Econ 204 - Problem Set 1

Due Friday, August 1

1. Let A, B, C be sets. Prove the following statements:
(a) $C \backslash(A \cup B)=(C \backslash A) \cap(C \backslash B)$
(b) $C \backslash(A \cap B)=(C \backslash A) \cup(C \backslash B)$
2. Use the principle of mathematical induction to prove the following statements:
(a) A set S with n elements has 2^{n} subsets. (note: do not forget about the empty set)
(b) $\left|\sum_{n=1}^{N} x_{n}\right| \leq \sum_{n=1}^{N}\left|x_{n}\right|$, for $x_{n} \in \mathbb{R}$
(c) Prove that any grid made up of $2^{n} \times 2^{n}$ tiles can be covered except for one corner tile by L-shaped triominoes (the triominoes may rotated). The figure below shows an example of a 4×4 grid (left) where all of the non-shaded tiles must be covered by a triomino (right). Note: Visual proofs of the base and inductive steps are fine.

3. Let A and B be subsets of any uncountable set X such that their complements are countably infinite. Prove that $A \cap B \neq \varnothing$.
4. If $x \neq 0$ is rational and y is irrational, prove that $x+y$ and $x \cdot y$ are irrational. If $x \neq 0$ is instead irrational, does the statement still hold?
5. Recall the definition of an ordered field: a field F with a binary relation " \leq " such that $\forall x, y, z \in F$, we have:

- Totality: $x \leq y$ or $y \leq x$
- Antisymmetry: $x \leq y$ and $y \leq x \Longrightarrow x=y$
- Transitivity: $x \leq y$ and $y \leq z \Longrightarrow x \leq z$
- The order complies with addition and multiplication: $y \leq z \Longrightarrow$ $x+y \leq x+z$ and $x \geq 0, y \geq 0 \Longrightarrow x \cdot y \geq 0$

We define " $x<y$ " as " $x \leq y$ " but not " $y \leq x$ "; similarly for $x>y$.
(a) Prove the following properties of any ordered field:
i. $x \geq 0 \Longrightarrow-x \leq 0$ and vice versa.
ii. $x \geq 0$ and $y \leq z \Longrightarrow x \cdot y \leq x \cdot z$
iii. $x \leq 0$ and $y \leq z \Longrightarrow x \cdot y \geq x \cdot z$
iv. $x \neq 0 \Longrightarrow x^{2}>0$
v. $0<x<y \Longrightarrow 0<y^{-1}<x^{-1}$
(b) Using the above properties, prove that the complex field \mathbb{C} cannot be made into an ordered field.
6. Let A be a subet of \mathbb{R} that is nonempty and bounded below. Define the set $-A=\{-a: a \in A\}$. Prove that inf $A=-\sup (-A)$.
7. Define the following distance function on the set of real numbers:

$$
d(x, y)= \begin{cases}1 & \text { if } x \neq y \\ 0 & \text { if } x=y\end{cases}
$$

(a) Prove that (\mathbb{R}, d) is a metric space.
(b) Identify the open (and closed) balls in the topology induced by this metric.

