Econ 204 (2014) - Final Solutions
08/20/2014

1. (10pts) Suppose that A is a closed set in a metric space, and = ¢ A. Show that

d(xz,A) = inf{d(z,y) :y € A} > 0.

Solution: Since A is closed, X \ A is open. Therefore, z € X \ A impies that
there exists € > 0 such that B.(z) C X \ A. So for any y € A, y ¢ B.(x), i.e,
d(xz,y) > €. This proves that € is a lower bound for the set {d(x,y) : y € A}.
Therefore, inf{d(z,y) : y € A} > ¢ > 0.

2. (15pts) Let X and Y be (not necessarily finite dimensional) vector spaces over a
field F, and let T' € L(X,Y") be such that Ker "= {0}. Show that if V' is a Hamel
basis of X, then T'(V) = {T'(v) : v € V} is a Hamel basis of Im T".

Solution: Let’s first show that 7'(V') spans Im7T". Take any y € Im 7', let x € X
be such that T'(x) = y. Since V is a Hamel basis for X, it spans X, so there exists
finitely many basis elements vq,...,v, € V and coefficients aq,...,a, € F such

that © = ) !, yv;. Linearity of 7' implies that

y=T(x)=T (Z 041-01») = ZaiT(vi).

Since T'(v1),...T(v,) € T(V), this proves that T'(V') spans Im 7.

We next show that 7'(V') is a linearly independent set. To see this let uy, ..., u,, be
distinet vectors in T'(V'), and suppose that the coefficients oy, . . ., a,, € F are such
that » ", ayu; = 0. Note that KerT' = {0} implies that T is one-to-one, so since
Uy, . . ., Uy, are distinct vectors in T'(V'), there exist distinct vectors vy, ..., v, € V

such that u; = T'(v;) for i = 1,...,m. Then, linearity of 7" implies that

T (i O./Z"UZ‘) = Zm: OZZ‘T<UZ‘) = Zm: ;U = 0.
i=1 i=1 i=1

Since KerT' = {0}, the above equality implies that » ", a;u; = 0. Since V is a
basis of X, vectors in V' are linearly independent, implying that oy = ... = o, = 0.

This shows that vectors in U are linearly independent.



3. (20pts) Let F : R? — R? be defined by

()

(b)

Fiy,p) =yp+1  Fo(y,yp) =y —1

Find the steady state y, of the differential equation y' = F(y).

Solution: Steady states are defined as the solution of the equation F(ys) = 0.
Therefore the unique steady state is y, = (1, —1)7.

Linearize the differential equation around the steady state.

Solution: The Jacobian of F' is given by

DF(y) = ( e o )

Evaluated at the steady state in part (a), this is

DF<y3>=<§ é)

The linearized differential equation around y; is ¥ = DF(ys)(y — ys) where
DF(ys) is the matrix given above.
Find the general solution of the linear differential equation in (b).

Solution: The eigenvalues of of DF(ys) are given by the roots of the char-
acteristic polynomial is A2 — 3, which are A\; = v/3 and Ay = —/3. A pair of
eigenvectors associated with these eigenvalues are given by v; = (1, \/§)T and
vy = (1,—+/3)T. Therefore, by Theorem 2 from lecture 14 notes, we know
that the general solution of the linear differential equation in part (b) is given
by:

eV 0
y(t) =V ( 0 oV ) V= (0) = ys) + s,

where V' is the matrix whose columns are the eigenvectors v; and v, and
V1 is its inverse:

1 1 1
V= andv1:< 23 )
(ﬁ 45) e

[lustrate the dynamics of the linear differential equation in a phase-plane

N= N

diagram.



Solution: Here you should draw the dynamics in R? where the origin of
the new coordinate system is y, and the axes of the new parametrization are
given by the eigenvectors v; and vy. Since A; > 0 the solution diverges along
that vy-axis, and since Ay < 0 the solution converges to y, along the vy-axis.

Anywhere else the solution follows hyperbolic paths.

4. (15pts) For any continuous function f : [0,1] — R, define the functions T'(f) :
[0,1] = R and S(f):[0,1] = R by

T(f)@) =1+ / " f(s)ds

flx+3) ifz<
s =4 1o

f()y ifx>
for every x € [0,1]. Let W(f) = oT'(f) + 8S(f) for some «, 5 € R. Show that
if o] + |B| < 1, then there exists a continuous function f : [0,1] — R such that

W(f) = /.

Solution: Note that 7'(f) is a continuous function since it is an integral. S(f) is
1
2
the constant function f(1) is continuous; and T'(f) is continuous at 3, because
its left and right limits at 1 exist and equal f(1). Therefore, both T(f) and

S(f) are also continuous functions from [0,1] to R. As a result, 7', S, and W

N~ N

continuous on [0, 3) because f is continuous; S(f) is continuous on (3,1] because

are operators on the Banach space C(][0,1]) of continuous real-valued functions
endowed with the sup-norm. We will prove that when |a| + |5| < 1, then W is
a contraction mapping with modulus |a| + |#| which will imply the desired result

by the contraction mapping theorem.

Note first that for any f,g € C([0,1]) and x € [0, 1]:

T(f)(2) = T(g)(x)| = I/Ox[f(S) —g(s)lds| < zl| f = gllo < If = 9lloe,

where the second inequality follows from |f(s) — g(s)| < ||f — g|l- for all s € [0, 1].

We therefore have

IT(f) = T(9)lleo = sup{[T(f)(x) = T(g)(@)| - & € [0,1]} <[] = glloo-



Note also that for any f,g € C([0,1]) and z € [0, 1]:

|S(f)(x) —S(g)(q;)| { ’f(l'+§) _g(x‘i‘i)’ if z < 5

£ (1) —g(1)] if z > 3
< S = glloe-

We therefore also have
1S(f) = S(9)llec = sup{|S(f)(x) = S(g)(z)| : x € [0, 1]} < [[f — gl

Then, for any for any f,g € C(][0,1]):

W () =W(gllee = [laT(f)+BS(f) = [aT(g) + B5(9)]ll
[e[T(f) = T(9)] + BIS(f) = S(9)]ll

< |al[l[T(f) = T(9)lloc + 8IS (f) = S(g)]lloo

< (laf+1BDIS = 9)llse-

Therefore, W is a contraction mapping with modulus |a| + [5] < 1.

5. (20pts) Let f : R — R be an infinitely differentiable function. Suppose that for
every x € R, there exists M, > 0 such that

Vs€l(0,2) & k=0,1,2,...: |fP®(s)] < M,.

Show that for any x € X

X £(k)
fw =31 k|<0>mk‘1
k=0 ’

Solution: Fix z € R, and consider the first version of Taylor’s Theorem that we
saw in class (Theorem 7 in lecture 1 slides) around the point 0:

o fk)
sy =30 e,

k=0

where
n+1

_ (n+1) O )\ o

for some A, , € (0,1).

'"Remember the definitions 1(0,z) = {az : a € [0,1]} and D32 g ar = limyyo0 D peg Tk



Rearranging the terms in the expansion, we have
2L F (0
SO0 g0y

Therefore, if we can prove that &, , — 0 as n — oo, we will have shown:

k! k! n—00

% (k) noofk)
Z f '(0) k= 7}1_{10102 f (O)xk = lim [f(2) — o) = flz) — nh_>Holo §ne = f(2).
k=0

To see that &, , — 0 as n — 0o, note that:

anrl

(n+1)!
‘x|n+1

(n+1)!

|§n:c| = |f(n+1)(/\n,:vx) |

= |f(n+1)(/\n,xx)|
|J7|n+1

“(n+1)!

where the inequality above follows from the fact that A, .z € {(0,z). Fix N € N
such that N > 2x, then for every n > N, we have:

|:L,|n+1
<
AR B 2]
- * NI N+1 N+2 7 n+l

|.I|N 1 n—N+1
< Mm_N! 3 — 0

. (20pts) Let O be an open set in a metric space. Show that there exist countably
many closed sets Cy, Cy, Cs, .. .; such that O = U2, Cy. Feel free to take the fact

stated in question 1 as given.

as n — 0.

Solution: Let (X,d) denote the metric space. For every k € N, define the
set Dy = Uyex\oB% (y). The set Dy is open since it is a union of open balls.
Therefore, Cy := X \ Dy is a closed set. Moreover X \ O C Dy, because for every
y € X\ O, we have y € Bi(y) C Dy. This implies that Cj, C O, so UzZ,C), C O.
To prove the reverse inclusion, take any z € O. Since z ¢ X \ O and X \ O
is a closed set, we have by Question 1 that d(z, X \ O) > 0. Take any K € N

5



such that & < d(z,X \ O). By the definition of d(z, X \ O), for any y € X \ O,
d(z,y) > d(z, X \ O) > %, implying that x ¢ B%(y). Therefore, © ¢ D, so we
have that x € Cx C U2, Cy, proving the reverse inclusion.



