
Econ 204 (2012) - Final Solutions

08/13/2012

1. (20pts) Let Ψ : R→ 2R be the correspondence defined by

Ψ(x) =

{
{0} if x 6= 0

(−1,+∞) if x = 0

(a) Show that Ψ does not have a closed graph.

Note that (0,−1 + 1
n
) ∈ graph Ψ for all n ∈ N and (0,−1 + 1

n
) → (0,−1) /∈

graph Ψ. So Ψ does not have a closed graph.

(b) Show that Ψ is upper hemicontinuous.

Let x ∈ R and V ⊂ R such that Φ(x) ⊂ V .

Case 1: If x 6= 0, let δ = |x| > 0 and U = (x − δ, x + δ). Then, U is a

neighborhood of x such that for all x′ ∈ U , x′ 6= 0, implying Ψ(x′) = {0} =

Ψ(x) ⊂ V . Therefore, Ψ is upper hemicontinuous at x.

Case 2: If x = 0, then U = R is a neighborhood of 0 such that for all x′ ∈ U ,

Ψ(x′) ⊂ (−1,+∞) = Ψ(0) ⊂ V . Therefore, Ψ is upper hemicontinuous at 0.

(c) Show that Ψ is not lower hemicontinuous.

Let V = (0,+∞). Note that Ψ(0) ∩ V = (0,+∞) 6= ∅, however for any

neighborhood U of 0, there is x′ ∈ U such that x′ > 0, i.e. Ψ(x′) ∩ V =

{0} ∩ V = ∅. Therefore, Ψ is not lower hemicontinuous at 0.

2. (25pts) Let f : R2 → R be defined by

f(x) = x1 sin(x2)

(a) Find the critical points of f .

Remember that x ∈ R2 is a critical point of f if and only if Rank Df(x) <

min{1, 2} = 1 if and only if

Df(x) =

(
∂f

∂x1
(x),

∂f

∂x2
(x)

)
= (sin(x2), x1 cos(x2)) = (0, 0)

Therefore, the set of critical points are given by {(0, nπ) : n ∈ Z}. Note that

f(x) = 0 at every critical point x of f .
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(b) Give the second order Taylor expansion of f around each of its critical points.

D2f(x) =

(
∂2f
∂x21

(x) ∂2f
∂x1∂x2

(x)
∂2f

∂x2∂x1
(x) ∂2f

∂x22
(x)

)
=

(
0 cos(x2)

cos(x2) −x1 sin(x2)

)
Fix a critical point x = (0, nπ). Then,

f(x+ h) = f(h1, nπ + h2) = f(x) +Df(x)h+
1

2
hTD2f(x)h+O(|h|3)

=
1

2
hTD2f(x)h+O(|h|3).

If n is even, then

f(x+ h) = f(h1, nπ + h2) =
1

2
(h1, h2)

(
0 1

1 0

)(
h1

h2

)
+O(|h|3)

= h1h2 +O(|h|3).

If n is odd, then

f(x+ h) = f(h1, nπ + h2) =
1

2
(h1, h2)

(
0 −1

−1 0

)(
h1

h2

)
+O(|h|3)

= −h1h2 +O(|h|3).

(c) Is any of the critical points a local maximizer or a local minimizer of f?

Take any critical point x = (0, nπ) of f . The characteristic polynomial of

D2f(x) is λ2 − 1 = 0 (whether n is even or odd). Since D2f(x) has one

positive and one negative eigenvalue (λ1 = 1 and λ2 = −1), x is neither a

local minimizer or a local maximizer of f .

3. (30pts) Let X denote the space of all bounded sequences of real numbers:

X = {x = (x1, x2, . . .) ∈ RN : sup{|xi| : i ∈ N} < +∞}

Note that X is a vector space over R.1

1The scalar multiplication and vector addition operations on X are defined coordinatewise. That

is, for every α ∈ R, and x, y ∈ X, the sequences αx ∈ X and x+ y ∈ X are defined by:

∀n ∈ N : (αx)n = αxn and (x+ y)n = xn + yn.
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(a) For each x ∈ X, let ‖x‖∞ = sup{|xi| : i ∈ N}. Show that ‖ · ‖∞ is a norm.

∀x ∈ X : ‖x‖∞ ∈ R+:

Since xi ≥ 0 for all i ∈ N and x is a bounded sequence 0 ≤ sup{|xi| : i ∈
N} <∞, so ‖x‖∞ ∈ R+.

∀x ∈ X : ‖x‖∞ = 0⇔ x = 0:

If x is the zero sequence then ‖x‖ = sup{|xi| : i ∈ N} = sup{0} = 0. If

‖x‖∞ = 0 then |xn| ≤ sup{|xi| : i ∈ N} = ‖x‖∞ = 0 for all n ∈ N, implying

that x is the zero sequence.

∀x ∈ X,α ∈ R : ‖αx‖∞ = |α|‖x‖∞:

If α = 0 the equality holds trivially. Suppose α 6= 0. Since ‖x‖∞ is an

upper bound for the set {|xi| : i ∈ N}, |α|‖x‖∞ is an upper bound for the set

{|α||xi| : i ∈ N} = {|αxi| : i ∈ N} implying:

‖αx‖∞ = sup{|αxi| : i ∈ N} ≤ |α|‖x‖∞ (∗)

Applying Equation (∗) to 1
α

and αx, we also have ‖x‖∞ = ‖ 1
α

(αx)‖∞ ≤
| 1
α
|‖αx‖∞, also implying |α|‖x‖∞ ≤ ‖αx‖∞.

∀x, y ∈ X : ‖x+ y‖∞ ≤ ‖x‖∞ + ‖y‖∞:

For all n ∈ N, |xn + yn| ≤ |xn| + |yn|. Since |xn| ≤ ‖x‖∞ and |yn| ≤ ‖x‖∞,

by definition of ‖ · ‖∞, we have that for all n ∈ N

|xn + yn| ≤ ‖x‖∞ + ‖y‖∞.

That is, ‖x‖∞ + ‖y‖∞ is an upper bound for the set {|xn + yn| : n ∈ N} .

Taking supremum over all n ∈ N in the l.h.s. of the above inequality gives

the desired inequality.

(b) Let T ∈ L(X,X) be defined by

(T (x))n = xn − xn+1 for every x ∈ X and n ∈ N.

That is, the nth element of the sequence T (x) is the difference xn − xn+1.

Show that the linear map T is bounded and find its norm ‖T‖.
Take any x ∈ X, and n ∈ N:

|(T (x))n| = |xn − xn+1| ≤ |xn|+ |xn+1| ≤ 2‖x‖∞

Taking supremum over all n ∈ N in the left hand side, we obtain

‖T (x)‖∞ = sup{|(T (x))n| : n ∈ N ≤ 2‖x‖∞
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Therefore, T is bounded. Furthermore the above inequality implies that

‖T‖ ≤ 2.

Now consider the sequence x̂ = (1,−1, 0, 0, . . .). Note that T (x̂) = (2,−1, 0, 0, . . .).

Then:

‖T‖ ≥ ‖T (x̂)‖∞
‖x̂‖∞

=
2

1
= 2

So ‖T‖ = 2.

(c) Show that Ker(T ) ∩ Im(T ) = {0}.
First note that 0 ∈ Ker(T ) ∩ Im(T ) since Ker(T ) and Im(T ) are vector

subspaces of X.

Note that x ∈ Ker(T ) if and only if 0 = T (x) = (x1−x2, x2−x3, x3−x4, . . .)
if and only if x1 = x2 = x3 = . . .. Hence Ker(T ) consists of only constant

sequences.

Now take any y ∈ Ker(T )∩Im(T ). Since y ∈ Ker(T ), there is c ∈ R such that

yn = c for all n ∈ N. Since y ∈ Im(T ), there is x ∈ X such that T (x) = y,

i.e. (T (x))n = xn − xn+1 = c for all n ∈ N . Note that:

(n−1)c = y1+y2+. . .+yn−1 = (x1−x2)+(x2−x3)+. . .+(xn−1−xn) = x1−xn.

This implies that (n− 1)|c| ≤ |x1|+ |xn|, i.e. (n− 1)|c| − |x1| ≤ |xn|. By the

definition of supremum:

∀n ∈ N : (n− 1)|c| − |x1| ≤ |xn| ≤ sup{|xi| : i ∈ N}.

Therefore, the supremum above is finite only if c = 0. This proves that y = 0.

So Ker(T ) ∩ Im(T ) = {0}.

4. (25pts) Let (X, d) be a metric space. Let (Ai)i∈N be a sequence of nonempty

compact subsets of X such that Ai ⊃ Ai+1 for all i ∈ N.

(a) Prove that if ∩∞i=1Ai = ∅, then A1 ⊂ ∪∞i=1(X \ Ai).
Suppose ∩∞i=1Ai = ∅. By de Morgan’s law:

∪∞i=1(X \ Ai) = X \ (∩∞i=1Ai) = X \ ∅ = X ⊃ A1.

(b) Use your finding in part (a) to prove that ∩∞i=1Ai 6= ∅.
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For all i ∈ N, since Ai is compact, it is closed, implying that X \Ai is open.

Suppose ∩∞i=1Ai = ∅. From above A1 ⊂ ∪∞i=1(X \ Ai), i.e. {X \ Ai}i∈N is

an open covering of A1. Since A1 is compact there is a finite subcovering

Ai1 , . . . , Aik . Suppose wlog i1 < i2 < . . . < ik. Then,

A1 ⊂ ∪kl=1(X \ Ail) = X \
(
∩kl=1Ail

)
= X \ Aik .

by de Morgan’s law and since Ai1 ⊃ Ai2 ⊃ . . . ⊃ Aik . The above inclusion

implies that Aik ⊂ A1 ⊂ X \ Aik , which contradicts nonemptiness of Aik .

5. (Bonus, extra 20pts) Prove that every convex subset of Rn is connected.

Let Y ⊂ Rn be convex. Suppose that Y is not connected, i.e., there exist A,B ⊂
Rn such that A and B are nonempty, Y = A ∪ B, and Ā ∩ B = A ∩ B̄ = ∅. Let

x ∈ A and y ∈ B, and define the function f : [0, 1]→ Rn by f(α) = αx+(1−α)y.

Note that f is continuous since if αn → α in [0, 1], then f(αn) = αnx+(1−αn)y →
αx+ (1− α)y = f(α). Define A′ = f−1(A) and B′ = f−1(B).

Note that 1 ∈ A′ since f(1) = x ∈ A and 0 ∈ B′ since f(0) = y ∈ B. Therefore,

A′ and B′ are nonempty.

For any α ∈ [0, 1], since Y is convex, f(α) = αx+ (1− α)y ∈ Y , so α ∈ f−1(Y ) =

f−1(A ∪B) = f−1(A) ∪ f−1(B) = A′ ∪B′. Therefore, [0, 1] = A′ ∪B′.

Since f is continuous and Ā is closed in Rn, f−1(Ā) is closed in [0, 1]. Furthermore,

A′ ⊂ f−1(Ā), so Ā′ ⊂ f−1(Ā). Then,

Ā′ ∩B′ ⊂ f−1(Ā) ∩ f−1(B) = f−1(Ā ∩B) = f−1(∅) = ∅.

The proof that A′ ∩ B̄′ = ∅ is similar. This implies that [0, 1] is not connected, a

contradiction. Therefore, Y is connected.
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