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Matching with aligned preferences

If agents with types x and y are matched, both enjoy utility u(x, y).
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Why markets with aligned preferences?

e u is an objective measure of fit, or match-quality. For ex. distance in
school choice.

e May seem trivial at first. Not at all! Aligned preference are

interesting.

e Can have u(x,y) + ¢, with ¢; ; being indiosyncratic.
In a large market, stability (and other criteria discussed in the paper)
are (approx) determined by the aligned component u.

e True even if u is small relative to idiosyncratic component.

e Applications: school choice and ride sharing.



Main result: optimal transport

Optimization problem
w/parameter a.

max f(m, )
s.t. 7 is a matching

stability (o = +00)
utilitarian welfare (v = 0)

fairness (o = —0)
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Warmup: Matching on the line



Matching on the line

Model
e Agents are described by their “types” in R
e Two sets of types X CR and Y C R
e Two populations p € A(X) and v € A(Y)
e Distance-based preferences: if x € X and y € Y match, each get
utility
u(x,y) = —lx -yl



Definition
m € A(X X Y) is a matching if it has marginal 2 on X and v on Y
Denote by IM(u, ) the set of all matchings

Example: £ uniform on [—1,0], and v uniform on [0, 1]
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Definition
m € A(X X Y) is a matching if it has marginal z on X and v on Y
Denote by IM(u, ) the set of all matchings

Example: p uniform on [—1,0], and v uniform on [0, 1]

o T x >y=x+1

® Ty X =y =—X

e random: T =y X v




Stability

Definition
A matching 7 is stable if for any for any (x,y), (x’,y’) € supp(rw),

u(x,y’) < max {u(x,y)7 u(x’,y')}

At least one member in the mismatched pair (x, y’) prefers their
current partner.
((x,y") is not a blocking pair.)

10



Stability

Example: £ uniform on [—1,0], and v uniform on [0, 1]
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Note 1: 7 is stable and 7 is fair!
Note 2: For u(x,y) = —|x — y|, stability is related to no-crossing
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No-crossing

For interval (z1,2) C R, denote the circle in R? w/interval as the
diameter by O(z1, z2)

Definition
A matching 7 satisfies no-crossing if, for any (x, y), (x’,y’) € supp(rw),

the circles O(x,y) and O(x’,y’) do not cross
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satisfies no-crossing violates no-crossing
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Stability and no-crossing

Lemma

Any stable matching satisfies no-crossing
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Stability and no-crossing

Lemma

Any stable matching satisfies no-crossing

Proof. We need to rule out the following two patterns in stable matching
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No-crossing Il

Structure of no-crossing matching (McCann 1999)
Consider u, v w/densities f and g.

Any no-crossing matching is a cvx. comb. of 2 deterministic matchings:

e Match x = y as much as possible.
e All common mass h = min{f, g} is eliminated
e No-crossing matchings of residual populations (f — h) and (g — h)

form a finite number of parametric families

e The no-crossing condition makes the problem parametric!
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An example

e No crossing matchings form a one-parametric family
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Non-local matches = inequality & welfare loss. Quantify later
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e No crossing matchings form a one-parametric family

e 0 €]0,1] is the fraction of the interval [—2, —1] matched non-locally
e Stable matching corresponds to 6 = 4/7

e Non-local matches = inequality & welfare loss. Quantify later

[ ]

Angrist, Gray-Lobe, Idoux, Pathak (2022): Deferred Acceptance

in NYC and Boston = 50% increase in travel expenditure 15



Stable matching on the line

Corollaries of no-crossing:

e A stable matching=a convex combination of two deterministic ones:
x is matched with the ideal partner y = x or at most one other y’

e It can be searched for within a finite number of parametric families

Bad news: The number of families blows up exponentially with the
number of times p — v changes sign
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Stable matching on the line

Proposition

For non-atomic p, v € A(R), a stable matching exists and is unique,
and can be constructed via a simple algorithm. For piecewise-constant
densities with m intervals of constancy, it requires O(m?) operations

Proof idea. Find a “simple independent submarket”
e is to be matched independently of the rest of the population
e a no-crossing matching is unique and thus is stable

e after eliminating, the number of sign changes decreases by 1

Repeat
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Optimal transport and general
markets with aligned preferences



Optimal transport

Given:

e measurable spaces X and Y;
e distributions 1 € A(X), v € A(Y);
e payoff p: X x Y — R.

General optimal transport problem

max x,y) dm(x,
ﬂeﬂ(uw)/xm’p( y) dmlay)

18



Optimal transport

e Often formulated for cost minimization (¢ = —p)

e Standard interpretation: p and v are spatial distributions of
production and demand; 7 is cheapest way to transport supplied
quantities to satisfy demands.

—McCann (1990): X, Y C R, convex p = no-crossing 7
—Stability for R and u(x,y) = —|x — y| = no crossing 7

Question: Any direct connection between stability and transport?

Yes, and it is not limited to R and distance-based utility

19



General markets with aligned preferences

Model
e X and Y are Polish spaces with Borel o-algebra.
e Two populations € A(X) and v € A(Y).
e If x and y match, both obtain utility/payoff u(x,y).

e Assume u: X X Y — R is cont. and bounded.

e often, measurability is enough (in the paper)
e ‘“acyclicity” of ordinal preferences = existence of u (in the paper)

20



Designer’s objectives

Criteria for matchings

e Approximate stability.
e Approximate egalitarianism.

e Utilitarian welfare.

21



Approximate stability

Definition
A matching 7 is e-stable with ¢ > 0 if for any (x,y), (x’,y’) € supp(7),

u(x,y") < max{u(x,y), u(x',y')} +¢

e At least one partner in any mismatched pair can't benefit by > ¢
from leaving current partner.

e for ¢ = 0, get the usual notion of stability.

e c-stability ~ stability in the presence of e-friction
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Approximate egalitarianism

e For each matching m € MN(pu, v) define

Unin(m) = min u(x,
() (x,y)€supp() ()

e Well-defined for compact X and Y
e For non-compact, replace minimum with infimum

e Egalitarian lower bound

Unin(p,v) = IR Unin(7)

23



Approximate egalitarianism

Definition
A matching 7 € N(w, v) is e-egalitarian if there is a subset S C X x Y
with 7(S) > 1 — € such that

U(va)Z U:]in(,U,,V)—é‘ for all (X7y)65

o All agents except e-fraction have utilities above the e-relaxed
egalitarian bound
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Utilitarianism

The utilitarian welfare of a matching 7 by

W(r) = /X _ulx.y) dr(x.)

Optimal welfare

W*(u,v) = LIS W ()

Welfare-max. ~ opt. transport w/payoff p = u

e The other objectives correspond to p equal to a transformation of u

25



Utility transformation

For a matching market with utility u, define the transformation

exp(a-u(x,y)) —1

P<x(X7}’) -

e p, is convex in u for a > 0 and concave for o < 0

e for & — 0, the limit is po(x,y) = u(x,y)

26



Main result

Consider the transportation problem with payoff p,

max / Pa(x,y) dr(x, y)
meM(p,v) Jxxy

e For o = 0, this is utilitarian welfare-maximization
e What do we get for a # 07

Theorem
Let 7 be a solution to the optimal transport problem with payoff p,,.

o If & > 0 then 7 is e-stable, with £ = (In2)/a.

e If @ < 0 then 7 is e-egalitarian, with ¢ = max{1, In ||} /||

27



Main result

Implications:
e Changing «, we interpolate between the three objectives:
fairness (v = —o0), welfare (a = 0), stability (o = +00)
e Fairness and stability are on the opposite sides of the spectrum

e Provides stability with a (perhaps unintentional) social welfare objective: a
convex Atkinson inequality index.

e Stability with aligned preferences ~ an inequality-loving designer
prioritizing high-utility agents & ignoring externalities on low-utility agents.

The result extends to k-sided markets: replace “In2" with “In k"

Holds for h o u with %' > .

28



Main result

Let MY (u, V) be the set of matchings 7 that can be obtained as the
weak limit 7 = lim,_, { o 7o, Of sequences of solutions 7,, to the
transportation problem for some seq. a,, — +0o0.

Define MY __(u, V) to be the weak limits for some seq. a, — —o0.

Corollary

For continuous and bounded utility u, the sets MY __(x,v)
and M __(u,v) are non-empty, convex, and weakly closed. All
matchings in MY __(u, v) are stable, and all matchings in " __(p,v) are

egalitarian.

29



Welfare and fairness of stable matchings

Theorem

If utility v > 0 and a matching 7 is e-stable, then

e 7 guarantees approximately half of optimal welfare:
W(r) > § (W*(u,v) - <)

e 7 is £'-egalitarian with ¢/ = max{1/2, ¢}

e Any stable matching guarantees 1/2 of the optimal welfare and
is 1/2-egalitarian
e These conservative bounds are concerned with e-stable matchings

with lowest welfare or that are least egalitarian

e 2" is the number of sides of the market

30



What if the market is not aligned?
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Non-aligned markets

First, a very simple point.

If each x and y's utility from matching is within € > 0 of an aligned
utility u(x,y),

then any matching that is e-stable for the aligned market is 3¢ stable in
the non-aligned market.

So an an approximately stable matching remains approximately stable for
nearby non-aligned markets.

32



Non-aligned preferences

Let X = Y = RR. Assume non-atomic distributions p € A(X) and
v e A(Y).

Two finite populations: X, = {x1,...,x,} C X and
Yn € {Y17--~>}/n} cY.

Assume X, and Y, are i.i.d. samples from p and v.

If a pair (x;, y;) € X, x Y, is formed, agents i and j enjoy utilities
ujj = W(X,',yj) + f;yj and Vij = W(X,‘,yj) + nij-

w: X X Y — R is a continuous function capturing the aligned

component of agents’ preferences.

Idiosyncratic components &; ; and 7; ; are independent shocks with cont.
dist. F; and G;.
33



Non-aligned preferences

Notation:
Let 7, be a deterministic matching of X, and Y/,.

Then,

{(x,-,yj) € [a, b] x [c,d] : x; and y; are matched in Tr,,}

mn([a, b]x[c,d]) =

n

34



Non-aligned preferences

Theorem

For m € M(u,v), 3 sequence 6, — 0 s.t., with prob. > 1 —§,,
3 a deterministic 7, with

|mn([a, b] x [c,d]) — m([a, b] x [c,d])| < dn

for all [a, b] C X, [c,d] C Y.
Moreover, for all x; and y; matched under T,

Fi((—00,&5]) = 1—=6, and Gj((—o0,nij]) = 1—6p.

In a large market, any matching is, with high probability, close to a
matching in which all agents' idiosyncratic match utilities are high (at
quantile close to 1).
Result: related to SM Lee's work.
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Application: school choice

School choice: matching students to schools.

e Distance is a key component of student preferences (Walters, 2018).
e Distance is a key component of school preferences (priorities).

e Aligned distance-based preferences is a good approximation.

37



Application: school choice

Suppose that:

e Preferences have a distance and a “vertical” component.
e Students care about distance to school, and school quality gs.
e Schools care about distance, and student achievements g;.

e Additively.

Let u(i,s) = —d(i,s) + (qs) + g(qi)-

Then,

u(i,s) —u(i,s') =d(i,s") —d(i,s) + f(qs) — f(gs) and
u(i,s) - U(jvs) = d(j>5) - d("75) +g(qi) - g(qj)v

Hence, aligned preferences.
38



Application: school choice

Implications:

We replicate some stylized facts.

Increase in travel times after district switch to deferred acceptance.
Unfairness in travel times.

(Angrist et al 2022)

And is the objective really what we want to maximize? (Note this is a
question we couldn’t even ask without our results.)

39



Application: Ride-sharing




Matching v Uber Marketplace

In the seconds after a rider requests a ride, we evaluate nearby drivers
and riders in one batch. We then pair riders and drivers in the
distribution, aiming to reduce the average wait time for everyone, not
just the closest pair. This helps keep things moving and rides reliable
across the network.

2min @

9 min

Total wait time =11 minutes
First to request

In the early days, a rider was immediately matched with the closest
available driver. It worked well for most riders but sometimes led to long
wait times for others. Across a whole city, those longer wait times really
added up.
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Application: Bargaining with
transfers and no comittment




Markets with transfers but lack of commitment power

e Becker's (1973) marriage market model:
e A couple (x,y) generates surplus s(x, y) and can share it as

S(va) = ﬁ(X,y)—l— O(va)

e Shares 0(x, y) and V(x, y) are determined at the time of the match

e Transfers are negotiated and committed to, as part of the bargaining
over the match

e Question: What if no commitment power?

e Partners use Nash bargaining with weights (1/2, 1/2) to split
surplus after the match is formed

o Aligned preferences with u(x,y) = s(x,y)/2

41



Distance-based matching in R¢




Distance-based matching in RY: fairness-welfare tension

e X =Y =RY, utility u(x,y) =—llx =y
e The payoff
exp(a- [Ix —yll) — 1
«
is convex in the distance for o > 0 and concave for o < 0

e Optimal transport with p(x,y) = f(||x — y||) is well-understood for
convex/concave f

p(y(va) =

Let's focus on d = 1: B CSISISE
LA AR A WU VKUY

. 3 A A A EOEE R W Y

e Concave f = assortative matching e S e

e Thus o < 0 = assortative matching

Corollary

For d = 1, there is no fairness-welfare tension. Both objectives are
attained by the assortative matching.

e For d > 1, fairness-welfare tension emerges
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Distance-based matching in R?: stability-fairness tension

Is there stability-fairness tension for d = 17 Yes
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Both have the same welfare. Maybe there is no stability-welfare tension?
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Distance-based matching in RY: stability-welfare tension

McCann (1999):

e For d =1 and p(x,y) = f(|x — y|) with strictly convex f, the
optimal matching satisfies no-crossing
e If ;1 — v changes sign at most twice, a no-crossing matching is unique
For a > 0 and < 2 sign changes, the optimum does not depend on «

Corollary
If w — v changes sign at most twice, there is no stability-welfare tension

Example:
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The conclusion extends to a round city in R? aa



hing in RY: stability-welfare tension

Distance-based m

If there are > 3 sign changes, stability-welfare tension emerges
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e stability = 0 =4/7 ~ 0.57

e welfare-maximization = 6 =1

45




Conclusion

Aligned preferences emerge when

e match quality is common to both sides (distance in school choice)
e there are transfers but no commitment power

Connection to transport: a parametric family of objectives captures

stability (o« = +00), welfare (v = 0), fairness (o = —00)

Stability ~ prioritizing high-utility matches over low-utility ones

Welfare and fairness losses, at most 1/2 of each

For particular spatial distributions no loss in welfare

e Stability is OK if low-utility agents are compensated

Thank you!
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Proof of Theorem 1: c-stability as transport @k

Definition: Given p: X x Y = R, aset I C X x Y is p-cyclic

monotone if
n

Z p(xi,yi) > Z p(Xi, yit1)

i=1 =1

for all (XlaYI)7 0coog (Xnvyn) €I with Ynt1 = N1
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Proof of Theorem 1: c-stability as transport

Theorem (Beiglbock, Goldstern, Maresch, Schachermayer 2009)

If 7 solves an optimal transport problem

ren(un) o [ ply)daxy) o max
XxY

then supp(7) is p-cyclic monotone
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Proof of Theorem 1: c-stability as transport

Use cyclic monotonicity for
Pa(x,y) = exp (a - u(x,y))
On the support of the optimal matching 7,

Pa (X1, ¥2) + pa(x2, y1) < pa(X1, y1) + PalX2, y2)

Equivalently,

exp (a - u(x1, y2))+exp (a - u(xe, y1)) < exp (a - u(x1, y1))+exp (a-u(xe, y2))
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Drop the second term on the LHS

exp (a - u(x1,y2)) < exp (a- u(x,y1)) + exp (o u(x2, y2))

50



Drop the second term on the LHS

exp (a - u(x1,y2)) < exp (a- u(x,y1)) + exp (o u(x2, y2))
< 2. max { exp (a . u(xl,yl)), exp (a . U(XQ,yQ))}
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Drop the second term on the LHS

exp (a - u(x1,y2)) < exp (a- u(x,y1)) + exp (o u(x2, y2))
< 2. max { exp (a . u(xl,yl)), exp (a . U(XQ,yQ))}

=2-exp (a . max{u(xl,yl), U(X2>y2)})
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Drop the second term on the LHS
exp (a . u(x17y2)) < exp (a . u(xl,yl)) + exp (a . u(xz,yg))
< 2. max { exp (a . u(xl,yl)), exp (a . U(XQ,yQ))}
=2.exp (a -max{u(x1, y1), U(X2>}/2)})
Take logarithm and divide by «
In(2)

u(xe, y2) < max{u(xi, y1), u(xe,y2)} +
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Proof of Theorem 2 GREEEeEs

Let 7 be an e-stable matching.

For any (x1, 1), (X2, y2) € supp(n),

u(x1, y2) < max{u(xy,y1), u(xe, y2)} +e.

By non-negativity of u, we get

u(x1, y2) < u(xa, y1) + u(xz, yo) + .
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Proof of Theorem 2

Let 7’ be any other matching with marginals p and v.

Consider A € M ((X x Y) x (X x Y)) s.t. the marginals of X on (x1, y1)
and on (xz, y2) are equal to 7 and the marginal on (x1,y») is 7’.

We get
W(TF/) :/ U(X17y2) dTr/(thQ) = / U(X17y2) d)\(Xla)/17X27y2)
XXY J(XXY)X(XXY)
</ (ulot 0) + e, 32) + ) NG, 1 2. 32) =
(XXY)X(XXY)
= u(x1, y1) dm(x, y1) +/ u(xe, y2) dm(xe, y2) + € =
XxY XxY
=2W(m)+e¢
So:

W(x) > 2 (W) —<)

for any matching 7’. In particular, this inequality holds for 7/ maximizing
welfare. Thus W(m) > L (W*(p,v) —e). 50



Existence of a potential

Definition

A weak order (a complete and transitive binary relation) is termed a
preference. If the weak order = is over a topological space Z, then we
say that it is continuous if the upper contour sets

U-(z) ={z' € Z: Z' > z} and lower contour sets

Lo(z) ={2' € Z: 2 < z} are open.
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Existence of a potential

Primitives are a tuple (X, Y, >=x, =y) in which:

e X and Y are topological spaces.

e —x={>,:x € X}, where for each x € X, =, is a continuous
preference on Y;

o ~y={>,:ye Y} foreachy €Y, =, is a continuous preference
on X.
A function u: X x Y — R is a potential for (X, Y, =x,=y) if

o u(x,y) > u(x,y') iff y =,y forall x,y,y’
u

e and u(x,y

(x',y) iff x =, x" for all x,y,x’
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Existence of a potential

The environment (X, Y, >x, =y) is acyclic if, for any sequence of
couples,

(X17y1)7 (X2ay2)7 ey (Xn>yn)7

with n > 2 and (x,,y,) = (x1,y1), so that each couple (xji1,yi+1) has
exactly one agent in common with the preceding couple (x;, y;), whenever
all the common agents prefer their partner in (x;11,yi+1) to their partner
in (x;,y:), all common agents are, in fact, indifferent between the two
partners
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Existence of a potential

1. Continuity with respect to the agent: If b =, b’ then there is a
neighborhood N, of a for which b =, b’ for any c € N,

2. Local strictness: If b’ =, b and b =, b"” with a # a’ and

b+ b/, b”, then, in any neighborhood of b, there exists b with
b -, band b, b

Theorem

Let (X,Y,=x,=y) be such that X and Y are complete, separable and
connected topological spaces. Suppose that acyclicity and

properties (1) and (2) are satisfied. Then there is a potential for

(X, Y, =x,=v).
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