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1. (20pts) Let ¥ : R — 2% be the correspondence defined by

W@”:{<_fim>§ii8

(a) Show that ¥ does not have a closed graph.
Note that (0,—1+ 1) € graph ¥ for all n € N and (0,—1+ ) — (0,—1) ¢
graph ¥. So ¥ does not have a closed graph.
(b) Show that ¥ is upper hemicontinuous.
Let z € R and V' C R such that ®(z) C V.
Case 1: If x # 0, 1let 0 = || > 0 and U = (z — §,xz + §). Then, U is a
neighborhood of x such that for all 2’ € U, 2’ # 0, implying ¥(z') = {0} =
U(z) C V. Therefore, ¥ is upper hemicontinuous at x.
Case 2: If x =0, then U = R is a neighborhood of 0 such that for all 2’ € U,
U(z') C (—1,400) = ¥(0) C V. Therefore, ¥ is upper hemicontinuous at 0.
(c¢) Show that ¥ is not lower hemicontinuous.

Let V = (0,+00). Note that ¥(0) NV = (0,400) # 0, however for any
neighborhood U of 0, there is 2’ € U such that 2’ > 0, i.e. ¥(2')NV =

{0} NV = (). Therefore, ¥ is not lower hemicontinuous at 0.
2. (25pts) Let f: R? — R be defined by

f(z) = x;sin(xq)

(a) Find the critical points of f.
Remember that z € R? is a critical point of f if and only if Rank Df(z) <
min{1,2} = 1 if and only if

Df(x) = <g—i(x), g—xj;(x)) = (sin(z3), 1 cos(zz)) = (0,0)

Therefore, the set of critical points are given by {(0,n7) : n € Z}. Note that
f(z) = 0 at every critical point x of f.



(b) Give the second order Taylor expansion of f around each of its critical points.

2 — %(l’) 89?128];2 (ZE) — 0 COS(ZQ) >
D*f(z) = ( *f (z) azf(x) > N < cos(zy) —ysin(x)
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Fix a critical point = (0, nm). Then,
feth) = F(n,nm+h) = f(x) + Df(x)h+ b D?F()h+ O(Ihf)
= L2 pn + o(np).

2
If n is even, then

FG+h) = fln,nm+ 1) = 5mmﬁ<2é)<2§>+mmm

= hihy + O(|h).

wng(i'§><2>+omm

= —hihy + O(|h]?).

If n is odd, then

DN | —

f@+h) = f(hi,nm+hy) =

(c) Is any of the critical points a local maximizer or a local minimizer of f?

Take any critical point z = (0,nm) of f. The characteristic polynomial of
D?f(z) is A2 =1 = 0 (whether n is even or odd). Since D?f(x) has one
positive and one negative eigenvalue (A\; = 1 and Ay = —1), = is neither a

local minimizer or a local maximizer of f.
3. (30pts) Let X denote the space of all bounded sequences of real numbers:
X ={z=(21,72,...) € RN : sup{|zy| : i € N} < 400}

Note that X is a vector space over R.!

IThe scalar multiplication and vector addition operations on X are defined coordinatewise. That

is, for every o € R, and z,y € X, the sequences ax € X and x + y € X are defined by:

VneN: (ax), =azr, and (x +y)n = Tp + Yn.



(a)

For each z € X, let ||zl = sup{|z;| : i € N}. Show that || - || is @ norm.
Ve e X ||zl € Ry

Since x; > 0 for all i € N and z is a bounded sequence 0 < sup{|z;| : i €
N} < 00, 50 ||7]|e € R

Vee X : ||z||lw=0<2=0:
If x is the zero sequence then ||z|| = sup{|z;| : i € N} = sup{0} = 0. If

|z]|co = O then |z,| < sup{|z;| : i € N} = ||z]|oc = 0 for all n € N, implying
that x is the zero sequence.

Ve e X,a € R: ||az|e = ||| 2] oo

If & = 0 the equality holds trivially. Suppose a # 0. Since ||z]/ is an

upper bound for the set {|z;| : i € N}, |a|||z]| is an upper bound for the set
{la||x;| : i € N} = {|ax;| : i € N} implying:

loz]|oo = sup{lazi| - i € N} < af[[z]lo  (¥)

Applying Equation (x) to = and oz, we also have ||z]lo = [|2(az)|s <

|é|||ozx|]oo, also implying |o|||%]|c < ||| so-

Vr,y € Xt ||z + yllo < |[2floo + [yl

For all n € N, [z, + yn| < [v,] + |yal. Since |2,| < ||7]o and |y,| < [|2]|c0,
by definition of || - ||o, we have that for all n € N

|2+ Y| < N[%lloc + [[y]loo-

That is, ||z]le + ||y]|cc 18 an upper bound for the set {|z, + y,| : n € N} .
Taking supremum over all n € N in the Lh.s. of the above inequality gives

the desired inequality.
Let T' € L(X, X) be defined by

(T'(x))n = Ty — Tpy for every z € X and n € N.

That is, the nth element of the sequence T'(z) is the difference x,, — x,1.
Show that the linear map 7" is bounded and find its norm ||7°||.

Take any z € X, and n € N:
[(T(@))n] = [0 = Znga| < fn] + 2nga] < 2f2]|o
Taking supremum over all n € N in the left hand side, we obtain

17 ()]0 = sup{[(T'(2))n] : n € N < 2| o
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Therefore, T is bounded. Furthermore the above inequality implies that

1T < 2.
Now consider the sequence & = (1, —1,0,0,...). Note that T'(z) = (2,—1,0,0,...).
Then: .
iy Bl 2
2|0 1
So ||T]| = 2.

(¢) Show that Ker(7) N Im(7") = {0}.
First note that 0 € Ker(7T) N Im(7T") since Ker(7T) and Im(7") are vector
subspaces of X.
Note that « € Ker(7') if and only if 0 = T'(z) = (21 — x2, x2 — 3,23 — X4, . . .)
if and only if z; = x5 = 23 = .... Hence Ker(7T) consists of only constant

sequences.

Now take any y € Ker(7)NIm(T"). Since y € Ker(T'), there is ¢ € R such that
yn = c for all n € N. Since y € Im(T"), there is € X such that T'(x) = vy,
ie. (T(x)), =y — Tpy1 = c for all n € N. Note that:

(n—1)c =y14+ya+.. . AYn—1 = (x1—22)+(2a—x3)+. . .+ (Tpo1—2p) = 21— 2.

This implies that (n — 1)|c| < |z1] + |z,], i.e. (n—1)|c| — |21] < |z,|. By the

definition of supremum:
Vn e N:(n—1)|c| — |z1] < |z, < sup{|a;| : i € N}.

Therefore, the supremum above is finite only if ¢ = 0. This proves that y = 0.
So Ker(T) NIm(T") = {0}.

4. (25pts) Let (X,d) be a metric space. Let (A;);en be a sequence of nonempty
compact subsets of X such that A; D A;,; for all ¢ € N.

(a) Prove that if Ng°; A; = (), then A; C U, (X \ 4).
Suppose N2, A; = (). By de Morgan’s law:

UZ (X N\ A) = X\ (NZ4) = X\ D =X D A

(b) Use your finding in part (a) to prove that N, A; # 0.



For all i € N, since A; is compact, it is closed, implying that X \ A; is open.
Suppose N2, A; = (. From above A; C UX (X \ 4;), i.e. {X \ A }ien is
an open covering of A;. Since A; is compact there is a finite subcovering

A A;, . Suppose wlog 71 < iy < ... < 1. Then,

A CULI(X\A;) =X\ (NL14,) = X\ A,

by de Morgan’s law and since 4;, D A;, D ... D A;,. The above inclusion
implies that A;, C A; C X \ A;,, which contradicts nonemptiness of A, .

5. (Bonus, extra 20pts) Prove that every convex subset of R" is connected.

Let Y C R” be convex. Suppose that Y is not connected, i.e., there exist A, B C
R™ such that A and B are nonempty, Y = AUB, and ANB = ANB = (. Let
x € Aand y € B, and define the function f : [0,1] — R" by f(a) = ax+ (1 —a)y.
Note that f is continuous since if v, — « in [0, 1], then f(ay,) = az+(1—ay)y —
ar + (1 —a)y = f(a). Define A’ = f~1(A) and B’ = f~(B).

Note that 1 € A" since f(1) =2 € A and 0 € B’ since f(0) =y € B. Therefore,
A’ and B’ are nonempty.

For any « € [0, 1], since Y is convex, f(a) =ar+ (1—a)yeY,soa e f[71(Y) =
Y AUB) = f1A)uUfY(B)=A"UB' Therefore, [0,1] = A UB'.

Since f is continuous and A is closed in R™, f~1(A) is closed in [0, 1]. Furthermore,

A C f7Y(A), s0 A C f71(A). Then,
AnB cf i ANfYB) =fYANB)=f0) =0.

The proof that A’ N B’ = () is similar. This implies that [0, 1] is not connected, a

contradiction. Therefore, Y is connected.



