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To think is to forget a difference, to generalize, to
abstract. In the overly replete world of Funes, there
were nothing but details.

Jorge Luis Borges, “Funes el memorioso”
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Motivation

Complex models vs. Occam’s razor:

I Use a model of economic behavior to infer welfare

I Make choices for the agent.

I Complex models lead to overfitting.

“Uniform learnability” ⇔ no overfitting ⇔ simplicity

(these are applications of old ideas in ML)
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Setup

I Ω a finite state space.

I x ∈ X = RΩ are acts

I %⊆ X ×X = Z is a preference

I P is a class of preferences.
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Learning (informal)

Model: P

Data: choices generated by some �∈ P

The choices are among pairs (x, y) ∈ Z drawn from some
unknown µ ∈ ∆(Z).

(Uniform) learning: Get arbitrarily close to �, with high prob.
after a finite sample.

(Uniform) Poly-time learnable: Get arbitrarily close to �, with
high prob. w/sample size that doesn’t explode with |Ω|.
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Our results

Learnable Sample complexity (|Ω|)
Expected utility X Linear
Maxmin (2 states) X NA
Maxmin (states > 2) X +∞
Choquet expected utility X Exponential

Table: Summary
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Digression

What is a normal Martian?
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VC dimension

Let P be a collection of sets.
A finite set A is always rationalized (“shattered”) by P if, no
matter how A is labeled, P can rationalize it.

The Vapnik-Chervonenkis (VC) dimension of a collection of
subsets is the largest cardinality of a set that can always be
rationalized.

VC(rectangles) = 4.
VC(all finite sets) =∞
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VC dimension

ΠP(k) = the largest number of labelings that can be
rationalized for a data of cardinality S.

A measure of how “rich” or “complex” P is. How prone to
overfitting.

Observe: if k ≤ V C(P) then ΠP(k) = 2k.

Thm (Sauer’s lemma): If V C(P) = d then

ΠP(k) ≤
(
ke

d

)d
for k > d.
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Data

A dataset consists of a finite set of pairs (xi, yi) ∈ Z:

(x1, y1) a1

(x2, y2) a2
...

...
(xn, y2) an,

with a labeling ai ∈ {0, 1}; where ai = 1 iff xi is chosen over yi.
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Data

A dataset is a finite sequence

D ∈
⋃
n≥1

(Z × {0, 1})n.

The set of all datasets is denoted by D
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Learning

A learning rule is a map σ : D → P.
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Data generating process

Given %∈ P.

I µ ∈ ∆(Z) (full support)

I (x, y) drawn iid ∼ µ
I (x, y) labeled according to %.
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Learning

Distance between %,%′∈ P:

dµ(%,%′) = µ(% 4 %′),

where

% 4 %′= {(x, y) ∈ Z : x % y and x 6%′ y}∪
{(x, y) ∈ Z : x 6% y and x %′ y}.
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Learning

P ′ ⊆ P is learnable, if ∃ a learning rule σ s.t.

∀ε, δ > 0 ∃s(ε, δ) ∈ N

s.t. ∀n ≥ s(ε, δ),

(∀ %∈ P ′)(∀µ ∈ ∆f (Z))(µn(dµ(σn,%) > ε) < δ)
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Decisions under uncertainty

I Ω a finite state space.

I x ∈ X = RΩ are acts

I %⊆= X ×X = Z is a preference

I P is a class of preferences.
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Decisions under uncertainty

x, y ∈ X are comonotonic if there are no ω, ω′ s.t

x(ω) > x(ω′) but y(ω) < y(ω′).
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Axioms

I (Weak order) % is complete and transitive.

I (Independence) ∀x, y, z ∈ X λ ∈ (0, 1),

x % y iff λx+ (1− λ)z % λy + (1− λ)z

I (Continuity) ∀x ∈ X,

Ux = {y ∈ X | y % x} and Lx = {y ∈ X | x % y}

are closed.

I (Convex ) ∀x ∈ X, the upper contour set

Ux = {y ∈ X | y % x}

is a convex set.
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Axioms

I (Comonotic Independence) ∀x, y, z ∈ X that are
comonotonic and λ ∈ (0, 1),

x % y iff λx+ (1− λ)z % λy + (1− λ)z

I (C-Independence) ∀x, y ∈ X, constant act c ∈ X and
λ ∈ (0, 1),

x % y iff λx+ (1− λ)c % λy + (1− λ)c
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Decisions under uncertainty

I PEU : set of preferences satisfying weak order and
independence

I PMEU : set of preferences satisfying weak order,
monotonicity, c-independence, continuity, convexity and
homotheticity.

I PCEU : set of preferences satisfying comonotonic
independence, continuity and monotonicity.
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Decisions under uncertainty

Theorem

I V C(PEU ) = |Ω|+ 1.

I If |Ω| ≥ 3, then V C(PMEU ) = +∞ and PMEU is not
learnable

I If |Ω| = 2, then V C(PMEU ) ≤ 8 and PMEU is learnable.

I
( |Ω|
|Ω|/2

)
≤ V C(PCEU ) ≤ (|Ω|!)2(2|Ω|+ 1) + 1
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Decisions under uncertainty

Corollary

I PEU , PCEU and, when |Ω| = 2, PMEU are learnable.

I PEU requires a minimum sample size that grows linearly
with |Ω|,

I PCEU requires a minimum sample size that grows
exponentially with |Ω|.

I PMEU is not learnable when |Ω| ≥ 3.
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Ideas in the proof

For EU:

If A ⊆ Rn and |A| ≥ n+ 2, then A = A1 ∪A2, A1 ∩A2 = ∅ and
cvh(A1) ∩ cvh(A2) 6= ∅.
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Ideas in the proof

For max-min. |Ω| ≥ 3.

Model can be characterized by a single upper contour set
{x : x � 0}. This upper contour set is a closed convex cone.
Consider a circle C in {x ∈ RΩ :

∑
i xi = 1} distance 1 to

(1/2, . . . , 1/2).
For any n, choose n points x1, . . . , xn on C: label any subset.
The closed conic hull of the labeled points will exclude all the
non-labeled points.
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Ideas in the proof

For CEU:

For a large enough sample, a large enough number of acts must
be comonotonic. Apply similar ideas to those used for EU to
comonotonic acts, (via comonotonic independence).
This shows that VC is finite (and exact upper bound can be
calculated).
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Ideas in the proof

For the exponential-sized lower bound: choose exponentially
many unordered events in Ω and consider a dataset of bets on
each event. Since events are unordered one can construct a
CEU that explains any labeling of the data.

Basu-Echenique Learnability


