Econ 204 (2012) - Final

08/13/2012

Instructions: This is a closed book exam. You have 3 hours. The weight of each question is indicated next to it. Write clearly, explain your answers, and be concise. You may use any result from class. Good luck!

1. (20pts) Let $\Psi: \mathbb{R} \to 2^{\mathbb{R}}$ be the correspondence defined by

$$\Psi(x) = \begin{cases} \{0\} & \text{if } x \neq 0 \\ (-1, +\infty) & \text{if } x = 0 \end{cases}$$

- (a) Show that Ψ does not have a closed graph.
- (b) Show that Ψ is upper hemicontinuous.
- (c) Show that Ψ is not lower hemicontinuous.
- 2. (25pts) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x) = x_1 \sin(x_2)$$

- (a) Find the critical points of f.
- (b) Give the second order Taylor expansion of f around each of its critical points.
- (c) Is any of the critical points a local maximizer or a local minimizer of f?
- 3. (30pts) Let X denote the space of all bounded sequences of real numbers:

$$X = \{x = (x_1, x_2, \dots) \in \mathbb{R}^{\mathbb{N}} : \sup\{|x_i| : i \in \mathbb{N}\} < +\infty\}$$

Note that X is a vector space over \mathbb{R}^{1} .

(a) For each $x \in X$, let $||x||_{\infty} = \sup\{|x_i| : i \in \mathbb{N}\}$. Show that $||\cdot||_{\infty}$ is a norm.

$$\forall n \in \mathbb{N} : (\alpha x)_n = \alpha x_n \text{ and } (x+y)_n = x_n + y_n.$$

¹The scalar multiplication and vector addition operations on X are defined coordinatewise. That is, for every $\alpha \in \mathbb{R}$, and $x, y \in X$, the sequences $\alpha x \in X$ and $x + y \in X$ are defined by:

(b) Let $T \in L(X, X)$ be defined by

$$(T(x))_n = x_n - x_{n+1}$$
 for every $x \in X$ and $n \in \mathbb{N}$.

That is, the *n*th element of the sequence T(x) is the difference $x_n - x_{n+1}$. Show that the linear map T is bounded and find its norm ||T||.

- (c) Show that $Ker(T) \cap Im(T) = \{0\}.$
- 4. (25pts) Let (X,d) be a metric space. Let $(A_i)_{i\in\mathbb{N}}$ be a sequence of nonempty compact subsets of X such that $A_i \supset A_{i+1}$ for all $i \in \mathbb{N}$.
 - (a) Prove that if $\bigcap_{i=1}^{\infty} A_i = \emptyset$, then $A_1 \subset \bigcup_{i=1}^{\infty} (X \setminus A_i)$.
 - (b) Use your finding in part (a) to prove that $\bigcap_{i=1}^{\infty} A_i \neq \emptyset$.
- 5. (Bonus, extra 20pts) Prove that every convex subset of \mathbb{R}^n is connected.