Econ 204 – Problem Set 1

Due Friday, August 1

1. Let A, B, C be sets. Prove the following statements:

(a)
$$C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$$

(b)
$$C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B)$$

(a) A set S with n elements has 2^n subsets. (note: do not forget about the empty set)

(b)
$$\left|\sum_{n=1}^{N} x_n\right| \leq \sum_{n=1}^{N} |x_n|$$
, for $x_n \in \mathbb{R}$

(c) Prove that any grid made up of $2^n \times 2^n$ tiles can be covered except for one corner tile by L-shaped triominoes (the triominoes may rotated). The figure below shows an example of a 4×4 grid (left) where all of the non-shaded tiles must be covered by a triomino (right). Note: Visual proofs of the base and inductive steps are fine.

3. Let A and B be subsets of any uncountable set X such that their complements are countably infinite. Prove that $A \cap B \neq \emptyset$.

4. If $x \neq 0$ is rational and y is irrational, prove that x + y and $x \cdot y$ are irrational. If $x \neq 0$ is instead irrational, does the statement still hold?

5. Recall the definition of an *ordered field*: a field F with a binary relation " \leq " such that $\forall x, y, z \in F$, we have:

1

• Totality: $x \le y$ or $y \le x$

• Antisymmetry: $x \le y$ and $y \le x \implies x = y$

• Transitivity: $x \le y$ and $y \le z \implies x \le z$

• The order complies with addition and multiplication: $y \le z \implies x + y \le x + z$ and $x \ge 0, y \ge 0 \implies x \cdot y \ge 0$

We define "x < y" as " $x \le y$ " but not " $y \le x$ "; similarly for x > y.

(a) Prove the following properties of any ordered field:

i.
$$x \ge 0 \implies -x \le 0$$
 and vice versa.

ii.
$$x \ge 0$$
 and $y \le z \implies x \cdot y \le x \cdot z$

iii.
$$x \leq 0$$
 and $y \leq z \implies x \cdot y \geq x \cdot z$

iv.
$$x \neq 0 \implies x^2 > 0$$

v.
$$0 < x < y \implies 0 < y^{-1} < x^{-1}$$

- (b) Using the above properties, prove that the complex field $\mathbb C$ cannot be made into an ordered field.
- 6. Let A be a subet of \mathbb{R} that is nonempty and bounded below. Define the set $-A = \{-a : a \in A\}$. Prove that inf $A = -\sup(-A)$.
- 7. Define the following distance function on the set of real numbers:

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

- (a) Prove that (\mathbb{R}, d) is a metric space.
- (b) Identify the open (and closed) balls in the topology induced by this metric.