Econ 204 (2013) - Final Solutions

08/21/2013

1. (15pts) Define $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by:

$$
F(x, a)=x^{3}-x a+\frac{1}{3} a^{2}-1 \quad x, a \in \mathbb{R} .
$$

For each of the following $\left(x_{0}, a_{0}\right)$ values, state whether you can use the Implicit Function Theorem to conclude that there exist open sets $U, W \subset \mathbb{R}$ such that $x_{0} \in U, a_{0} \in W$, and a C^{1} function $g: W \rightarrow U$ satisfying:

$$
\forall a \in W: \quad F(g(a), a)=0
$$

If your answer is yes, find $g^{\prime}\left(a_{0}\right)$.
(a) $\left(x_{0}, a_{0}\right)=(1,1)$.
(b) $\left(x_{0}, a_{0}\right)=(1,3)$.
(c) $\left(x_{0}, a_{0}\right)=(1,0)$.

Solution: The function F is a polynomial, it is therefore C^{1}. To see whether the Implicit Function Theorem can be applied to reach the desired conclusion, we only have to check the remaining two conditions of the Theorem: (i) $\left(x_{0}, a_{0}\right)$ solves the equation, i.e. $F\left(x_{0}, a_{0}\right)=0$, and (ii) x_{0} is a regular point of $F\left(\cdot, a_{0}\right)$, i.e. $D_{x} F\left(x_{0}, a_{0}\right)=3 x_{0}^{2}-a_{0} \neq 0$.
(a) $F(1,1)=-\frac{2}{3} \neq 0$, so $(1,1)$ doesn't solve our equation, hence the Implicit Function Theorem can not be applied.
(b) $F(1,3)=0$, but $D_{x} F(1,3)=3-3=0$. So, $(1,3)$ solves the equation but 1 is not a regular point of $F(\cdot, 3)$, hence the Implicit Function Theorem can not be applied.
(c) $F(1,0)=0$, and $D_{x} F(1,0)=3 \neq 0$. In this case, all the conditions of the Implicit Function Theorem hold, so we can apply it to obtain the desired conclusion. Furthermore, note that $D_{a} F(x, a)=-x+\frac{2}{3} a$, implying $D_{a} F(1,0)=-1$, so

$$
g^{\prime}(0)=-\left[D_{x} F(1,0)\right]^{-1}\left[D_{a} F(1,0)\right]=-\frac{1}{3}(-1)=\frac{1}{3}
$$

2. (20pts) Find the solution $y: \mathbb{R} \rightarrow \mathbb{R}^{2}$ of the following initial value problem:

$$
\binom{y_{1}^{\prime}(t)}{y_{2}^{\prime}(t)}=\left(\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right)\binom{y_{1}(t)}{y_{2}(t)} \text { and }\binom{y_{1}(0)}{y_{2}(0)}=\binom{C_{1}}{C_{2}}
$$

You can leave the solution in the form of a product of matrices and a matrix inverse. ${ }^{1}$ Illustrate the qualitative properties of $y(t)$ on the phase plane diagram.

Solution: Consider the matrix

$$
M=\left(\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right)
$$

The characteristic polynomial of M is given by $(1-\lambda)(1-\lambda)-4=\lambda^{2}-2 \lambda-3=$ $(\lambda-3)(\lambda+1)$. Therefore, the eigenvalues of M are $\lambda_{1}=3$ and $\lambda_{2}=-1$. Since the eigenvalues are distinct, by Theorem 8 from lecture 9 , the eigenvalues have linearly independent eigenvectors which constitute a basis for \mathbb{R}^{2}. Solving for v_{i} in $M v_{i}=\lambda_{i} v_{i}$ for $i=1,2$, two such eigenvectors are:

$$
v_{1}=\binom{2}{1} \text { and } v_{2}=\binom{-2}{1}
$$

Let U denote the standard basis of \mathbb{R}^{2} and let $V=\left\{v_{1}, v_{2}\right\}$ be the new basis consisting of eigenvectors of M. Define the matrices

$$
A:=\left(\begin{array}{cc}
2 & -2 \\
1 & 1
\end{array}\right) \text { and } \Lambda:=\left(\begin{array}{cc}
3 & 0 \\
0 & -1
\end{array}\right)
$$

That is, $A=\left[v_{1}, v_{2}\right]$ is the matrix whose columns are the eigenvectors, and Λ is the diagonal matrix of eigenvalues. Then, A changes basis from V to $U ; A^{-1}$ changes basis from U to V; and M can be diagonalized as $M=A \Lambda A^{-1}$.

By Theorem 2 from Lecture 14, the solution to this linear initial value problem is given by $y(t)=A e^{t \Lambda} A^{-1} y(0)$:

$$
y(t)=\binom{y_{1}(t)}{y_{2}(t)}=\left(\begin{array}{cc}
2 & -2 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{3 t} & 0 \\
0 & e^{-t}
\end{array}\right)\left(\begin{array}{cc}
2 & -2 \\
1 & 1
\end{array}\right)^{-1}\binom{C_{1}}{C_{2}}
$$

The stationary point of this linear differential equation is $0 \in \mathbb{R}^{2}$. In the phase plane diagram, you should draw the V-coordinates where the origin is 0 , and

[^0]the axes are in the directions of the eigenvectors. For any point in \mathbb{R}^{2}, if the v_{1} coordinate is nonzero, then it will diverge (preserving its sign) since the real part of the corresponding eigenvalue λ_{1} is strictly positive. The v_{2} coordinate will converge to zero (again preserving its sign) since the real part of the corresponding eigenvalue λ_{2} is strictly negative.
3. (15pts) Let X be a finite dimensional vector space over a field \mathbb{F}. Let W be a vector subspace of X. Remember the definition of the set:
$$
[x]:=\{y \in X: x-y \in W\} \quad \text { for all } x \in X
$$

Consider the function $T: X \rightarrow X / W$ defined by $T(x)=[x]$ for any $x \in X$. Show that T is linear. ${ }^{2}$ Use the Rank-Nullity Theorem to conclude:

$$
\operatorname{dim}(X)=\operatorname{dim}(W)+\operatorname{dim}(X / W)
$$

Solution: Take any $\alpha, \beta \in \mathbb{F}$ and $x, y \in X$. Then,

$$
T(\alpha x+\beta y)=[\alpha x+\beta y]=[\alpha x]+[\beta y]=\alpha[x]+\beta[y]=\alpha T(x)+\beta T(y)
$$

where the first and last equalities follow from the definition of T; and the second and third equalities follow from the definitions of the operations + , . in X / W respectively. Therefore, T is linear.
Note that [0] is the vector additive identity in X / W. Note also that for all $x \in X$, $T(x)=[0]$ iff $[x]=[0]$ iff $x=x-0 \in W$. Therefore,

$$
\operatorname{Ker}(T)=\{x \in X: T(x)=[0]\}=W
$$

Furthermore $\operatorname{Im}(T)=X / W$, because for any $[x] \in X / W, T(x)=[x]$. The RankNullity Theorem states that when X is finite dimensional:

$$
\operatorname{dim}(X)=\operatorname{dim}(\operatorname{Ker}(T))+\operatorname{dim}(\operatorname{Im}(T))
$$

In this case, $\operatorname{Ker}(T)=W$ and $\operatorname{Im}(T)=X / W$ implying the desired conclusion.
4. Consider the L-shaped set $Y=(\{0\} \times[0,1]) \cup([0,1] \times\{0\})$ in \mathbb{R}^{2}. Suppose that $f: Y \rightarrow Y$ is a continuous function.

[^1](a) (5pts) Can you directly use Brouwer's Fixed Point Theorem to conclude that f has a fixed point? Explain your answer in at most two sentences.

Solution: Brouwer's Fixed Point Theorem can not be applied to f directly to conclude that f has a fixed point, because Y is not a convex subset of \mathbb{R}^{2} : $(0,1),(1,0) \in Y$ but $\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{1}{2}(0,1)+\frac{1}{2}(1,0) \notin Y$.
(b) (10pts) Remember that a homeomorphism between two metric spaces is a continuous bijection with a continuous inverse. Let $X:=[-1,1]$ be the closed interval of the real line. Specify a homeomorphism $g: X \rightarrow Y .{ }^{3}$ Use g and Brouwer's Fixed Point Theorem to show that f has a fixed point.
Solution: One such homeomorphism g is defined by:

$$
g(x)=\left\{\begin{array}{cl}
(x, 0) & \text { if } x \in[0,1] \\
(0,-x) & \text { if } x \in[-1,0)
\end{array}\right.
$$

Consider the function $g^{-1} \circ f \circ g: X \rightarrow X$. Note that $g^{-1} \circ f \circ g$ is continuous as the composition of continuous functions, and X is a compact convex subset of \mathbb{R}, therefore by the Brouwer's Fixed Point Theorem, $g^{-1} \circ f \circ g$ has a fixed point x^{*}. That is, $x^{*}=\left(g^{-1} \circ f \circ g\right)\left(x^{*}\right)$. If we apply g to both sides of this equality we obtain:

$$
g\left(x^{*}\right)=\left(g \circ g^{-1} \circ f \circ g\right)\left(x^{*}\right)=(f \circ g)\left(x^{*}\right)=f\left(g\left(x^{*}\right)\right) .
$$

Therefore, $y^{*}:=g\left(x^{*}\right)$ is a fixed point of f.
5. (20pts) Let (Y, ρ) be a metric space. Let $A \subset Y$ be a compact set and $\left\{y_{n}\right\}$ be a sequence in Y. Assume that for every open set V with $A \subset V$, there is $N \in \mathbb{N}$ such that $y_{n} \in V$ for all $n>N$. Show that $\left\{y_{n}\right\}$ has a subsequence that converges to a point in A.

Solution: For each $k \in \mathbb{N}$, let $V_{k}=\bigcup_{x \in A} B_{\frac{1}{k}}(x)$. Note that V_{k} is open and $A \subset V_{k}$. We will first inductively define a subsequence $\left\{y_{n_{k}}\right\}$ such that $y_{n_{k}} \in V_{k}$ for all $k \in \mathbb{N}$:

Step 1: By assumption, there is $N \in \mathbb{N}$ such that $y_{n} \in V_{1}$ for all $n>N$. Fix any $n_{1}>N$. Note that $y_{n_{1}} \in V_{1}$.

[^2]Step $k>1$: Assume that n_{k-1} is already defined. By assumption, there is $N \in \mathbb{N}$ such that $y_{n} \in V_{k}$ for all $n>N$. Fix any $n_{k}>\max \left\{N, n_{k-1}\right\}$. Note that $n_{k}>n_{k-1}$ and $y_{n_{k}} \in V_{k}$.
Since $y_{n_{k}} \in V_{k}$, there is $x_{k} \in A$ such that $y_{n_{k}} \in B_{\frac{1}{k}}\left(x_{k}\right)$, i.e. $\rho\left(y_{n_{k}}, x_{k}\right)<\frac{1}{k}$. Since A is compact and $\left\{x_{k}\right\} \subset A$, there is a subsequence $\left\{x_{k_{r}}\right\}$ such that $x_{k_{r}} \rightarrow x^{*}$ for some $x^{*} \in A$.

Let $\epsilon>0$ be given. Since $x_{k_{r}} \rightarrow x^{*}$, there exists $R_{1} \in \mathbb{N}$ such that for all $r>R_{1}$ we have $\rho\left(x_{k_{r}}, x^{*}\right)<\epsilon / 2$. Also there exists $R_{2} \in \mathbb{N}$ such that $1 / R_{2}<\epsilon / 2$. Set $R=\max \left\{R_{1}, R_{2}\right\}$. Then for all $r>R$:

$$
\rho\left(y_{n_{k_{r}}}, x^{*}\right) \leq \rho\left(y_{n_{k_{r}}}, x_{k_{r}}\right)+\rho\left(x_{k_{r}}, x^{*}\right)<1 / k_{r}+\epsilon / 2=\epsilon / 2+\epsilon / 2=\epsilon
$$

since $k_{r} \geq r>R \geq R_{2} \geq 2 / \epsilon$. Since $\epsilon>0$ was arbitrary, the subsequence $y_{n_{k_{r}}}$ also converges to x^{*}.
6. (15pts) Prove the following sequential characterization of upper hemi continuity for compact-valued correspondences. You can assume without proof the statement you are asked to show in Question 5.

Theorem 1 Suppose (X, d) and (Y, ρ) are metric spaces. A compact-valued correspondence $\Psi: X \rightarrow 2^{Y}$ is uhc at $x_{0} \in X$ if and only if, for every sequence $\left\{x_{n}\right\} \subset X$ with $x_{n} \rightarrow x_{0}$, and every sequence $\left\{y_{n}\right\} \subset Y$ such that $y_{n} \in \Psi\left(x_{n}\right)$ for every $n \in \mathbb{N}$, there is a convergent subsequence $\left\{y_{n_{k}}\right\}$ such that $\lim y_{n_{k}} \in \Psi\left(x_{0}\right)$.

Solution: " \Leftarrow ": We will prove this direction by contraposition. Suppose that Ψ is not uhc at x_{0}. Then, there is an open set $V \subset Y$ with $\Psi\left(x_{0}\right) \subset V$, such that for any open set $U \subset X$ with $x_{0} \in U$, there is $x \in U$ for which $\Psi(x)$ is not a subset of V. In particular, for each $n \in \mathbb{N}$, we can choose a point $x_{n} \in B_{\frac{1}{n}}\left(x_{0}\right)$ such that $\Psi\left(x_{n}\right)$ is not a subset of V, and a point $y_{n} \in \Psi\left(x_{n}\right) \backslash V$. Take any $y \in \Psi\left(x_{0}\right)$. Note that there is no subsequence of $\left\{y_{n}\right\}$ converging to y, because V is an open set such that $y \in \Psi\left(x_{0}\right) \subset V$ and $y_{n} \notin V$ for all $n \in \mathbb{N}$. As a result, the sequences $\left\{x_{n}\right\} \subset X$ and $\left\{y_{n}\right\} \subset Y$ are such that $x_{n} \rightarrow x_{0}$, and $y_{n} \in \Psi\left(x_{n}\right)$ for every $n \in \mathbb{N}$, but there is no convergent subsequence $\left\{y_{n_{k}}\right\}$ whose limit is in $\Psi\left(x_{0}\right)$.
$" \Rightarrow ":$ Suppose that Ψ is uhc at $x_{0},\left\{x_{n}\right\} \subset X$ with $x_{n} \rightarrow x_{0}$, and $\left\{y_{n}\right\}$ is such that $y_{n} \in \Psi\left(x_{n}\right)$ for every $n \in \mathbb{N}$. Let $A:=\Psi\left(x_{0}\right) . A$ is compact since Ψ is compactvalued. Take any open set $V \subset Y$ such that $A=\Psi\left(x_{0}\right) \subset V$. By uhc of Ψ at x_{0},
there is an open set $U \subset X$ such that $x_{0} \in U$ and for all $x \in U, \Psi(x) \subset V$. Since $x_{n} \rightarrow x_{0}$, there is $N \in \mathbb{N}$ such that for all $n>N, x_{n} \in U$, i.e. $y_{n} \in \Psi\left(x_{n}\right) \subset V$. Therefore, A is a compact set and for any open set V with $A \subset V$, there is $N \in \mathbb{N}$ such that $y_{n} \in V$ for all $n>N$. By Question 5, this implies that $\left\{y_{n}\right\}$ has a subsequence that converges to a point in $A=\Psi\left(x_{0}\right)$.
7. (Bonus, extra 20pts) Let (X, d) be a metric space and let $A \subset X$ be a totally bounded set. Show that every sequence in A has a Cauchy subsequence.

Digression: In our solution to this question, we will construct a subsequence of a subsequence of a subsequence, ad infinitum; which might become notationally cumbersome because of having to use a subscript of a subscript of a subscript, ad infinitum. Therefore, it will be convenient to represent subsequences in the following alternative way. Fix a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset X$. We will associate every subsequence $\left\{x_{n_{k}}\right\}_{k \in \mathbb{N}}$, with the infinite set $N \subset \mathbb{N}$ defined by $N=\left\{n_{k}: k \in \mathbb{N}\right\}$. It can be verified that this mapping, from the subsequences of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ to the collection of infinite subsets of \mathbb{N}, is a bijection. ${ }^{4}$

Solution:

Part 1: Suppose that $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset A$. In Part 2 of the solutions, we will construct a sequence of subsequences $\left\{N_{k}\right\}_{k \in \mathbb{N}}$ (i.e. for each $k \in \mathbb{N}, N_{k}$ is an infinite subset of \mathbb{N}) satisfying the following two conditions:
(a) $N_{k} \supset N_{k+1}$ (i.e. N_{k+1} is a subsequence of N_{k}) for all $k \in \mathbb{N}$.
(b) For all $k \in \mathbb{N}$ and $n, m \in N_{k}: d\left(x_{n}, x_{m}\right)<\frac{1}{k}$.

Given $\left\{N_{k}\right\}_{k \in \mathbb{N}}$ satisfying (a) and (b), inductively define a new subsequence $\left\{x_{n_{k}}\right\}_{k \in \mathbb{N}}$ such that $n_{k} \in N_{k}$ for all $k \in \mathbb{N}$, by:

Step 1: Let $n_{1}:=\min N_{1}$. Note that $n_{1} \in N_{1}$.
Step $k>1$: Assume that n_{k-1} is already defined. Let $n_{k}:=\min N_{k} \backslash\left\{1,2,3, \ldots, n_{k-1}\right\}$. Note that $n_{k}>n_{k-1}$ and $n_{k} \in N_{k}$.

See Figure 1 for an illustration of the construction of the subsequence $N=\left\{n_{k}\right.$: $k \in \mathbb{N}\}$.

[^3]| \mathbb{N} | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | \cdots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N_{1} | $\mathbf{1}$ | 2 | 3 | 4 | | 6 | 7 | | 9 | \cdots |
| N_{2} | | $\mathbf{2}$ | 3 | 4 | | 6 | | | 9 | \cdots |
| N_{3} | | 2 | $\mathbf{3}$ | | | | | | 9 | \cdots |
| N_{4} | | | 3 | | | $\mathbf{6}$ | | | 9 | \cdots |
| N_{5} | | | 3 | | | | | $\mathbf{9}$ | \cdots | |
| \vdots | |

Figure 1. Construction of the subsequence $N=\{1,2,3,6,9, \ldots\}$

To see that the subsequence $\left\{x_{n_{k}}\right\}_{k \in \mathbb{N}}$ defined above is Cauchy, take any $\epsilon>0$. Let $k \in \mathbb{N}$ such that $\frac{1}{k}<\epsilon$. Then, for any $i, j>k, n_{i} \in N_{i} \subset N_{k}$ and $n_{j} \in N_{j} \subset N_{k}$. Therefore by condition (b), for any $i, j>k$

$$
d\left(x_{n_{i}}, x_{n_{j}}\right)<\frac{1}{k}<\epsilon
$$

Since $\epsilon>0$ was arbitrary, the subsequence $\left\{x_{n_{k}}\right\}_{n \in \mathbb{N}}$ is Cauchy.
Part 2: Inductive definition of the sequence of subsequences $\left\{N_{k}\right\}_{k \in \mathbb{N}}$ satisfying conditions (a) and (b):

Step 1: Since A is totally bounded there is a finite subset $A_{1} \subset A$ such that $A \subset \bigcup_{x \in A_{1}} B_{\frac{1}{2}}(x)$. Since $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset A \subset \bigcup_{x \in A_{1}} B_{\frac{1}{2}}(x)$,

$$
\mathbb{N}=\left\{n \in \mathbb{N}: x_{n} \in \bigcup_{x \in A_{1}} B_{\frac{1}{2}}(x)\right\}=\bigcup_{x \in A_{1}}\left\{n \in \mathbb{N}: x_{n} \in B_{\frac{1}{2}}(x)\right\}
$$

Since the last union is the union of finitely many sets, one of those sets, say $\{n \in$ $\left.\mathbb{N}: x_{n} \in B_{\frac{1}{2}}(x)\right\}$ is infinite. Define the subsequence $N_{1}:=\left\{n \in \mathbb{N}: x_{n} \in B_{\frac{1}{2}}(x)\right\}$. Note that for any $n, m \in N_{1}$:

$$
d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, x\right)+d\left(x, x_{m}\right)<\frac{1}{2}+\frac{1}{2}=1 .
$$

Step $k>1$: Assume that the subsequence N_{k-1} is already defined. Since A is totally bounded there is a finite subset $A_{k} \subset A$ such that $A \subset \bigcup_{x \in A_{k}} B_{\frac{1}{2 k}}(x)$. Since $\left\{x_{n}\right\}_{n \in N_{k-1}} \subset A \subset \bigcup_{x \in A_{k}} B_{\frac{1}{2 k}}(x)$,

$$
N_{k-1}=\left\{n \in N_{k-1}: x_{n} \in \bigcup_{x \in A_{k}} B_{\frac{1}{2 k}}(x)\right\}=\bigcup_{x \in A_{k}}\left\{n \in N_{k-1}: x_{n} \in B_{\frac{1}{2 k}}(x)\right\}
$$

Since the last union is the union of finitely many sets, one of those sets, say $\left\{n \in N_{k-1}: x_{n} \in B_{\frac{1}{2 k}}(x)\right\}$ is infinite. Define the subsequence $N_{k}:=\left\{n \in N_{k-1}\right.$: $\left.x_{n} \in B_{\frac{1}{2 k}}(x)\right\}$. Note that $N_{k} \subset N_{k-1}$ and for any $n, m \in N_{k}$:

$$
d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, x\right)+d\left(x, x_{m}\right)<\frac{1}{2 k}+\frac{1}{2 k}=\frac{1}{k} .
$$

[^0]: ${ }^{1}$ That is, you do not have to carry out the matrix multiplication and matrix inversion.

[^1]: ${ }^{2}$ You can assume without proof that the vector space operations,$+ \cdot$ in X / W given by $[x+y]:=$ $[x]+[y]$ and $[\alpha x]:=\alpha[x]$ for all $x, y \in X$ and $\alpha \in \mathbb{F}$ are well-defined. That is, for all $x, y, x^{\prime}, y^{\prime} \in X$ and $\alpha, \alpha^{\prime} \in \mathbb{F}:\left(\right.$ i) $[x+y]=\left[x^{\prime}+y^{\prime}\right] \Rightarrow[x]+[y]=\left[x^{\prime}\right]+\left[y^{\prime}\right]$ and (ii) $[\alpha x]=\left[\alpha^{\prime} x^{\prime}\right] \Rightarrow \alpha[x]=\alpha^{\prime}\left[x^{\prime}\right]$.

[^2]: ${ }^{3}$ Make sure that the function g you specify is such that: (i) g is a bijection, (ii) g is continuous, and (iii) g^{-1} is continuous; however, you do not have to supply the proofs of (i)-(iii).

[^3]: ${ }^{4}$ In particular, the inverse mapping, from the collection of infinite subsets of \mathbb{N} to the subsequences of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$, associates every infinite $N \subset \mathbb{N}$, with the subsequence $\left\{x_{n_{k}}\right\}_{k \in \mathbb{N}}$ where n_{k} is defined as the k th smallest element of the set N.

