Economics 204
Fall 2012
Problem Set 1
Due Friday, July 27 in Lecture

1. Use induction to prove the following statements.
(a) The equality $\sum_{i=1}^{n} i^{3}=\left(\sum_{i=1}^{n} i\right)^{2}$ holds for all $n \in \mathbb{N}$;
(b) The inequality $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \geq \sqrt{n}$ holds for all $n \in \mathbb{N}$;
(c) The inequality $(1+x)^{n} \geq 1+n x$ holds for all $n \in \mathbb{N}$ and all $x \in[-1, \infty)$.
2. Let A and B be subsets of \mathbb{R} such that their complements are countably infinite. Prove $A \cap B \neq \varnothing$.
3. Prove that there are uncountably many infinite subsets (i.e. subsets with infinitely many elements) of \mathbb{N}. (If you need to, you can use the fact that the countable union of countable sets is countable.)
4. A collection \mathcal{S} of subsets of some fixed set X which has the properties

- $\varnothing \in \mathcal{S}$;
- $A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$;
- $A, B \in \mathcal{S}, A \subseteq B \Rightarrow B \backslash A=\bigcup_{k=1}^{n} A_{k}$ for some pairwise disjoint sets $A_{1}, \ldots, A_{n} \in \mathcal{S}$
is called a semiring. ${ }^{1,2}$
Let $X=Y \times Z$ and let \mathcal{A} and \mathcal{B} be semirings of some sets Y and Z, respectively. Let $\mathcal{S}=\{A \times B: A \in \mathcal{A}, B \in \mathcal{B}\}$. Prove that \mathcal{S} is a semiring of the set X.

5. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a function with the following properties:

- $f(x)=0$ if and only if $x=0$;

[^0]- f is non-decreasing (i.e. $x \geq y \Rightarrow f(x) \geq f(y)$);
- $f(x+y) \leq f(x)+f(y)$ for all $x, y \geq 0$.

Show that if (X, d) is a metric space, then $(X, f \circ d)$ is also a metric space.
6. Let (X, d) be a metric space and let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences in X that converge to x and y respectively.
(a) Prove that the sequence $\left\{d\left(x_{n}, y_{n}\right)\right\}$ converges to $d(x, y)$.
(b) Let $X=\mathbb{R}$ and d be the usual metric on \mathbb{R}. Define $z_{n}=\max \left\{x_{n}, y_{n}\right\}$ for all $n \in \mathbb{N}$. Prove that the sequence $\left\{z_{n}\right\}$ converges to $\max \{x, y\}$.

[^0]: ${ }^{1} B \backslash A$ is the set difference of B and A, denoted by $B \sim A$ in de la Fuente. More specifically, $B \backslash A=\{x \in X: x \in B, x \notin A\}$.
 ${ }^{2}$ For example, the collection of all intervals on the real line of the form $[a, b],[a, b),(a, b],(a, b)$ is a semiring, where $[a, a]=\{a\}$.

