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Abstract

Endowments set a lower bound for agents’ utilities in allocation problems. For

example, in school choice, one can ensure that low-income families have a shot at

high-quality schools by endowing them with a chance of admission in such schools.

Common policy objectives, such as walk-zone or sibling placement can be achieved

through endowments — and arguably more transparently than via priorities. The

policymaker, moreover, could decide to what extent endowment rights should be

balanced by an equalizer weight α that shifts individual endowments towards the

average endowment.

We introduce a notion of α-balanced individual rationality. The property is

compatible with Pareto-efficiency, and asymptotic incentive compatibility. We de-

velop an α-balanced competitive pseudo-market procedure that reaches the desired

properties. We also show that envy in such market equilibria is related to a lower

contribution of the envying agent’s endowment to standard weighted utilitarian wel-

fare than that of the envied agent.
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1 Introduction

We propose new normative criteria for the allocation of discrete resources. Our

criteria capture the meaning of fairness among agents who start off from different

positions, or who differ in which resources they have property rights over. In partic-

ular, we consider a school choice program where property rights are given by explicit

endowments, instead of implicitly via priorities, and we propose a notion of fairness

among agents who have different endowments.

The policymaker can decide to which extent individual endowment differences

shall be taken into account. She can make use of a redistribution parameter, α, that

shifts individual endowments towards the average endowment held in the economy.

It is in that sense that we propose an idea of α-balanced individual rationality: each

individual must prefer her allocation to her α-balanced endowment.

We propose a simple competitive equilibrium procedure that respects such prop-

erty alongside with Pareto-efficiency and asymptotic incentive compatibility desider-

ata. Such procedure side-steps the already known equilibrium existence issues aris-

ing from a straightaway redistribution of endowments (Hylland and Zeckhauser,

1979).

Moreover, we note that, in such competitive equilibrium allocations, envy is

justified in a utilitarian sense. If agent i envies agent j, then agent i’s endowment’s

contribution to weighted (by the inverse of marginal utility of income) utilitarian

welfare is lower than j’s endowment’s contribution.

Motivation: school choice, fairness and property rights. School choice is

the problem of allocating children to schools when we want to take into account

children’s (or their parents’) preferences. Several large US school districts have

in the last 15 years implemented school choice programs that follow economists’

recommendation and are based on economic theory.1 Practical implementation of

1Boston (Abdulkadiroğlu and Sönmez, 2003; Abdulkadiroğlu, Pathak, Roth, and Sönmez, 2005),

New York (Abdulkadiroğlu, Pathak, and Roth, 2005), and Chicago (Pathak and Sönmez, 2013)
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school choice programs presents us with a number of lessons and challenges.

The first lesson is that school choice should be guided by fairness, or lack of

justified envy. When given the choice of implementing either a fair or an efficient

outcome, school districts have consistently chosen fairness (Abdulkadiroğlu, Pathak,

Roth, and Sönmez, 2005; Abdulkadiroğlu, Pathak, and Roth, 2005). One reason

could be that district administrators are concerned with litigation: if Alice prefers

the school that Bob was assigned to, meaning that she envies Bob’s allocation,

then the district can invoke justified envy to argue as a defense that Bob had a

higher priority than Alice at the school in question. It is also likely that district

administrators, and society as a whole, have an intrinsic preference for fairness.

Such a preference for fairness is important enough to outweigh efficiency.

The second lesson is that school districts want to give children certain rights,

like the right to attend a neighborhood school if they wish to, or the right to go

to the same school as an older sibling. Rights are achieved by giving children

different priorities. For example, Bob might have a high priority for admission

in a neighborhood school, or in a school that his brother already attends. While

priorities are common in practice, we argue that they are problematic. Priorities

do not translate immediately into property rights. Alice may have a high priority

in one school, but still not get in. Her chances of getting in to a school depends

on many things. It depends, for example, on all agents’ choices and priorities in

the system, not only on her priority at a given school. Given the absence of an

immediate translation between priorities and property rights, we propose the use of

endowments to ensure property rights.

Endowments provide transparent, and immediate, property rights. A child who

is endowed with a seat at her neighborhood school can simply choose to attend

that school. Her right to attend a school does not depend on other agents’ choices

and priorities. Endowments, however, present a new conceptual challenge: What is

the meaning of fairness? It is easy to define fairness among agents who start out

from identical positions, but how do we understand fairness among unequal agents?

One of our contributions will be to formalize the notion of fairness, in the sense of

absence of justified envy, for school choice problems with endowments.

are the leading examples.
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Our market notion. Our market equilibrium solution is a hybrid of the standard

equal-income market solution, and classical Walrasian equilibrium. Agents’ expenses

in our market must be debited against a budget constraint that is a weighted average

of a fixed income, and an income derived from selling endowments at market prices.

Say that the weight on the fixed income is α ∈ (0, 1) and the weight on the income

from endowments is 1 − α. In the extreme case when α is zero, the market is a

textbook Walrasian exchange economy, in which agents derive income purely from

selling their endowment at market prices. Unfortunately, when α = 0 the Walrasian

model may not possess an equilibrium (see our discussion in Section 5.1), and may

have Pareto dominated equilibria (see Section 5.2). We show, however, that when

α > 0 equilibrium always exists, and an equilibrium that is Pareto optimal can

be found. Moreover, by choosing α > 0 to be arbitrarily small, we can come as

close as desired to respecting individual rationality. Finally, as long as α < 1, the

model allows endowments to matter and play a role in the final allocation. As a

consequence, in equilibrium, if Alice envies Bob, her envy must be the reflection

of Bob’s endowment being more valuable than Alice’s, and (under some additional

conditions) by a coalition of agents wanting more of Bob’s endowments and less of

Alice’s.

After we first circulated our paper, Garg, Tröbst, and Vazirani (2020) have

proposed algorithms that can efficiently compute our notion of balanced equilibrium

for special classes of utility functions. Their work, arguably, renders our proposal

practically implementable.

2 Related literature.

The papers closest to ours are Hylland and Zeckhauser (1979), Mas-Colell (1992),

Le (2017), and McLennan (2018).

Hylland and Zeckhauser (1979) were the first to propose markets over lottery

shares to solve centralized allocation problems. They assume a fixed income for

each agent, independent of prices. Hylland and Zeckhauser make the point, which

we elaborate on in Section 5.1, that a Walrasian market with endowments would

not always work because equilibrium may not exist. They also emphasize that

equilibrium may not be efficient, and introduce the “cheapest bundle” property

that we employ as well in our version of the first welfare theorem. It should be clear
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that allowing for endowments is a stark departure from the model of Hylland and

Zeckhauser (1979), and poses significant challenges.

Many other papers have followed Hylland and Zeckhauser in analyzing com-

petitive equilibria as solutions in market design. For example, Mas-Colell (1992),

Budish, Che, Kojima, and Milgrom (2013), Ashlagi and Shi (2015), He, Miralles,

Pycia, and Yan (2018), He, Li, and Yan (2015), Le (2017), and McLennan (2018).

With the exception of Mas-Colell, Le, and McLennan, three papers that we discuss

below, these authors explore markets with exogenously given budgets: α = 1 in our

model. When all agents have equal budgets, there can be no envy in a competitive

equilibrium (an idea stressed by Varian (1974)). But equal budgets of course elimi-

nate any role for the initial endowments in the same blow as they eliminate envy.2

The textbook model of a Walrasian exchange economy allows for endowments to

play a role in justifying envy, but equilibrium, as we have emphasized, may not

exist. There may also exist Pareto-ranked Walrasian equilibria (see Section 5.2).

A version of the hybrid model was first introduced by Mas-Colell (1992) and

later on by Le (2017). Mas-Colell presents an existence result that is similar to

ours, with income that is constituted by an additive fixed price-independent income

that is added to the standard Walrasian income that depends on prices and on the

endowment. His result requires the first component to be determined as part of

the fixed point argument in the equilibrium existence result. Put differently, his

result does not give an existence result for a fixed α, but instead determines α

endogenously in equilibrium.

We view our result, for fixed α, as having an advantage for market design because

in market design we wish to fix the parameters of the market. Moreover, α has some

meaning as a policy instrument, capturing the importance of the exogenous equal

income relative to the income that is derived from endowments. For example, we

can ensure that agents’ welfare is as close as desired to what it would be in a purely

Walrasian model by choosing α arbitrarily small (see Theorem 2). Finally, our

approach allows for a simple connection between equilibrium welfare and property

2Eric Budish has pointed out to us that, in the applications to course-bidding in Wharton,

agents were awarded different budgets out of fairness considerations. The purpose of our results

is different. We seek to understand the meaning of fairness for agents who start out with different

endowments. When endowments results from, for example, the presence of neighborhood schools,

it is not clear how to relate our model to one with different budgets.
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rights, and justified envy (see Theorem 3). Such results are not available for Mas-

Colell’s notion of equilibrium.

Le’s objective was to avoid the non-existence result in Hylland-Zeckhauser, and

to be able to talk about justified envy. These themes are common to our paper.

There are, however, some important differences between his approach and our results

on α-balanced equilibrium. The main difference is that, in his notion of equilibrium,

two identical goods may have different prices. As a consequence, there may be envy

among identical agents, and it may be necessary for some agents to purchase a more

expensive copy of a good when a cheaper one is available. Envy among equals is

problematic for normative reasons.3 Having agents purchase the more expensive

copy of an identical good is problematic because it may make it hard to implement

Le’s equilibria in a decentralized fashion. These issues are illustrated through an

example in Section 5.1.

A second, somewhat more technical, issue is that the exact way in which the

exogenous and endogenous budgets are combined is different in Mas-Colell’s and

Le’s cases from ours. These authors add them, while we mix them in a convex

combination. This may seem like a technicality, yet it matters. For example, Le

cannot totally eliminate excess demands unless all agents are endowed with all goods

(all endowments are full support). Finally, in Le’s result, the efficiency property of

equilibrium is weaker: weak Pareto optimality, rather than Pareto optimality.

The third relevant paper is the recent work of McLennan (2018), who presents an

existence result for equilibrium with “slack” in a general model. McLennan’s general

model of an economy allows for production, and encompasses our model as a special

case, but his notion of equilibrium with slack differs from ours in important ways.

Agents in his (and our) model may be satiated, and his notion of slack controls the

distribution of transfers from satiated agents to unsatiated agents. Satiated agents

my spend less than their income, and it is important to transfer their unspent

income to unsatiated agents. In contrast, our α parameter controls the role of

endowments, allowing for α to specify the weight of equal incomes vs. (unequal)

endowments. McLennan presents an example to illustrate the difference between

the two notions of equilibrium.4 In his example, no agents are satiated, so the

3One could interpret different prices for different copies of the same good as a novel endogenous

transfer scheme, but we are unaware of a normative defense of this idea.
4The two papers were written independently.
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slack in his notion of equilibrium has no role to play; as a consequence, equilibrium

allocations are independent of α. In contrast, our equilibrium allocations for his

example range from equal division to the autartical consumption of endowments, as

α ranges from placing all weight on the exogenous income, to placing all weight on

initial endowments.

3 The model

Our model is essentially the textbook model of an exchange economy in general

equilibrium theory. The difference with the textbook model is that agents consume

lotteries: consumption bundles cannot add up to more than one. This difference is

far from minor. For example, it results in the non-existence of Walrasian equilibrium,

even for economies that are otherwise well-behaved, and in the presence of Pareto-

ranked Walrasian equilibria (see our discussions in Section 5.1 and 5.2).

Notation and preliminary definitions. The simplex {x ∈ Rn
+ :
∑n

j=1 xj = 1}
in Rn is denoted by ∆n ⊆ Rn, while the set {x ∈ Rn

+ :
∑n

j=1 xj ≤ 1} is denoted by

∆n
− ⊆ Rn. When n is understood, we simply use the notation ∆ and ∆−.

A function u : ∆− → R is

• concave if, for any x, z ∈ ∆−, and λ ∈ (0, 1), λu(z) + (1 − λ)u(x) ≤ u(λz +

(1− λ)x);

• quasi-concave if, for any x, z ∈ ∆−, and λ ∈ (0, 1), min{u(z), u(x)} ≤ u(λz +

(1− λ)x).

• semi-strictly quasi-concave if it is quasi-concave, and for any x, z ∈ ∆−, u(z) 6=
u(x) and λ ∈ (0, 1) imply that min{u(z), u(x)} < u(λz + (1− λ)x).

• strictly quasi-concave if it is quasi-concave and, for any x, z ∈ ∆− with z 6= x,

and λ ∈ (0, 1), min{u(z), u(x)} < u(λz + (1− λ)x).

• strictly increasing if, for any x, z ∈ ∆− with x > z, u(x) > u(z).

• C1 if it can be extended to a continuously differentiable function defined on

an open set that contains ∆−.
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Model. A discrete allocation problem is a tuple Γ = {O, I,Q, (ui, ωi)i∈I}, where:

• O = {1, . . . , L} represents a finite set of indivisible objects, or goods.

• I = {1, . . . , N} represents a finite set of agents, each of whom demands exactly

one copy of an object.

• Q = (ql)l∈O is a capacity vector, and ql ∈ N is the quantity of object l. For

simplicity, we assume that
∑

l∈O ql = N , i.e., the number of copies of objects

is equal to the number of agents.

• For each agent i, ui : ∆L
− → R is a continuous and strictly increasing utility

function defined on ∆L
−.

• For each agent i, ωi ∈ ∆L is i’s endowment vector such that ωil is the fraction

of object l owned by i. We assume that all objects are owned by agents. So∑N
i=1 ω

i = Q. We denote by ω̄ = Q/N the average endowment of the economy.

Allocations, Pareto optimality and individual rationality. An allocation in

Γ is a vector x ∈ RLN
+ , which we write as x = (xi)Ni=1, with xi ∈ ∆L

−, such that∑
i∈I

xil = ql

for all i ∈ I and all l ∈ O. When xil ∈ {0, 1} for all i and all l, x is a deterministic al-

location. The Birkhoff-von Neumann theorem (Birkhoff, 1946; Von Neumann, 1953)

implies that every allocation is a convex combination of deterministic allocations.

An allocation x is Pareto optimal (PO) if there is no allocation y such that

ui(yi) ≥ ui(xi) for all i and uj(yj) > uj(xj) for some j.

An allocation x is acceptable to agent i if ui(xi) ≥ ui(ωi); x is individually

rational (IR) if it is acceptable to all agents. We also define a notion of approximate

individual rationality: for any ε > 0, x is ε-individually rational (ε-IR) if ui(xi) >

ui(ωi)− ε for all i.

Allocations and α-balanced individual rationality. We introduce a novel

notion of individual rationality in models with endowments: for any α ∈ (0, 1), x is

α-balanced individually rational if ui(xi) ≥ ui(αω̄ + (1 − α)ωi) for all i. The idea

in balanced individual rationality is that a central planner “moderates” individual
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agents’ claims to be as well off as in their endowments. It introduces a degree of

resource egalitarianism, in the sense that it pulls all agents partially to a claim on the

economy’s average endowment. Of course, the degree of such resource egalitarianism

is controlled by the parameter α. One may imagine a planner using real taxes and

subsidies to “moderate” individual agents endowments and make the starting point

of the economy more egalitarian.

Allocations and equity. We define equity in our model. An agent i envies

another agent j in an allocation x if ui(xj) > ui(xi). An allocation is envy-free if

no agent envies any other agent. We also define a notion of approximate equity: for

any ε > 0, x is ε-envy-free (ε-EF) if, for every distinct i and j, ui(xi) > ui(xj)− ε.

Balanced Walrasian equilibrium. Given any α ∈ (0, 1), an α-balanced Wal-

rasian equilibrium is a pair (x, p) such that x ∈ ∆N
− , and p = (pl)l∈O ∈ RL

+ is a price

vector such that

1. the market clears:
∑N

i=1 x
i =

∑N
i=1 ω

i; and

2. xi maximizes i’s utility within his α-balanced budget:

xi ∈ argmax{ui(zi) : zi ∈ ∆− and p · zi ≤ α + (1− α)p · ωi};

A Walrasian equilibrium is an extreme case of α-balanced Walrasian equilibrium

in which we set α = 0. It is well-known that Walrasian equilibria may not exist in

our model, even for very well behaved utility functions (Hylland and Zeckhauser,

1979). Section 5.1 elaborates further.

On the other extreme, when α = 1, we obtain the competitive equilibrium from

equal incomes (Hylland and Zeckhauser, 1979; Varian, 1974)).

4 Main Results

Let Γ = {O, I,Q, (ui, ωi)i∈I} be a discrete allocation problem. We first prove that

for any α > 0, α-balanced Walrasian equilibria exist.

Theorem 1. Suppose that agents’ utility functions in Γ are quasi-concave. For any

α ∈ (0, 1], there exists an α-balanced Walrasian equilibrium (x, p). The equilibrium
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allocation x is α-balanced individually rational. Moreover, if agents’ utility functions

are semi-strictly quasi-concave, then x can be chosen to be Pareto optimal.

The next result proves that by choosing α arbitrarily close to 0, the market

designer can obtain an equilibrium allocation arbitrarily close to individual ratio-

nality, while by choosing α arbitrarily close to 1, the market designer can obtain an

equilibrium allocation arbitrarily close to equity.5

Theorem 2. Suppose that agents’ utility functions in Γ are semi-strictly quasi-

concave. For any ε > 0:

1. There is α ∈ (0, 1) and an α-balanced Walrasian equilibrium (x, p) such that

x is Pareto optimal and for every i,

max{ui(y) : y ∈ ∆− and p · y ≤ p · ωi} − ui(x) < ε.

In particular, x is ε-individually rational.

2. There is α ∈ (0, 1) and an α-balanced Walrasian equilibrium (x, p) such that

x is Pareto optimal and for every distinct i and j,

max{ui(y) : y ∈ ∆− and p · y ≤ α + (1− α)p · ωj} − ui(x) < ε.

In particular, x is ε-envy-free.

The second part of Theorem 2 means that in the equilibrium allocation x, i does

not envy j’s assignment as well as any consumption in j’s budget set in an approx-

imate sense. Without approximation, Varian (1976) calls this property opportunity

fairness.

Suppose that an agent i envies another agent j in an α-balanced Walrasian

equilibrium with some α ∈ (0, 1). Then it must be that p · ωj > p · ωi. In other

words, i’s envy is not justified, because j’s endowment is more valuable at market

prices than i’s. This means that the society values j’s endowment more than i’s, in

a sense made precise in Theorem 3.

Theorem 3. Suppose that agents’ utility functions in Γ are concave and C1. Let

(x, p) be an α-balanced Walrasian equilibrium. Denote by S = {i : ui(xi) =

5Of course, we can obtain exact equity by choosing α = 1. The purpose of this result is to show

that to obtain approximate equity, α needs not to be one.
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maxzi∈∆− u
i(zi)} the set of satiated agents, and by U = I \ S the set of unsatiated

agents. Suppose that
∑

i∈U x
i � 0. If i envies j in x, then p · ωj > p · ωi, and there

exists welfare weights θ ∈ RU
++ such that if

v(t) = sup{
∑
i∈U

θiui(x̃i) : (x̃i) ∈ ∆U
− and

∑
i∈U

x̃i ≤ Q+ t(ωi − ωj)−
∑
i∈S

xi},

then (xi)i∈U solves the problem for v(0), and v(t) < v(0) for all t small enough.

The meaning of Theorem 3 is that if i envies j then j’s endowment is more

valuable than i’s in two senses. First, it is more valuable at equilibrium prices.

Second, the higer price valuation translates into a statement about how much agents

value the endowment. In particular, j’s endowment is more valuable than i’s to a

coalition of players U (a coalition that includes i!) in the sense that there are

welfare weights for the members of U such that a change in agents’ endowment

towards having more of i’s endowment and less of j’s leads to a worse weighted

utilitarian outcome. The results requires
∑

i∈U x
i � 0 simply to ensure that when

we subtract ωj we do not force some agent to consume negative quantities of some

good.6

An important take-away from these results is that the market designer can flex-

ibly balance equity and individual rationality by choosing the value of α. The

following example further illustrates this point.

Example 1. Given is an economy with two agents and two objects. Each object has

one copy. Agents have expected utilities given by the following vNM indexes:

i uil uil′

1 100 1

2 100 1

Endowments are ω1 = (2/3, 1/3) and ω2 = (1/3, 2/3). In words, the two agents both

prefer l to l′, and agent 1 owns more amount of l than agent 2 does.

For any α ∈ (0, 1], there is an α-balanced Walrasian equilibrium where the price

vector is p = (2, 0) and the allocation is xα = (xiα)i=1,2 where

x1
α = (

4− α
6

,
2 + α

6
), x2

α = (
2 + α

6
,
4− α

6
).

6The
∑

i∈U x
i � 0 hypothesis in Theorem 3 is stronger than what we need. It suffices that if

ωj
l > 0 then

∑
i∈U x

i
l > 0.
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When α converges to 1, xα converges to the only envy-free allocation where x1 =

x2 = (1/2, 1/2). When α converges to 0, xα converges to the only individually

rational allocation, the initial endowment ω. As α varies from 0 to 1, xα becomes

more equitable but more away from individual rationality.

We proceed to discuss other more nuanced aspects of our results.

5 Discussion

5.1 The Hylland and Zeckhauser example

A Walrasian equilibrium (a 0-balanced equilibrium) may not exist in our model. We

present a non-existence example originally due to Hylland and Zeckhauser (1979).

We show that the symmetric Pareto optimal allocation in this example can be

sustained as an α-balanced Walrasian equilibrium with any α ∈ (0, 1].

Example 2 (Hylland-Zeckhauser example). Given is an economy with three agents

and two objects. Object l has one copy, while object l′ has two copies. Agents have

expected utilities given by the following vNM indexes:

i uil uil′

1 100 1

2 100 1

3 1 100

Endowments are ωi = (1/3, 2/3) for i = 1, 2, 3.

Proposition 1. There is no Walrasian equilibrium in Example 2.

Proof. Suppose (towards a contradiction) that (x, p) is a Walrasian equilibrium.

Suppose first that pl′ > 0. Normalize Pl′ to one. Then all agents have the same

positive budget. If pl = 0, then 1 and 2 would each buy one copy of l, which is a

contradiction. So pl must be positive. The preferences of agents imply that 1 and 2

must each obtain a half of l. Therefore, 1/3pl + 2/3 ≥ 1/2pl, and we obtain pl ≤ 4.

However, if pl < 4, 1 and 2 would spend all of their budgets on l, and each obtain

more than a half of l, which is a contradiction. So it must be that 1/3pl+2/3 = 1/2pl

and pl = 4. But then 1 and 2 would still spend all of their budgets on l, and l′ must

have excess supply, which is a contradiction.
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Now suppose pl′ = 0 and pl > 0. Then 3 must obtain one copy of l′. Since pl is

positive, 1 and 2 must each obtain a half of l. However, their budget 1/3pl cannot

afford such an allocation.

Consider the symmetric Pareto optimal allocation x defined by:

i xil xil′

1 1/2 1/2

2 1/2 1/2

3 0 1

Proposition 2. For any α ∈ (0, 1], there is an α-balanced Walrasian equilibrium

that supports the allocation x in Example 2.

Proof. For any α ∈ (0, 1], let

p = (
6α

1 + 2α
, 0).

Then for i = 1, 2, p · ωi = 2α
1+2α

and

α + (1− α)p · ωi =
α + 2α2 + (2α− 2α2)

1 + 2α
=

3α

1 + 2α
= p · xi.

Agents 1 and 2 can improve by purchasing more l, but they cannot afford any

more. They can only afford 1/2 share of l and buy 1/2 share of l′ for free. They

can improve by purchasing more l′ at the zero price, but that would not be feasible

in ∆−. Agent 3 is optimizing by choosing 1 share of l′ for free.

Note that in the above α-balanced Walrasian equilibrium supporting x, the value

of 1 and 2’s endowments (p · ωi) in equilibrium is 2α/(1 + 2α). So the value of the

exogenous part of the budget relative to the endogenous value of endowments p · ωi

is
α · 1

(1− α) · p · ωi
=

1 + 2α

2(1− α)
→ 1

2
as α→ 0.

So as α shrinks to zero, the value of the exogenous income is not negligible. In the

same spirit, the following proposition shows that the average endogenous budget

will always be below the exogenous budget of one.

Proposition 3. If (x, p) is an α-balanced Walrasian equilibrium with α ∈ (0, 1] then

p · ω̄ ≤ 1

12



Proof. Note that p · (xi − ωi) ≤ α(1− p · ωi) for all i. Sum over i to obtain:

0 = p ·

(∑
i

xi −Q

)
≤ α(N − p ·Q).

Proposition 3 puts an upper bound on the average endogenous income. It cannot

exceed the exogenous income of one. In particular, this means that the economy

needs outside “money.”

Proposition 3 reveals more than the proof of Theorem 1, which bound prices by

the inequality:
pl(minl∈O ql − ε)

N
≤ 1.

Finally, we consider the resolution presented in Le (2017) of Example 2, namely

that the allocation x can be obtained in a market equilibrium with different prices

for the two copies of l′. Specifically, let

p = (100, 1,
101

2
).

That is, the price of one copy of l′ is 1, and the price of the other copy is 101/2.

Then all agents have an endogenous income of 101/2. The unique optimal bundle

for agents 1 and 2 is xi = (1/2, 1/2, 0). Agent 3 is willing to spend all his income

on buying the more expensive copy of good l′, so x3 = (0, 0, 1) is in his demand

correspondence.

Consider a variation of the Hylland-Zeckhauser example, with three agents and

the same utility functions, but where endowments are ω1 = (1/3, 1/2, 1/6), ω2 =

(1/3, 1/6, 1/2), and ω3 = (1/3, 1/3, 1/3). Agents essentially have the same en-

dowments as above. Then p = (100, 1, 101
2

) is still an equilibrium price, with

x1 = ( 5
12
, 7

12
, 0), x2 = ( 7

12
, 5

12
, 0), and x3 = (0, 0, 1). But observe that agent 1 envies

2, despite having the same utility and the same endowment: 1/3 of l and 2/3 of l′,

which happened to be split unequally over the two copies of l′. More generally, in

Le’s resolution two objects may be perfect substitutes but end up having different

prices. This leads to envy among equals, which is undesirable.

5.2 Efficiency in balanced Walrasian equilibrium

The first welfare theorem is not true in our model. Walrasian equilibria, and even

α-balanced Walrasian equilibria with any α > 0, may fail to be Pareto optimal.
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Example 3 below illustrates the point by exhibiting Pareto-ranked Walrasian equi-

libria.

Example 3. Given is an economy with two agents and two objects. Each object has

one copy. Agents have expected utilities given by the following vNM indexes:

i uil uil′

1 1 1

2 1 100

Endowments are ωi = (1/2, 1/2) for i = 1, 2.

Consider the allocations x = ((1, 0), (0, 1)) and y = ((1/2, 1/2), (1/2, 1/2)). Note

that x Pareto dominates y.

The following table summarizes how both x and y may be supported as Walrasian

equilibria, both with α > 0 and α = 0. The first welfare theorem fails because agents

have satiated preferences, not because we focus on α-balanced Walrasian equilibria.

α allocation p α + (1− α)p · ωi

0 x (1, 1) 1

y (0, 1) 1/2

1/2 x (1, 1) 1

y (0, 2) 1

The table is hopefully obvious, but it may be useful to detail why y is an equi-

librium allocation with α = 0. Note that the income with prices (0, 1) is 1/2 for

each agent. Agent 1 is happy to spend his income purchasing x1 = (1/2, 1/2) for

a (global) utility maximum. Agent 2 spends all his income on l′ and purchases 1/2

share of l′, and obtains 1/2 share of l for free.

Theorem 1 asserts the existence of Pareto optimal α-balanced equilibria. This

finding relies on the the following property: an α-balanced Walrasian equilibrium

(x, p) satisfies the cheapest-bundle property if, for each i, xi minimizes expenditure

p · zi among all the zi ∈ ∆− for which ui(zi) = ui(xi). The notion of a cheapest

bundle, and its role in the first welfare theorem, was already established by Hylland

and Zeckhauser (1979). In Theorem 1 we impose semi-strictly quasiconcave utilities

in order to ensure the existence of an α-balanced Walrasian equilibrium with the

cheapest-bundle property. The first welfare theorem holds for such equilibria.
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Proposition 4. Any α-balanced Walrasian equilibrium allocation is weakly Pareto

optimal, and any α-balanced Walrasian equilibrium with the cheapest-bundle property

is Pareto optimal.

5.3 Incentive Compatibility

The market procedure described in this paper is subject to well known positive

results on incentive compatibility in large markets. In order to tackle the incen-

tive compatibility problem, one has to give mechanism structure to our competitive

procedure. Let (x, p)[(ũi)i] denote the implemented α-balanced Walrasian equilib-

rium when declared preferences correspond to the array (ũi)i.
7 We can separate

allocation and prices so that p[(ũi)i] denotes the implemented α-balanced Walrasian

equilibrium price vector.

We study large markets in the replica sense. We denote with Γk the k-replica of

the allocation problem Γ.8 Let (x, p)k denote the competitive equilibrium mechanism

that applies to the k-replica allocation problem. Let pk denote the corresponding

equilibrium prices in the k-replica.

Borrowing an idea from Jackson (1992), we define a replicated mechanism array

[(x, p)k]k∈N as regular (at an original allocation problem Γ = {S, I,Q, (ui, ωi)i∈I})
if, for all i ∈ I and all ũi, for every ε > 0 there is kε such that for all k > kε we

obtain ||pk[ũi, (uj)j 6=i]− pk[(uj)j∈I ]|| < ε.

Let V i(p) denote agent i’s indirect utility when prices are p. We next define

large-market incentive compatibility and asymptotic incentive compatibility.

Given an original allocation problem Γ = {S, I,Q, (ui, ωi)i∈I}, a replicated mech-

anism array [(x, p)k]k∈N is large-market incentive compatible if for all i ∈ I and all

ũi, there is k∗ such that for all k > k∗ we have V i(pk[ũi, (uj)j 6=i]) ≤ V i(pk[(uj)j∈I ]).

Given an original allocation problem Γ = {S, I,Q, (ui, ωi)i∈I}, a replicated mech-

anism array [(x, p)k]k∈N is asymptotically incentive compatible if for all i ∈ I and all

ũi, and for all ε > 0, there is kε such that for all k > kε we have V i(pk[ũi, (uj)j 6=i])−
V i(pk[(uj)j∈I ]) < ε.

7Throughout this section, we only consider utility functions allowing for the existence of α-

balanced Walrasian equilibria.
8This is the standard replica in the sense of multiplying capacities by k and at the same time

replicating agents with their endowments and preferences k times.
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The former concept borrows again from Jackson (1992) while the later borrows

from the seminal paper by Roberts and Postlewaite (1976). We state the main result

in this subsection without proof. Such a proof would just mimic those provided in

the above cited papers.

Theorem 4. Given an allocation problem Γ = {S, I,Q, (ui, ωi)i∈I} and a regular

replica mechanism array [(x, p)k]k∈N constituted by α-balanced Walrasian equilib-

ria, the mechanism array is asymptotically incentive compatible. Morevore, if all

utility functions are strictly quasi-concave, such a mechanism array is large-market

incentive compatible.

6 Proof of Theorem 1.

Existence. Given any α ∈ (0, 1], we prove the existence of an α-balanced Wal-

rasian equilibrium with the cheapest bundle property under semi-strict quasi-concavity.

See Remark 1 below for a more general result.

Let

vi = max{ui(x) : x ∈ ∆−}

Bi(p) = {x ∈ ∆− : p · x ≤ α + (1− α)p · ωi}

di(p) = argmax{ui(x) : x ∈ Bi(p)}

di(p) = argmin{p · x : x ∈ di(p)}

V i(p) = max{ui(x) : x ∈ Bi(p)}

zi(p) = di(p)− ωi and z(p) =
N∑
i=1

zi(p).

Note that vi is the largest utility that i can attain. Bi is the budget set, di is

demand, di is cheapest-demand, V i is i’s indirect utility function. zi is i’s excess

demand correspondence given the cheapest-bundle selection, and Z the aggregate

excess demand.

Lemma 1. If V i(p) < vi then di(p) = di(p).

Proof. Let x ∈ di(p). We shall prove that p · x = α + (1 − α)p · ωi, which means

we are done because it implies that all bundles in di(p) cost the same at prices
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p. Let z ∈ ∆− be such that ui(z) = vi > ui(x), and note that for any ε ∈ (0, 1),

ui(εz+(1−ε)x) > ui(x) by the semi-strict quasi-concavity of ui. Since εz+(1−ε)x ∈
∆−, this means that p · (εz+ (1− ε)x) > α+ (1−α)p ·ωi for any ε ∈ (0, 1). But this

is only possible, for arbitrarily small ε, if p · x ≥ α + (1− α)p · ωi. Since x ∈ Bi(p)

we have established that p · x = α + (1− α)p · ωi.

Lemma 2. If V i(p) = vi then

di(p) = arg min{p · x : ui(x) = vi and x ∈ ∆−}.

Proof. Let x ∈ di(p). Then for any z ∈ ∆− with p · z < p · x, z ∈ Bi(p). So

ui(z) < vi. Therefore, if z ∈ argmin{p · x : ui(x) = vi and x ∈ ∆−}, then p · z =

p · x ≤ α + (1− α)p · ωi, and therefore

di(p) ⊇ argmin{p · x : ui(x) = vi and x ∈ ∆−}.

The converse set inclusion follows similarly because if x is not in the righ-hand set,

there would exist a z ∈ ∆− with p · z < p · x and ui(z) = vi, which is not possible

as such a zi would be in Bi(p).

Lemma 3. If α > 0 then di is uppper hemicontinuous.

Proof. Let (xn, pn)→ (x, p), with xn ∈ di(pn). Suppose that there is x′ ∈ Bi(p) with

ui(x′) > ui(x). If p·x′ < α+(1−α)p·ωi, then this strict inequality will be true for pn

with n large enough; a contradiction, as ui is continuous. If p ·x′ = α+ (1−α)p ·ωi,
then α > 0 implies that p · x′ > 0. Then there is λ ∈ (0, 1) large enough that

ui(λx′) > ui(x), p · (λx′) < p · x′, and λx′ ∈ ∆−. The argument for the case of a

strict inequality then applies.

Let ε ∈ (0,minl∈O ql) and

p̄ =
N

minl∈O ql − ε
> 0.

Lemma 4. di is upper hemi-continuous on [0, p̄]L.

Proof. We shall prove that di has a closed graph. Let (xn, pn) → (x, p) with xn ∈
di(pn) for all n.

First, consider the case where V i(p) < vi. By the maximum theorem, V i is

continuous, so V i(pn) < vi for all n large enough. Then Lemma 1 implies that

x ∈ di(p) as di is upper hemi-continuous.
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Second, consider the case where V i(p) = vi. We know that x ∈ di(p) as di is

upper hemi continuous. Suppose (towards a contradiction) that x /∈ di(p). Then

there is y ∈ di(p) with

p · y < p · x ≤ α + (1− α)p · ωi.

Then pn ·y < α+(1−α)pn ·ωi for all n large enough. Since y ∈ di(p) and V i(p) = vi,

ui(y) = vi. This means that V i(pn) = vi for all n large enough, as y ∈ Bi(pn).

By Lemma 2, xn ∈ argmin{p ·x : ui(x) = vi and x ∈ ∆−} for all n large enough.

But the correspondence

p 7→ argmin{p · x : ui(x) = vi and x ∈ ∆−}.

is upper hemicontinous (by the maximum theorem), so x ∈ argmin{p · x : ui(x) =

vi and x ∈ ∆−}; a contradiction.

Consider the correspondence φ : [0, p̄]L → [0, p̄]L defined by

φl(p) = {min{max{0, ζl + pl}, p̄} : ζ ∈ z(p)}.

Lemma 5. φ is upper hemi-continuous, convex- and compact- valued.

Proof. The aggregate excess demand, z, is upper hemi-continuous by Lemma 4. It

is easy to see that this implies the upper hemi-continuity of φ. Similarly, convex

and compact values are immediate.

By Kakutani’s fixed point theorem there is p∗ ∈ [0, p̄]L with p∗ ∈ φ(p∗). We shall

prove that p∗ is an equilibrium price. Note that there exists ζ ∈ z(p∗) such that

p∗l = min{max{0, ζl + p∗l }, p̄}. (1)

Lemma 6. p∗ · ζ ≥ 0.

Proof. If p∗ ·ζ < 0 then there is some object l with p∗l > 0 and ζl < 0. By Equation 1,

then, p∗l = p∗l + ζl, which is not possible as ζl < 0.

Lemma 7. p∗l < p̄ for all l ∈ O.
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Proof. Suppose towards a contradiction that there is l for which p∗l = p̄. Then

p∗l > 0, so Equation 1 means that p̄ ≤ ζl + p∗l = ζl + p̄. Let ζ =
∑

i x
i − Q, with

xi ∈ di(p∗). The definition of Bi(p) means that

p∗ · (xi − ωi) ≤ α(1− p∗ · ωi),

for all i ∈ I. Thus, summing over i we obtain that p∗ · ζ ≤ α(N − p∗ ·Q).

Now, by definition of p̄, we have that

p∗ ·Q ≥ p̄ql > p̄(min
l∈O

ql − ε) = N.

Thus, p∗ · ζ ≤ α(N −p∗ ·Q) implies that p∗ · ζ < 0, in contradiction to Lemma 6.

Lemma 8. ζ = 0

Proof. By Lemma 7 and Equation (1),

p∗l = max{0, ζl + p∗l } (2)

for all l ∈ O.

Equation 2 implies two things. First, that ζl > 0 is not possible for any l. Hence

ζ ≤ 0. Second, that if ζl < 0 then p∗l = 0.

Suppose then, towards a contradiction, that ζl < 0 for some good l, and corre-

spondingly that p∗l = 0. Now, ζl < 0 and ζ ≤ 0 means that

0 >
∑
l∈O

ζl =
∑
l∈O

∑
i∈I

xil −
∑
l∈O

ql =
∑
i∈I

∑
l∈O

xil −N.

So there is some agent i for which
∑

l x
i
l < 1. Agent i can then increase his con-

sumption of good l without violating the constraint that consumption lie in ∆−.

Given that p∗l = 0, the increase in consumption of good l would also not violate

the budget constraint. So there exist a bundle in Bi(p) with strictly more of good

l, and the same amount of every other good, than xi. This contradicts the strict

monotonicity of ui, and the fact that xi ∈ di(p∗).

Proof of α-balanced individual rationality.

Proof. By Proposition 3, we know that p · ω̄ ≤ 1. This means that with income

α + (1− α)p · ωi the bundle αω̄ + (1− α)wi is affordable at p.
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Remark 1. The proof uses semi-strict quasiconcavity only in the proof of upper

hemicontinuity of di. To prove existence of an α-balanced equilibrium without im-

posing the cheapest-bundle property, observe that continuity and quasiconcavity of ui

is enough to ensure that di is upper hemicontinuous, and takes convex and compact

valued. If z is defined from di in place of di, the proof as written above shows the

existence of an α-balanced Walrasian equilibrium.

7 Proof of Theorem 2

Let dH denote the Hausdorff distance between any two sets A,B in RL. So,

dH(A,B) = max
{

sup{inf{‖x−y‖ : y ∈ B} : x ∈ A}, sup{inf{‖x−y‖ : x ∈ A} : y ∈ B}
}
.

Let Bi(p, α) = {x ∈ ∆− : p · x ≤ α + (1 − α)p · ωi} denote agent i’s budget set

given a price vector p and α ∈ (0, 1].

To prove the first part of the theorem, we prove the following lemma.

Lemma 9. For any δ > 0, there is α ∈ (0, 1) such that if p is the price vector in

an α-balanced Walrasian equilibrium found in Theorem 1, then for any i ∈ I, either

p · ωi < 1 or dH(Bi(p, α), Bi(p, 0)) < δ.

Proof. Consider the price p̄ defined in the proof of Theorem 1. Note that if p is a

price obtained by application of the theorem, then p ∈ [0, p̄]L. Note also that p̄ is

independent of α.

Let K = sup{‖x‖ : x ∈ ∆−}. For any α ∈ (0, 1] and any p ∈ [0, p̄]L such that

p · ωi ≥ 1, define

γ(α, p) =
α + (1− α)p · ωi

p · ωi
.

Note that γ(α, p) ∈ (0, 1].

Now choose α ∈ (0, 1) such that

sup{1− γ(α, p)

γ(α, p)
K : p ∈ [0, p̄]L and p · ωi ≥ 1} < δ.

Let p be the price vector in an α-balanced Walrasian equilibrium found in The-

orem 1. If p · ωi < 1, we are done.

If p ·ωi ≥ 1, then Bi(p, 0) ⊇ Bi(p, α). Let x ∈ Bi(p, 0), then γ(α, p)x ∈ Bi(p, α).

Note that

‖x− γ(α, p)x‖ = (1− γ(α, p))‖x‖ < δ.
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Thus inf{‖x− y‖ : y ∈ Bi(p, α)} < δ, and therefore

sup{inf{‖x− y‖ : y ∈ Bi(p, α)} : x ∈ Bi(p, 0)} < δ.

In a similar vein, let x ∈ Bi(p, α), then
x

γ(α, p)
∈ Bi(p, 0). Note that

‖x− x

γ(α, p)
‖ =

1− γ(α, p)

γ(α, p)
‖x‖ < δ.

Thus inf{‖x− y‖ : y ∈ Bi(p, 0)} < δ, and therefore

sup{inf{‖x− y‖ : y ∈ Bi(p, 0)} : x ∈ Bi(p, α)} < δ.

Thus dH(Bi(p, 0), Bi(p, α)) < δ.

Let δ > 0 be such that, for any p ∈ [0, p̄]L, if dH(Bi(p, 0), Bi(p, α)) < δ then∣∣max{ui(x) : x ∈ Bi(p, α)} −max{ui(x) : x ∈ Bi(p, 0)}
∣∣ < ε.

For such δ, let α be as in Lemma 9.

Then for any i, if p · ωi < 1 then Bi(p, 0) ⊆ Bi(p, α), so

max{ui(y) : y ∈ ∆− and p · y ≤ p · ωi} − ui(x) < 0 < ε.

If, on the contrary, p ·ωi ≥ 1, then Lemma 9 implies that dH(Bi(p, 0), Bi(p, α)) < δ,

and the result follows from the definition of δ.

To prove the second part of the theorem, we prove the following lemma.

Lemma 10. For any δ > 0, there is α ∈ (0, 1) such that if p is the price vector

in an α-balanced Walrasian equilibrium found in Theorem 1, then for any distinct i

and j, either p · ωj < p · ωi or dH(Bi(p, α), Bj(p, α)) < δ.

Proof. Consider the price p̄ defined in the proof of Theorem 1. Let K = sup{‖x‖ :

x ∈ ∆−}. For any α ∈ (0, 1] and any p ∈ [0, p̄]L such that p · ωj ≥ p · ωi, define

β(α, p) =
α + (1− α)p · ωi

α + (1− α)p · ωj
.

Note that β(α, p) ∈ (0, 1].

Now choose α ∈ (0, 1) such that

sup{1− β(α, p)

β(α, p)
K : p ∈ [0, p̄]L and p · ωj ≥ p · ωi} < δ.
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Let p be the price vector in an α-balanced Walrasian equilibrium found in The-

orem 1. If p · ωj < p · ωi, we are done.

If p · ωj ≥ p · ωi, then Bj(p, α) ⊇ Bi(p, α). Let x ∈ Bj(p, α), then β(α, p)x ∈
Bi(p, α). Note that

‖x− β(α, p)x‖ = (1− β(α, p))‖x‖ < δ.

Thus inf{‖x− y‖ : y ∈ Bi(p, α)} < δ, and therefore

sup{inf{‖x− y‖ : y ∈ Bi(p, α)} : x ∈ Bj(p, α)} < δ.

In a similar vein, let x ∈ Bi(p, α), then
x

β(α, p)
∈ Bj(p, α). Note that

‖x− x

β(α, p)
‖ =

1− β(α, p)

β(α, p)
‖x‖ < δ.

Thus inf{‖x− y‖ : y ∈ Bj(p, α)} < δ, and therefore

sup{inf{‖x− y‖ : y ∈ Bj(p, α)} : x ∈ Bi(p, α)} < δ.

Thus dH(Bi(p, α), Bj(p, α)) < δ.

Let δ > 0 be such that, for any p ∈ [0, p̄]L, if dH(Bi(p, α), Bj(p, α)) < δ then∣∣max{ui(x) : x ∈ Bi(p, α)} −max{ui(x) : x ∈ Bj(p, α)}
∣∣ < ε.

For such δ, let α be as in Lemma 10.

Then for any distinct i and j, if p · ωj < p · ωi then Bj(p, α) ⊆ Bi(p, α). So

max{ui(y) : y ∈ ∆− and p · y ≤ α + (1− α)p · ωj} − ui(x) ≤ 0 < ε.

If, on the contrary, p·ωj > p·ωi, then Lemma 10 implies that dH(Bi(p, α), Bj(p, α)) <

δ, and the result follows from the definition of δ.

8 Proof of Theorem 3

Our first observation establishes the relation between envy and the value of endow-

ments at equilibrium prices.

Lemma 11. Let (x, p) be an α-balanced Walrasian equilibrium for any α ∈ (0, 1].

If i envies j, then p · (xj − xi) > 0 and p · (ωj − ωi) > 0.
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Proof. Let i envy j, so ui(xj) > ui(xi). Then utility maximization implies that

α + (1− α)p · ωj ≥ p · xj > α + (1− α)p · ωi ≥ p · xi,

where the strict inequality follows because xj ∈ ∆−. So p · (xj − xi) > 0 and

p · (ωj − ωi) > 0.

Now consider an α-balanced Walrasian equilibrium (x, p). Agent i’s maximiza-

tion problem is:

max
x∈RL

+

ui(x) + λi(I i − p · x) + γi(1− 1 · x)

Where I i = α+ (1− α)p · ωi, λi is a multiplier for the budget constraint, and γi

for the
∑

l x
i
l ≤ 1 constraint.

Utility functions are C1. The first-order conditions for the maximization prob-

lems are then:

∂lu
i(xi)− λipl − gi

= 0 if xil > 0

≤ 0 if xil = 0,

where ∂lu
i(xi) denotes the partial derivative of ui with respect to xil.

Observe that if p · xi < α + (1 − α)p · ωi, then the budget constraint is not

binding and λi = 0. As a consequence, ui(xi) = max{ui(zi) : zi ∈ ∆−}. Let

S = {i ∈ I : p · xi < α + (1− α)p · ωi} be the set of satiated agents. Let U = {i ∈
I : p · xi = α + (1 − α)p · ωi} be the set of unsatiated agents, and observe that we

can let λi > 0 for all i ∈ U . Consider the two stage social program:

Stage 1:

maxỹ∈(∆−)S
∑

i∈S u
i(ỹi)

Stage 2:

maxỹ∈(∆−)U
∑

i∈U
1
λi
ui(ỹi)

subject to
∑

i∈U ỹ
i ≤ Q−

∑
i∈S x

i

Note that (xi)i∈S solves Stage 1, while satisfying
∑

i∈S x
i ≤ Q, and that given

(xi)i∈S, (xi)i∈U solves Stage 2. That this is so follows from the fact that (xi)i∈U

solves the first-order conditions for the Stage 2 problem with Lagrange multiplier p

for the constraint that
∑

i∈U ỹ
i ≤ Q−

∑
i∈S x

i.

Now use the assumption that
∑

i∈U x
i � 0. This means that there exists t̄ > 0

such that if t ∈ (0, t̄] then the set of ỹ ∈ (∆−)U such that
∑

i∈U ỹ
i ≤ Q + t(ωi −
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ωj) −
∑

i∈S x
i is nonempty (and, for constraint qualification, contains an element

that satisfies all constraints with slack).

Consider the problem

maxỹ∈(∆U
−)

∑
i∈U

1
λi
ui(ỹi)

subject to
∑

i∈U ỹ
i ≤ Q+ t(ωi − ωj)−

∑
i∈S x

i

Note that for each t ∈ (0, t̄] there exists (ν(t), γ(t), α(t)) such that

v(t) = sup{
∑
i∈U

1

λi
ui·ỹi+ν(t)·(ω̄−

∑
i∈S

ỹi+t(ωi−ωj))−
∑
i∈U

ỹi)+
∑
i∈U

γi(t)(1−
∑
l∈O

ỹil)+
∑
i∈U

αi(t)ỹ
i
l .}

Here ν(t) is the Lagrange multiplier for the constraint that
∑

i∈U ỹ
i ≤ Q−

∑
i∈S x

i+

t(ωi − ωj), while γ(t) and α(t) are the Lagrange multipliers for the constraint that

(ỹi) ∈ (∆−)N . Choose a selection (ν(t), γ(t), α(t)) such that ν(0) = p.

Let ω̃ = Q−
∑

i∈S x
i. The saddle point inequalities imply that

(t′ − t)ν(t) · (ωi − ωj) =
∑
i∈U

1

λi
ui(xi(t′)) + ν(t) · (ω̃ + t′(ωi − ωj)−

∑
i∈U

xi(t′))

+
∑
i∈U

γi(t)(1−
∑
l∈O

xil(t
′)) +

∑
i∈U

αi(t)x
i
l(t
′)

−

(∑
i∈U

1

λi
ui(xi(t′)) + ν(t) · (ω̃ + t(ωi − ωj)−

∑
i∈U

xi(t′))

+
∑
i∈U

γi(t)(1−
∑
l∈O

xil(t
′)) +

∑
i∈U

αi(t)x
i
l(t
′)

)
≥ v(t′)− v(t)

Now recall that ν(0) = p. Then Lemma 11, together with the above inequality,

imply that

0 > p · (ωi − ωj)t′ ≥ v(t′)− v(0)

for all t′ > 0 with t′ ≤ t̄.

9 Proof of Proposition 4

Let (x, p) be an α-balanced Walrasian equilibrium for any α ∈ (0, 1]. Suppose that

y is an allocation such that ui(yi) > ui(xi) for all i. Then

p · (yi − ωi) > α(1− p · ωi) ≥ p · (xi − ωi).
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Sum over i to obtain:

p ·

(∑
i∈I

yi −Q

)
> α(N − p ·Q) ≥ p ·

(∑
i∈I

xi −Q

)
= 0.

Thus y cannot be an allocation. So x is weakly Pareto optimal.

In second place, suppose that (x, p) is an α-balanced Walrasian equilibrium in

which each xi satisfies the cheapest-bundle property. Then, for any yi ∈ ∆−, ui(yi) ≥
ui(xi) implies that p · yi ≥ p · xi, while ui(yi) > ui(xi) implies that p · yi > p · xi.
Thus, if (yi)i∈I Pareto dominates x, adding up gives p ·

∑
i∈I y

i > p ·
∑

i∈I x
i = p ·Q,

as x is an allocation. Then (yi)i∈I cannot be an allocation. So x is Pareto optimal.
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