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In Economics



Forensic use of DNA evidence

“Puckett’s defense lawyer contacted the Arizona lab for
more information about their findings, but the head of the
lab denied the request. After a court issued a subpoena to
compel the lab to disclose its findings, the analyst who had
found the matching nine-locus pair testified that she had
actually found ninety others within the database. When
the lab offered no explanation for why 1 in 1 trillion events
were happening regularly, the court ordered them to con-
duct a full search of the known-offender database and re-
port back all matching pairs.”

“The Dark Side of DNA Databases,” Erin Murphy The Atlantic
2015.
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p-Hacking

• Coined by Simmons, Nelson, and Simonsohn (2011),
p-hacking = researcher degrees of freedom that lead to false
statistical significance
• Attempt multiple covariates or econometric specifications,
then selectively report the most significant one
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p-Hacking

• p-hacking found in various disciplines (including economics):
Gerber and Malhotra (2008a, 2008b), Brodeur et al. (2016,
2020), Christensen and Miguel (2018), Vivalt (2019)
• Pressing problem today as scope of p-hacking expands

I Number of covariates explodes (e.g., 300 million SNPs in
genomic data can be correlated with socioeconomic outcomes)

I Specification-searching easier with more powerful computers
• How to mitigate harms of p-hacked results on policymaking,

in a world that implements policies based on p-values and
with technology that enables ever easier p-hacking?
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Datasets Infused with Dissemination Noise

Seemingly unrelated news:

• 2020 US Census will feature Disclosure Avoidance System
I inject noise into responses before releasing to public
I goal: protect confidentiality of respondents

• Census Bureau has been using various kinds of dissemination
noise since 1920’s, including suppressing all data tables from
small areas, imputing data, swapping data, etc

Key observation: though intended to protect respondent privacy,
dissemination noise may also help prevent p-hacking
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Main Ideas of This Project

Two kinds of researchers:

• p-Hackers
• Mavens
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Main Ideas of This Project

• Dissemination noise turns some covariates into “baits” that
appear correlated with an outcome variable in noisy data, but
not in original data
I Researchers analyze noisy data to propose policies
I Policy proposal then checked using original data
I This screens out p-hackers who fall for baits

• Trade-off for noise: Dissemination noise also degrades policy
proposals from honest agents with legitimate use of data
• This project: how the steward of a unique dataset (e.g., US
Census Bureau, 23andMe, ...) maximizes positive policy
impact using the right amount of dissemination noise
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Main Ideas of This Project

The key intuition for why dissemination noise can help screen out
p-hackers is that a small amount of noise hurts hackers more than
mavens.

Mavens entertain only a small number of hypotheses, so a small
amount of noise does not interfere too much with their chances of
detecting the truth.

Hackers, by contrast, rationally try out a very large number of
model specifications because they have no private information
about the true cause behind the outcome variable.

The hackers’ data mining amplifies the effect of even a small
amount of noise, making them more likely to fall for a bait and get
screened out. So, a strictly positive amount of noise is optimal.
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Outline

1. Motivating numerical example and related literature
2. Basic model
3. Reusing the dataset — dynamic model
4. Extensions
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Motivating Numerical Example

Data-generating process:

• One dependent variable; 20 covariates:
X1, ...,X20

i.i.d.∼ N (0, 1).
• Principal gets 20 independent observations of (Y ,X1, ...,X20)

from their joint distribution
• The dataset is wide in the sense that there is a large number
of possible models for the number of observations. Indeed,
there are

(20
3
)

= 1140 linear models of the form
Y = X i1 + X i2 + X i3 + ε

• Enormous scope for data mining. p-hacker has > 70% chance
of finding a regression that passes statistical muster.
• Reality: Y = X1 + X2 + X3 + ε with ε ∼ N (0, 4)
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Motivating Numerical Example

A policymaker, a data steward (principal), and a researcher (agent)

Policymaking procedure

• Uncertain which three covariates (i1, i2, i3) generate Y
• Policy = a guess about the data-generating triplet (i1, i2, i3)

I 1 from correct guess, -1 from wrong guess, 0 from not guessing
• Agent proposes a triplet (̂ı1, ı̂2, ı̂3)
• Policymaker guesses (̂ı1, ı̂2, ı̂3) if Y = Xı̂1 + Xı̂2 + Xı̂3 + ε

exceeds a critical R2 threshold in original data, and makes no
guess otherwise
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Motivating Numerical Example
Principal’s problem

• Principal cannot affect policymaking procedure (fixed
institutional norms outside of data steward’s control)
• Disseminates noisy data to agent where N (0, σ2noise) added to

each realization of each covariate
• Wants to maximize expected utility from policy

Agent’s behavior

• Agent is either a maven or a hacker
• Maven knows correct policy either (1, 2, 3) or (4, 5, 6). Runs
two regressions and reports triplet with higher R2 in noisy data
• Hacker has no idea about correct policy, runs all 1140 possible
regressions, reports triplet with highest R2 in noisy data

Policymaker naively uses the p < 0.05 critical value that assumes
no p-hacking: one of 1140 regressions chosen uniformly at random 14



Payoff Conditional on Agent Type
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• Without noise, hacker easily
finds (mostly wrong) triplet
that passes critical threshold
• With noise, highest R2

triplet in noisy data often a
bait that fails to replicate
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• Maven needs data to

compare two policy
candidates

• Noisy data makes it hard to
figure out the correct one
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Average Payoff and Optimal Noise
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• Suppose 20% hackers, 80% mavens
• Optimal dissemination noise trades off screening out hackers
via bait triplets VS preserving data quality for mavens
• Small σnoise hurts hacker more than maven: likely that some

baits are created, but unlikely that one bait happens to be
(4, 5, 6). Hackers screened out precisely because they p-hack. 16



Comparative Statics in Motivating Example
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Key features of the model

Dataset is “wide.” Many possible potential explanations.

This means powerful hackers, who are likely to find a spurious
correlation that passes statistical criteria.

Maven considers a small number of possible hypothesis.

Statistical standards are exogenously fixed.
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Related Literature
Costly data acquisition with strategic disclosure: Henry
(2009), Felgenhauer and Schulte (2014), Felgenhauer and Schulte
(2017), Di Tillio, Ottaviani, and Sørensen (2017, 2021),
McCloskey and Michaillat (2020 WP)
• We consider hackers who incur no cost from p-hacking:
mining existing data, not collecting new data
• The “equilibrium” in these papers uninteresting with free
hacking. Instead, we focus on an intervention that can screen
out p-hackers even when they face no costs

Other approaches to increase research credibility
• Lower sig. threshold to p < 0.005: Benjamin et al. (2018)

I Enough covariates and free data mining beats any threshold
I Low p-value and adding noise are complements (more later)

• Pre-registration: Abrams, Libgober, List (2021 WP) find <5%
of field experiments in top econ outlets have pre-analysis plan.
Almost no pre-registration for observational studies due to
credibility problems (Christensen and Miguel (2018)). 19



Model

Assume a simple DGP with infinitely many superfluous and
irrelevant covariates.

Raw data is obtained as a finite sample of the DGP.

Hence a wide dataset.

Three players:

• Principal (think of US Census Bureau or 23andMe):
Disseminates data.
• Agent: analyzes disseminated data to propose “policy”
â ∈ [0, 1] for j .
• Policymaker: mechanical agent.
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Model: Data-Generating Process

Ideas we seek to capture:

• “Wide” data set: many covariates, leading to powerful
hackers.
• A principal – data steward – disseminates data.
• Decision rule is exogenous and fixed (think p < 0.05 rule).
• Principal doesn’t know the questions a priori.
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Model

Principal (data steward) has limited scope in influencing how
policies are implemented.

• Unmodeled stasis in publication norm / science advocacy
process
• Principal has no power to elicit agent’s domain expertise,
reward accuracy, etc.
• Choosing a constrained-optimal mechanism by pulling one
lever: the quality of data disseminated
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Model: Data-Generating Process

Wide data set: many covariates, leading to powerful hackers.

• Continuum of binary covariates X (a) for a ∈ [0, 1]
• Finite or countable binary outcome variables Y (1),Y (2), . . .

• Each outcome j ∈ {1, 2, . . .} is associated with:
I a true cause a∗

j ∈ [0, 1], so Y (j) = X (a∗
j )

I a red herring a∅j ∈ [0, 1] — plausible mechanism for j that
can only be disproved with data.

I For now, suppose Y (j) = 1− X (a∅
j )
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Model: Data-Generating Process

• True cause and red herring drawn i.i.d. from Unif[0, 1] for
each outcome, and this fixes a joint distribution of (Y ,X )
I Each Y (j) i.i.d., equally likely 0 or 1, also determines

X (a∗
j ),X (a∅

j )

I Other X (a) are i.i.d. equally likely 0 or 1
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Model: Players and Policymaking Procedure

• Principal:
I Gets raw data with N i.i.d. obs (Yn,Xn)N

n=1
I Disseminates data. Then some Y (j) becomes relevant

• Agent: analyzes disseminated data to propose “policy”
â ∈ [0, 1] for j
• Policymaker: mechanical, sets an exogenous policy
implementation procedure
I Implements â if Y (j)

n = X (â)
n for all n
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Agents: Hackers and Mavens

The true cause a∗ and red herring ar are drawn independently from
the uniform distribution on A.

The maven knows that the true specification is either Y = X a∗ or
Y = X ar , and assigns them equal probabilities, but the hacker is
ignorant about the realizations of a∗ and ar .

The idea is that the maven uses domain expertise (e.g., theory
about the outcome Y ) to narrow down the true cause to the set
{a∗, ar}.

The hacker, in contrast, is completely uninformed about the
mechanism causing Y .
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Model: Incentives and Information of Agents Types

Agent is a maven or a hacker:

0 < h < 1 fraction hackers;
m = 1− h fraction mavens.

• When Y (j) becomes relevant, maven uses domain expertise
(“theory”) to narrow down true cause to the set {a∗j , a∅j }
• Hacker has no information about true cause
• Agent cares about being right and being implemented

wUright + (1− w)Uimplemented

• Weight w ∈ [0, 1] possibly differs across agent types
• Any w works for hacker. Assume w > 0.5 for maven.
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Model: Incentives and Information of Agents Types

Remark: A model with very powerful p-hackers

• Continuum of covariates to search over, no data-mining cost
• Represents today’s “wide” datasets and fast computers

Remark: Theory and data are complements for learning true cause

• ϕ = prob. that best guess about true cause is right
• ϕ(∅) = 0, ϕ(data) = 0, ϕ(theory) = 1

2 , ϕ(theory + data) = 1
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Model: Dissemination Noise

• Principal gets 1 if correct proposal implemented, -1 if wrong
proposal implemented, 0 if proposal rejected
• Principal releases noisy dataset (Y , X̂ ) where

X̂ (a)
n =

1− X (a)
n w.p. q

X (a)
n w.p. 1− q

independently across a, n.
• q ∈ [0, 1/2] the noise level is common knowledge
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Marginal Impact of Noise on Different Types

Can derive behavior of hacker and maven from their utilities

• Hacker: proposes some â such that X̂ (â)
n = Y (j)

n for every n
I Wrong policy with probability 1, but may get accepted

• Maven: proposes a∗j or a∅j depending on whether X̂ (a∗j ) or
X̂ (a∅j ) matches Y (j) in more observations (randomize if tie)
I Proposal accepted if and only if it is the true cause.

Vi (q) = probability type i ’s proposal accepted with noise level q.

So principal maximizes

hVhacker(q)× (−1) + mVmaven(q)× (1)
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Marginal Impact of Noise on Different Types

Lemma
V ′maven(0) = 0 but V ′hacker(0) < 0.

• Low amount of noise does not prevent agent from finding a
policy that gets accepted starting from small set of candidates
• But, high chance of baits in a very large set of candidates
• When N = 100, q = 0.01, P[a is bait | X̂ (a) = Y (j)] > 63%
• But, P[a is bait | X̂ (a) = Y (j), and a ∈ {a∗j , a∅j }] ≈ 0%
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Optimal Noise Level and Comparative Statics

Proposition 1
The optimal level of noise is

q∗ = min{12 ,
(

h
m
(2N−1

N
))1/(N−1)

}

• More noise is optimal when there are more hackers and less is
optimal when there are more observations.
• With more hackers, screening out their wrong policies
becomes more important
• With more observations, same level of noise creates more baits
• With too many hackers we hit a boundary: optimal to not
release data at all (equivalent to q = 1/2)
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Optimal Noise Level and Comparative Statics

Proposition 2
The principal’s expected payoff under the optimal noise level
approaches 1− h as N →∞.

That is, injecting the optimal level of noise is asymptotically
optimal, among all mechanisms for screening the two agent types,
including mechanisms that involve a hold-out dataset, or take more
complex forms.
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Extensions

In the paper:

• Non iid observations (eg time series).
• Red herrings that are “less wrong.”
• Finite number of variables (covariates).
• No true cause.
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When Principal Controls the Acceptance Threshold

• Assumed policymaker accepts â when Y (j)
n = X (â)

n for every n
• Now let principal choose both q and threshold N ∈ {1, ...,N},
proposal â implemented when Y (j)

n = X (â)
n for at least N obs
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When Principal Controls the Acceptance Threshold

Proposition
Principal’s optimal acceptance threshold is N = N.

• Choice of N does not affect analysis when facing maven
• Can show for any N, hacker still proposes â with Y (j) = X̂ (â)

• Interpretation: stringent p-value threshold and dissemination
noise are complementary tools for accurate policymaking

Benjamin et al. (2018), Redefine statistical significance:
“The proposal does not address multiple-hypothesis test-
ing, P-hacking, [...] Reducing the P value threshold com-
plements — but does not substitute for — solutions to
these other problems.”

• Our model formalizes the sense in which they are complements
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Reusing Data - Dynamic Model of Noise

Think monthly releases of noisy data.

Each finding validated against next month’s release.

All releases are public.
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Reusing Data - Dynamic Model of Noise

• Transparency may demand that the principal publishes
validation datasets
• Static model: check on original data since no future use
• Realistically, same dataset reused for multiple research
questions over different years
• Once data exposed, can no longer screen out p-hackers
• To reuse dataset, must validate proposals on noisy data

I Degrades accuracy, but retains some defense against future
hackers

I As more noisy versions of the data made public, hackers figure
out true data values as stock of randomness depletes

• We illustrate principal’s dynamic incentives in a simple setup

38



Reusing Data - Dynamic Model of Noise

• Time discrete and infinite, t = 0, 1, 2, ...
• Principal’s data realizes once at t = 0. Assume N = 1.
• In period t ≥ 1, outcome Y (t) is relevant and a short-lived
agent arrives, uses all disseminated data in past to propose â
• Principal releases a dataset with qt noise level (Y , X̂ ) to
validate proposal, accept when Y (t) = X̂ (â)

• Assume (unlike before) maven always proposes true cause
• Principal maximizes δ-discounted expected utility, 0 < δ < 1
• Dwork et al. (2015) also embodies an intertemporal trade-off
in exhausting the stock of randomness in a dataset
I Different use of randomness: evaluate adaptively generated

queries about DGP
I Another difference: we characterize optimal solution to

dynamic problem
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Intertemporal Consumption of Randomness

• Hacker proposes â with Y (t) = X̂ (â) in all past datasets
• Suppose such â has bt chance of being bait (Y (t) 6= X (â))
• Principal’s utility today from noisy level q is

u(qt ; bt) := m× (1− qt)︸ ︷︷ ︸
X (a∗

t ) not flipped

+h×(− (1− bt)(1− qt)︸ ︷︷ ︸
false positive

− btqt︸︷︷︸
bait validates

)

• Think of u(q; b) as “utility from consuming 1
2 − q in state b”

where stock of randomness left is b and state evolves:

bt+1 = btqt
(1− bt)(1− qt) + btqt

• We have ∂u
∂q < 0, ∂u

∂b > 0, and ∂bt+1
∂qt

> 0
I More noise = less consumption (less accurate validation)
I But, less noise depletes stock of randomness faster, easier to

hack later (b ↓)
40



Principal Eventually Abandons Dissemination Noise
Principal’s Bellman equation:

V (b) := max
q∈[0,1/2]

{
u(q; b) + δV ( bq

(1− b)(1− q) + bq )
}

Proposition
Suppose h < 1/2. In any solution to the principal’s problem, there
exists finite t∗ such that:
• If t < t∗, then 0 < qt < 1/2 and bt+1 < bt

• If t ≥ t∗, then qt = 0 and bt+1 = 0

• Principal disseminates partly noisy datasets for t∗ − 1 periods
• In period t∗, gives up and publishes original data without noise
• From then on, data fully exposed and hackers uninhibited
• Why? More noise needed to slow decline of b when b lower
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Extension: Non-i.i.d. Observations
• For a given outcome variable Y (j) or covariate X (a), assumed
so far that its N observations are i.i.d.
• Relax this assumption: unconditional distribution of each X (a)

is any full-support µ ∈ ∆({0, 1}N)
I Time-series data on different economic indicators (n = year)
I Characteristics of N individuals on a social network, where

network neighbors more likely to be similar
• After true cause and red herring drawn for each outcome j ,
draw Y (j) ∼ µ and let X (a∗j ) = Y (j) = 1− X (a∅j )

• Generate all other covariates X (a) ∼ µ
• Unreasonable to release only a subset of observations
• But, small amount of i.i.d. dissemination noise still improves
principal’s expected payoffs

Proposition
For any µ, there exists q̄ > 0 s.t. the principal gets strictly higher
expected payoff with any noise level 0 < q ≤ q̄ than with q = 0.
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Extension: More Misleading Red Herring
• Have focused on a story with the strongest possible
complementarity between theory and data
• A single observation disproves the red herring since
Y (j) = X (a∗j ), Y (j) = 1− X (a∅j )

• Small amount of noise still helps in more general settings
• Suppose for each outcome j , Y (j) and X (a∅j ) are independent
(like with any covariate other than j ’s true cause)
• Harder for maven to find true cause, also principal might
implement red herring

Proposition
Provided h

m > N+1
2N+1 , there exists q̄ > 0 s.t. the principal gets

strictly higher expected payoff with any noise level 0 < q ≤ q̄ than
with q = 0.

If N = 10, noise helps whenever more than 0.53% of agents p-hack 43



Takeaway Messages

• Dissemination noise is a data stewardship tool already in use
that can serve the additional purpose of preventing p-hacking
• Noise creates baits that attract and screen out uninformed
hackers, but minimally impact researchers with ex-ante theory
• Complements other approaches to research credibility, like
lower p-value
• Stock of randomness in a new dataset that defends against
p-hacking depletes as different noisy versions are made public.
Principal solves intertemporal consumption of randomness.

44



Takeaway Messages

Thank you!
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