
Econ 204 (2013) - Final Solutions

08/21/2013

1. (15pts) Define F : R2 → R by:

F (x, a) = x3 − xa+
1

3
a2 − 1 x, a ∈ R.

For each of the following (x0, a0) values, state whether you can use the Implicit

Function Theorem to conclude that there exist open sets U,W ⊂ R such that

x0 ∈ U , a0 ∈ W , and a C1 function g : W → U satisfying:

∀a ∈ W : F (g(a), a) = 0.

If your answer is yes, find g′(a0).

(a) (x0, a0) = (1, 1).

(b) (x0, a0) = (1, 3).

(c) (x0, a0) = (1, 0).

Solution: The function F is a polynomial, it is therefore C1. To see whether

the Implicit Function Theorem can be applied to reach the desired conclusion,

we only have to check the remaining two conditions of the Theorem: (i) (x0, a0)

solves the equation, i.e. F (x0, a0) = 0, and (ii) x0 is a regular point of F (·, a0), i.e.

DxF (x0, a0) = 3x2
0 − a0 6= 0.

(a) F (1, 1) = −2
3
6= 0, so (1, 1) doesn’t solve our equation, hence the Implicit

Function Theorem can not be applied.

(b) F (1, 3) = 0, but DxF (1, 3) = 3− 3 = 0. So, (1,3) solves the equation but 1 is

not a regular point of F (·, 3), hence the Implicit Function Theorem can not

be applied.

(c) F (1, 0) = 0, and DxF (1, 0) = 3 6= 0. In this case, all the conditions of

the Implicit Function Theorem hold, so we can apply it to obtain the de-

sired conclusion. Furthermore, note that DaF (x, a) = −x + 2
3
a, implying

DaF (1, 0) = −1, so

g′(0) = −[DxF (1, 0)]−1[DaF (1, 0)] = −1

3
(−1) =

1

3
.
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2. (20pts) Find the solution y : R→ R2 of the following initial value problem:(
y′1(t)

y′2(t)

)
=

(
1 4

1 1

)(
y1(t)

y2(t)

)
and

(
y1(0)

y2(0)

)
=

(
C1

C2

)
You can leave the solution in the form of a product of matrices and a matrix

inverse.1 Illustrate the qualitative properties of y(t) on the phase plane diagram.

Solution: Consider the matrix

M =

(
1 4

1 1

)
.

The characteristic polynomial of M is given by (1−λ)(1−λ)− 4 = λ2− 2λ− 3 =

(λ − 3)(λ + 1). Therefore, the eigenvalues of M are λ1 = 3 and λ2 = −1. Since

the eigenvalues are distinct, by Theorem 8 from lecture 9, the eigenvalues have

linearly independent eigenvectors which constitute a basis for R2. Solving for vi

in Mvi = λivi for i = 1, 2, two such eigenvectors are:

v1 =

(
2

1

)
and v2 =

(
−2

1

)
.

Let U denote the standard basis of R2 and let V = {v1, v2} be the new basis

consisting of eigenvectors of M . Define the matrices

A :=

(
2 −2

1 1

)
and Λ :=

(
3 0

0 −1

)
.

That is, A = [v1, v2] is the matrix whose columns are the eigenvectors, and Λ is the

diagonal matrix of eigenvalues. Then, A changes basis from V to U ; A−1 changes

basis from U to V ; and M can be diagonalized as M = AΛA−1.

By Theorem 2 from Lecture 14, the solution to this linear initial value problem is

given by y(t) = AetΛA−1y(0):

y(t) =

(
y1(t)

y2(t)

)
=

(
2 −2

1 1

)(
e3t 0

0 e−t

)(
2 −2

1 1

)−1(
C1

C2

)
.

The stationary point of this linear differential equation is 0 ∈ R2. In the phase

plane diagram, you should draw the V -coordinates where the origin is 0, and

1That is, you do not have to carry out the matrix multiplication and matrix inversion.
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the axes are in the directions of the eigenvectors. For any point in R2, if the

v1 coordinate is nonzero, then it will diverge (preserving its sign) since the real

part of the corresponding eigenvalue λ1 is strictly positive. The v2 coordinate will

converge to zero (again preserving its sign) since the real part of the corresponding

eigenvalue λ2 is strictly negative.

3. (15pts) Let X be a finite dimensional vector space over a field F. Let W be a

vector subspace of X. Remember the definition of the set:

[x] := {y ∈ X : x− y ∈ W} for all x ∈ X.

Consider the function T : X → X/W defined by T (x) = [x] for any x ∈ X. Show

that T is linear.2 Use the Rank-Nullity Theorem to conclude:

dim(X) = dim(W ) + dim(X/W ).

Solution: Take any α, β ∈ F and x, y ∈ X. Then,

T (αx+ βy) = [αx+ βy] = [αx] + [βy] = α[x] + β[y] = αT (x) + βT (y)

where the first and last equalities follow from the definition of T ; and the second

and third equalities follow from the definitions of the operations +, · in X/W

respectively. Therefore, T is linear.

Note that [0] is the vector additive identity in X/W . Note also that for all x ∈ X,

T (x) = [0] iff [x] = [0] iff x = x− 0 ∈ W . Therefore,

Ker(T ) = {x ∈ X : T (x) = [0]} = W

Furthermore Im(T ) = X/W , because for any [x] ∈ X/W , T (x) = [x]. The Rank-

Nullity Theorem states that when X is finite dimensional:

dim(X) = dim(Ker(T )) + dim(Im(T )).

In this case, Ker(T ) = W and Im(T ) = X/W implying the desired conclusion.

4. Consider the L-shaped set Y = ({0} × [0, 1]) ∪ ([0, 1]× {0}) in R2. Suppose that

f : Y → Y is a continuous function.

2You can assume without proof that the vector space operations +, · in X/W given by [x + y] :=

[x] + [y] and [αx] := α[x] for all x, y ∈ X and α ∈ F are well-defined. That is, for all x, y, x′, y′ ∈ X and

α, α′ ∈ F: (i) [x+ y] = [x′ + y′]⇒ [x] + [y] = [x′] + [y′] and (ii) [αx] = [α′x′]⇒ α[x] = α′[x′].
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(a) (5pts) Can you directly use Brouwer’s Fixed Point Theorem to conclude that

f has a fixed point? Explain your answer in at most two sentences.

Solution: Brouwer’s Fixed Point Theorem can not be applied to f directly

to conclude that f has a fixed point, because Y is not a convex subset of R2:

(0, 1), (1, 0) ∈ Y but (1
2
, 1

2
) = 1

2
(0, 1) + 1

2
(1, 0) /∈ Y .

(b) (10pts) Remember that a homeomorphism between two metric spaces is a

continuous bijection with a continuous inverse. Let X := [−1, 1] be the

closed interval of the real line. Specify a homeomorphism g : X → Y .3 Use

g and Brouwer’s Fixed Point Theorem to show that f has a fixed point.

Solution: One such homeomorphism g is defined by:

g(x) =

{
(x, 0) if x ∈ [0, 1]

(0,−x) if x ∈ [−1, 0)

Consider the function g−1 ◦f ◦g : X → X. Note that g−1 ◦f ◦g is continuous

as the composition of continuous functions, and X is a compact convex subset

of R, therefore by the Brouwer’s Fixed Point Theorem, g−1 ◦ f ◦ g has a fixed

point x∗. That is, x∗ = (g−1 ◦ f ◦ g)(x∗). If we apply g to both sides of this

equality we obtain:

g(x∗) = (g ◦ g−1 ◦ f ◦ g)(x∗) = (f ◦ g)(x∗) = f(g(x∗)).

Therefore, y∗ := g(x∗) is a fixed point of f .

5. (20pts) Let (Y, ρ) be a metric space. Let A ⊂ Y be a compact set and {yn} be a

sequence in Y . Assume that for every open set V with A ⊂ V , there is N ∈ N
such that yn ∈ V for all n > N . Show that {yn} has a subsequence that converges

to a point in A.

Solution: For each k ∈ N, let Vk =
⋃

x∈AB 1
k
(x). Note that Vk is open and

A ⊂ Vk. We will first inductively define a subsequence {ynk
} such that ynk

∈ Vk
for all k ∈ N:

Step 1: By assumption, there is N ∈ N such that yn ∈ V1 for all n > N . Fix any

n1 > N . Note that yn1 ∈ V1.

3Make sure that the function g you specify is such that: (i) g is a bijection, (ii) g is continuous, and

(iii) g−1 is continuous; however, you do not have to supply the proofs of (i)–(iii).
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Step k > 1: Assume that nk−1 is already defined. By assumption, there is N ∈ N
such that yn ∈ Vk for all n > N . Fix any nk > max{N, nk−1}. Note that nk > nk−1

and ynk
∈ Vk.

Since ynk
∈ Vk, there is xk ∈ A such that ynk

∈ B 1
k
(xk), i.e. ρ(ynk

, xk) < 1
k
. Since

A is compact and {xk} ⊂ A, there is a subsequence {xkr} such that xkr → x∗ for

some x∗ ∈ A.

Let ε > 0 be given. Since xkr → x∗, there exists R1 ∈ N such that for all r > R1

we have ρ(xkr , x
∗) < ε/2. Also there exists R2 ∈ N such that 1/R2 < ε/2. Set

R = max{R1, R2}. Then for all r > R:

ρ(ynkr
, x∗) ≤ ρ(ynkr

, xkr) + ρ(xkr , x
∗) < 1/kr + ε/2 = ε/2 + ε/2 = ε

since kr ≥ r > R ≥ R2 ≥ 2/ε. Since ε > 0 was arbitrary, the subsequence ynkr

also converges to x∗.

6. (15pts) Prove the following sequential characterization of upper hemi continuity

for compact-valued correspondences. You can assume without proof the statement

you are asked to show in Question 5.

Theorem 1 Suppose (X, d) and (Y, ρ) are metric spaces. A compact-valued cor-

respondence Ψ : X → 2Y is uhc at x0 ∈ X if and only if, for every sequence

{xn} ⊂ X with xn → x0, and every sequence {yn} ⊂ Y such that yn ∈ Ψ(xn) for

every n ∈ N, there is a convergent subsequence {ynk
} such that lim ynk

∈ Ψ(x0).

Solution: ”⇐”: We will prove this direction by contraposition. Suppose that Ψ

is not uhc at x0. Then, there is an open set V ⊂ Y with Ψ(x0) ⊂ V , such that for

any open set U ⊂ X with x0 ∈ U , there is x ∈ U for which Ψ(x) is not a subset

of V . In particular, for each n ∈ N, we can choose a point xn ∈ B 1
n
(x0) such that

Ψ(xn) is not a subset of V , and a point yn ∈ Ψ(xn) \ V . Take any y ∈ Ψ(x0).

Note that there is no subsequence of {yn} converging to y, because V is an open

set such that y ∈ Ψ(x0) ⊂ V and yn /∈ V for all n ∈ N. As a result, the sequences

{xn} ⊂ X and {yn} ⊂ Y are such that xn → x0, and yn ∈ Ψ(xn) for every n ∈ N,

but there is no convergent subsequence {ynk
} whose limit is in Ψ(x0).

”⇒”: Suppose that Ψ is uhc at x0, {xn} ⊂ X with xn → x0, and {yn} is such that

yn ∈ Ψ(xn) for every n ∈ N. Let A := Ψ(x0). A is compact since Ψ is compact-

valued. Take any open set V ⊂ Y such that A = Ψ(x0) ⊂ V . By uhc of Ψ at x0,
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there is an open set U ⊂ X such that x0 ∈ U and for all x ∈ U , Ψ(x) ⊂ V . Since

xn → x0, there is N ∈ N such that for all n > N , xn ∈ U , i.e. yn ∈ Ψ(xn) ⊂ V .

Therefore, A is a compact set and for any open set V with A ⊂ V , there is N ∈ N
such that yn ∈ V for all n > N . By Question 5, this implies that {yn} has a

subsequence that converges to a point in A = Ψ(x0).

7. (Bonus, extra 20pts) Let (X, d) be a metric space and let A ⊂ X be a totally

bounded set. Show that every sequence in A has a Cauchy subsequence.

Digression: In our solution to this question, we will construct a subsequence of

a subsequence of a subsequence, ad infinitum; which might become notationally

cumbersome because of having to use a subscript of a subscript of a subscript,

ad infinitum. Therefore, it will be convenient to represent subsequences in the

following alternative way. Fix a sequence {xn}n∈N ⊂ X. We will associate every

subsequence {xnk
}k∈N, with the infinite set N ⊂ N defined by N = {nk : k ∈ N}.

It can be verified that this mapping, from the subsequences of {xn}n∈N to the

collection of infinite subsets of N, is a bijection.4

Solution:

Part 1: Suppose that {xn}n∈N ⊂ A. In Part 2 of the solutions, we will construct

a sequence of subsequences {Nk}k∈N (i.e. for each k ∈ N, Nk is an infinite subset

of N) satisfying the following two conditions:

(a) Nk ⊃ Nk+1 (i.e. Nk+1 is a subsequence of Nk) for all k ∈ N.

(b) For all k ∈ N and n,m ∈ Nk: d(xn, xm) < 1
k
.

Given {Nk}k∈N satisfying (a) and (b), inductively define a new subsequence {xnk
}k∈N

such that nk ∈ Nk for all k ∈ N, by:

Step 1: Let n1 := minN1. Note that n1 ∈ N1.

Step k > 1: Assume that nk−1 is already defined. Let nk := minNk\{1, 2, 3, . . . , nk−1}.
Note that nk > nk−1 and nk ∈ Nk.

See Figure 1 for an illustration of the construction of the subsequence N = {nk :

k ∈ N}.
4In particular, the inverse mapping, from the collection of infinite subsets of N to the subsequences

of {xn}n∈N, associates every infinite N ⊂ N, with the subsequence {xnk
}k∈N where nk is defined as the

kth smallest element of the set N .
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N 1 2 3 4 5 6 7 8 9 · · ·
N1 1 2 3 4 6 7 9 · · ·
N2 2 3 4 6 9 · · ·
N3 2 3 9 · · ·
N4 3 6 9 · · ·
N5 3 9 · · ·
...

...
...

...
...

...
...

...
...

...

Figure 1. Construction of the subsequence N = {1, 2, 3, 6, 9, . . .}

To see that the subsequence {xnk
}k∈N defined above is Cauchy, take any ε > 0. Let

k ∈ N such that 1
k
< ε. Then, for any i, j > k, ni ∈ Ni ⊂ Nk and nj ∈ Nj ⊂ Nk.

Therefore by condition (b), for any i, j > k

d(xni
, xnj

) <
1

k
< ε.

Since ε > 0 was arbitrary, the subsequence {xnk
}n∈N is Cauchy.

Part 2: Inductive definition of the sequence of subsequences {Nk}k∈N satisfying

conditions (a) and (b):

Step 1: Since A is totally bounded there is a finite subset A1 ⊂ A such that

A ⊂
⋃

x∈A1
B 1

2
(x). Since {xn}n∈N ⊂ A ⊂

⋃
x∈A1

B 1
2
(x),

N = {n ∈ N : xn ∈
⋃
x∈A1

B 1
2
(x)} =

⋃
x∈A1

{n ∈ N : xn ∈ B 1
2
(x)}

Since the last union is the union of finitely many sets, one of those sets, say {n ∈
N : xn ∈ B 1

2
(x)} is infinite. Define the subsequence N1 := {n ∈ N : xn ∈ B 1

2
(x)}.

Note that for any n,m ∈ N1:

d(xn, xm) ≤ d(xn, x) + d(x, xm) <
1

2
+

1

2
= 1.

Step k > 1: Assume that the subsequence Nk−1 is already defined. Since A is

totally bounded there is a finite subset Ak ⊂ A such that A ⊂
⋃

x∈Ak
B 1

2k
(x).

Since {xn}n∈Nk−1
⊂ A ⊂

⋃
x∈Ak

B 1
2k

(x),

Nk−1 = {n ∈ Nk−1 : xn ∈
⋃

x∈Ak

B 1
2k

(x)} =
⋃

x∈Ak

{n ∈ Nk−1 : xn ∈ B 1
2k

(x)}
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Since the last union is the union of finitely many sets, one of those sets, say

{n ∈ Nk−1 : xn ∈ B 1
2k

(x)} is infinite. Define the subsequence Nk := {n ∈ Nk−1 :

xn ∈ B 1
2k

(x)}. Note that Nk ⊂ Nk−1 and for any n,m ∈ Nk:

d(xn, xm) ≤ d(xn, x) + d(x, xm) <
1

2k
+

1

2k
=

1

k
.
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