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What is a normal martian?
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What is a normal martian?

Each Martian has a weight w and a height h, so you imagine them on the plane

(h,w).

There is a normal height interval [h1, h2], and a normal weight interval [w1,w2]

So that a Martian (h,w) is normal iff (h,w) ∈ [h1, h2]× [w1,w2].

You have no idea what hi and w i are.

You also have no idea what the population distribution µ is of pairs (h,w).
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What is a normal martian?

You want to learn to predict when a martian is normal.

Given a data on martians, and someone to tell you which ones are normal (a Virgil

who accompanies you on your journey).

Learn which ones are normal.

So when presented with a new martian drawn from µ you can with high prob

classify them accurately.
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What is a normal martian?

Now, you are presented with a finite sample of Martians (hi ,wi ), i = 1, . . . , n and

you are told whether each one is normal.

There is a true rectangle R = [h1, h2]× [w1,w2].

Given your sample, you construct a minimal rectangle R ′ that exactly contains the

points you have been labeled to be normal.
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What is a normal martian?

R

R ′

You want to make sure that the probability according to µ of the difference R \ R ′

is smaller than ε.
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What is a normal martian?

Consider the difference between R and R ′ along the northern direction.

R

R ′
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What is a normal martian?

We want to make sure that this area has probability less than or equal to ε/4.

If we can ensure that this is true for the North, East, West and South direction,

this means that the difference R \ R ′ has probability less than or equal to ε (the

overcounting of the overlapping area goes in our favor).

Consider the yellow rectangle that we obtain as we sweep R from its Northern

boundary going south until we have an area of µ-probability at most ε/4 (assume

µ is non-atomic).

Echenique Learning preferences



What is a normal martian?

R

R ′
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What is a normal martian?

R

R ′
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What is a normal martian?

But for this to happen, we would have had to not observe any point in our sample

in the yellow area. The probability that all n sample points miss the yellow area is

(1− ε/4)n.

Consider the four slices (East, West, North and South).

The probability that we miss at least one of the yellow slices, each of µ-weight

ε/4, is at most (by union bound1) 4(1− ε/4)n.

For n large enough we can ensure that this probability is as small as we want.

1P(A ∪ B) ≤ P(A) + P(B).
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What is a normal martian?

How large must n be?

Recall that (1− ε) ≤ e−ε.

Then 4(1− ε/4)n ≤ 4e−nε/4.

Set δ = 4e−nε/4.

Then we need that

n ≥ 4 ln(4/δ)

ε
.
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What is a normal martian?

This is pretty good.

The sample size grows lineary with 1/ε and logarithmically with 1/δ.

For example, if δ = ε = 0.05, then we have n ≥ 80 ln 80 ' 351.
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PAC learning
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PAC learning

Given is:

I A measure space (X ,Σ), termed the instance space.

I A probability distribution µ on (X ,Σ).

I A subset c∗ ⊆ X is the target concept.

For ex:

I X is a set of strings of text.

I c∗ the set of text with a particular political message.

For ex:

I X = Rd is the space of torax x-ray images (encoded as d-dimensional

vectors).

I c∗ the set of images with a tumor
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PAC learning

Want to learn c∗ from an iid sample S = {x1, . . . , xn}, taken according to µ on X .

Where we are told whether each xi ∈ c∗.

In other words, each xi is labeled.

A class H of subsets of X is called the hypothesis class.

We may or may not have c∗ ∈ H.
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PAC learning

Given h ∈ H, the true error of the hypothesis h is

Eµ(h) = µ(c∗ 4 h).

Given a sample S drawn according to µ, the training error is

ES(h) =
|S ∩ (c∗ 4 H)|

|S |
.
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PAC learning

Let ε > 0 and denote by Hε ⊆ H the set of all hypotheses that have true error

greater than ε.

If h ∈ Hε, what is the probability that h will have training error = 0 given a

sample S?

In other words, what is the probability that ES(h) = 0 when Eµ(h) ≥ ε?

This is at most

(1− ε)|S|.
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PAC learning

If Hε is finite, then the probability that at least one h ∈ Hε has ES(h) = 0 is (by

union bound) at most |Hε| (1− ε)|S|.

We want this number to be small.

So if δ = the prob. that at least one hypothesis with true error ≥ ε has training

error = 0, and we assume that H is finite, then:

δ ≤ |H| e−ε|S|

(using that 1− ε ≤ e−ε).

Set n = |S | to be the sample size.
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PAC learning

So ln(δ) ≤ ln(|H|)− εn, or

ln(1/δ) + ln(|H|)
ε

≥ n.
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PAC learning

Theorem

Let H be a finite hypothesis class. Given ε > 0 and δ ∈ (0, 1), if

n ≥ ln(1/δ) + ln(|H|)
ε

then with probability at least 1− δ all hypotheses with training error = 0 have

true error < ε.
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PAC learning

But what if there is no hypothesis with zero training error?

Suppose instead that we would like ES(h) and Eµ(h) to be close for all h.

This is a kind of uniform convergence results, and follows along similar lines:

Theorem

Let H be a finite hypothesis class. Given ε > 0 and δ ∈ (0, 1), if

n ≥ ln(2/δ) + ln(|H|)
2ε2

then, with probability at least 1− δ, |Eµ(h)− ES(h)| < ε for all h ∈ H.
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Application: Occam’s razor

We can use these ideas to formalize Occam’s razor: the notion that the simplest

explanations are more likely to be correct.

Suppose that H is described using some language that takes at most b bits. The

idea being that the smaller is b the simpler the explanation.

Then we have that |H| ≤ 2b.

As long as we set n ≥ 1
ε [b ln(2) + ln(1/δ)], then with probability ≥ 1− δ, any

hypothesis that can be described with b bits and has a training error of zero must

have true error < ε.
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PAC learning

What is H is not finite?

The previous ideas generalize.

The theory is more involved (but interesting!).

VC dimension plays the role of |H|.

We shall see this in the context of our application.
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Learning preferences
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Learning preferences

PAC learning is about classification.

Now to economics.

What is the connection?
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Learning preferences

Well, a preference is a hypotesis.

� is the set of (x , y) s.t. x is chosen over y .

Echenique Learning preferences



Learning preferences

Let X be a set of objects of choice.

For example, a set of consumption vectors (X = Rd
+).

P a class of preferences on X .

Then each �∈ P is a subset of X × X .
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Statistical model

1. In a choice problem, alternatives drawn iid according to

sampling distribution λ.

2. Subjects make “mistakes.”

Upon deciding on {x , y}, a subject with preference � chooses x over y with

probability q(�; x , y) (error probability function).

3. Only assumption: if x � y then q(�; x , y) > 1/2.

4. “Spatial” dependence of q on x and y is arbitrary.
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Estimator

Kemeny-minimizing estimator: find a preference in P that minimizes the number

of observations inconsistent with the preference.

I “Model free:” to compute estimator don’t need to assume a specific q or λ.

I May be computationally challenging (depending on P).
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Assumptions

Assumption 1: X is a locally compact Polish space.

Assumption 2: P is a closed set of locally strict preferences.

Assumption 3: λ has full support and for all � ∈ P,

{(x , y) : x ∼ y} has λ-probability 0.
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Second main result

Theorem

Under Assumptions (1), (2), (3’), if the subject’s preference is �∗ ∈ P and �n is

the Kemeny-minimizing estimator for Σn, then, �n → �∗ in probability.
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Convergence rates: Digression

The VC dimension of P is the largest cardinality of an experiment that can

always be rationalized by P.

A measure of how flexible P; how prone it is to overfitting.
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Convergence rates: Digression

I Think of a game between Alicia and Roberto

I Alicia defends P; Roberto questions it.

I Given is k

I Alicia proposes a choice experiment of size k

I Roberto fills in choices adversarily.

I Alicia wins if she can rationalize the choices using P.

I The VC dimension of P is the largest k for which Alicia always wins.
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Convergence rates

I Let ρ be a metric on preferences.

I N(η, δ) : smallest value of N such that for all k ≥ N, and all subject

preferences �∗ ∈ P,

Pr(ρ(�k ,�∗) < η) ≥ 1− δ.

I µ(�′;�) : prob. that choice w/preference � is consistent w/�′.

r(η) = inf
{
µ(�;�)− µ(�′;�) : �,�′ ∈ P, ρ(�,�′) ≥ η

}
.

I VC(P) the VC dimension of the class P.

Theorem

Under the same assumptions as in prev. thm,

N(η, δ) ≤ 2

r(η)2

(√
2/δ + C

√
VC(P)

)2
with C a universal constant.
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Expected utility

1. X is the set of lotteries over d prizes.

2. P is the set of nonconstant EU preferences: there are always lotteries p, p′

such as p is strictly preferred to p′.

This preference environment satisfies Assumptions 1 and 2.

Suppose: there is L > 0 and m > 0 s.t

q(x , y ;�) ≥ 1

2
+ L(v · x − v · y)m,

when x � y and v represents �.
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Expected utility

Under these assumptions, we can bound r(η) and VC(P), which implies

N(η, δ) = O

(
1

δη4d−2

)
.

Other examples: Cobb-Douglas, CES, and CARA subjective EU preferences, and

intertemporal choice with discounted, Lipschitz-bounded utilities.
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Monotone preferences

I K be a compact set in X ≡ Rd
++, and fix θ > 0.

I P has finite VC-dimension and is identified on K

I λ is the uniform probability measure on K θ/2,

I q satisfies: probability of choosing y instead of x when x � y is a function of

‖x − y‖,

Theorem

The Kemeny-minimizing estimator is consistent and, as η → 0 and δ → 0,

N(η, δ) = O

(
1

η2d+2
ln

1

δ

)
.
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