P}$, $\{(x, y) : x \sim y\}$ has λ -probability 0.

Theorem

Under Assumptions (1), (2), (3'), if the subject's preference is $\succeq^* \in \mathcal{P}$ and \succeq_n is the Kemeny-minimizing estimator for Σ_n , then, $\succeq_n \rightarrow \succeq^*$ in probability.

The VC dimension of P is the largest cardinality of an experiment that can always be rationalized by P.

A measure of how flexible P ; how prone it is to overfitting.

- \blacktriangleright Think of a game between Alicia and Roberto
- Alicia defends P ; Roberto questions it.
- \triangleright Given is k
- \blacktriangleright Alicia proposes a choice experiment of size k
- \triangleright Roberto fills in choices adversarily.
- Alicia wins if she can rationalize the choices using P .
- In The VC dimension of P is the largest k for which Alicia always wins.

 \blacktriangleright Let ρ be a metric on preferences.

Theorem

Under the same assumptions as in prev. thm,

$$
\mathsf{N}(\eta,\delta) \leq \frac{2}{r(\eta)^2}\left(\sqrt{2/\delta} + \mathsf{C}\sqrt{\mathrm{VC}(\mathcal{P})}\right)^2
$$

- \blacktriangleright Let ρ be a metric on preferences.
- \blacktriangleright $N(\eta, \delta)$: smallest value of N such that for all $k \geq N$, and all subject preferences $\succeq^* \in \mathcal{P}$,

$$
\Pr(\rho(\succeq_k,\succeq^*)<\eta)\geq 1-\delta.
$$

Theorem

Under the same assumptions as in prev. thm,

$$
\mathsf{N}(\eta,\delta) \leq \frac{2}{r(\eta)^2}\left(\sqrt{2/\delta} + \mathsf{C}\sqrt{\mathrm{VC}(\mathcal{P})}\right)^2
$$

- \blacktriangleright Let ρ be a metric on preferences.
- \blacktriangleright $N(\eta, \delta)$: smallest value of N such that for all $k \geq N$, and all subject preferences $\succeq^* \in \mathcal{P}$,

$$
\Pr(\rho(\succeq_k,\succeq^*)<\eta)\geq 1-\delta.
$$

▶ $\mu(\succeq'; \succeq)$: prob. that choice w/preference \succeq is consistent w/ \succeq' .

$$
r(\eta)=\inf\big\{\mu(\succeq;\succeq)-\mu(\succeq';\succeq):\succeq,\succeq'\in\mathcal{P},\rho(\succeq,\succeq')\geq\eta\big\}.
$$

Theorem

Under the same assumptions as in prev. thm,

$$
\mathsf{N}(\eta,\delta) \leq \frac{2}{r(\eta)^2}\left(\sqrt{2/\delta} + \mathsf{C}\sqrt{\mathrm{VC}(\mathcal{P})}\right)^2
$$

- \blacktriangleright Let ρ be a metric on preferences.
- $\blacktriangleright N(\eta, \delta)$: smallest value of N such that for all $k \geq N$, and all subject preferences $\succeq^* \in \mathcal{P}$,

$$
\Pr(\rho(\succeq_k,\succeq^*)<\eta)\geq 1-\delta.
$$

▶ $\mu(\succeq'; \succeq)$: prob. that choice w/preference \succeq is consistent w/ \succeq' .

$$
r(\eta)=\inf\big\{\mu(\succeq;\succeq)-\mu(\succeq';\succeq):\succeq,\succeq'\in\mathcal{P},\rho(\succeq,\succeq')\geq\eta\big\}.
$$

 \triangleright VC(P) the VC dimension of the class P.

Theorem

Under the same assumptions as in prev. thm,

$$
\mathsf{N}(\eta,\delta) \leq \frac{2}{r(\eta)^2}\left(\sqrt{2/\delta} + \mathsf{C}\sqrt{\mathrm{VC}(\mathcal{P})}\right)^2
$$

- 1. X is the set of lotteries over d prizes.
- 2. P is the set of **nonconstant** EU preferences: there are always lotteries p, p' such as p is strictly preferred to p' .

This preference environment satisfies Assumptions 1 and 2.

Suppose: there is $L > 0$ and $m > 0$ s.t

$$
q(x, y; \geq) \geq \frac{1}{2} + L(v \cdot x - v \cdot y)^m,
$$

when $x \succeq y$ and v represents \succeq .

Under these assumptions, we can bound $r(\eta)$ and $VC(P)$, which implies

$$
N(\eta,\delta)=O\left(\frac{1}{\delta\eta^{4d-2}}\right).
$$

Other examples: Cobb-Douglas, CES, and CARA subjective EU preferences, and intertemporal choice with discounted, Lipschitz-bounded utilities.

- ► K be a compact set in $X \equiv R_{++}^d$, and fix $\theta > 0$.
- \triangleright P has finite VC-dimension and is identified on K
- \blacktriangleright λ is the uniform probability measure on $K^{\theta/2}$,
- \triangleright q satisfies: probability of choosing y instead of x when $x \succ y$ is a function of $\|x - y\|$,

Theorem

The Kemeny-minimizing estimator is consistent and, as $\eta \to 0$ and $\delta \to 0$,

$$
\mathsf{N}(\eta,\delta)=O\left(\frac{1}{\eta^{2d+2}}\ln\frac{1}{\delta}\right).
$$

- \triangleright Kearns and Vazirani "An introduction to computational learning theory" MIT press (1994).
- ▶ Blum, Hopcroft and Kannan "Foundations of data science" Cambridge University Press (2020).
- ► Chambers, Echenique and Lambert "Recovering preferences from finite data" Econometrica v. 89 No. 4 (2021).