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Markets with aligned preferences

• Agents have aligned preferences:

if agents with types x and y are matched, both enjoy utility u(x , y)

• u is an objective fit, or match-quality.

• e.g., partners interested in maximizing a common production function
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Our contribution

• A general matching model, encompassing finite and infinite markets

• Connection to optimal transportation theory:

• Structural properties of optimal matchings

• Stability-fairness-welfare tension

• Extension to many-sided matching, e.g., team formation

Aligned preferences are interesting and realistic!
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Main result: optimal transport

Optimization problem

w/parameter α.

max f (µ, α)

s.t. µ is a matching
stability (α = +∞)

welfare (α = 0)

fairness (α = −∞)
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Outline

• Matching on the line with distance-based preferences

• Stability and no-crossing property from optimal transport

• General markets with aligned preferences & optimal transport

• stability, fairness, and welfare as objectives in a transport problem

• trade-offs and worst-case bounds

• Distance-based matching in Rd
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Warmup: Matching on the line



Matching on the line

Model

• Agents are described by their “types” in R

• Two sets of types X ⊂ R and Y ⊂ R

• Two populations µ ∈ ∆(X ) and ν ∈ ∆(Y )

• Distance-based preferences: if x ∈ X and y ∈ Y match, each get

utility

u(x , y) = −|x − y |
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Matchings

Definition

π ∈ ∆(X × Y ) is a matching if it has marginal µ on X and ν on Y

Denote by Π(µ, ν) the set of all matchings

Example: µ uniform on [−1, 0], and ν uniform on [0, 1]

• assortative: x → y = x + 1

• anti-assortative: x → y = −x
• random: π = µ× ν
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Stability

Definition

A matching π is stable if for any for any (x , y), (x ′, y ′) ∈ supp(π),

u(x , y ′) ≤ max
{
u(x , y), u(x ′, y ′)

}
At least one member in the mismatched pair (x , y ′) prefers their

current partner, i.e., (x , y ′) is not a blocking pair
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Stability

Example: µ uniform on [−1, 0], and ν uniform on [0, 1]

stable unstable

Note 1: Anti-assortative is stable and assortative is fair!

Note 2: For u(x , y) = −|x − y |, stability is related to no-crossing
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No-crossing

For interval (z1, z2) ⊂ R, denote the circle in R2 having the interval as

the diameter by O(z1, z2)

Definition

A matching π satisfies no-crossing if, for any (x , y), (x ′, y ′) ∈ supp(π),

the circles O(x , y) and O(x ′, y ′) do not cross

satisfies no-crossing violates no-crossing
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Stability and no-crossing

Lemma

Any stable matching satisfies no-crossing

Proof. We need to rule out the following two patterns in stable matching

x yx ′ y ′

blocked by (x ′, y)

x yy ′ x ′

blocked by (x , y ′) and (x ′, y)
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No-crossing II

Structure of no-crossing matching (McCann 1999)

Consider µ, ν w/densities f and g .

Any no-crossing matching is a cvx. comb. of 2 deterministic matchings:

• Match x = y as much as possible.

• All common mass h = min{f , g} is eliminated

• No-crossing matchings of residual populations (f − h) and (g − h)

form a finite number of parametric families

• The no-crossing condition makes the problem parametric!
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An example

−2 0 3

θ = 4
7θ = 1θ = 0

• No crossing matchings form a one-parametric family

• θ ∈ [0, 1] is the fraction of the interval [−2,−1] matched non-locally

• Stable matching corresponds to θ = 4/7

• Non-local matches ⇒ inequality & welfare loss. Quantify later

• Angrist, Gray-Lobe, Idoux, Pathak (2022): Deferred Acceptance

in NYC and Boston ⇒ 50% increase in travel expenditure
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Stable matching on the line

Corollaries of no-crossing:

• A stable matching=a convex combination of two deterministic ones:

x is matched with the ideal partner y = x or at most one other y ′

• It can be searched for within a finite number of parametric families

Bad news: The number of families blows up exponentially with the

number of times µ− ν changes sign
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Stable matching on the line

Proposition

For non-atomic µ, ν ∈ ∆(R), a stable matching exists and is unique,

and can be constructed via a simple algorithm. For piecewise-constant

densities with m intervals of constancy, it requires O(m2) operations

Proof idea. Find a “simple independent submarket”

• is to be matched independently of the rest of the population

• a no-crossing matching is unique and thus is stable

• after eliminating, the number of sign changes decreases by 1

Repeat

18



Optimal transport and general

markets with aligned preferences



Optimal transport

General optimal transport problem

Given measurable spaces X ,Y , distributions µ ∈ ∆(X ), ν ∈ ∆(Y ),

payoff p : X × Y → R, find a matching π ∈ Π(µ, ν):

π ∈ Π(µ, ν) :

∫
X×Y

p(x , y) dπ(x , y) → max
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Optimal transport

• Often formulated for cost minimization (c = −p)

• Standard interpretation: µ and ν are spatial distributions of

production and demand, π is the cheapest way to transport

• An archetypal problem of optimal correlation between two

distributions ⇒ omnipresent in Math, OR, and (gradually) Econ

—McCann (1990): X ,Y ⊂ R, convex p ⇒ no-crossing π

—Stability for R and u(x , y) = −|x − y | ⇒ no crossing π

Question: Any direct connection between stability and transport?

Yes, and it is not limited to R and distance-based utility
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General markets with aligned preferences

Model

• X and Y are Polish spaces with Borel σ-algebra.

• Two populations µ ∈ ∆(X ) and ν ∈ ∆(Y ).

• If x and y match, both obtain utility/payoff u(x , y).

• Assume u : X × Y → R is cont. and bounded.

• often, measurability is enough (in the paper)

• “acyclicity” of ordinal preferences ⇒ existence of u (in the paper)
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Designer’s objectives

Criteria for matchings

• Approximate stability.

• Approximate egalitarianism.

• Utilitarian welfare.

22



Approximate stability

Definition

A matching π is ε-stable with ε ≥ 0 if for any (x , y), (x ′, y ′) ∈ supp(π),

u(x , y ′) ≤ max
{
u(x , y), u(x ′, y ′)

}
+ ε

• At least one partner in any mismatched pair cannot benefit from

leaving their current partner by more than ε

• for ε = 0, get the familiar notion of stability

• ε-stability ' stability in the presence of ε-friction
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Approximate egalitarianism

• For each matching π ∈ Π(µ, ν) define

Umin(π) = min
(x,y)∈supp(π)

u(x , y)

• Well-defined for compact X and Y

• For non-compact, replace minimum with infimum

• Egalitarian lower bound

U∗min(µ, ν) = max
π∈Π(µ,ν)

Umin(π)
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Approximate egalitarianism

Definition

A matching π ∈ Π(µ, ν) is ε-egalitarian if there is a subset S ⊂ X × Y

with π(S) ≥ 1− ε such that

u(x , y) ≥ U∗min(µ, ν)− ε for all (x , y) ∈ S

• All agents except ε-fraction have utilities above the ε-relaxed

egalitarian bound
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Utilitarianism

• The utilitarian welfare of a matching π by

W (π) =

∫
X×Y

u(x , y) dπ(x , y)

• Optimal welfare

W ∗(µ, ν) = max
π∈Π(µ,ν)

W (π)

• Welfare-max. ' opt. transport w/payoff p = u

• The other objectives correspond to p equal to a transformation of u

26



Utility transformation

For a matching market with utility u, define the transformation

pα(x , y) =
exp(α · u(x , y))− 1

α

• pα is convex in u for α > 0 and concave for α < 0

• for α = 0, the limit p0(x , y) = u(x , y)

27



Main result

Consider the transportation problem with payoff pα

π ∈ Π(µ, ν) :

∫
X×Y

pα(x , y) dπ(x , y) → max

• For α = 0, this is utilitarian welfare-maximization

• What do we get for α 6= 0?

Theorem 1 proof

Let π be a solution to the optimal transport problem with payoff pα

• If α > 0 then π is ε-stable, with ε = (ln 2)/α.

• If α < 0 then π is ε-egalitarian, with ε = max{1, ln |α|}/|α|

28



Main result

Corollaries:

• Existence of stable and egalitarian matchings (weak limit, α→ ±∞)

• Changing α, we interpolate between the three objectives:

fairness (α = −∞), welfare (α = 0), stability (α = +∞)

• Fairness and stability are on the opposite sides of the spectrum

• Stability with aligned preferences ' an inequality-loving designer

prioritizing high-utility agents & ignoring externalities on low-utility ones

The result extends to k-sided markets: replace “ln 2” with “ln k”
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Welfare and fairness of stable matching

Theorem 2 proof

If utility u ≥ 0 and a matching π is ε-stable, then

• π guarantees approximately half of optimal welfare:

W (π) ≥ 1
2 (W ∗(µ, ν)− ε)

• π is ε′-egalitarian with ε′ = max {1/2, ε}

• Any stable matching guarantees 1/2 of the optimal welfare and

is 1/2-egalitarian

• These conservative bounds are concerned with ε-stable matchings

with lowest welfare or that are least egalitarian

• “2” is the number of sides of the market
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Application: school choice
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Application: school choice

School choice: matching students to schools.

• Distance is a key component of student preferences (Walters, 2018).

• Distance is a key component of school preferences (priorities).

• Aligned distance-based preferences is a good approximation.
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Application: school choice

Suppose that:

• Preferences have a distance and a “vertical” component.

• Students care about distance to school, and school quality qs .

• Schools care about distance, and student achievements qi .

• Additively.

Let u(i , s) = −d(i , s) + f (qs) + g(qi ).

Then,

u(i , s)− u(i , s ′) = d(i , s ′)− d(i , s) + f (qs)− f (qs′) and

u(i , s)− u(j , s) = d(j , s)− d(i , s) + g(qi )− g(qj),

Hence, aligned preferences.
33



Application: school choice

Implications:

• We replicate some stylized facts.

• Increase in travel times after district switch to deferred acceptance.

• Unfairness in travel times.

• (Angrist et al 2022)

And is the objective really what we want to maximize? (Note this is a

question we couldn’t even ask without our results.)
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Application: Ride-sharing
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Application: Bargaining with

transfers and no comittment



Bargaining

Markets with transfers but lack of commitment power

• Becker’s (1973) marriage market model:

• A couple (x , y) generates surplus s(x , y) and can share it as

s(x , y) = û(x , y) + v̂(x , y)

• Shares û(x , y) and v̂(x , y) are determined at the time of the match

• Transfers are negotiated and committed to, as part of the bargaining

over the match

• Question: What if no commitment power?

• Partners use Nash bargaining with weights (1/2, 1/2) to split

surplus after the match is formed

• Aligned preferences with u(x , y) = s(x , y)/2

36



Distance-based matching in Rd



Distance-based matching in Rd : fairness-welfare tension

• X = Y = Rd , utility u(x , y) = −‖x − y‖
• The payoff

pα(x , y) =
exp(α · ‖x − y‖)− 1

α
is convex in the distance for α > 0 and concave for α < 0

• Optimal transport with p(x , y) = f (‖x − y‖) is well-understood for

convex/concave f

Let’s focus on d = 1:

• Concave f ⇒ assortative matching

• Thus α < 0 ⇒ assortative matching

Corollary

For d = 1, there is no fairness-welfare tension. Both objectives are

attained by the assortative matching.

• For d > 1, fairness-welfare tension emerges
37



Distance-based matching in Rd : stability-fairness tension

Is there stability-fairness tension for d = 1? Yes

Both have the same welfare. Maybe there is no stability-welfare tension?
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Distance-based matching in Rd : stability-welfare tension

McCann (1999):

• For d = 1 and p(x , y) = f (|x − y |) with strictly convex f , the

optimal matching satisfies no-crossing

• If µ− ν changes sign at most twice, a no-crossing matching is unique

For α > 0 and ≤ 2 sign changes, the optimum does not depend on α

Corollary

If µ− ν changes sign at most twice, there is no stability-welfare tension

Example:

The conclusion extends to a round city in R2
39



Distance-based matching in Rd : stability-welfare tension II

If there are ≥ 3 sign changes, stability-welfare tension emerges

θ = 0 θ = 1 θ = 4/7

The optimal θ depends on α in the optimal transport problem

• stability ⇒ θ = 4/7 ≈ 0.57

• welfare-maximization ⇒ θ = 1
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Conclusion

• Aligned preferences emerge when

• match quality is common to both sides (distance in school choice)

• there are transfers but no commitment power

• Connection to transport: a parametric family of objectives captures

stability (α = +∞), welfare (α = 0), fairness (α = −∞)

• Stability ' prioritizing high-utility matches over low-utility ones

• Welfare and fairness losses, at most 1/2 of each

• For particular spatial distributions no loss in welfare

• Stability is OK if low-utility agents are compensated

Thank you!
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Proof of Theorem 1: ε-stability as transport back to theorem

Definition: Given p : X × Y → R, a set Γ ⊂ X × Y is p-cyclic

monotone if
n∑

i=1

p(xi , yi ) ≥
n∑

i=1

p(xi , yi+1)

for all (x1, y1), . . . , (xn, yn) ∈ Γ with yn+1 = y1
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Proof of Theorem 1: ε-stability as transport

Theorem (Beiglbock, Goldstern, Maresch, Schachermayer 2009)

If π solves an optimal transport problem

π ∈ Π(µ, ν) :

∫
X×Y

p(x , y) dπ(x , y) → max,

then supp(π) is p-cyclic monotone
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Proof of Theorem 1: ε-stability as transport

Use cyclic monotonicity for

pα(x , y) = exp
(
α · u(x , y)

)
On the support of the optimal matching π,

pα(x1, y2) + pα(x2, y1) ≤ pα(x1, y1) + pα(x2, y2)

Equivalently,

exp
(
α · u(x1, y2)

)
+exp

(
α · u(x2, y1)

)
≤ exp

(
α · u(x1, y1)

)
+exp

(
α·u(x2, y2)

)
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Proof

Drop the second term on the LHS

exp
(
α · u(x1, y2)

)
≤ exp

(
α · u(x1, y1)

)
+ exp

(
α · u(x2, y2)

)

≤ 2 ·max
{

exp
(
α · u(x1, y1)

)
, exp

(
α · u(x2, y2)

)}
= 2 · exp

(
α ·max{u(x1, y1), u(x2, y2)}

)
Take logarithm and divide by α

u(x1, y2) ≤ max
{
u(x1, y1), u(x2, y2)

}
+

ln(2)

α
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Proof of Theorem 2 back to theorem

Let π be an ε-stable matching.

For any (x1, y1), (x2, y2) ∈ supp(π),

u(x1, y2) ≤ max {u(x1, y1), u(x2, y2)}+ ε.

By non-negativity of u, we get

u(x1, y2) ≤ u(x1, y1) + u(x2, y2) + ε.
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Proof of Theorem 2

Let π′ be any other matching with marginals µ and ν.

Consider λ ∈M+

(
(X ×Y )× (X ×Y )

)
s.t. the marginals of λ on (x1, y1)

and on (x2, y2) are equal to π and the marginal on (x1, y2) is π′.

We get

W (π′) =

∫
X×Y

u(x1, y2) dπ′(x1, y2) =

∫
(X×Y )×(X×Y )

u(x1, y2) dλ(x1, y1, x2, y2)

≤
∫

(X×Y )×(X×Y )

(u(x1, y1) + u(x2, y2) + ε) dλ(x1, y1, x2, y2) =

=

∫
X×Y

u(x1, y1) dπ(x1, y1) +

∫
X×Y

u(x2, y2) dπ(x2, y2) + ε =

= 2W (π) + ε.

So:

W (π) ≥ 1

2
(W (π′)− ε)

for any matching π′. In particular, this inequality holds for π′ maximizing

welfare. Thus W (π) ≥ 1
2 (W ∗(µ, ν)− ε). 47



Existence of a potential

Definition

A weak order (a complete and transitive binary relation) is termed a

preference. If the weak order � is over a topological space Z , then we

say that it is continuous if the upper contour sets

U�(z) = {z ′ ∈ Z : z ′ � z} and lower contour sets

L�(z) = {z ′ ∈ Z : z ′ ≺ z} are open.
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Existence of a potential

Primitives are a tuple (X ,Y ,�X ,�Y ) in which:

• X and Y are topological spaces.

• �X= {�x : x ∈ X}, where for each x ∈ X , �x is a continuous

preference on Y ;

• �Y = {�y : y ∈ Y } for each y ∈ Y , �y is a continuous preference

on X .

A function u : X × Y → R is a potential for (X ,Y ,�X ,�Y ) if

• u(x , y) ≥ u(x , y ′) iff y �x y ′ for all x , y , y ′

• and u(x , y) ≥ u(x ′, y) iff x �y x ′ for all x , y , x ′
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Existence of a potential

The environment (X ,Y ,�X ,�Y ) is acyclic if, for any sequence of

couples,

(x1, y1), (x2, y2), . . . , (xn, yn),

with n > 2 and (xn, yn) = (x1, y1), so that each couple (xi+1, yi+1) has

exactly one agent in common with the preceding couple (xi , yi ), whenever

all the common agents prefer their partner in (xi+1, yi+1) to their partner

in (xi , yi ), all common agents are, in fact, indifferent between the two

partners
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Existence of a potential

1. Continuity with respect to the agent: If b �a b
′ then there is a

neighborhood Na of a for which b �c b′ for any c ∈ Na

2. Local strictness: If b′ �a b and b �a′ b
′′ with a 6= a′ and

b 6= b′, b′′, then, in any neighborhood of b, there exists b̂ with

b′ �a b̂ and b̂ �a′ b
′′

Theorem

Let (X ,Y ,�X ,�Y ) be such that X and Y are complete, separable and

connected topological spaces. Suppose that acyclicity and

properties (1) and (2) are satisfied. Then there is a potential for

(X ,Y ,�X ,�Y ).
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