Econ 204 (2012) - Final Solutions

$$
08 / 13 / 2012
$$

1. (20pts) Let $\Psi: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ be the correspondence defined by

$$
\Psi(x)=\left\{\begin{array}{cc}
\{0\} & \text { if } x \neq 0 \\
(-1,+\infty) & \text { if } x=0
\end{array}\right.
$$

(a) Show that Ψ does not have a closed graph.

Note that $\left(0,-1+\frac{1}{n}\right) \in \operatorname{graph} \Psi$ for all $n \in \mathbb{N}$ and $\left(0,-1+\frac{1}{n}\right) \rightarrow(0,-1) \notin$ graph Ψ. So Ψ does not have a closed graph.
(b) Show that Ψ is upper hemicontinuous.

Let $x \in \mathbb{R}$ and $V \subset \mathbb{R}$ such that $\Phi(x) \subset V$.
Case 1: If $x \neq 0$, let $\delta=|x|>0$ and $U=(x-\delta, x+\delta)$. Then, U is a neighborhood of x such that for all $x^{\prime} \in U, x^{\prime} \neq 0$, implying $\Psi\left(x^{\prime}\right)=\{0\}=$ $\Psi(x) \subset V$. Therefore, Ψ is upper hemicontinuous at x.
Case 2: If $x=0$, then $U=\mathbb{R}$ is a neighborhood of 0 such that for all $x^{\prime} \in U$, $\Psi\left(x^{\prime}\right) \subset(-1,+\infty)=\Psi(0) \subset V$. Therefore, Ψ is upper hemicontinuous at 0 .
(c) Show that Ψ is not lower hemicontinuous.

Let $V=(0,+\infty)$. Note that $\Psi(0) \cap V=(0,+\infty) \neq \emptyset$, however for any neighborhood U of 0 , there is $x^{\prime} \in U$ such that $x^{\prime}>0$, i.e. $\Psi\left(x^{\prime}\right) \cap V=$ $\{0\} \cap V=\emptyset$. Therefore, Ψ is not lower hemicontinuous at 0 .
2. (25pts) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=x_{1} \sin \left(x_{2}\right)
$$

(a) Find the critical points of f.

Remember that $x \in \mathbb{R}^{2}$ is a critical point of f if and only if $\operatorname{Rank} D f(x)<$ $\min \{1,2\}=1$ if and only if

$$
D f(x)=\left(\frac{\partial f}{\partial x_{1}}(x), \frac{\partial f}{\partial x_{2}}(x)\right)=\left(\sin \left(x_{2}\right), x_{1} \cos \left(x_{2}\right)\right)=(0,0)
$$

Therefore, the set of critical points are given by $\{(0, n \pi): n \in \mathbb{Z}\}$. Note that $f(x)=0$ at every critical point x of f.
(b) Give the second order Taylor expansion of f around each of its critical points.

$$
D^{2} f(x)=\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1}^{2}}(x) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x) \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{2}^{2}}(x)
\end{array}\right)=\left(\begin{array}{cc}
0 & \cos \left(x_{2}\right) \\
\cos \left(x_{2}\right) & -x_{1} \sin \left(x_{2}\right)
\end{array}\right)
$$

Fix a critical point $x=(0, n \pi)$. Then,

$$
\begin{aligned}
f(x+h)=f\left(h_{1}, n \pi+h_{2}\right) & =f(x)+D f(x) h+\frac{1}{2} h^{T} D^{2} f(x) h+O\left(|h|^{3}\right) \\
& =\frac{1}{2} h^{T} D^{2} f(x) h+O\left(|h|^{3}\right)
\end{aligned}
$$

If n is even, then

$$
\begin{aligned}
f(x+h)=f\left(h_{1}, n \pi+h_{2}\right) & =\frac{1}{2}\left(h_{1}, h_{2}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{h_{1}}{h_{2}}+O\left(|h|^{3}\right) \\
& =h_{1} h_{2}+O\left(|h|^{3}\right) .
\end{aligned}
$$

If n is odd, then

$$
\begin{aligned}
f(x+h)=f\left(h_{1}, n \pi+h_{2}\right) & =\frac{1}{2}\left(h_{1}, h_{2}\right)\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)\binom{h_{1}}{h_{2}}+O\left(|h|^{3}\right) \\
& =-h_{1} h_{2}+O\left(|h|^{3}\right)
\end{aligned}
$$

(c) Is any of the critical points a local maximizer or a local minimizer of f ?

Take any critical point $x=(0, n \pi)$ of f. The characteristic polynomial of $D^{2} f(x)$ is $\lambda^{2}-1=0$ (whether n is even or odd). Since $D^{2} f(x)$ has one positive and one negative eigenvalue ($\lambda_{1}=1$ and $\lambda_{2}=-1$), x is neither a local minimizer or a local maximizer of f.
3. (30pts) Let X denote the space of all bounded sequences of real numbers:

$$
X=\left\{x=\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\mathbb{N}}: \sup \left\{\left|x_{i}\right|: i \in \mathbb{N}\right\}<+\infty\right\}
$$

Note that X is a vector space over $\mathbb{R} .{ }^{1}$

[^0](a) For each $x \in X$, let $\|x\|_{\infty}=\sup \left\{\left|x_{i}\right|: i \in \mathbb{N}\right\}$. Show that $\|\cdot\|_{\infty}$ is a norm. $\forall x \in X:\|x\|_{\infty} \in \mathbb{R}_{+}:$
Since $x_{i} \geq 0$ for all $i \in \mathbb{N}$ and x is a bounded sequence $0 \leq \sup \left\{\left|x_{i}\right|: i \in\right.$ $\mathbb{N}\}<\infty$, so $\|x\|_{\infty} \in \mathbb{R}_{+}$.
$\forall x \in X:\|x\|_{\infty}=0 \Leftrightarrow x=0:$
If x is the zero sequence then $\|x\|=\sup \left\{\left|x_{i}\right|: i \in \mathbb{N}\right\}=\sup \{0\}=0$. If $\|x\|_{\infty}=0$ then $\left|x_{n}\right| \leq \sup \left\{\left|x_{i}\right|: i \in \mathbb{N}\right\}=\|x\|_{\infty}=0$ for all $n \in \mathbb{N}$, implying that x is the zero sequence.
$\forall x \in X, \alpha \in \mathbb{R}:\|\alpha x\|_{\infty}=|\alpha|\|x\|_{\infty}:$
If $\alpha=0$ the equality holds trivially. Suppose $\alpha \neq 0$. Since $\|x\|_{\infty}$ is an upper bound for the set $\left\{\left|x_{i}\right|: i \in \mathbb{N}\right\},|\alpha|\|x\|_{\infty}$ is an upper bound for the set $\left\{|\alpha|\left|x_{i}\right|: i \in \mathbb{N}\right\}=\left\{\left|\alpha x_{i}\right|: i \in \mathbb{N}\right\}$ implying:
$$
\|\alpha x\|_{\infty}=\sup \left\{\left|\alpha x_{i}\right|: i \in \mathbb{N}\right\} \leq|\alpha|\|x\|_{\infty} \quad(*)
$$

Applying Equation (*) to $\frac{1}{\alpha}$ and αx, we also have $\|x\|_{\infty}=\left\|\frac{1}{\alpha}(\alpha x)\right\|_{\infty} \leq$ $\left|\frac{1}{\alpha}\right|\|\alpha x\|_{\infty}$, also implying $|\alpha|\|x\|_{\infty} \leq\|\alpha x\|_{\infty}$.
$\forall x, y \in X:\|x+y\|_{\infty} \leq\|x\|_{\infty}+\|y\|_{\infty}:$
For all $n \in \mathbb{N},\left|x_{n}+y_{n}\right| \leq\left|x_{n}\right|+\left|y_{n}\right|$. Since $\left|x_{n}\right| \leq\|x\|_{\infty}$ and $\left|y_{n}\right| \leq\|x\|_{\infty}$, by definition of $\|\cdot\|_{\infty}$, we have that for all $n \in \mathbb{N}$

$$
\left|x_{n}+y_{n}\right| \leq\|x\|_{\infty}+\|y\|_{\infty} .
$$

That is, $\|x\|_{\infty}+\|y\|_{\infty}$ is an upper bound for the set $\left\{\left|x_{n}+y_{n}\right|: n \in \mathbb{N}\right\}$. Taking supremum over all $n \in \mathbb{N}$ in the l.h.s. of the above inequality gives the desired inequality.
(b) Let $T \in L(X, X)$ be defined by

$$
(T(x))_{n}=x_{n}-x_{n+1} \text { for every } x \in X \text { and } n \in \mathbb{N}
$$

That is, the nth element of the sequence $T(x)$ is the difference $x_{n}-x_{n+1}$. Show that the linear map T is bounded and find its norm $\|T\|$.
Take any $x \in X$, and $n \in \mathbb{N}$:

$$
\left|(T(x))_{n}\right|=\left|x_{n}-x_{n+1}\right| \leq\left|x_{n}\right|+\left|x_{n+1}\right| \leq 2\|x\|_{\infty}
$$

Taking supremum over all $n \in N$ in the left hand side, we obtain

$$
\|T(x)\|_{\infty}=\sup \left\{\left|(T(x))_{n}\right|: n \in \mathbb{N} \leq 2\|x\|_{\infty}\right.
$$

Therefore, T is bounded. Furthermore the above inequality implies that $\|T\| \leq 2$.

Now consider the sequence $\hat{x}=(1,-1,0,0, \ldots)$. Note that $T(\hat{x})=(2,-1,0,0, \ldots)$. Then:

$$
\|T\| \geq \frac{\|T(\hat{x})\|_{\infty}}{\|\hat{x}\|_{\infty}}=\frac{2}{1}=2
$$

So $\|T\|=2$.
(c) Show that $\operatorname{Ker}(T) \cap \operatorname{Im}(T)=\{0\}$.

First note that $0 \in \operatorname{Ker}(T) \cap \operatorname{Im}(T)$ since $\operatorname{Ker}(T)$ and $\operatorname{Im}(T)$ are vector subspaces of X.
Note that $x \in \operatorname{Ker}(T)$ if and only if $0=T(x)=\left(x_{1}-x_{2}, x_{2}-x_{3}, x_{3}-x_{4}, \ldots\right)$ if and only if $x_{1}=x_{2}=x_{3}=\ldots$. Hence $\operatorname{Ker}(T)$ consists of only constant sequences.
Now take any $y \in \operatorname{Ker}(T) \cap \operatorname{Im}(T)$. Since $y \in \operatorname{Ker}(T)$, there is $c \in \mathbb{R}$ such that $y_{n}=c$ for all $n \in \mathbb{N}$. Since $y \in \operatorname{Im}(T)$, there is $x \in X$ such that $T(x)=y$, i.e. $(T(x))_{n}=x_{n}-x_{n+1}=c$ for all $n \in N$. Note that:
$(n-1) c=y_{1}+y_{2}+\ldots+y_{n-1}=\left(x_{1}-x_{2}\right)+\left(x_{2}-x_{3}\right)+\ldots+\left(x_{n-1}-x_{n}\right)=x_{1}-x_{n}$.
This implies that $(n-1)|c| \leq\left|x_{1}\right|+\left|x_{n}\right|$, i.e. $(n-1)|c|-\left|x_{1}\right| \leq\left|x_{n}\right|$. By the definition of supremum:

$$
\forall n \in \mathbb{N}:(n-1)|c|-\left|x_{1}\right| \leq\left|x_{n}\right| \leq \sup \left\{\left|x_{i}\right|: i \in \mathbb{N}\right\}
$$

Therefore, the supremum above is finite only if $c=0$. This proves that $y=0$. So $\operatorname{Ker}(T) \cap \operatorname{Im}(T)=\{0\}$.
4. (25pts) Let (X, d) be a metric space. Let $\left(A_{i}\right)_{i \in \mathbb{N}}$ be a sequence of nonempty compact subsets of X such that $A_{i} \supset A_{i+1}$ for all $i \in \mathbb{N}$.
(a) Prove that if $\cap_{i=1}^{\infty} A_{i}=\emptyset$, then $A_{1} \subset \cup_{i=1}^{\infty}\left(X \backslash A_{i}\right)$.

Suppose $\cap_{i=1}^{\infty} A_{i}=\emptyset$. By de Morgan's law:

$$
\cup_{i=1}^{\infty}\left(X \backslash A_{i}\right)=X \backslash\left(\cap_{i=1}^{\infty} A_{i}\right)=X \backslash \emptyset=X \supset A_{1}
$$

(b) Use your finding in part (a) to prove that $\cap_{i=1}^{\infty} A_{i} \neq \emptyset$.

For all $i \in \mathbb{N}$, since A_{i} is compact, it is closed, implying that $X \backslash A_{i}$ is open. Suppose $\cap_{i=1}^{\infty} A_{i}=\emptyset$. From above $A_{1} \subset \cup_{i=1}^{\infty}\left(X \backslash A_{i}\right)$, i.e. $\left\{X \backslash A_{i}\right\}_{i \in \mathbb{N}}$ is an open covering of A_{1}. Since A_{1} is compact there is a finite subcovering $A_{i_{1}}, \ldots, A_{i_{k}}$. Suppose wlog $i_{1}<i_{2}<\ldots<i_{k}$. Then,

$$
A_{1} \subset \cup_{l=1}^{k}\left(X \backslash A_{i_{l}}\right)=X \backslash\left(\cap_{l=1}^{k} A_{i_{l}}\right)=X \backslash A_{i_{k}} .
$$

by de Morgan's law and since $A_{i_{1}} \supset A_{i_{2}} \supset \ldots \supset A_{i_{k}}$. The above inclusion implies that $A_{i_{k}} \subset A_{1} \subset X \backslash A_{i_{k}}$, which contradicts nonemptiness of $A_{i_{k}}$.
5. (Bonus, extra 20pts) Prove that every convex subset of \mathbb{R}^{n} is connected.

Let $Y \subset \mathbb{R}^{n}$ be convex. Suppose that Y is not connected, i.e., there exist $A, B \subset$ \mathbb{R}^{n} such that A and B are nonempty, $Y=A \cup B$, and $\bar{A} \cap B=A \cap \bar{B}=\emptyset$. Let $x \in A$ and $y \in B$, and define the function $f:[0,1] \rightarrow \mathbb{R}^{n}$ by $f(\alpha)=\alpha x+(1-\alpha) y$. Note that f is continuous since if $\alpha_{n} \rightarrow \alpha$ in $[0,1]$, then $f\left(\alpha_{n}\right)=\alpha_{n} x+\left(1-\alpha_{n}\right) y \rightarrow$ $\alpha x+(1-\alpha) y=f(\alpha)$. Define $A^{\prime}=f^{-1}(A)$ and $B^{\prime}=f^{-1}(B)$.

Note that $1 \in A^{\prime}$ since $f(1)=x \in A$ and $0 \in B^{\prime}$ since $f(0)=y \in B$. Therefore, A^{\prime} and B^{\prime} are nonempty.

For any $\alpha \in[0,1]$, since Y is convex, $f(\alpha)=\alpha x+(1-\alpha) y \in Y$, so $\alpha \in f^{-1}(Y)=$ $f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)=A^{\prime} \cup B^{\prime}$. Therefore, $[0,1]=A^{\prime} \cup B^{\prime}$.
Since f is continuous and \bar{A} is closed in $\mathbb{R}^{n}, f^{-1}(\bar{A})$ is closed in $[0,1]$. Furthermore, $A^{\prime} \subset f^{-1}(\bar{A})$, so $\bar{A}^{\prime} \subset f^{-1}(\bar{A})$. Then,

$$
\bar{A}^{\prime} \cap B^{\prime} \subset f^{-1}(\bar{A}) \cap f^{-1}(B)=f^{-1}(\bar{A} \cap B)=f^{-1}(\emptyset)=\emptyset .
$$

The proof that $A^{\prime} \cap \bar{B}^{\prime}=\emptyset$ is similar. This implies that $[0,1]$ is not connected, a contradiction. Therefore, Y is connected.

[^0]: ${ }^{1}$ The scalar multiplication and vector addition operations on X are defined coordinatewise. That is, for every $\alpha \in \mathbb{R}$, and $x, y \in X$, the sequences $\alpha x \in X$ and $x+y \in X$ are defined by:

 $$
 \forall n \in \mathbb{N}: \quad(\alpha x)_{n}=\alpha x_{n} \text { and }(x+y)_{n}=x_{n}+y_{n}
 $$

