Econ 204 (2012) - Final

$$
08 / 13 / 2012
$$

Instructions: This is a closed book exam. You have 3 hours. The weight of each question is indicated next to it. Write clearly, explain your answers, and be concise. You may use any result from class. Good luck!

1. (20pts) Let $\Psi: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ be the correspondence defined by

$$
\Psi(x)=\left\{\begin{array}{cc}
\{0\} & \text { if } x \neq 0 \\
(-1,+\infty) & \text { if } x=0
\end{array}\right.
$$

(a) Show that Ψ does not have a closed graph.
(b) Show that Ψ is upper hemicontinuous.
(c) Show that Ψ is not lower hemicontinuous.
2. (25pts) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=x_{1} \sin \left(x_{2}\right)
$$

(a) Find the critical points of f.
(b) Give the second order Taylor expansion of f around each of its critical points.
(c) Is any of the critical points a local maximizer or a local minimizer of f ?
3. (30pts) Let X denote the space of all bounded sequences of real numbers:

$$
X=\left\{x=\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\mathbb{N}}: \sup \left\{\left|x_{i}\right|: i \in \mathbb{N}\right\}<+\infty\right\}
$$

Note that X is a vector space over $\mathbb{R} .{ }^{1}$
(a) For each $x \in X$, let $\|x\|_{\infty}=\sup \left\{\left|x_{i}\right|: i \in \mathbb{N}\right\}$. Show that $\|\cdot\|_{\infty}$ is a norm.

[^0](b) Let $T \in L(X, X)$ be defined by
$$
(T(x))_{n}=x_{n}-x_{n+1} \text { for every } x \in X \text { and } n \in \mathbb{N}
$$

That is, the nth element of the sequence $T(x)$ is the difference $x_{n}-x_{n+1}$. Show that the linear map T is bounded and find its norm $\|T\|$.
(c) Show that $\operatorname{Ker}(T) \cap \operatorname{Im}(T)=\{0\}$.
4. (25pts) Let (X, d) be a metric space. Let $\left(A_{i}\right)_{i \in \mathbb{N}}$ be a sequence of nonempty compact subsets of X such that $A_{i} \supset A_{i+1}$ for all $i \in \mathbb{N}$.
(a) Prove that if $\cap_{i=1}^{\infty} A_{i}=\emptyset$, then $A_{1} \subset \cup_{i=1}^{\infty}\left(X \backslash A_{i}\right)$.
(b) Use your finding in part (a) to prove that $\cap_{i=1}^{\infty} A_{i} \neq \emptyset$.
5. (Bonus, extra 20pts) Prove that every convex subset of \mathbb{R}^{n} is connected.

[^0]: ${ }^{1}$ The scalar multiplication and vector addition operations on X are defined coordinatewise. That is, for every $\alpha \in \mathbb{R}$, and $x, y \in X$, the sequences $\alpha x \in X$ and $x+y \in X$ are defined by:

 $$
 \forall n \in \mathbb{N}: \quad(\alpha x)_{n}=\alpha x_{n} \text { and }(x+y)_{n}=x_{n}+y_{n} .
 $$

