Econ 204 (2014) - Final Solutions

$$
08 / 20 / 2014
$$

1. (10pts) Suppose that A is a closed set in a metric space, and $x \notin A$. Show that

$$
d(x, A) \equiv \inf \{d(x, y): y \in A\}>0
$$

Solution: Since A is closed, $X \backslash A$ is open. Therefore, $x \in X \backslash A$ impies that there exists $\epsilon>0$ such that $B_{\epsilon}(x) \subset X \backslash A$. So for any $y \in A, y \notin B_{\epsilon}(x)$, i.e., $d(x, y) \geq \epsilon$. This proves that ϵ is a lower bound for the set $\{d(x, y): y \in A\}$. Therefore, $\inf \{d(x, y): y \in A\} \geq \epsilon>0$.
2. (15pts) Let X and Y be (not necessarily finite dimensional) vector spaces over a field \mathbb{F}, and let $T \in L(X, Y)$ be such that $\operatorname{Ker} T=\{0\}$. Show that if V is a Hamel basis of X, then $T(V) \equiv\{T(v): v \in V\}$ is a Hamel basis of $\operatorname{Im} T$.

Solution: Let's first show that $T(V)$ spans $\operatorname{Im} T$. Take any $y \in \operatorname{Im} T$, let $x \in X$ be such that $T(x)=y$. Since V is a Hamel basis for X, it spans X, so there exists finitely many basis elements $v_{1}, \ldots, v_{n} \in V$ and coefficients $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$ such that $x=\sum_{i=1}^{n} \alpha_{i} v_{i}$. Linearity of T implies that

$$
y=T(x)=T\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right)=\sum_{i=1}^{n} \alpha_{i} T\left(v_{i}\right)
$$

Since $T\left(v_{1}\right), \ldots T\left(v_{n}\right) \in T(V)$, this proves that $T(V)$ spans $\operatorname{Im} T$.
We next show that $T(V)$ is a linearly independent set. To see this let u_{1}, \ldots, u_{m} be distinct vectors in $T(V)$, and suppose that the coefficients $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{F}$ are such that $\sum_{i=1}^{m} \alpha_{i} u_{i}=0$. Note that $\operatorname{Ker} T=\{0\}$ implies that T is one-to-one, so since u_{1}, \ldots, u_{m} are distinct vectors in $T(V)$, there exist distinct vectors $v_{1}, \ldots, v_{m} \in V$ such that $u_{i}=T\left(v_{i}\right)$ for $i=1, \ldots, m$. Then, linearity of T implies that

$$
T\left(\sum_{i=1}^{m} \alpha_{i} v_{i}\right)=\sum_{i=1}^{m} \alpha_{i} T\left(v_{i}\right)=\sum_{i=1}^{m} \alpha_{i} u_{i}=0
$$

Since $\operatorname{Ker} T=\{0\}$, the above equality implies that $\sum_{i=1}^{m} \alpha_{i} v_{i}=0$. Since V is a basis of X, vectors in V are linearly independent, implying that $\alpha_{1}=\ldots=\alpha_{m}=0$. This shows that vectors in U are linearly independent.
3. (20pts) Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
F_{1}\left(y_{1}, y_{2}\right)=y_{2}+1 \quad F_{2}\left(y_{1}, y_{2}\right)=y_{1}^{3}-1
$$

(a) Find the steady state y_{s} of the differential equation $y^{\prime}=F(y)$.

Solution: Steady states are defined as the solution of the equation $F\left(y_{s}\right)=0$.
Therefore the unique steady state is $y_{s}=(1,-1)^{T}$.
(b) Linearize the differential equation around the steady state.

Solution: The Jacobian of F is given by

$$
D F(y)=\left(\begin{array}{cc}
0 & 1 \\
3 y_{1}^{2} & 0
\end{array}\right)
$$

Evaluated at the steady state in part (a), this is

$$
D F\left(y_{s}\right)=\left(\begin{array}{ll}
0 & 1 \\
3 & 0
\end{array}\right)
$$

The linearized differential equation around y_{s} is $y^{\prime}=D F\left(y_{s}\right)\left(y-y_{s}\right)$ where $D F\left(y_{s}\right)$ is the matrix given above.
(c) Find the general solution of the linear differential equation in (b).

Solution: The eigenvalues of of $D F\left(y_{s}\right)$ are given by the roots of the characteristic polynomial is $\lambda^{2}-3$, which are $\lambda_{1}=\sqrt{3}$ and $\lambda_{2}=-\sqrt{3}$. A pair of eigenvectors associated with these eigenvalues are given by $v_{1}=(1, \sqrt{3})^{T}$ and $v_{2}=(1,-\sqrt{3})^{T}$. Therefore, by Theorem 2 from lecture 14 notes, we know that the general solution of the linear differential equation in part (b) is given by:

$$
y(t)=V\left(\begin{array}{cc}
e^{\sqrt{3} t} & 0 \\
0 & e^{-\sqrt{3} t}
\end{array}\right) V^{-1}\left(y(0)-y_{s}\right)+y_{s}
$$

where V is the matrix whose columns are the eigenvectors v_{1} and v_{2}, and V^{-1} is its inverse:

$$
V=\left(\begin{array}{cc}
1 & 1 \\
\sqrt{3} & -\sqrt{3}
\end{array}\right) \text { and } V^{-1}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2 \sqrt{3}} \\
\frac{1}{2} & -\frac{1}{2 \sqrt{3}}
\end{array}\right) .
$$

(d) Illustrate the dynamics of the linear differential equation in a phase-plane diagram.

Solution: Here you should draw the dynamics in \mathbb{R}^{2} where the origin of the new coordinate system is y_{s} and the axes of the new parametrization are given by the eigenvectors v_{1} and v_{2}. Since $\lambda_{1}>0$ the solution diverges along that v_{1}-axis, and since $\lambda_{2}<0$ the solution converges to y_{s} along the v_{2}-axis. Anywhere else the solution follows hyperbolic paths.
4. (15pts) For any continuous function $f:[0,1] \rightarrow \mathbb{R}$, define the functions $T(f)$: $[0,1] \rightarrow \mathbb{R}$ and $S(f):[0,1] \rightarrow \mathbb{R}$ by

$$
\begin{gathered}
T(f)(x)=1+\int_{0}^{x} f(s) d s \\
S(f)(x)=\left\{\begin{array}{cc}
f\left(x+\frac{1}{2}\right) & \text { if } x<\frac{1}{2} \\
f(1) & \text { if } x \geq \frac{1}{2}
\end{array}\right.
\end{gathered}
$$

for every $x \in[0,1]$. Let $W(f)=\alpha T(f)+\beta S(f)$ for some $\alpha, \beta \in \mathbb{R}$. Show that if $|\alpha|+|\beta|<1$, then there exists a continuous function $f:[0,1] \rightarrow \mathbb{R}$ such that $W(f)=f$.
Solution: Note that $T(f)$ is a continuous function since it is an integral. $S(f)$ is continuous on [$0, \frac{1}{2}$) because f is continuous; $S(f)$ is continuous on $\left(\frac{1}{2}, 1\right]$ because the constant function $f(1)$ is continuous; and $T(f)$ is continuous at $\frac{1}{2}$, because its left and right limits at $\frac{1}{2}$ exist and equal $f(1)$. Therefore, both $T(f)$ and $S(f)$ are also continuous functions from $[0,1]$ to \mathbb{R}. As a result, T, S, and W are operators on the Banach space $C([0,1])$ of continuous real-valued functions endowed with the sup-norm. We will prove that when $|\alpha|+|\beta|<1$, then W is a contraction mapping with modulus $|\alpha|+|\beta|$ which will imply the desired result by the contraction mapping theorem.
Note first that for any $f, g \in C([0,1])$ and $x \in[0,1]$:

$$
|T(f)(x)-T(g)(x)|=\left|\int_{0}^{x}[f(s)-g(s)] d s\right| \leq x\|f-g\|_{\infty} \leq\|f-g\|_{\infty}
$$

where the second inequality follows from $|f(s)-g(s)| \leq\|f-g\|_{\infty}$ for all $s \in[0,1]$. We therefore have

$$
\|T(f)-T(g)\|_{\infty}=\sup \{|T(f)(x)-T(g)(x)|: x \in[0,1]\} \leq\|f-g\|_{\infty}
$$

Note also that for any $f, g \in C([0,1])$ and $x \in[0,1]$:

$$
\begin{aligned}
|S(f)(x)-S(g)(x)| & =\left\{\begin{array}{cl}
\left|f\left(x+\frac{1}{2}\right)-g\left(x+\frac{1}{2}\right)\right| & \text { if } x<\frac{1}{2} \\
|f(1)-g(1)| & \text { if } x \geq \frac{1}{2}
\end{array}\right. \\
& \leq\|f-g\|_{\infty}
\end{aligned}
$$

We therefore also have

$$
\|S(f)-S(g)\|_{\infty}=\sup \{|S(f)(x)-S(g)(x)|: x \in[0,1]\} \leq\|f-g\|_{\infty}
$$

Then, for any for any $f, g \in C([0,1])$:

$$
\begin{aligned}
\|W(f)-W(g)\|_{\infty} & =\|\alpha T(f)+\beta S(f)-[\alpha T(g)+\beta S(g)]\|_{\infty} \\
& =\|\alpha[T(f)-T(g)]+\beta[S(f)-S(g)]\|_{\infty} \\
& \leq|\alpha|\|[T(f)-T(g)]\|_{\infty}+|\beta|\|[S(f)-S(g)]\|_{\infty} \\
& \leq(|\alpha|+|\beta|) \| f-g) \|_{\infty}
\end{aligned}
$$

Therefore, W is a contraction mapping with modulus $|\alpha|+|\beta|<1$.
5. (20pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely differentiable function. Suppose that for every $x \in \mathbb{R}$, there exists $M_{x}>0$ such that

$$
\forall s \in l(0, x) \& k=0,1,2, \ldots: \quad\left|f^{(k)}(s)\right| \leq M_{x}
$$

Show that for any $x \in X$

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k} .
$$

Solution: Fix $x \in \mathbb{R}$, and consider the first version of Taylor's Theorem that we saw in class (Theorem 7 in lecture 1 slides) around the point 0 :

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}+\xi_{n, x}
$$

where

$$
\xi_{n, x}=f^{(n+1)}\left(0+\lambda_{n, x} x\right) \frac{x^{n+1}}{(n+1)!} \text { for some } \lambda_{n, x} \in(0,1)
$$

[^0]Rearranging the terms in the expansion, we have

$$
\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}=f(x)-\xi_{n, x}
$$

Therefore, if we can prove that $\xi_{n, x} \rightarrow 0$ as $n \rightarrow \infty$, we will have shown:

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}=\lim _{n \rightarrow \infty}\left[f(x)-\xi_{n, x}\right]=f(x)-\lim _{n \rightarrow \infty} \xi_{n, x}=f(x) .
$$

To see that $\xi_{n, x} \rightarrow 0$ as $n \rightarrow \infty$, note that:

$$
\begin{aligned}
\left|\xi_{n, x}\right| & =\left|f^{(n+1)}\left(\lambda_{n, x} x\right) \frac{x^{n+1}}{(n+1)!}\right| \\
& =\left|f^{(n+1)}\left(\lambda_{n, x} x\right)\right| \frac{|x|^{n+1}}{(n+1)!} \\
& \leq M_{x} \frac{|x|^{n+1}}{(n+1)!}
\end{aligned}
$$

where the inequality above follows from the fact that $\lambda_{n, x} x \in l(0, x)$. Fix $N \in \mathbb{N}$ such that $N \geq 2 x$, then for every $n \geq N$, we have:

$$
\begin{aligned}
\left|\xi_{n, x}\right| & \leq M_{x} \frac{|x|^{n+1}}{(n+1)!} \\
& \leq M_{x} \frac{|x|^{N}}{N!} \times\left[\frac{|x|}{N+1} \times \frac{|x|}{N+2} \times \ldots \times \frac{|x|}{n+1}\right] \\
& \leq M_{x} \frac{|x|^{N}}{N!}\left(\frac{1}{2}\right)^{n-N+1} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$.
6. (20pts) Let O be an open set in a metric space. Show that there exist countably many closed sets $C_{1}, C_{2}, C_{3}, \ldots$; such that $O=\cup_{k=1}^{\infty} C_{k}$. Feel free to take the fact stated in question 1 as given.

Solution: Let (X, d) denote the metric space. For every $k \in \mathbb{N}$, define the set $D_{k}:=\cup_{y \in X \backslash O} B_{\frac{1}{k}}(y)$. The set D_{k} is open since it is a union of open balls. Therefore, $C_{k}:=X \backslash D_{k}$ is a closed set. Moreover $X \backslash O \subset D_{k}$ because for every $y \in X \backslash O$, we have $y \in B_{\frac{1}{k}}(y) \subset D_{k}$. This implies that $C_{k} \subset O$, so $\cup_{k=1}^{\infty} C_{k} \subset O$. To prove the reverse inclusion, take any $x \in O$. Since $x \notin X \backslash O$ and $X \backslash O$ is a closed set, we have by Question 1 that $d(x, X \backslash O)>0$. Take any $K \in \mathbb{N}$
such that $\frac{1}{K}<d(x, X \backslash O)$. By the definition of $d(x, X \backslash O)$, for any $y \in X \backslash O$, $d(x, y) \geq d(x, X \backslash O)>\frac{1}{K}$, implying that $x \notin B_{\frac{1}{K}}(y)$. Therefore, $x \notin D_{K}$, so we have that $x \in C_{K} \subset \cup_{k=1}^{\infty} C_{k}$, proving the reverse inclusion.

[^0]: ${ }^{1}$ Remember the definitions $l(0, x) \equiv\{\alpha x: \alpha \in[0,1]\}$ and $\sum_{k=0}^{\infty} a_{k} \equiv \lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{k}$.

