
Econ 204 (2014) - Final Solutions

08/20/2014

1. (10pts) Suppose that A is a closed set in a metric space, and x /∈ A. Show that

d(x,A) ≡ inf{d(x, y) : y ∈ A} > 0.

Solution: Since A is closed, X \ A is open. Therefore, x ∈ X \ A impies that

there exists ε > 0 such that Bε(x) ⊂ X \ A. So for any y ∈ A, y /∈ Bε(x), i.e.,

d(x, y) ≥ ε. This proves that ε is a lower bound for the set {d(x, y) : y ∈ A}.
Therefore, inf{d(x, y) : y ∈ A} ≥ ε > 0.

2. (15pts) Let X and Y be (not necessarily finite dimensional) vector spaces over a

field F, and let T ∈ L(X, Y ) be such that KerT = {0}. Show that if V is a Hamel

basis of X, then T (V ) ≡ {T (v) : v ∈ V } is a Hamel basis of ImT .

Solution: Let’s first show that T (V ) spans ImT . Take any y ∈ ImT , let x ∈ X
be such that T (x) = y. Since V is a Hamel basis for X, it spans X, so there exists

finitely many basis elements v1, . . . , vn ∈ V and coefficients α1, . . . , αn ∈ F such

that x =
∑n

i=1 αivi. Linearity of T implies that

y = T (x) = T

(
n∑
i=1

αivi

)
=

n∑
i=1

αiT (vi).

Since T (v1), . . . T (vn) ∈ T (V ), this proves that T (V ) spans ImT .

We next show that T (V ) is a linearly independent set. To see this let u1, . . . , um be

distinct vectors in T (V ), and suppose that the coefficients α1, . . . , αm ∈ F are such

that
∑m

i=1 αiui = 0. Note that KerT = {0} implies that T is one-to-one, so since

u1, . . . , um are distinct vectors in T (V ), there exist distinct vectors v1, . . . , vm ∈ V
such that ui = T (vi) for i = 1, . . . ,m. Then, linearity of T implies that

T

(
m∑
i=1

αivi

)
=

m∑
i=1

αiT (vi) =
m∑
i=1

αiui = 0.

Since KerT = {0}, the above equality implies that
∑m

i=1 αivi = 0. Since V is a

basis ofX, vectors in V are linearly independent, implying that α1 = . . . = αm = 0.

This shows that vectors in U are linearly independent.
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3. (20pts) Let F : R2 → R2 be defined by

F1(y1, y2) = y2 + 1 F2(y1, y2) = y31 − 1

(a) Find the steady state ys of the differential equation y′ = F (y).

Solution: Steady states are defined as the solution of the equation F (ys) = 0.

Therefore the unique steady state is ys = (1,−1)T .

(b) Linearize the differential equation around the steady state.

Solution: The Jacobian of F is given by

DF (y) =

(
0 1

3y21 0

)

Evaluated at the steady state in part (a), this is

DF (ys) =

(
0 1

3 0

)

The linearized differential equation around ys is y′ = DF (ys)(y − ys) where

DF (ys) is the matrix given above.

(c) Find the general solution of the linear differential equation in (b).

Solution: The eigenvalues of of DF (ys) are given by the roots of the char-

acteristic polynomial is λ2 − 3, which are λ1 =
√

3 and λ2 = −
√

3. A pair of

eigenvectors associated with these eigenvalues are given by v1 = (1,
√

3)T and

v2 = (1,−
√

3)T . Therefore, by Theorem 2 from lecture 14 notes, we know

that the general solution of the linear differential equation in part (b) is given

by:

y(t) = V

(
e
√
3t 0

0 e−
√
3t

)
V −1(y(0)− ys) + ys,

where V is the matrix whose columns are the eigenvectors v1 and v2, and

V −1 is its inverse:

V =

(
1 1√
3 −

√
3

)
and V −1 =

(
1
2

1
2
√
3

1
2
− 1

2
√
3

)
.

(d) Illustrate the dynamics of the linear differential equation in a phase-plane

diagram.
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Solution: Here you should draw the dynamics in R2 where the origin of

the new coordinate system is ys and the axes of the new parametrization are

given by the eigenvectors v1 and v2. Since λ1 > 0 the solution diverges along

that v1-axis, and since λ2 < 0 the solution converges to ys along the v2-axis.

Anywhere else the solution follows hyperbolic paths.

4. (15pts) For any continuous function f : [0, 1] → R, define the functions T (f) :

[0, 1]→ R and S(f) : [0, 1]→ R by

T (f)(x) = 1 +

∫ x

0

f(s)ds

S(f)(x) =

{
f(x+ 1

2
) if x < 1

2

f(1) if x ≥ 1
2

for every x ∈ [0, 1]. Let W (f) = αT (f) + βS(f) for some α, β ∈ R. Show that

if |α| + |β| < 1, then there exists a continuous function f : [0, 1] → R such that

W (f) = f .

Solution: Note that T (f) is a continuous function since it is an integral. S(f) is

continuous on [0, 1
2
) because f is continuous; S(f) is continuous on (1

2
, 1] because

the constant function f(1) is continuous; and T (f) is continuous at 1
2
, because

its left and right limits at 1
2

exist and equal f(1). Therefore, both T (f) and

S(f) are also continuous functions from [0, 1] to R. As a result, T , S, and W

are operators on the Banach space C([0, 1]) of continuous real-valued functions

endowed with the sup-norm. We will prove that when |α| + |β| < 1, then W is

a contraction mapping with modulus |α|+ |β| which will imply the desired result

by the contraction mapping theorem.

Note first that for any f, g ∈ C([0, 1]) and x ∈ [0, 1]:

|T (f)(x)− T (g)(x)| = |
∫ x

0

[f(s)− g(s)]ds| ≤ x‖f − g‖∞ ≤ ‖f − g‖∞,

where the second inequality follows from |f(s)−g(s)| ≤ ‖f −g‖∞ for all s ∈ [0, 1].

We therefore have

‖T (f)− T (g)‖∞ = sup{|T (f)(x)− T (g)(x)| : x ∈ [0, 1]} ≤ ‖f − g‖∞.
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Note also that for any f, g ∈ C([0, 1]) and x ∈ [0, 1]:

|S(f)(x)− S(g)(x)| =

{
|f(x+ 1

2
)− g(x+ 1

2
)| if x < 1

2

|f(1)− g(1)| if x ≥ 1
2

≤ ‖f − g‖∞.

We therefore also have

‖S(f)− S(g)‖∞ = sup{|S(f)(x)− S(g)(x)| : x ∈ [0, 1]} ≤ ‖f − g‖∞.

Then, for any for any f, g ∈ C([0, 1]):

‖W (f)−W (g)‖∞ = ‖αT (f) + βS(f)− [αT (g) + βS(g)]‖∞
= ‖α[T (f)− T (g)] + β[S(f)− S(g)]‖∞
≤ |α|‖[T (f)− T (g)]‖∞ + |β|‖[S(f)− S(g)]‖∞
≤ (|α|+ |β|)‖f − g)‖∞.

Therefore, W is a contraction mapping with modulus |α|+ |β| < 1.

5. (20pts) Let f : R → R be an infinitely differentiable function. Suppose that for

every x ∈ R, there exists Mx > 0 such that

∀s ∈ l(0, x) & k = 0, 1, 2, . . . : |f (k)(s)| ≤Mx.

Show that for any x ∈ X

f(x) =
∞∑
k=0

f (k)(0)

k!
xk.1

Solution: Fix x ∈ R, and consider the first version of Taylor’s Theorem that we

saw in class (Theorem 7 in lecture 1 slides) around the point 0:

f(x) =
n∑
k=0

f (k)(0)

k!
xk + ξn,x

where

ξn,x = f (n+1)(0 + λn,xx)
xn+1

(n+ 1)!
for some λn,x ∈ (0, 1).

1Remember the definitions l(0, x) ≡ {αx : α ∈ [0, 1]} and
∑∞

k=0 ak ≡ limn→∞
∑n

k=0 ak.
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Rearranging the terms in the expansion, we have

n∑
k=0

f (k)(0)

k!
xk = f(x)− ξn,x,

Therefore, if we can prove that ξn,x → 0 as n→∞, we will have shown:

∞∑
k=0

f (k)(0)

k!
xk = lim

n→∞

n∑
k=0

f (k)(0)

k!
xk = lim

n→∞
[f(x)− ξn,x] = f(x)− lim

n→∞
ξn,x = f(x).

To see that ξn,x → 0 as n→∞, note that:

|ξn,x| = |f (n+1)(λn,xx)
xn+1

(n+ 1)!
|

= |f (n+1)(λn,xx)| |x|
n+1

(n+ 1)!

≤ Mx
|x|n+1

(n+ 1)!

where the inequality above follows from the fact that λn,xx ∈ l(0, x). Fix N ∈ N
such that N ≥ 2x, then for every n ≥ N , we have:

|ξn,x| ≤ Mx
|x|n+1

(n+ 1)!

≤ Mx
|x|N

N !
×
[
|x|

N + 1
× |x|
N + 2

× . . .× |x|
n+ 1

]
≤ Mx

|x|N

N !

(
1

2

)n−N+1

→ 0

as n→∞.

6. (20pts) Let O be an open set in a metric space. Show that there exist countably

many closed sets C1, C2, C3, . . .; such that O = ∪∞k=1Ck. Feel free to take the fact

stated in question 1 as given.

Solution: Let (X, d) denote the metric space. For every k ∈ N, define the

set Dk := ∪y∈X\OB 1
k
(y). The set Dk is open since it is a union of open balls.

Therefore, Ck := X \Dk is a closed set. Moreover X \ O ⊂ Dk because for every

y ∈ X \ O, we have y ∈ B 1
k
(y) ⊂ Dk. This implies that Ck ⊂ O, so ∪∞k=1Ck ⊂ O.

To prove the reverse inclusion, take any x ∈ O. Since x /∈ X \ O and X \ O
is a closed set, we have by Question 1 that d(x,X \ O) > 0. Take any K ∈ N
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such that 1
K
< d(x,X \ O). By the definition of d(x,X \ O), for any y ∈ X \ O,

d(x, y) ≥ d(x,X \ O) > 1
K

, implying that x /∈ B 1
K

(y). Therefore, x /∈ DK , so we

have that x ∈ CK ⊂ ∪∞k=1Ck, proving the reverse inclusion.
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